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Abstract

This paper investigates using ordinary least squares (OLS) on auction

data. We find that for parameterizations of the valuation distribution that

are common in empirical practice, an adaptation of OLS provides unbi-

ased estimators of structural parameters. Under symmetric independent

private values, adapted OLS is a specialization of the method of moments

strategy of Laffont, Ossard and Vuong (1995). In contrast to their estima-

tor, here simulation is not required, leading to a computationally simpler

procedure. The paper also discusses using estimation results for inference

on the shape of the valuation distribution, and applicability outside the

symmetric independent private values framework.
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1 Introduction

The field of econometrics of auctions has been successful in providing methods

for the investigation of auction data that are well grounded in economic theory

and allow for inference on the structure of an auction environment. Today a

researcher has a number of alternative structural methods, specially within the

independent private values paradigm; an excellent reference to this literature

is the Paarsch et al. (2006) book. To name a few alternatives, it is possible to

use maximum likelihood (Donald and Paarsch, 1996), nonparametric methods

(Guerre et al., 2000), simulated nonlinear least squares (Laffont et al., 1995)

and bounds estimation of incomplete models (Haile and Tamer, 2003).

And yet, it is still common to find empirical studies of auction markets that

do not use these techniques and instead run regressions of the following form:

p = Xβ + ǫ, (1)

where p is the transaction price (or its log). For example, several studies have

recently investigated the importance attributed by consumers to the reputation

of sellers in eBay using specifications of this sort (Houser and Wooders, 2000;

Lucking-Reiley et al., 2000; McDonald and Slawson, 2002; Melnik and Alm,

2002). These studies identify interesting empirical relationships, but they are

not structural, in the sense of identifying parameters from the valuation distri-

bution. This is a drawback, since these estimates cannot be used for counter-

factual analysis of changes in the institutional environment.

What makes specification 1 not structural is not the right-hand side of regres-

sion — covariates may indeed impact consumer preferences in a linear fashion

— but rather the left-hand side. A superior starting point for an empirical
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analysis would be a specification such as

Vi = Xβ + ǫi, (2)

where Vi is consumer i’s valuation, or willingness to pay, for the product be-

ing auctioned. Unlike price, valuation is a demand concept, that reflects the

consumer’s preferences in isolation of supply or market institutions effects. A

bidder will never elect to pay his or her own valuation for the product — doing

so would guarantee that the bidder would not gain anything from participat-

ing in an auction. Because of that, we know prices and valuations are not the

same. Therefore, whenever the objective is to measure consumers’ preferences,

a regression like equation 1 would suffer from misspecification bias.

The main point of this paper is that applying the broad method of moments

approach from Laffont et al. (1995) to a standard specification such as equation 2

leads to the possibility of structural estimation by an adaptation of ordinary

least squares.

Laffont et al. (1995) exploit the fundamental property of symmetric inde-

pendent private values auctions, expected revenue equivalence, as a moment

condition that can be used to estimate parameters that appear in the valuation

distribution in a general way. To obtain a mapping between parameters and mo-

ments for estimation purposes they use computer simulation. They show that

due to simulation error standard nonlinear least squares on simulated moments

is biased; they propose instead a simulated nonlinear least squares estimator

(SNLLS) that minimizes an objective function that corrects for the simulation

bias.

In this paper, we argue that once one specializes the analysis to parame-

terizations that are commonly made in empirical work, the method simplifies

dramatically. In particular, simulation of the sort used in the SNLLS is no
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longer necessary, which reduces the computational cost of the algorithm and

the interpretation of its statistical properties.

It will also be shown that, while revenue equivalence is helpful, it is not

crucial for the method. The key property is that auction games are “linear”, in

the sense that a change of location or scale of all valuations within an auction

leads to a corresponding change in the expected price in equilibrium. Using this

property, it is possible to generalize the method to some environments where

revenue equivalence does not hold.

Of course, the idea (or the practice) of estimation with auction data through

OLS is not new. What we will do is propose an adjustment, an additional artifi-

cial regressor, that makes the standard OLS estimators unbiased for the param-

eters of the valuation distribution. In exercise 3.2.b of Paarsch et al. (2006), the

same adjustment is proposed in the context of a second-price auction.1 Here we

argue that the adjustment is applicable to a wider class of auctions and, when

properly generalized, to contexts where revenue equivalence does not hold.

We hope the discussion presented here of the opportunities and limits of

OLS for the structural estimation of auction models can help guide researchers

interested in estimating factors that affect bidder valuations in a way that is

simple to implement and easy to interpret, as well as theoretically sound; con-

versely, it may also help inform researchers of the potential pitfalls of simple

OLS on auction data in many contexts.

We do not see the adjusted OLS method proposed here as a true substitute

for more complex estimation procedures found in the literature; the computa-

tional simplicity comes with a cost. First, while unbiased the estimators are not

as efficient as maximum likelihood. Second, the method depends on a parame-

terization where only the location and scale of valuations vary across auctions

(and the variation is the same for every bidder). This is too restrictive in some

1I thank an anonymous referee for pointing me this reference.
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circumstances; for example, in a study of an asymmetric auction environment

the focus may be in whether a given covariate affects bidder valuations differ-

ently in the same auction. Such effect cannot be accounted for in the framework

discussed here. Even then, we hope the methods discussed here can find a place

in the toolbox of applied economists, as they may help guide preliminary work

on auction data.

The paper is organized as follows: Section 2 describes the setting. Section 3

introduces the method. The possibility of exploring the information obtained

from the method for inference about the shape of the valuation distribution is

discussed in section 4. Section 5 discusses whether the method can be general-

ized for contexts where revenue equivalence does not hold. An illustration with

a practical application of the method to a sample of iPod mini eBay auctions is

done in section 6. Section 7 concludes.

2 The Setting

We are interested in estimating the parameters that determine the location and

scale of distributions of bidder valuations in a sample of L auctions. Let Vil be

the valuation of the i-th bidder in the l-th auction. Let µl be the mean and σl

the standard deviation of valuations in auction l. As the subscript suggests, they

may vary across auctions. We will assume that variation across auctions only

affects the location and scale of valuations, not other aspects of the valuation

distribution:

Assumption 1 Vil = µl + σlǫil, where the ǫil are i.i.d. with distribution F .

The standardized valuation, ǫil = (Vil − µl)/σl, has a common distribution

F that does not vary across auctions or bidders. For the moment we also impose

independence, both across auctions and bidders.
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Independence across different auctions is an assumption made here for con-

venience. Relaxing it in what follows would have the same effect of having non-

spherical disturbances in a linear regression model: it would affect efficiency,

but not unbiasedness of the estimators.2

Independence across bidder valuations within an auction is a requirement

of the benchmark model in auction theory, the symmetric independent private

values auction model. Section 5 investigates the possibility of extending the

method to settings where valuations are not independent.

We consider the problem of a researcher interested in evaluating the effect

of exogenous covariates on µl and σl. Let Xl be the vector of covariates that

affect the expected valuation µl and Zl the vector of covariates that affect σl.

It is possible to have regressors that appear in both Xl and Zl. We assume

that [Xl, Zl] are either deterministic or otherwise publicly known by all bidders

before auction l starts. Linearity is imposed:

Assumption 2 µl = Xlβ and σl = Zlα.

This is imposed solely in the interest of simplicity. All that follows would still

hold if these relationships were nonlinear, substituting nonlinear least squares for

OLS. Linearity in the specification of σl is unusual, since the standard practice

is to specify a form that restricts it to be non-negative. This can be done here

as well, and again would lead to nonlinear least squares.3

We intend to obtain estimates of β and α from a sample of auctions of which

we know the covariates [Xl, Zl], the number of bidders nl and the winning price

2In any case, spherical disturbances in equation 2 is not enough to guarantee efficiency of
OLS, since the regression will be heteroskedastic even under this assumption.

3It may be worth pointing out that the role played by the specification of σl in what follows
is not the usual one. When the functional form of σl is used to correct for heteroskedasticity
in a GLS procedure, allowing for negative values is computationally problematic, since the
objective function of the estimation procedure may become ill-behaved. This is not a problem
here, since σl will appear in the least squares computation in a different way. Hypothetical
negative values for σl would not lead to any computational problems, although they are hardly
justifiable on economic grounds.
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pl. We require

Assumption 3 The number of bidders, nl, is exogenous and common knowl-

edge. Bidders are risk-neutral, and maximize their profits at each auction in

isolation.

Here exogeneity is meant both in the game-theoretic sense — nl is taken as

given, and is not determined by each bidder decision-making process — and in

the econometric sense — ǫil and nl are independent. The number of bidders is

also assumed to be publicly known before bidding.

We consider a standard auction, in the following sense:

Assumption 4 The auction rules are such that the good is always assigned to

the bidder with the highest value, and the lowest valuation bidder expects to pay

nothing.

This is a condition satisfied by the English auction, the sealed bid first-price

auction, the second-price auction, and also by the all-pay auction.4

The method uses the central result in auction theory, the expected revenue

equivalence theorem (Vickrey, 1961; Myerson, 1981):5

Theorem 1 (Expected Revenue Equivalence) Under assumptions 1, 3 and

4, the expected payment for the good in auction l is E[V(2:nl)l].

Here the expectation is taken with respect to all information that is publicly

available at the time of the auction; therefore the expected revenue equivalence

theorem establishes that E[pl|Xl, Zl, nl] = E[V(2:nl)|Xl, Zl, nl].

4In the case of an all-pay auction, pl should be interpreted as the sum of the prices payed
by all bidders, rather than the amount payed by the winner.

5In what follows the notation x(k:n) represents the kth-highest order statistic from an
i.i.d. sample of n observations of x.
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3 Estimation

In this section, we propose two alternative estimation procedures. The first one

requires information about F , that is, knowledge of the valuation distribution

up to location and scale. The second method is applicable when F is unknown.

3.1 Estimation when F is known

Suppose a dataset of auctions is available with information about the final selling

price pl, the number of bidders nl and covariates [Xl, Zl]. Then under the

assumptions made we can write

E[pl|Xl, Zl, nl] = E[V(2:nl)|Xl, Zl, nl]

= E[µl + σlǫ(2:nl)|Xl, Zl, nl]

= µl + σlE[ǫ(2:nl)],

where the first equality is due to the expected revenue equivalence theorem,

the third by linearity of the conditional expectation, and the second is an useful

property of order statistics: When an increasing affine transformation is applied

to all variables in a sample, the order statistics of the new sample are the same

affine transformation of the original order statistics. Paarsch et al. (2006) use

this property to propose an OLS estimator for µl and σl in the context of a

second-price auction, since then the winning price is the second-order statistic

itself.6

Defining

a(n) ≡ E[ǫ(2:n)] = n(n − 1)

∫

tF (t)n−1(1 − F (t))dF (t),

6This property has also been discussed and utilized by Thiel (1988) in the context of a
common values auction. Thiel’s objective was to obtain for estimation purposes a linear
relationship between two different objects, a bidder’s own signal and the bid. This procedure
was corrected by Levin and Smith (1991) and applied by Paarsch (1992).
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we obtain

E[pl|Xl, Zl, nl] = Xlβ + a(nl)Zlα. (3)

Note that the conditional expectation of the winning bid is linear in β and

α. This means that OLS is an unbiased, consistent estimation method for

these coefficients. This observation gives rise to a straightforward procedure to

estimate β and α when F is known:

Method 1 Using the standardized value distribution F , compute a(nl) for all

values of nl in the sample. Construct the set of regressors [Xl, a(nl)Zl],

and run OLS of the observed winning bids on these regressors.

It is important to notice that method 1 is not the same as introducing nl

as an additional regressor, as it is sometimes done in the literature, but rather

introducing a(nl), a nonlinear function of nl. In fact, ignoring the nonlinearity

is never correct:

Proposition 1 There is no non-degenerate distribution F such that a(n) is

affine in n.

Because the proof of this proposition depends on tools that will be developed

in section 4, it will be deferred to appendix B.

The first step method 1 requires the computation of a(n) = E[ǫ(2:n)]. Values

of a(n) are shown for some standardized distributions from selected location-

scale families in table 1 below. By standardizing we mean working with pa-

rameter values that lead to a distribution with mean 0 and variance 1; thus in

table 1 values labeled “uniform” are from the U [−
√

3,
√

3] distribution; “logis-

tic” are from the distribution F (t) = eπt/
√

3/
(

1 + eπt/
√

3
)

(that is, the logistic

distribution with scale parameter
√

3/π); “Laplace” is for the Laplace or double
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exponential distribution with location 0 and scale 1/
√

2, with density f(t) =

e−|t|
√

2/
√

2; and “Gumbel” is the Gumbel or Extreme Value Type I distribu-

tion with location parameter −
√

6γ/π and scale
√

6/π, with F (t) = e−e−π t/
√

6−γ

,

where γ = 0.577216 . . . is the Euler-Mascheroni constant.

Of these five distributions, in four a(n) can be written in closed form for all

n ≥ 2:

• For the uniform distribution, a(n) =
√

3 n−3
n+1 .

• For the logistic distribution, a(n) =
√

3
π

(

∑n−2
k=1

1
k − 1

)

.

• For the Laplace Distribution, a(n) = n ω1:n−1 − (n − 1)ω1:n, where

ω1:n =
n

2
√

2

n−1
∑

k=0

∏k
t=1(t − n)

2kk!(k + 1)2
− 1

n2n
√

2
,

for all n ≥ 1 (including ω1:1 = 0).

• For the Gumbel or extreme value type I distribution,

a(n) =

√
6

π
[n log(n − 1) − (n − 1) log(n)].

For the normal distribution, closed forms for a(n) exist only for n ≤ 5:

a(2) = −1/
√

π, a(3) = 0 (Jones, 1948), a(4) = 3
2
√

π

(

1 − 6
πarcsin(1/3)

)

and

a(5) = 5
2
√

π

(

1 − 6
π arcsin(1/3)

)

(Godwin, 1949). For higher values of n numeri-

cal integration can be used. The results reported in table 1 have been computed

using Mathematica’s NIntegrate algorithm. Tabulations with more accuracy

and for higher values of n can be found in Harter (1961) (5 decimal places, n

up to 100), Yamauti et al. (1972) (10 places, n up to 50) and Parrish (1992) (25

places, n up to 50).

The method can be applied with an arbitrary distribution F with mean

0 and variance 1. In this case numerical integration to evaluate a(n) will be
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n Uniform Normal Logistic Laplace Gumbel
2 -0.57735 -0.56419 -0.55133 -0.53033 -0.54044
3 0 0 0 0 -0.09184
4 0.34641 0.29701 0.27566 0.24307 0.18367
5 0.57735 0.49502 0.45944 0.40511 0.38495
6 0.74231 0.64176 0.59727 0.53033 0.54410
7 0.86603 0.75737 0.70754 0.63419 0.67588
8 0.96225 0.85222 0.79943 0.72373 0.78842
9 1.03923 0.93230 0.87819 0.80278 0.88665
10 1.10221 1.00136 0.94710 0.87369 0.97383
11 1.15470 1.06192 1.00836 0.93807 1.05219
12 1.19911 1.11573 1.06350 0.99703 1.12336
13 1.23718 1.16408 1.11362 1.05144 1.18857
14 1.27017 1.20790 1.15956 1.10196 1.24872
15 1.29904 1.24794 1.20197 1.14910 1.30456
16 1.32451 1.28474 1.24135 1.19330 1.35665
17 1.34715 1.31878 1.27811 1.23489 1.40548
18 1.36741 1.35041 1.31256 1.27418 1.45142
19 1.38564 1.37994 1.34500 1.31139 1.49480
20 1.40214 1.40760 1.37563 1.34675 1.53590

Table 1: Values of a(n) for selected distributions.
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required. Unbiasedness of the least squares regression requires this integration

to be accurate, as computational error would lead to error-in-variables bias.

Laffont et al. (1995) deal with this problem by modifying the objective func-

tion of their estimator to compensate for the computational error bias. In our

case the issue is less problematic since 1) closed form solutions for a(n) exist in

some cases; 2) even when they do not exist, the computation of a(n) must be

done only once, and therefore it is possible to require a high level of accuracy.

(In the context of Laffont et al. (1995), the computation must be redone for

every evaluation of the objective function, and therefore accuracy is much more

costly).

Assuming the hypothesis made about F is the correct one and the calcu-

lation of a(n) is made without errors, the estimators from method 1 have the

standard properties of least squares estimators with non-spherical (and non-

normal) disturbances; they are unbiased and
√

L-consistent, but they are not

efficient.

Even with independence across auctions, there is heteroskedasticity across

auctions with different numbers of bidders and efficiency can be gained with

generalized least squares. For some distributional families, closed form solutions

for the variance of ǫ(2:n) are available; for example, for the standardized Gumbel

distribution, Var(ǫ(2:n)) = 1− 6
π2 n(n− 1)[log(n)− log(n− 1)]2. If σl is constant

across auctions, the variance of the residuals in method 1 regression is a multiple

of Var(ǫ(2:n)), and thus weighted least squares can be done with little additional

computational cost.

Also, once F is imposed the model is fully specified, and thus maximum

likelihood (ML) is available. Maximum likelihood estimators for the symmet-

ric independent private values framework have been studied by Donald and

Paarsch (1996). For first-price auctions, the support of the bid distribution
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depend on parameters; as Donald and Paarsch (2002) put, “in such situations

the maximum-likelihood estimator is often difficult to calculate and usually

has a nonstandard limiting distribution that depends on nuisance parameters”

(p. 305). Donald and Paarsch (1993) and Donald and Paarsch (2002) propose

alternative estimation procedures that are computationally easier and have sim-

pler asymptotic properties.

Similarly, the method proposed here trades off computational simplicity for

efficiency. Appendix A provides evidence from Monte Carlo experiments that

compare the OLS estimators with maximum likelihood in two simple settings

where the ML estimator is computationally less involved. In both cases, there

is a loss of efficiency from using OLS, as expected. OLS estimates for the mean

µ tend to have acceptably low variances, in fact smaller than the variance of the

estimator a researcher would obtain observing a sample of L valuations directly.

The same is not true for the estimator of σ, which is unbiased, but imprecise.

This is confirmed with field data in section 6.

3.2 Estimation when F is not known

The method proposed in the previous section requires introducing an appro-

priately chosen nonlinear function of the number of bidders as an additional

regressor, and the appropriate function depends on the shape of the valuation

distribution. This is a drawback since there may not be a priori information

about F . In that case, it is possible to substitute dummy variables to flexibly

estimate the unknown function a(n) in the conditional expectation of pl.

For every number of bidders k observed in an auction in the sample, construct

a dummy variable dkl for the event nl = k. We consider two situations in turn:

The homoskedastic case where σl = σ, and then the general case where σl is a

function of variable regressors as well.
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When σl = σ (that is, Zl contains only a constant), writing ml = Xlβ =

β0 + xlβ1, we can write the conditional expectation of pl in terms of these

variables as follows:

E[pl|Xl, {dkl}] = xlβ1 +
∑

k

dkl[β0 + σa(k)]

= xlβ1 +
∑

k

dklδk,

where the summation over k is over the empirical support of nl and δk = β0 +

σa(n). Again we obtain a linear relationship that can be estimated using OLS.

The OLS estimates allows us to recover all β coefficients except the intercept.

Both σ and the intercept β0 will be absorbed in the dummy coefficients, and

thus cannot be identified.7

When Zl contains other variables, the conditional expectation will involve

interactions of all these variables (including the constant) with the dkl. Adding

those in a linear regression is enough to obtain unbiased estimates of the coef-

ficients for regressors that appear on X but not on Z.

To obtain estimates for the other coefficients without imposing a distribu-

tional choice for the valuations, nonlinear least squares are required. Let Y be

the set of regressors common to both X and Z, and let x and z be the sets of

regressors that appear on X but not on Z and vice-versa. Write β = (β1, β2)

so that Xβ = Y β1 + xβ2, and likewise for α. Then

E[pl|Xl, Zl, {dkl}] = xlβ2 +
∑

k

dklYl[β1 + a(k)α1] +
∑

k

dklzl[a(k)α2]; (4)

= xlβ2 +
∑

k

dklYlδk1 +
∑

k

dklzlδk2.

The model imposes nonlinear restrictions on N × (A + B) of the “reduced

7If the researcher is willing to impose the condition that F is symmetric, then β0 can be
identified in the following way: for any symmetric distribution F (with finite expectation),
a(3) = 0. Thus, the coefficient of d3l is δ3 = β0 + σa(3) = β0.
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form” coefficients obtained in this regression, where N is the number of different

observed values for nl, A is the number of regressors that appear both in X and

Z, and B is the number of regressors that appear only in Z. Since there are

2A+B +N parameters to be estimated (namely α1, α2, β1 and a(n)), if N ≥ 4

the model will be identified.8

We thus propose the following method:

Method 2 For every number of bidders k observed in an auction in the sample,

construct dummy variables dkl for the event nl = k.

• To obtain estimates of β parameters for the set of regressors xl in Xl

that do not appear in Zl, run OLS of pl on xl and all interactions of

Zl and the dummies dkl;

• To obtain estimates of the other parameters, run nonlinear least

squares of pl on the function in the right hand side of equation 4,

treating a(k) as parameters to be estimated.

An interesting feature of method 2 is that it may be possible to obtain

estimates of moments of order statistics â(n) of the underlying distribution F .

This information can be used for inference about F . Section 4 discusses this

possibility and section 6 provides a practical illustration.

4 Identifying Distributions from Least Squares

Coefficients

As mentioned in the previous section, with method 2 it may be possible to

obtain estimates for the a(n)’s, the first moments of the second order statistics

of the F distribution. This section discusses ways to explore this information. It

8A notable exception is the previous case where Z contains only a constant, since then
B = 0 and A = 1, and we have N equations and N + 2 unknowns.
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establishes that knowledge of these moments (for all n) is enough to fully identify

the valuation distribution: in principle, it is possible to obtain a nonparametric

estimator of the valuation distribution from the estimated coefficients of a least

squares regression!

It also provides a straightforward test for specific distributional assumptions.

The methodology is illustrated in the next section with an application to a

dataset of auctions of iPod minis from eBay.

4.1 Full Identification of F from {a(n)}

A probability distribution can be fully identified from knowledge of its a(n)’s.

This has been shown in several versions in the Statistics literature (Hoeffding,

1953; Chan, 1967; Pollak, 1973). Here a constructive proof is provided, that

directly shows how to compute F from {a(n)}∞n=2.

Theorem 2 Suppose that F has a finite expectation. Then there is a one-to-one

mapping between F and the sequence {a(n)}∞n=2.

The overall strategy of the proof follows Pollak (1973): the construction of

F from a(n) will be made in two steps, that we state as lemmas.

Lemma 1 (Recurrence relation) Let ω(k:n) = E[ǫ(k:n)], for all n = 2, 3, . . .

and all k = 1, 2, 3, . . . , n − 1. Then the following recurrence relation holds:

ω(k:n−1) =
n − k

n
ω(k:n) +

k

n
ω(k+1:n).

Proof: See appendix B. �

Corollary 1 Knowledge of a(n) = E[ǫ(2:n)] for every n = 2, 3, . . . is sufficient

to know all ω(k:n) = E[ǫ(k:n)], for all n = 2, 3, . . . and all k = 2, 3, . . . , n.
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Proof: See appendix B. �

The recurrence relation is valid for any random variable (with finite expec-

tation). If the mean (=ω(1:1)) of it is known, then one can further compute

ω(1:n) using the recurrence formula. However, this will not be needed in what

follows.9

Another remarkable fact is that the same recurrence relation is valid for the

expectation of any measurable function g of the order statistics: E[g(ǫ(k+1:n))] =

n
k E[g(ǫ(k:n−1))]− n−k

k E[g(ǫ(k:n))]. So the same lemma applies to other moments,

such as the variance of the order statistics.10

Lemma 2 Let {kn} be a sequence of integers such that 1 − kn/n → α ∈ [0, 1].

Then ǫ(kn,n) → F−1(α) in probability.

Proof: See appendix B. �

Proof of Theorem 2: To obtain the quantile F−1(α) for any α ∈ [0, 1], select

a sequence {kn} such that kn ≥ 2 and kn/n → 1−α. Use the recurrence formula

to compute ω(kn:n) from the a(n)’s, and then take the limit. The converse is

immediate. �

In principle Theorem 2 provides a way to obtain a non-parametric estimate

of the distribution of F by ordinary least squares. From method 2 we obtain

estimators â(n) that are consistent for a(n). Since the recurrence formula is

linear, the corresponding ω̂(k:n) are also consistent (for a fixed n, as the number

of auctions goes to infinity). Finally, for large n, from lemma 2 the expectation

of these estimators converges to the quantiles of the original distribution.

9The recurrence relation can also be used to facilitate computation of a(n); for example,
see the closed form solution for the Laplace distribution in section 3.1.

10Another application of the recurrence relation in Economics can be found in Athey and
Haile (2002). Using the relation with g(x) = 1I{x < t} one obtains a recurrence relation
between distributions of order statistics. Athey and Haile (2002) use this relation to investigate
ways of testing for the winner’s curse.
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However, the linear combinations that arise from the recurrence formula

have large coefficients of opposing signs. Therefore the variance of ω̂(k:n) can be

very large even if the â(n) are estimated precisely. So this estimation strategy

is likely to perform very poorly even in a very large dataset.

To see that, using the recurrence formula the following closed form expression

for ω(k:n) can be obtained:

ω(k:n) =
n!

(n − k)!(k − 1)!

k−2
∑

j=0

(−1)k−j−2 (k − 2)!

j!(k − 2 − j)!

a(n − j)

(n − j)(n − j − 1)
.

ω(k:n) is a linear combination of the k − 1 previous a(n)’s, with coefficients

that alternate signs. As k and n grow, not only the number of terms in the sum

grow, but also do the coefficients. This means that the estimator for ω(k:n) is

likely to have a variance too large to be of practical use.

Consider for example the case where µl = 0 and σl = 1. In this case the

estimators for â(n) are means of different auction subsamples, and are there-

fore independent. In this case, the variance of ω̂(k:n) is simply Var(ω̂(k:n)) =

∑k−2
j=0 c2

jknVar(â(n − j)), with cjkn = n!
(n−k)!(k−1)!

(k−2)!
j!(k−2−j)!(n−j)(n−j−1) .

Suppose we are interested in estimating the median of the valuation distri-

bution, and for that we use ω̂(n/2:n) for some large choice of n. Take the first

coefficient c0kn. For k = n/2 we find

c0kn =
n!

(n − k)!(k − 1)!n(n − 1)
=

(n − 2)!

(n − k)!(k − 1)!

≃ n!

((n/2)!)2
−→
n→∞

∞.

So the variance of ω̂(n/2:n) would be arbitrarily large for large values of n

even if we had a sample that allowed us to estimate a(n) well. For this reason,

one should not expect to obtain accurate estimates of quantiles of F using this

method.
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However, theorem 2 indicates that there is a significant amount of informa-

tion in {a(n)}; in particular, about aspects of the shape of the upper tail that

are of interest to study revenue and surplus issues. The next section discusses

a practical way to explore this information.

4.2 Hypothesis Testing about Distributions

The information contained on the â(n) estimators can be used to test for the

hypothesis of a specific distribution F .

Under the null hypothesis that a given F is the standardized valuation dis-

tribution, method 1 would be appropriate. Under the alternative hypothesis,

method 2 would be. But the regression by method 1 is a restricted version of the

regression in method 2, where the a(n) terms are required to follow the shape

specified by F . So one can simply test the hypothesis by running both methods

and applying an F-test on the R2 difference.11 This procedure is illustrated in

section 6.

5 Other settings

The presentation of the method was done under the assumption of the bench-

mark model in auction theory, the independent private values framework with

symmetric bidders and exogenous participation. In many applications, some

or many of the underlying hypotheses in this model do not hold. This section

11If F is known up to a family of distributions indexed by a set of parameters θ, a similar
idea can be used in a two step procedure to estimate θ.

Assume that ǫil is drawn from a distribution F ∈ {Fθ}θ , where {Fθ}θ is a family parame-
terized by θ. We are interested in finding θ such that F = Fθ. Then, for every n observed in
the sample, we can use the moment condition

a(n) =
n!

(n − 2)!

Z
xF

(n−2)
θ

(1 − Fθ)dFθ

for each n to run a GMM method using as the left hand side the estimates that come from
method 2. Further research is needed to investigate if this approach is feasible and yields good
estimators in small sample.
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briefly discusses to what extent the method works when applied in more general

contexts.

Given that the presentation relied on the expected revenue equivalence the-

orem, it may come as a surprise that the method is to some extent applicable

even in contexts where the theorem does not hold. The key to the method is a

general property of auction games: when an affine transformation is applied to

all valuations, then the new equilibrium bids will be an affine transformation of

the original equilibrium bids.

More formally, consider the class of auctions where a bidder action can be

represented by a number bi (i’s “bid”). Let b = (b1, . . . , bn). Given an auction

rule, let Wi(b) be i’s probability of winning the item given that bidders in the

auction played b, and let Pi(b) be the expected payment given b, conditional

upon winning. Note that these are functions of the realized bids of all partic-

ipants, and thus are determined solely by the auctions rules and not by the

data generating process of the valuations. For example, in a first-price auction,

Wi(b) = 1 if bi is the sole highest bid and 0 if bi is not the highest bid12 and

Pi(b) = bi.

Let vi be i’s valuation, not necessarily independent or symmetric. Let v =

(v1, . . . , vn), and let µ and σ > 0 be constants. Then we have the following

proposition, that generalizes results found in Bajari and Hortaçsu (2003), Deltas

and Chakraborty (2001) and Krasnokutskaya (2002):

Proposition 2 Suppose bidders are risk neutral and the auction rule is such

that (i) Wi(µ + σb) = Wi(b), (ii) Pi(µ + σb) = µ + σPi(b), for all i and (iii)

losing bidders pay nothing. Then, if b∗ is a Nash equilibrium of an auction when

bidders have valuations v, then µ + σb∗ is a Nash equilibrium of the auction

when valuations are µ + σv. As a consequence, if the expected selling price in

12If bi is tied for highest bid Wi(b) is the probability of i winning as determined by the
auction tie-breaking rule.
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the former auction is p∗, then the expected price in the latter auction will be

µ + σp∗.

Proof: For b∗ to be a Nash equilibrium under v, it must be that it prescribes

i to bid

b∗i ∈ argmax
bi

π(bi, b
∗
−i) = argmax

bi

E[(vi − Pi(bi, b
∗
−i))Wi(bi, b

∗
−i)],

where this expectation is taken to be conditional on all information available to

i (including the contingency of winning).

In the game with valuations µ+σv, suppose the other bidders play µ+σb∗−i.

By following µ + σb∗i bidder i obtains

π̃(µ + σb∗) = (E[(µ + σvi − Pi(µ + σb∗))Wi(µ + σb∗)]

= E[(µ + σvi − (µ + σPi(b
∗)))Wi(b

∗)]

= σE[(vi − Pi(b
∗))Wi(b

∗)]

= σπ(b∗).

Thus, if b∗i is a best response to b∗−i in the former game, µ+σb∗i is a best response

to µ + σb∗−i in the latter game.

As for the expected selling price, this is a consequence of this result combined

with the affinity of Pi. �

The three conditions for the proposition are satisfied by standard auction

rules. The condition on Wi is satisfied by any rule that assigns a winner based

on a ordering of the bids.13 The condition on Pi is also very easily met, as

typically the payment for the winner is either the bidder’s own bid (as in a first

13It is important to point out that this assumption implicitly imposes a restriction on reserve
prices. For W to have the desired property, either the reserve price r must be trivial (in the
sense that the probability of vi and µ + σvi be below r is zero) or it must change along with
v (so that in the second auction the reserve price is µ + σr).
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price auction) or somebody else’s bid (as in the Vickrey or English auctions).

The condition on losing bidders paying nothing rules out all-pay auctions, but

is otherwise usually satisfied.

Consider now a setting with three sets of exogenous variables: (Xl, Zl, Rl).

As before, let Xl and Zl be regressors that affect the location and scale of bidder

valuation. Let Rl be variables that capture all changes in conditions across

auctions: for example, changes in auction rules and variation in participation

levels (both total number of bidders and the presence of specific bidders if their

valuations are asymmetric). Let Vl = (V1l, . . . , Vnll) be the vector of valuations

for bidders in auction l. We impose the following generalization of assumption 1:

Assumption 5 Vl = µl + σlǫl, where ǫl, the vector of standardized valuations,

conditional on Rl has the same distribution across auctions (and are independent

across auctions).

In other words, after a suitable standardization, the joint distribution of

valuations is the same across auctions with the same characteristics Rl. Using

proposition 2, we obtain

E[pl|Xl, Zl, Rl] = Xlβ + Zlαã(Rl), (5)

where ã(Rl) = E[p̃l|Rl], where p̃l is the equilibrium selling price in an auction

with rules Rl and standardized valuations (that, is, if µl = 0 and σl = 1).

Conceptually, this is a direct generalization of equation 3; in practice, how-

ever, what is lost is the easy statistical interpretation of the additional regressor

a(nl) that is possible when the expected revenue equivalence theorem holds. To

compute ã(Rl), one needs to fully specify the auction game being played, then

solve for the equilibrium bids. Thus, generalizing method 1 becomes computa-

tionally burdensome.
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It is possible to generalize method 2. What is needed is to add dummy

variables for all interactions of variables in Rl rather than just the number of

bidders nl. Here are two examples:

As a first example, consider an affiliated valuations model, and suppose

the joint distribution of valuations across auctions varies only in location and

scale. Because valuations are not independent, the expected price in the auction

depends not only on the number of bidders but also on the specific auction rule

utilized; for example, if it is an English auction the expected price will be higher

than in a first-price auction. In this case, the successful application of method

2 will require a set of dummies that interact the number of bidders with the

particular auction rule used, if it changes across the sample.

Another example would be a situation where valuations are independent,

but asymmetric: there are two types of bidders with valuation from different

distributions. Now “location” and “scale” coefficients are interpreted as follows:

When evaluated at the true parameters, µl = Xlβ and σl = Zlα are such that

for all bidders i of the first type, (Vil − µl)/σl is i.i.d. F1 and for bidders of

the second type, (Vil − µl)/σl is i.i.d. F2, F1 6= F2 (Note that this definition

is only meaningful with variable regressors: the intercepts of µl and σl are not

identified). In this case one would need all interactions of numbers of bidders for

each separate type, plus dummies for changes in the auction rules, since in this

case the expected revenue equivalence theorem is invalid as well. Appendix A

shows a Monte Carlo experiment involving asymmetric auctions with bidders

coming from three different distributions.

In general, two important requirements should be met for this approach to

be valid. First, coefficients that can be directly estimated have to impact all

bidders in the same way. In an asymmetric auction setting, for example, it is not

possible to have different coefficients in the location specification for different
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bidder types.14 This makes the method unappealing if the focus of the research

is investigating the nature of bidder asymmetry.

Second, Rl should be exogenous, and must contain all changes in rules and

settings that modify the game being played. If equilibrium behavior is affected

by any variable that is observed by bidders but is absent from Rl, then estimates

from the method will be biased from spurious correlation between Xl or Zl and

this variable. An important practical setting where this problem may occur

(even in the symmetric independent private values case) is when the number of

bidders is not observed or is not exogenous.

In conclusion, it is possible to apply method 2 in some circumstances outside

the symmetric independent private values environment, but one should keep in

mind that the approach is just a way to obtains estimates for location and scale

coefficients controlling for “auction effects”, not a way to investigate properties

of auctions in wider settings. In the example reported in appendix A, the

coefficient of a exogenous regressor on µl can be estimated, but the coefficients

of the “auction controls” are very difficult to interpret, and it is not obvious how

to use this information for inference on the nature of the asymmetry between

bidders. It would also be impossible to apply the method without information

on the number of bidders of each type.

6 Illustration: iPod mini auctions in eBay

This section illustrates the methods proposed in this paper using a sample of

online auctions for Apple iPod mini players. The iPod is a popular portable

device that stores and plays music files, as well as store other electronic data.15

This product is a convenient choice for this illustration for two reasons: First,

14This also implies that reservation prices move along with valuations as regressors change.
15Newer models of iPod can also display pictures and play video.
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because of its success and size the online market for iPods is very liquid; cur-

rently in eBay alone there are several thousand listings of Apple iPods. Second,

since the design of all iPods is under the control of the same company, the

amount of product heterogeneity is limited.

Out of the several different types of iPods, the analysis here will focus on

the iPod mini. Compared to the original iPods, the minis provide the same

capability, but are smaller and come in several different colors.16 At the time

the data was collected iPod minis were no longer actively promoted by Apple,

but were still commonly found in stores and in online markets such as eBay. It

was a mature product in the technology adoption life cycle, in the sense that

its characteristics were already well-known by the public, but it was not yet

perceived as obsolete.

There is both a vertical and a horizontal dimension of differentiation among

versions of the iPod mini. The vertical element (among new devices) is memory

size, that can be 4 Gb or 6 Gb. The horizontal element is color (Silver, Blue,

Green or Pink). In eBay, a significant fraction of the market is second-hand;

even non-working devices are sold, often to be harvested for parts or used as

a learning tool by technicians. This introduces an obvious additional source of

differentiation. There may also be differentiation among auctions due to the

seller characteristics, such as reputation.

6.1 Data

Data were collected from 1225 completed eBay auctions from June 27 to July

18, 2006. The data includes only auctions listed under the Apple iPod mini

category in eBay. Auctions for accessories or parts as well as lots of devices were

not included. However, the sample does include devices described as defective.

225 auctions with one single bidder we also excluded, since the methodology

16Apple later released smaller devices, the iPod shuffle and the iPod nano.
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does not apply in this case.17

While the majority of auctions in the sample has a symbolic posted reserve

price,18 some sellers elect to place a nontrivial reserve price. Analysis of the

latter auctions is problematic, since we do not observe neither the bids nor the

number of bidders below the reservation price.19 We elected to focus attention

only on auctions with a posted reserve price of US$ 17 or less. As figure 1

shows, this avoids auctions with reserve prices around $20 where the truncation

effect starts to be visible. Fortunately, the restricted sample still contains the

majority of the observations, with 654 auctions.

For each auction we collected the final price, the number of bidders (defined

as the number of different buyers that placed bids), product characteristics

such as color, memory size and condition (New, Used, Refurbished or other),

and seller feedback statistics. In addition to stated condition, a dummy variable

BROKEN was created for items described as either non-operational or with a

serious defect. Usually such defect is short battery life, but includes issues such

as a broken screen or headphone jack (which makes the device useless for its

intended purpose). We did not classify as broken devices with scratches and

other defects of cosmetic nature.

In eBay, after every transaction the parties involved are asked to provide

feedback on each other. Two statistics are widely reported: Feedback score,

which is the number of positive feedback ratings minus the negatives, and the

positive feedback percentage. Instead of using these figures directly as regres-

17In eBay, completed auctions with a single bid are almost always due to “Buy It Now”
bids. A popular auction rule in eBay allows sellers to post a “Buy It Now” price, at which
any buyer can purchase the item before bidding starts. Reynolds and Wooders (2003) provide
a theoretical analysis of this auction rule. The “Buy It Now” price is not a reserve price; if
taken, it immediately ends the auction. Furthermore, once regular bidding starts, the “Buy
It Now” option is no longer available, and thus does not affect bidding in the auctions in the
sample.

18Confusingly, in eBay open reserve prices are called “starting bids”.
19Note that the same problem does not exist for hidden reserve prices, since for those

participation below the reserve is public information.
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Figure 1: Effect of reservation price.
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sors, we used POS = log2(P + 1) and NEG = log2(N + 1), where P and N are

the numbers of positive and negative ratings not withdrawn.

6.2 Results

We report four specifications involving both indicators of product characteristics

and seller reputation. Specification I simply assumes that both µ and σ are

constant. Specification II allows µ to be a function of several characteristics that

might affect willingness to pay, namely BROKEN, dummies for used, new and

refurbished condition,20, dummies for color21 and the number of Gb of memory.

In addition, POS and NEG have been included in order to evaluate the impact

of seller reputation in the bidders’ average willingness to pay. In specification III

the variables found to be insignificant in specification II are dropped. Finally,

in specification IV BROKEN, NEW, POS and NEG are allowed to affect both

µ and σ.

For each of the specifications, regressions were ran using method 2 and

method 1 for each of the five distributions used in table 1. Table 2 reports

the results of tests on the shape of F . In all cases, the Gumbel distribution pro-

vides a better fit. There is a theoretical reason to favor this distributional choice

as well, as it is one of three possible limiting distributions of maxima of random

variables. Suppose valuations in the general population are independent and

identically distributed with an arbitrary distribution that satisfies a right tail

condition;22 split the general population into several independent subgroups of

the same size, and let bidders that go to eBay be those with the highest value

within each group. Then according to the the Fisher-Tippett-Gnedenko Theo-

rem, the distribution of the bidders’ valuations will be approximately Gumbel.

20The omitted dummy variable is no condition reported.
21Namely, silver, blue, pink and green. Again, the omitted category is no color reported.
22Namely, let G(x) be the distribution in question; then a function b(x) should exist such

that, for all t > 0, limx→∞

1−F (x+tb(x))
1−F (x)

= e−t.
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For both reasons, we select the Gumbel distribution and report the coeffi-

cients obtained for each specification under this assumption in table 3. The co-

efficients obtained under other distributional assumptions are similar and have

been omitted for brevity. The figures in parentheses are heteroskedasticity-

consistent standard error estimates.

Coefficients on the mean valuation have the expected sign. In specification

II, we find that broken iPods are worth US$ 39 less, while iPods reported to

be new are worth US$ 60 more. Other condition variables and color are not

significant, and were dropped in specification III.

Seller feedback has a significant effect on µ: Roughly every doubling of

positive ratings increases the buyers’ willingness to pay by US$ 2. A doubling

of both positive and negative ratings leads to a decrease of US$ 1.20.

Why would that be? It is obvious why buyers are willing to pay more for

sellers with positive feedback and less for sellers with negative feedback, but it

is less clear why the latter effect is greater. In a simple framework of Bayesian

updating, increasing both POS and NEG amount to more precise information

about the odds of a bad deal, and this is not expected to make buyers less

willing to buy.

Specification IV suggests an explanation for this puzzle. In it, POS and

NEG (as well as BROKEN and NEW) are allowed to affect valuation dispersion

as well as location. Point estimates for both POS and NEG are negative, albeit

insignificant. This suggests an explanation for why longer feedback histories

seem to be worse: as POS and NEG grow, bidders obtain more information

about the prospect of a good deal, and as a result their valuations become

less dispersed (presumably because their heterogeneous beliefs converge). As a

result, the transaction price decreases. Omitting this effect introduces a bias in

the estimated mean effect. When this effect is accounted for, we find virtually
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identical effects of POS and NEG in µ, which is compatible with a theory where

bidders care only about the odds of a bad deal.

Similar biases have been found for the BROKEN and NEW variables. There

is more uncertainty about the value of broken iPods and the there is less un-

certainty about iPods classified as new. This leads to substantial biases on the

coefficients on the mean when this effect is omitted; in specification IV we find

that broken iPods are worth US$ 5 less and new iPods are worth US$ 13 more

than previously estimated.

While suggestive, point estimates of coefficients in specification IV are for

the most part not significant. This is probably due to near multicollinearity

for regressors used both for µ and σ. This combined with the findings from

the Monte Carlo experiments suggests that the method may lead to imprecise

estimates for rich specifications of σ.

As discussed in section 3.1, theory predicts heteroskedasticity of a form that

depends on the F distribution. In the case of a standardized Gumbel distribu-

tion, the variance of the ǫ(2:n) is 1 − 6
π2 n(n − 1)[log(n) − log(n − 1)]2, and the

square root of this expression can be used as a weight to improve efficiency if

σl = σ. Table 4 reports weighted least squares estimates for the specifications

where this requirement is met. Here, conventional standard errors are reported.

Results are similar to those reported in the previous table.

7 Concluding Remarks

This paper attempts to combine the strengths of two distinct branches of the

empirical literature on auctions with the goal of obtaining a method at once

computationally accessible and theoretically sound.

In a nutshell, the main finding of the paper is that one can estimate param-

eters that impact the location and scale of the value distribution of all bidders
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in a simple and unbiased way, provided one controls for variables that affect

bidding behavior in a flexible way.

Under the framework investigated in this paper, the method provides a way

to separate the effect of regressors that affect bidding through the value dis-

tribution from those that affect bidding strategically. It can be an useful tool

for researchers interested in measuring the former while properly controlling for

the latter; conversely, it helps identifying the misspecification bias that occurs

when the latter are not accounted for.

The method is not designed for investigation of deeper aspects of the strate-

gic interaction of players in general auctions. It is however an acceptable way

to identify covariates that affect the location or scale of all bidder valuations.

It can therefore be used as a tool to control for variation across auctions, such

as product characteristics. As such, we hope the method might play a comple-

mentary role to existing structural methods, as a preliminary exploratory tool

for researchers interested in applying more ambitious structural econometric

models to auction data.

A Monte Carlo Experiments

We report three Monte Carlo experiments for the estimation method proposed

in this paper. The first two have the objective of comparing its small sample

performance with the maximum likelihood estimator in simple settings; the third

experiment illustrates the applicability of method 2 to the context of asymmetric

auctions.

In experiment one, we consider second-price independent private value auc-

tions, where valuations are normally distributed with mean µ = 3 and standard

deviation σ = 1. Participation is exogenous and random: in each auction, the

number of bidders nl is drawn from the uniform distribution over {2, 3, 4, 5, 6}.
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There is no reserve price.

We seek to estimate both µ and σ from samples with 50, 100 or 200 auctions

where we observe the selling price pl and number of bidders nl. As discussed

in Donald and Paarsch (1996), because this is a Vickrey auction the likelihood of

the winning price is hB(pl; nl) = nl(nl−1)Φ
(

pl−µ
σ

)nl−2 (

1 − Φ
(

pl−µ
σ

))

1
σφ

(

pl−µ
σ

)

,

where Φ and φ are the standard normal distribution and density. One can ob-

tain (efficient) estimates maximizing ΠlhB(pl, nl) for µ and σ; alternative, one

can run OLS of pl on a constant and the artificial regressor for the normal

distribution reported in table 1.

Table 5 reports statistics from 1000 replications of this experiment. Both

estimators for µ show no bias and the variance of the least square estimator is

around 50 to 60% larger. The loss of efficiency in the estimator for σ is much

larger; this seems to be a general weakness of the method. On the other hand,

σ̂LS does not show the downward bias that is present in the maximum likelihood

estimator.

Experiment two compares the least squares and maximum likelihood estima-

tor in the context of a first-price auction. As discussed in Donald and Paarsch

(1996), using maximum likelihood with first-price auction data is more complex

for two reasons: first, computing the maximum likelihood is harder, since it may

require solving a differential equation for each observation and each parameter

evaluation. Second, the maximum likelihood estimators are not asymptotically

normally distributed, and thus inference is not straightforward.23

In experiment two, we consider first-price auctions with independent private

values drawn from a uniform distribution with mean µ = 3 and standard devi-

ation σ = 1.24 As above, nl is uniform between 2 and 6, sample size is 50, 100

or 200 and the number of replications is 1000.

23Donald and Paarsch (1993) introduce a technique, piecewise pseudo-maximum likelihood,
that leads to asymptotically normal estimators for auction models.

24We used the uniform distribution to speed up the computation of equilibrium bids.
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Results are reported in table 6. As above, least squares estimators are un-

biased but less efficient than maximum likelihood with the efficiency loss being

more pronounced in the estimator of σ. The proportional loss of efficiency be-

tween the OLS and the ML estimators becomes larger as the sample size grows;

this may be due to ML being super-consistent in this context, converging at

rate L rather than
√

L (Donald and Paarsch, 1996). Results suggest that the

ML estimator for the mean is biased downward. As predicted by Donald and

Paarsch (1996), we find that the Jarque-Bera test strongly rejects normality of

either maximum likelihood estimator, while the least squares estimators are not

rejected to be normally distributed for a sample size of 50.

The third experiment illustrates the application of method 2 in the context

of asymmetric auctions. We consider second-price independent private value

auctions with three different types of bidders: bidders of the high type have

values drawn independently from distribution N(12 + Xlβ, 3), bidders of the

medium type from N(11 + Xlβ, 2), and bidders of the low type from N(10 +

Xlβ, 1). Xl is a product characteristic that has the same effect β on all bidders.

Xl is drawn i.i.d. U [0, 5]. The number of bidders is exogenous and random,

with one or two of each bidder type per auction. The number of bidders of each

type is observed, as it is necessary to apply the method. We seek to estimate

β = 1.

We run method 2 in 1000 replications of samples of size 100. We added a

dummy for each configuration of participation; in the table δ̂ijk is the coefficient

for participation of i bidders of low type, j bidders of medium type and k

bidders of high type. Results are shown in table 7. We find the method can

readily estimate β. The estimated patterns for the control coefficients does

not lend itself very easily to interpretation (for example, on average we obtain

δ̂112 > δ̂121 < δ̂211).
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B Proofs

Proof of lemma 1: Since ω(k:n) = n!
(k−1)!(n−k)!

∫

vF (v)n−k(1−F (v))k−1dF (v),

we have that

nω(k:n−1) = n!
(k−1)!(n−1−k)!

∫

vFn−1−k(1 − F )k−1dF (v)

= n!
(k−1)!(n−1−k)!

∫

vFn−1−k(1 − F )k−1[F + (1 − F )]dF (v)

= n!
(k−1)!(n−1−k)!

∫

vFn−k(1 − F )k−1dF (v)

+ n!
(k−1)!(n−1−k)!

∫

vFn−1−k(1 − F )kdF (v)

= (n − k)ω(k:n) + kω(k+1:n)

so the recurrence relation holds. �

Proof of corollary 1: By induction, since it is immediate that with all ω(k:n)

and a(n + 1), one can directly compute all remaining ω(k:n+1). �

Proof of lemma 2: The argument roughly follows Hoeffding (1953). We will

show that the distribution of ǫ(kn,n) converges to the constant F−1(α).

Given a quantile u, Pr(ǫ(kn,n) < F−1(u)) can be written as

∫ u

0 (1 − t)kntn−kndt
∫ 1

0
(1 − t)kntn−kndt

.

We must show that this goes to 0 for u < α and to 1 for u > α.

Take u < α. Fix v ∈ (u, α). For a sufficiently high n, αn = 1 − kn/n > v.

The function tαn(1 − t)1−αn is increasing for t < αn; so

∫ u

0 [tαn(1 − t)1−αn ]ndt
∫ 1

0
[tαn(1 − t)1−αn ]ndt

≤
∫ u

0 [tαn(1 − t)1−αn ]ndt
∫ αn

v [tαn(1 − t)1−αn ]ndt
≤

∫ u

0
[uαn(1 − u)1−αn ]ndt

∫ αn

v
[vαn(1 − v)1−αn ]ndt

=
u

αn − v

[

uαn(1 − u)1−αn

vαn(1 − v)1−αn

]n

→ 0.
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The argument for u > α is analogous, since the function tαn(1 − t)1−αn is

decreasing for t > αn. �

Proof of proposition 1: Suppose there was such distribution. Let a(n) =

ω(2:n) = c + bn for some constants c and b. We must necessarily have b ≥ 0. If

b = 0, by the mapping from Theorem 2 it is easy to verify that the distribution

is degenerate. So we must have b > 0.

Now, successively apply the recursion formula to the case where k = 1. We

obtain

ω(1:n) =
n

n − 1
ω(1:n−1) −

c + nb

n − 1

=
n

n − 1

[

n − 1

n − 2
ω(1:n−2) −

c + (n − 1)b

n − 2

]

− c + nb

n − 1

= nω(1:1) −
n

n(n − 1)
(c + nb) − n

(n − 1)(n − 2)
(c + (n − 1)b) + · · ·

= n

[

ω(1:1) − c

(

1

n(n − 1)
+

1

(n − 1)(n − 2)
+ · · ·

)

− b

(

1

n − 1
+

1

n − 2
+ · · ·

)]

→ −∞,

as n → ∞, since the sum that multiplies b diverges (while the one that multiplies

c does not). This contradicts the fact that ω(1:n) should be increasing in n. �
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Statistic Unrestricted Uniform Normal Logistic Laplace Gumbel
I R2 0.2126 0.1654 0.1735 0.1755 0.1792 0.1822

F-statistic 2.3811 1.9743 1.8736 1.6827 1.5327
p-value 0.9982 0.9872 0.9799 0.9545 0.9174

II R2 0.4731 0.4402 0.4445 0.4456 0.4479 0.4490
F-statistic 2.4349 2.1200 2.0346 1.8683 1.7824
p-value 0.9986 0.9935 0.9903 0.9794 0.9701

III R2 0.4502 0.4200 0.4240 0.4251 0.4272 0.4281
F-statistic 2.1646 1.8761 1.7982 1.6489 1.5850
p-value 0.9947 0.9801 0.9720 0.9478 0.9326

IV R2 0.5074 0.4228 0.4273 0.4286 0.4311 0.4322
F-statistic 1.4052 1.3305 1.3094 1.2671 1.2500
p-value 0.9788 0.9554 0.9456 0.9205 0.9079

Table 2: Functional form specification tests
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Regressor I II III IV
on µ:
constant 65.9728 67.8343 72.6487 68.6269

(20.2600) (61.6944) (48.1675) (222.9034)
BROKEN -39.3721 -40.9110 -45.8312

(15.1692) (13.9647) (43.4235)
POS 1.9572 1.9924 2.1551

(0.7003) (0.7031) (4.6552)
NEG -3.2092 -3.1656 -2.1885

(0.7145) (0.7192) (4.3013)
New 59.8633 61.5885 74.0562

(36.4966) (27.7271) (167.2685)
Used -1.0429

(10.3430)
Refurbished 8.9332

(19.7835)
Silver 5.9684

(21.7494)
Blue -4.0321

(20.4925)
Pink 6.6170

(27.6143)
Green 15.7220

(28.2819)
# Gb 0.9592 0.8072 0.7739

(0.1522) (0.1738) (0.1695)
on σ:
constant 55.0320 34.2180 33.8169 39.7211

(27.4887) (24.0819) (24.1540) (337.1709)
BROKEN 12.4026

(99.6003)
POS -0.1737

(7.2029)
NEG -1.4749

(6.7277)
New -14.0496

(174.1814)

Table 3: Estimated coefficients, F Gumbel
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Regressor I II III
on µ:
constant 65.8326 67.6936 72.5584

(14.5745) (55.0027) (42.9749)
BROKEN -39.2975 -40.8381

(18.9874) (18.5294)
POS 1.9562 1.9924

(0.6954) (0.6761)
NEG -3.2107 -3.1688

(0.7354) (0.7455)
New 59.8172 61.5575

(34.1179) (29.0913)
Used -1.0479

(11.7372)
Refurbished 8.9111

(30.8950)
Silver 6.0242

(17.2327)
Blue -4.0017

(19.5332)
Pink 6.6749

(21.9380)
Green 15.7465

(26.5944)
# Gb 0.9547 0.8027

(0.2544) (0.2595)
on σ:
constant 55.1977 34.3841 33.9580

(20.9938) (17.0459) (17.4974)

Table 4: Weighted least squares estimated coefficients, F Gumbel
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µ̂LS σ̂LS µ̂ML σ̂ML

true value 3 1 3 1
sample size = 50

mean 2.9978 1.0087 3.0055 0.9859
variance 0.0125 0.0579 0.0079 0.0080

mean squared error 0.0125 0.0580 0.0079 0.0082
lower quartile 2.9261 0.8527 2.9460 0.9258

median 3.0000 1.0140 3.0032 0.9868
upper quartile 3.0718 1.1736 3.0657 1.0463

skewness 0.0104 -0.0561 0.0497 0.0443
kurtosis 3.2395 2.9989 3.0816 2.9373

Jarque-Bera 2.4072 0.5250 0.6900 0.4913
p-value 0.6999 0.2309 0.2918 0.2178

sample size = 100
mean 3.0015 0.9907 3.0031 0.9872

variance 0.0063 0.0284 0.0042 0.0047
mean squared error 0.0063 0.0285 0.0042 0.0048

lower quartile 2.9453 0.8845 2.9587 0.9400
median 3.0029 0.9900 3.0036 0.9883

upper quartile 3.0551 1.0970 3.0482 1.0319
skewness -0.0542 -0.0173 0.0548 0.0482
kurtosis 2.9197 3.2266 2.9559 2.8821

Jarque-Bera 0.7573 2.1903 0.5810 0.9665
p-value 0.3152 0.6655 0.2521 0.3832

sample size = 200
mean 3.0006 0.9963 3.0022 0.9927

variance 0.0031 0.0151 0.0021 0.0021
mean squared error 0.0031 0.0151 0.0021 0.0021

lower quartile 2.9624 0.9177 2.9713 0.9622
median 3.0010 0.9964 3.0021 0.9923

upper quartile 3.0365 1.0829 3.0337 1.0221
skewness 0.1098 -0.1208 -0.0344 0.0473
kurtosis 2.9902 3.0826 3.2539 3.0364

Jarque-Bera 2.0148 2.7182 2.8831 0.4287
p-value 0.6348 0.7431 0.7634 0.1929

Table 5: Monte Carlo experiment: Least Squares v Maximum Likelihood,
Second-Price auctions, valuations normally distributed
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µ̂LS σ̂LS µ̂ML σ̂ML

true value 3 1 3 1
sample size= 50

mean 2.9984 0.9999 2.9745 1.0067
variance 0.0043 0.0149 0.0022 0.0023

mean squared error 0.0043 0.0149 0.0028 0.0023
lower quartile 2.9553 0.9182 2.9562 0.9838

median 3.0007 0.9985 2.9859 0.9997
upper quartile 3.0433 1.0801 2.9999 1.0281

skewness -0.0759 0.0601 -1.1046 0.4069
kurtosis 2.8948 2.8713 5.4469 5.0040

Jarque-Bera 1.4223 1.2927 452.8485 194.9273
p-value 0.5089 0.4760 1.0000 1.0000

sample size= 100
mean 3.0011 0.999 2.9872 1.0041

variance 0.0021004 0.0076885 0.00064033 0.00065485
mean squared error 0.0021017 0.0076895 0.00080441 0.00067165

lower quartile 2.9707 0.94184 2.9791 0.99624
median 3.0027 1.0002 2.9967 0.9994

upper quartile 3.033 1.0534 2.9998 1.0098
skewness -0.23027 -0.056137 -2.3094 1.4645
kurtosis 2.8778 3.2961 13.922 11.439

Jarque-Bera 9.4598 4.1793 5858.9 3324.6
p-value 0.99117 0.87627 1 1

sample size= 200
mean 2.9978 1.0016 2.9959 0.99959

variance 0.0010318 0.00363 0.00010281 0.00011701
mean squared error 0.0010365 0.0036326 0.00011948 0.00011718

lower quartile 2.9779 0.96149 2.9941 0.99797
median 2.9986 1.0017 2.9996 0.9992

upper quartile 3.0203 1.0437 2.9999 0.99998
skewness -0.16304 -0.066983 -1.7388 0.45748
kurtosis 2.9733 3.1163 9.6588 11.456

Jarque-Bera 4.4603 1.3113 2351.4 3014.3
p-value 0.89249 0.48089 1 1

Table 6: Monte Carlo experiment: Least Squares v Maximum Likelihood, First-
Price auctions, valuations uniformly distributed
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β̂ δ̂111 δ̂112 δ̂121 δ̂211

mean 1.0025 10.7906 11.8132 11.4697 12.2569
variance 0.0088 0.1992 0.2603 0.2069 0.2412

lower quartile 0.9401 10.4955 11.4431 11.1636 11.9314
median 1.0016 10.7968 11.8048 11.4783 12.2489

upper quartile 1.0662 11.0889 12.1405 11.7651 12.5655
skewness -0.0670 -0.0371 0.1838 0.0073 0.1217
kurtosis 2.9229 3.0511 3.1565 3.3518 3.5363

Jarque-Bera 0.9957 0.3386 6.6543 5.1656 14.4529
p-value 0.3922 0.1557 0.9641 0.9244 0.9993

δ̂122 δ̂212 δ̂221 δ̂222

mean 11.0366 11.9127 11.5863 12.3214
variance 0.1613 0.2346 0.1802 0.2095

lower quartile 10.7652 11.6049 11.2957 12.0200
median 11.0298 11.9005 11.5647 12.2987

upper quartile 11.2792 12.2198 11.8623 12.6183
skewness 0.1265 0.2060 0.1278 0.1243
kurtosis 3.1537 3.3281 2.8512 3.1200

Jarque-Bera 3.6535 11.5586 3.6440 3.1769
p-value 0.8391 0.9969 0.8383 0.7958

Table 7: Monte Carlo experiment with an asymmetric model
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