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a b s t r a c t

In this paper we propose a flexible model to describe nonlinearities and long-range dependence in time
series dynamics. The new model is a multiple regime smooth transition extension of the Heterogeneous
Autoregressive (HAR) model, which is specifically designed to model the behavior of the volatility
inherent in financial time series. Themodel is able to simultaneously approximate longmemory behavior,
as well as describe sign and size asymmetries. A sequence of tests is developed to determine the number
of regimes, and an estimation and testing procedure is presented. Monte Carlo simulations evaluate
the finite-sample properties of the proposed tests and estimation procedures. We apply the model to
several Dow Jones Industrial Average index stocks using transaction level data from the Trades andQuotes
database that covers ten years of data. We find strong support for long memory and both sign and size
asymmetries. Furthermore, the new model, when combined with the linear HAR model, is viable and
flexible for purposes of forecasting volatility.
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1. Introduction

Given the rapid growth in financial markets and the continual
development of new and more complex financial instruments,
there is an ever-growing need to understand the theoretical
and empirical processes underlying the volatility in financial
time series. It is well known that the daily returns of financial
assets, especially of stocks, can be extremely difficult to predict,
although the volatility of the returns seems to be relatively more
straightforward to forecast. Thus, it is hardly surprising that
financial econometrics, and particularly the modelling of financial
volatility, has played such a central role in modern pricing and
risk management theories. Andersen et al. (2006) provide a recent
overview of the literature.
There is, however, an inherent problem in using models where

the volatilitymeasure plays a central role. The conditional variance
is latent, and hence is not directly observable. Early classes
of volatility models used squared daily returns as a measure
of volatility. However, as this measure is very noisy, volatility
was specified as a latent variable in different models. Useful
and popular examples of such models are the (Generalized)
Autoregressive Conditional Heteroskedasticity, or (G)ARCH, model
of Engle (1982) and Bollerslev (1986), various stochastic volatility
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models (see, for example, Taylor (1986)), and the exponentially
weighted moving averages (EWMA) approach, as advocated by
the Riskmetrics methodology. McAleer (2005) gives a recent
exposition of a wide range of univariate and multivariate,
conditional and stochastic, models of volatility, and Asai et al.
(2006) provide a review of the rapidly growing literature on
multivariate stochastic volatility models. However, as observed
by Bollerslev (1987), Malmsten and Teräsvirta (2004), and Carnero
et al. (2004), among others, most of the latent volatility models
have been unable to capture simultaneously several important
empirical features that are inherent in financial time series.
An empirical regularity which standard latent volatility models

fail to describe adequately is the low, but slowly decreasing,
autocorrelations in the squared returns that are associated with
the high excess kurtosis of returns. In this sense, the assumption
of Gaussian standardized returns has been refuted in many
studies, and heavy-tailed distributions have been used instead.
Furthermore, there is strong evidence of long-range dependence
in the conditional volatility of financial time series. One possible
explanation of long memory is aggregation. Volatility is modelled
as a sum of different processes, each with low persistence.
The aggregation induces long memory, as noted by Granger
(1980), LeBaron (2001), Fouque et al. (2003), Davidson and
Sibbertsen (2005), Hyung et al. (2008), and Lieberman and Phillips
(2008).
On the other hand, the literature has also documented

asymmetric effects in volatility. Starting with Black (1976), it
has been observed that there is an asymmetric response of
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the conditional variance of the series to unexpected news, as
represented by shocks. Financial markets become more volatile in
response to ‘‘bad news’’ (or negative shocks) than to ‘‘good news’’
(or positive shocks). Goetzmann et al. (2001) found evidence of
asymmetric sign effects in volatility as far back as 1857 for the
NYSE. They report that unexpected negative shocks in monthly
returns of the NYSE from 1857 to 1925 increase volatility almost
twice as much as do equivalent positive shocks in returns of a
similar magnitude. Similar results were also reported by Schwert
(1990). The above mentioned asymmetry has motivated a large
number of different asymmetric latent volatility models.
However, most volatility models have been unable to de-

scribe simultaneously both nonlinear effects and long mem-
ory. The statistical consequences of neglecting or misspecifying
nonlinearities have been discussed in the context of structural
breaks in the GARCH literature by Diebold (1986), Lamoureux
and Lastrapes (1990), Mikosch and Starica (2004), and Hillebrand
(2005), and in the literature on long memory models by Lo-
bato and Savin (1998), Diebold and Inoue (2001), Granger and
Teräsvirta (2001), Granger and Hyung (2004), and Smith (2005).
Neglected changes in levels or persistence induce estimated high
persistence, which has often been called ‘‘spurious’’ high per-
sistence (see also Hillebrand and Medeiros (2008a) for a recent
application).
Conversely, it is also possible to misinterpret data-generating

high persistence (in the form of long memory or unit roots) for
nonlinearity. Spuriously estimated structural breaks have been
reported for unit root processes by Nunes et al. (1995) and Bai
(1998), and have been extended to long memory processes by Hsu
(2001).
The search for an adequate framework for the estimation and

prediction of the conditional variance of financial asset returns
has led to the analysis of high frequency intraday data. Merton
(1980) noted that the variance over a fixed interval can be
estimated arbitrarily, although accurately, as the sum of squared
realizations, provided the data are available at a sufficiently
high sampling frequency. More recently, Andersen and Bollerslev
(1998) showed that ex post daily foreign exchange volatility is best
measured by aggregating 288 squared five-minute returns. The
five-minute frequency is a trade-off between accuracy, which is
theoretically optimized using the highest possible frequency, and
microstructure noise, which can arise through the bid-ask bounce,
asynchronous trading, infrequent trading, and price discreteness,
among other factors (see Madhavan (2000) and Biais et al. (2005)
for recent reviews).
Ignoring the remaining measurement error, which can be

problematic, the ex post volatility essentially becomes ‘‘observ-
able’’. Andersen and Bollerslev (1998), Hansen and Lunde (2005),
and Patton (2005) used the realized volatility to evaluate the out-
of-sample forecasting performance of several latent volatilitymod-
els. As volatility becomes ‘‘observable’’, it can bemodelled directly,
rather than being treated as a latent variable. Based on the the-
oretical results of Andersen et al. (2003), Barndorff-Nielsen and
Shephard (2002), and Meddahi (2002), several recent studies have
documented the properties of realized volatilities that are con-
structed from high frequency data.
In this paper, we propose a simple model that merges long

memory and nonlinearities. The new specification is a multiple
regime generalization of the Heterogeneous Autoregression (HAR)
that was suggested by Corsi (2004). The HAR model is inspired by
the Heterogeneous Market Hypothesis and the asymmetric prop-
agation of volatility between long and short time horizons. The
HAR model has been applied with success in modelling and fore-
casting realized variance (Andersen et al., 2007). The new model
is called the Heterogeneous Autoregression with Multiple-Regime
Smooth Transition (HARST) model, which combines ingredients
from the HAR and the Smooth Transition Autoregressive (STAR)
models (Chan and Tong, 1986; Teräsvirta, 1994). The HARSTmodel
has the main advantage of approximating simultaneously long-
range dependence, as well as incorporating sign and size asym-
metries in a simple manner. The choice of the variable that drives
the regime switches makes it possible to describe interesting dy-
namics, such as general asymmetry and leverage. The number of
regimes is determined by a simple and easily-implemented se-
quence of tests that circumvents the identification problem in the
nonlinear time series literature, and themodel estimation and test-
ing procedure is analysed. A Monte Carlo simulation evaluates the
finite-sample properties of the proposed modelling cycle. An em-
pirical application with 16 stocks from the Dow Jones Industrial
Average (DJIA) gives strong support in favor of the new model. In
particular, evidence is shown of long-range dependence and both
sign and size asymmetries in the realized volatility of the series.
Finally, the combination of the linear and nonlinear HAR models
produces superior one-day-ahead forecasts.
The paper is organized as follows. Section 2 introduces the

theoretical foundations and describes the salient features of
realized volatility. Section 3 presents the model and discusses
estimation issues. A formal test for an additional regime is
introduced in Section 4. Section 5 describes the model building
procedure, in which the number of regimes is determined by a
simple and easily-implemented sequence of tests. Monte Carlo
simulations are presented in Section 6. The empirical results are
discussed in Section 7. Section 8 gives some concluding comments.

2. Realized volatility

Suppose that at day t the logarithmic prices of a given asset
follow a continuous time diffusion:

dp(t + τ) = µ(t + τ)+ σ(t + τ)dW (t + τ),
0 ≤ τ ≤ 1, t = 1, 2, 3, . . . , (1)

where p(t + τ) is the logarithmic price at time (t + τ), µ(t + τ)
is the drift component, σ(t + τ) is the instantaneous volatility (or
standard deviation), and dW (t+τ) is a standard Brownianmotion.
Andersen et al. (2003) and Barndorff-Nielsen and Shephard

(2002) showed that the daily compound returns, defined as rt =
p(t)−p(t−1), are Gaussian conditionally onFt = σ(p(s), s ≤ t),
the σ -algebra (information set) generated by the sample paths of
p, such that

rt |Ft ∼ N

(∫ 1

0
µ(t − 1+ τ)dτ ,

∫ 1

0
σ 2(t − 1+ τ)dτ

)
. (2)

The term IVt =
∫ 1
0 σ

2(t − 1 + τ)dτ is known as the integrated
variance, which is a measure of the day-t ex post volatility. In this
sense, the integrated variance is the object of interest.
In practical applications, prices are observed at discrete and

irregularly spaced intervals. There are several ways of sampling
the data. Suppose that at a given day t , we partition the interval
[0,1] in subintervals, and define the grid of observation times G =
{τ1, . . . , τn}, 0 = τ0 < τ1 < · · · , τn = 1. The length of
the ith subinterval is given by δi = τi − τi−1. The most widely
used sampling scheme is calendar time sampling (CTS), where the
intervals are equidistant in calendar time, that is δi = 1/n. Set pi,t ,
t = 1, . . . , n, to be the ith price observation during day t , such that
rt,i = pt,i − pt,i−1 is the ith intra-period return of day t . Realized
variance is defined as

RVt =
n∑
i=1

r2t,i. (3)

Realized volatility is the square-root of RVt .
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The search for asymptotically unbiased, consistent and efficient
methods for measuring realized volatility in the presence of
microstructure noise has been one of the most active research
topics in financial econometrics over the last few years. While
early references in the literature, such as Andersen et al. (2001),
advocated the simple selection of an arbitrary lower frequency
(typically 5–15 min) to balance accuracy and the dissipation of
microstructure bias, a procedure that is known as sparse sampling,
some recent articles have developed estimators that dominate this
procedure. These contributions fall in several categories: some
examples are the selection of an optimal sampling frequency
in sparse sampling, as in Bandi and Russell (2005, 2006,
forthcoming), the subsampling method, as in Zhang et al. (2005),
the kernel-based estimators of Zhou (1996), Barndorff-Nielsen
et al. (forthcoming), and Hansen and Lunde (2006) and MA
filtering, as in Hansen et al. (2008). McAleer and Medeiros (2008)
review these and other methods, and provide a comparison of the
alternative approaches.
Three consistentmethods of estimation are presently available:

the realized kernel estimators of Barndorff-Nielsen et al. (forth-
coming), the modified MA filter of Hansen et al. (2008), and the
two time scales realized volatility estimator of Zhang et al. (2005),
which is our choice for the empirical part of this paper. Aït-Sahalia
et al. (2005) show that the estimator works well when the hypoth-
esis of independent microstructure noise is violated, is stable with
regard to the choice of grids, and yields estimates that are close
to the more efficient but also more computationally-demanding
Multi-Scale approach of Zhang (2005).
Several salient features of realized volatility have been identi-

fied in the literature:

(1) the unconditional distribution of daily returns exhibits excess
kurtosis;

(2) daily returns are not autocorrelated (except for the first order,
in some cases);

(3) daily returns that are standardized by the realized variance
measure are almost Gaussian;

(4) the unconditional distribution of realized variance and volatil-
ity is distinctly nonnormal, and is extremely right-skewed;

(5) realized volatility does not seem to have a unit root, but there
is strong evidence of fractional integration.

On the other hand, the natural logarithmof the volatility has the
following empirical regularities:

(1) the logarithm of realized volatility is close to normal;
(2) the logarithm of realized volatility displays long-range depen-
dence.

The model described in Section 3 aims to model not only the
long-range dependence found that is in realized volatility, but also
describe risk-return asymmetries, as documented in the latent
volatility literature.

3. Long memory and nonlinearity in realized volatility

3.1. A brief review of the literature and stylized facts

As observed in the Introduction, several nonlinear conditional
and stochastic volatility models have been proposed in the
literature to describe asymmetries in volatility. In most of these
models, volatility is a latent variable. Nelson (1991) proposed
the Exponential GARCH (EGARCH) model, in which the natural
logarithm of the conditional variance is modelled as a nonlinear
ARMA model, with a term that introduces asymmetry in the
dynamics of the conditional variance, according to the sign of
the lagged returns. Glosten et al. (1993) proposed the GJR model,
where the impact of the lagged squared returns on the current
conditional variance changes according to the sign of the past
return. A similar specification, known as the Threshold GARCH
(TGARCH) model, was developed by Rabemanjara and Zakoian
(1993) and Zakoian (1994). Ding et al. (1993) discussed the
Asymmetric Power ARCH model, which nests several GARCH
specifications (see Ling and McAleer (2002) for a derivation of the
necessary and sufficient moment conditions).
Engle and Ng (1993) popularized the news impact curve (NIC)

as ameasure of hownew information is incorporated into volatility
estimates. The authors also developed formal statistical tests to
check the presence of asymmetry in the volatility dynamics. More
recently, Fornari and Mele (1997) generalized the GJR model by
allowing all the parameters to change according to the sign of the
past return. Their proposal is known as the Volatility Switching
GARCH (VSGARCH) model. Based on the Smooth Transition
AutoRegressive (STAR) model, Hagerud (1997) and Gonzalez-
Rivera (1998) proposed the Smooth Transition GARCH (STGARCH)
model. While the latter only considered the Logistic STGARCH
(LSTGARCH) model, the former discussed both the Logistic and
Exponential STGARCH (ESTGARCH) alternatives. In the logistic
STGARCH specification, the dynamics of volatility are very similar
to those of the GJR model and depends on the sign of the past
returns. The difference is that the former allows for a smooth
transition between regimes. In the EST-GARCH model, the sign of
the past returns does not play any role in the dynamics of the
conditional variance, but it is the magnitude of the lagged squared
return that is the source of asymmetry.
Anderson et al. (1999) combined the ideas of Fornari and

Mele (1997), Hagerud (1997), and Gonzalez-Rivera (1998) and
proposed the Asymmetric Nonlinear Smooth Transition GARCH
(ANSTGARCH) model, and found evidence in support of their
specification. Medeiros and Veiga (forthcoming) proposed the
Flexible Coefficient GARCH (FCGARCH) model, which is a multiple
regime generalization of several models in the literature. The
authors found strong support of sign and size asymmetries in
volatility. Furthermore, an empirical example with ten stock
indexes shows evidence of two regimes for six series and three
regimes for other four series. Furthermore, for all series with
three regimes, the GARCH model associated with the first regime,
representing very negative returns (‘‘very bad news’’), is explosive.
The model in the middle regime, related to tranquil periods, has a
slightly lower persistence than the standard estimatedGARCH(1,1)
models in the literature. Finally, the third regime, representing
large positive returns, has an associated GARCH(1,1) specification
that is significantly less persistent than the others.
Inspired by the Threshold Autoregressive (TAR) model, Li

and Li (1996) proposed the Double Threshold ARCH (DTARCH)
model. Liu et al. (1997) generalized the model and proposed the
Double Threshold GARCH (DTGARCH) process to model both the
conditional mean and conditional variance as threshold processes.
More recently, based on the regression tree literature, Audrino
and Bühlmann (2001) proposed the Tree Structured GARCHmodel
to describe multiple limiting regimes in volatility. Caporin and
McAleer (2006) developed a dynamic asymmetric univariate
GARCH model. When the regime switches are driven by a Markov
Chain, the main references are Hamilton and Susmel (1994), Cai
(1994), and Gray (1996).
In the class of stochastic volatility (SV) models, several

asymmetric models have been developed. One of the first
references is Harvey and Shephard (1996). So et al. (1998)
and Kalimipalli and Susmel (forthcoming) discussed SV models
with Markovian regime switches, while So et al. (2002) considered
a threshold SV specification. Asai and McAleer (2005) proposed
a dynamic asymmetric leverage model that accommodates the
direct correlation between returns and volatility as well as sign
and size threshold effects, and Omori et al. (2007) developed an
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SV model with leverage (see Asai and McAleer (2006, 2007) for
different asymmetric SV models). Yu (2005) also considered a
SV model with leverage effects. Cappuccio et al. (2006) provided
empirical evidence on asymmetry in financial returns using a
simple stochastic volatility model which allows a parsimonious
yet flexible treatment of both skewness and heavy tails in the
conditional distribution of returns.
With respect to long memory, Baillie et al. (1996) is one of the

main references. The authors proposed the Fractionally Integrated
GARCH (FIGARCH) model as a viable alternative to model long-
range dependence in volatility. Giraitis et al. (2004) considered
the Leverage ARCH (LARCH) model and discussed both leverage
and long memory effects in volatility. Breidt et al. (1998), Hurvich
and Ray (2003), Jensen (2004), and Deo et al. (2006) discussed the
specification and estimation of SV models with long memory.
In the realized volatility literature, most of the early contri-

butions considered only linear long memory models. Martens
et al. (2004) were the first to introduce simultaneously long-
range dependence, asymmetries and structural breaks into a re-
alized volatility model. The authors also evaluated the relevance
of the days of the week and presented a detailed and exhaustive
empirical application. Their specification belongs to the class of
nonlinear Autoregressive Fractionally Integrated (ARFI) models.
However, they did not consider tests of linearity or the pres-
ence of more than two limiting regimes. More recently, Scharth
and Medeiros (2006) proposed a multiple regime tree structure
model to describe the behavior of realized volatility, where past
cumulative returns drive the regime switches. Although a formal
model building procedure was developed, the proposed specifica-
tion did not take into account possible long memory that might
be caused by aggregation, among other possibilities. The authors
considered that the long-range dependence is caused by regime
switches. Hillebrand and Medeiros (2008b) suggested a model
that generalizes the approach developed in Martens et al. (2004)
by merging fractionally integrated process with nonlinearity and
asymmetry. The authors also considered a volatility-in-mean effect
and developed a formal test of linearity following the ideas in van
Dijk et al. (2002).
In this paper we extend the ingredients of Martens et al.

(2004), Scharth andMedeiros (2006), andHillebrand andMedeiros
(2008b), and propose a model that accommodates long-range de-
pendence in a very simple manner for straightforward estimation.
Asymmetries and nonlinearity are developed in a smooth transi-
tion environment. A formal sequence of tests is described in order
to determine the number of limiting regimes. Furthermore, exter-
nal exogenous variables can be incorporated into the model struc-
ture in a straightforward way.

3.2. Model specification

The Heterogeneous Autoregressive (HAR) model was proposed
by Corsi (2004) as an alternative to model and forecast realized
volatilities, and is inspired by the Heterogeneous Market Hypoth-
esis of Müller et al. (1993) and the asymmetric propagation of
volatility between long and short horizons. Corsi (2004) defines
the partial volatility as the volatility generated by a certain mar-
ket component, and the model is an additive cascade of different
partial volatilities (generated by the actions of different types of
market participants). At each level of the cascade (or time scale),
the unobserved volatility process is assumed to be a function of
the past volatility at the same time scale and the expectation of the
next period values of the longer term partial volatilities (due to the
asymmetric propagation of volatility). Corsi (2004) showed that
by straightforward recursive substitutions of the partial volatil-
ities, this additive volatility cascade leads to a simple restricted
linear autoregressivemodelwith the feature of considering volatil-
ities realized over different time horizons. The heterogeneity of
the model derives from the fact that at each time scale, the partial
volatility is described by a different autoregressive structure.
In this paper, we generalize the HAR model by introducing

multiple regime switching. The proposed model is defined as
follows.

Definition 1. Let

yt,h =
yt + yt−1 + yt−2 + · · · + yt−h+1

h
, (4)

h ∈ Z+, ι =
(
ι1, . . . , ιp

)′
∈ Zp+ be a set of indexes where

ι1 < ι2 < · · · < ιp, and xt =
(
1, yt−1,ι1 , . . . , yt−1,ιp

)′
∈ Rp+1.

A time series {yt}Tt=1 follows a Multiple-Regime Smooth Transition
Heterogeneous Autoregressive (HARST)model withM+1 limiting
regimes if

yt = G(xt , zt;ψ)+ εt = β′0xt +
M∑
m=1

β′mxt f (zt; γm, cm)+ εt , (5)

where G(xt , zt;ψ) is a nonlinear function of the variables xt and
zt , and is indexed by the vector of parametersψ ∈ R(M+1)(p+1)+2M ,
f (zt; γm, cm) is the logistic function given by

f (zt; γm, cm) =
1

1+ e−γM (zt−cm)
, (6)

and εt is a random noise.

Typical values for the hyper-parameter h in Eq. (5) are:
one (daily volatility), five (weekly volatility), and 22 (monthly
volatility). The main advantage of the HARST model is that it can
capture both long-range dependence and regime switches (and
hence asymmetric effects) in a very simple way. It is clear that
f (zt; γm, cm) is a monotonically increasing function, such that
f (zt; γm, cm) → 1 as zt → ∞ and f (zt; γm, cm) → 0 as
zt → −∞. The parameter γm, m = 1, . . . ,M , is called the slope
parameter and determines the speed of the transition between two
limiting regimes. When γm → ∞, the logistic function becomes
a step function, and the HARST model becomes a threshold-type
specification. The variable zt is known as the transition variable.
There are several possible choices for zt . For example, suppose that
yt is the logarithm of the realized volatility and set zt = rt−1,
where rt−1 is the return of a given asset at time t − 1. Hence,
the differences in the dynamics of the conditional variance are
modelled according to the sign and size of the shocks in previous
returns, which represent previous ‘‘news’’.
The number of limiting regimes is defined by the hyper-

parameter M . For example, suppose that in (5), M = 2, c1
is highly negative, and c2 is very positive, so that the resulting
HARST model will have 3 limiting regimes that can be interpreted
as follows. The first regime may be related to extremely low
negative shocks (or ‘‘very bad news’’) and the dynamics of the
volatility are driven by yt = β′0xt + εt as f (rt−1; γm, cm) ≈
0, m = 1, 2. In the the middle regime, which represents low
absolute returns (or ‘‘tranquil periods’’), yt =

(
β0 + β1

)′ xt + εt
as f (rt−1; γm, cm) ≈ 1 and f (rt−1; γ2, c2) ≈ 0. Finally, the third
regime is related to high positive shocks (or ‘‘very good news’’) and
yt =

(
β0 + β1 + β2

)′ xt + εt , as f (rt−1; γi, ci) ≈ 1, i = 1, 2.
Another interesting choice is zt = yt−k or zt = yt−k,t−1. In

the case where yt is the logarithm of the realized volatility, this
particular choice of transition variablemeans that regime switches
are driven by past volatility. Past cumulated returns are also a
suitable candidate for transition variables as discussed in Scharth
and Medeiros (2006). As the speed of the transitions between
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Fig. 1. Upper panel: one realization of daily returns for Example 1. Lower panel: one realization of the logarithm of the daily volatility for Example 1.
different limiting HAR models is determined by the parameter
γm, m = 1, 2, the multiple regime interpretation of the HARST
specification will become clearer as the transitions (γm � 0)
become more abrupt.1

The following examples illustrate interesting situations. The
daily return of a given asset is given by rt , r22,t is the cumulated
return over the last 22 days, σt is logarithm of the daily volatility,
and {ut} is a sequence of independently and normally distributed
random variables. Consider the following specifications.

Example 1.

rt = exp(σt)ut , ut ∼ NID(0, 1)
σt = 0.01+ 0.95σt−1
−
(
0.006+ 0.60σt−1 − 0.25σt−1,5 − 0.15σt−1,22

)
× f (rt−1; 5,−3.0)
+
(
0.004+ 0.30σt−1 − 0.16σt−1,5 − 0.09σt−1,22

)
× f (rt−1; 5, 2.5)+ εt , εt ∼ NID

(
0, 0.52

)
. (7)

Example 2.

rt = exp(σt)ut , ut ∼ NID(0, 1)
σt = 0.05+ 0.95σt−1
−
(
0.035+ 0.58σt−1 − 0.27σt−1,5 − 0.21σt−1,22

)
× f (r22,t−1; 4,−10)

+
(
0.03+ 0.30σt−1 − 0.20σt−1,5 − 0.18σt−1,22

)
× f (r22,t−1; 4, 13)+ εt , εt ∼ NID

(
0, 0.252

)
. (8)

1 If zt = t , the model accommodates smoothly changing parameters. In the
limit, γm → ∞, m = 1, . . . ,M , we have an HAR model with M structural breaks.
However, zt = t will not be considered in this paper as the asymptotic theory has
to be modified.
In both cases above, current volatility depends on past daily
volatility, as well as on weekly andmonthly past volatilities. In the
first example, when the returns are very negative, the logarithm of
the volatility is given by a very persistent first-order autoregressive
model and longer lags have no influence in the volatility dynamics,
such that σt = 0.010 + 0.95σt−1 + εt . During ‘‘tranquil periods’’,
the logarithmof the volatility follows anHARmodel, whereweekly
and monthly averages influence current values, namely σt =
0.004+0.35σt−1+0.25σt−1,5+0.15σt−1,22+εt . When the lagged
return is very positive, the effects of the first lag are dominant, such
that σt = 0.008 + 0.65σt−1 + 0.09σt−1,5 + 0.06σt−1,22 + εt . In
the second example, the monthly returns influence the dynamics
of volatility and the regime switches are not as frequent as in
Example 1.
Figs. 1 and 2 show one realization with 3000 observations of

the returns and the logarithm of the volatility when the data are
generated as in Examples 1 and 2, respectively. It is clear from the
graphs that the generated series have strong volatility clustering
and extreme observations. Table 1 shows the descriptive statistics
for 1000 replications of Eqs. (7) and (8). The table shows the mean,
median, standard deviation, minimum and maximum values of
the following statistics: mean, standard deviation, kurtosis, and
skewness of the simulated daily returns; sum of the first 500
autocorrelations of the absolute and squared daily returns; the
GPH (Geweke and Porter-Hudak, 1983) estimator of the fractional
difference parameter for the absolute returns, squared returns, and
log volatility; and the correlation coefficient between the volatility
and the lagged return.
Several interesting facts emerge from Table 1. First, in both

examples the returns have excess kurtosis and positive skewness.
Note that, even with Gaussian errors, the kurtosis coefficient can
be much greater than three. In both cases, the volatility process
displays long-range dependence. Note that in Example 2, the
average estimate of the d parameter is close to the 0.4 usually
documented in the empirical literature. In the first case, there is
also a small negative correlation between the lagged return and
the volatility process, which indicates the presence of leverage.
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Fig. 2. Upper panel: one realization of daily returns for Example 2. Lower panel: one realization of the logarithm of the daily volatility for Example 2.
Table 1
Descriptive statistics.

Mean Std. Dev. Kurtosis Skewness
∑500
j=1 ρj(|rt |)

∑500
j=1 ρj(r

2
t ) d(|rt |) d(r2t ) d(σt ) ρ(exp(σt ), rt−1)

Example 1

Mean −0.0012 1.8320 45.954 0.1233 1.6937 0.7408 0.1562 0.0872 0.2261 −0.0929
Median 0.0003 1.7859 21.763 0.0911 1.2936 0.4957 0.1549 0.0751 0.2308 −0.0830
Std. Dev. 0.0325 0.2510 99.464 2.8956 2.0315 1.0996 0.1052 0.1063 0.0963 0.0805
Minimum −0.1314 1.3649 7.4699 −23.127 −1.8592 −1.2114 −0.2629 −0.2487 −0.0926 −0.6373
Maximum 0.0902 3.7018 1341.1 30.325 12.3670 7.1483 0.5193 0.5612 0.5125 0.1719

Example 2

Mean 0.0006 1.3429 11.006 0.0620 2.2571 1.7958 0.2690 0.2142 0.3904 −0.0137
Median 0.0011 1.3218 6.0657 0.0543 1.7360 1.4124 0.2676 0.2068 0.3940 −0.0096
Std. Dev. 0.0236 0.1263 20.469 0.7025 2.5185 1.8799 0.1104 0.1184 0.1012 0.0407
Minimum −0.0924 1.1255 3.8245 −9.2266 −3.1003 −2.0112 −0.0745 −0.1068 0.0301 −0.2990
Maximum 0.0729 2.2681 242.14 8.1517 18.278 13.102 0.8205 0.7679 0.7656 0.1051

The table shows themean,median, standard deviation,minimum, andmaximumof the following statistics:mean, standard deviation, kurtosis, and skewness of the simulated
daily returns; sumof the first 500 autocorrelations of the absolute and squared daily returns,

∑500
j=1 ρj(|rt |) and

∑500
j=1 ρj(r

2
t ), respectively; the GPH (Geweke and Porter-Hudak,

1983) estimator of the fractional difference parameter for the absolute returns, squared returns, and log volatility, d(|rt |), d(r2t ), and d(σt ), respectively; and the correlation
coefficient between the volatility and the lagged return, ρ(exp(σt ), rt−1). The number of ordinates in the GPH estimator is set as l = 30000.5 .
3.3. Probabilistic properties

Deriving necessary and sufficient conditions for stationarity and
geometric ergodicity of the HARST model is not trivial as it will
depend on the particular choice of transition variables and the
distribution of the errors. However, it is possible to find a set of
sufficient conditions. The core idea is to analyse the HAR model
as a restricted (AR) autoregressive model. First, consider the linear
HAR specification as follows:

yt = β00 + β01yt−1,ι1 + β02yt−1,ι2 + · · · + β0pyt−1,ιp + εt . (9)

It is easy to show that (9) is a restricted AR model given as

yt = φ0 + φ1yt−1 + · · · + φ1yt−ι1 + φ2yt−(ι1+1) + · · · + φ2yt−ι2
+φ3yt−(ι2+1) + · · · + φ3yt−ι3 + · · · + φpyt−(ιp−1+1) + · · ·

+φpyt−ιp + εt , (10)

where φ0 = β00 and φj =
∑p
i=j

β0i
ιi
, j = 1, . . . , p.
Theorem 1. Suppose that the process {yt} is generated by an HAR
model as in (9), where the errors are formed by a sequence {εt} of zero
mean, independent and identically distributed random variables, with
E(ε2t ) = E(ε2t |Ft−1) = σ

2 < ∞. Ft is the σ -algebra formed by the
information available to time t. The process {yt} is strictly stationary
and geometric ergodic if, and only if, the roots of the polynomial

1− φ1z − · · · − φ1zι1 − φ2zι1+1 − · · · − φ2zι2 − · · ·
−φpzιp−1+1 − · · · − φpzιp = 0

are outside the unit circle.

Following the same reasoning as above, the HARST model can
be written as a restricted version of the Functional-Coefficient
Autoregressive (FAR) model proposed by Chen and Tsay (1993),
given by

yt = φ0(zt)+ φ1(zt)yt−1 + · · · + φ1(zt)yt−ι1 + φ2(zt)yt−(ι1+1)
+ · · · + φ2(zt)yt−ι2 + φ3(zt)yt−(ι2+1) + · · ·
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+φ3(zt)yt−ι3 + · · · + φp(zt)yt−(ιp−1+1) + · · ·

+φp(zt)yt−ιp + εt , (11)

where φ0(zt) = β00 +
∑M
m=1 βm0f (zt; γm, cm) and φj(zt) =∑p

i=j

[
β0i+

∑M
m=1 βmif (zt ;γm,cm)

]
ιi

, j = 1, . . . , p.
Direct application of Theorem 1.1 in Chen and Tsay (1993)

enables us to state the following result.

Theorem 2. Suppose that the process {yt} is generated by an HARST
model as in (5), where |βk| < ∞, k = 0, . . . ,M, such that

|φj(zt)| ≤ cj =
∣∣∣∣∑p

i=j

(
β0i+

∑M
m=1 βmi

)
ιi

∣∣∣∣ < ∞, j = 1, . . . , p.

Furthermore, assume that the errors are formed by a sequence {εt} of
zero mean, independent and identically distributed random variables,
with E(ε2t ) = E(ε2t |Ft−1) = σ 2 < ∞. Ft is the σ -algebra formed
by the information available to time t. The process {yt} is strictly
stationary and geometric ergodic if the roots of the polynomial

1− c1z − · · · − c1zι1 − c2zι1+1 − · · · − c2zι2

− · · · − cpzιp−1+1 − · · · − cpzιp = 0

are outside the unit circle.

It is clear that the condition of Theorem2 is very strict. However,
in order to relax this condition and the assumptions about the
error term, it is important to make additional assumptions about
the transition variable. Although important, this is beyond the
scope of the paper and is left for future research. In practical
applications, the estimated model can be checked for stationarity
through simulation. In the following sections, we will assume that
the process {yt} is stationary and ergodic.

3.4. Parameter estimation

In this section we discuss parameter estimation of the HARST
model and the corresponding asymptotic theory. Consider the
following assumption about the data generating process (DGP).

Assumption 1 (Data Generating Process). The observed sequence
of real-valued dependent variable {yt}Tt=1 is a realization of a
stationary and ergodic stochastic process on a complete probability
space that can be well approximated by the HARST model, as in
(5), such that the sequence {εt}Tt=1 is formed by random variables
drawn from an absolutely continuous (with respect to a Lebesgue
measure on the real line), positive everywhere distribution with
E(εt) = E(εt |Ft−1) = 0, E(ε2t ) = σ 2 < ∞ and E(ε2t |Ft−1) =
σ 2t > 0, ∀ t . Furthermore, limT→∞

1
T

∑T
t=1 σ

2
t = σ 2 < ∞. Ft is the

σ -algebra formed by the information available to time t .

Note that only mild restrictions are imposed on the error
term, without assuming any particular distribution. However, it is
assumed that the conditionalmean can be adequately described by
an HARST specification.
We make the following assumptions about the vector of

parameters.

Assumption 2 (Parameter Space). The true parameter vectorψ0 ∈
Ψ ⊆ R(M+1)(p+1)+2M is in the interior of Ψ , a compact and convex
parameter space.

Assumption 3 (Identifiability). The parameters γm and cm, m =
1, . . . ,M , satisfy the restrictions:

(R.1) γm > 0;
(R.2) −∞ < c1 < · · · < cM <∞;
(R.3) The elements of the vector βm do not vanish jointly, for all
m = 1, . . . ,M .

Assumption 2 is standard and Assumption 3 guarantees that
the HARST model is identified. More specifically, Restriction
(R.1) eliminates identification problems caused by the fact that
f (zt; γm, cm) = 1− f (zt;−γm, cm),m = 1, . . . ,M , and Restriction
(R.2) avoids permutation of theM logistic functions in (5).
The vector of parameters ψ is estimated by nonlinear least

squares, which is equivalent to the quasi-maximum likelihood
method. The estimator is given by

ψ̂ = argmin
ψ∈Ψ

QT (ψ) = argmin
ψ∈Ψ

1
T

T∑
t=1

qt(ψ),

where qt(ψ) = [yt − G(xt , zt;ψ)]2.
Define Q(ψ) = E[qt(ψ)]. In the following theorems, we

state the existence, consistency and asymptotic normality of the
estimator ψ̂. The existence result is based on Theorem 2.12
in White (1994), which establishes that, under certain conditions
of continuity andmeasurability of the least squares function,Q(ψ)
exists.

Theorem 3 (Existence). Under Assumptions 1 and 2, Q(ψ) exists, is
finite, and is uniquely maximized at ψ0.

In White (1981) and White and Domowitz (1984), the
conditions that guarantee consistency of the nonlinear least
squares estimator are established. In the context of stationary time
series models, the conditions that ensure the consistency result
are established in White (1994) and Wooldridge (1994). In what
follows, we state and prove the theorem of consistency of the
estimators of the HARST model.

Theorem 4 (Consistency). Under Assumptions 1–3, ψ̂
p
−→ψ0.

The asymptotic normality result is also based on the results
in White (1994) and Wooldridge (1994).

Theorem 5 (Asymptotic Normality). Under Assumptions 1–3, it
follows that
√
T
(
ψ̂ − ψ0

)
d
−→N

(
0,A(ψ0)

−1B(ψ0)A(ψ0)
−1) ,

where

A(ψ0) = E

[
−
∂2qt(ψ)
∂ψ∂ψ′

∣∣∣∣
ψ0

]
and

B(ψ0) = E

[
T
∂QT (ψ)

∂ψ

∣∣∣∣
ψ0

∂QT (ψ)

∂ψ′

∣∣∣∣
ψ0

]

≡
1
T

T∑
t=1

E

[
∂qt(ψ)
∂ψ

∣∣∣∣
ψ0

∂qt(ψ)
∂ψ′

∣∣∣∣
ψ0

]
.

4. Determining the number of regimes

The number of regimes in the HARST model, as represented
by the number of transition functions in (5), is not known in
advance and should be determined from the data. In this paper
we tackle the problem of determining the number of regimes of
the HARST model with a ‘‘specific-to-general’’ modelling strategy,
but circumvent the problem of identification in away that controls
the significance level of the tests in the sequence and computes an
upper bound to the overall significance level.
The following is based on the assumption that the errors εt are

Gaussian, but the results will be made robust to nonnormal errors.
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Consider an HARST model as in (5) with M limiting regimes,
defined as

yt = β′0xt +
M−1∑
m=1

β′mxt f (zt; γm, cm)+ εt . (12)

The idea is to test the presence of an additional regime, as
represented by an extra term in (12) of the formβ′Mxt f (zt; γM , cM).
A convenient null hypothesis is H0 : γM = 0, against the
alternative Ha : γM > 0. Note that model (12) is not identified
under the null hypothesis. In order to remedy this problem,
we follow Teräsvirta (1994) and expand the logistic function
f (zt; γM , cM) into a third-order Taylor expansion around the null
hypothesis γM = 0. After merging terms, the resulting model is2

yt = β̃
′

0xt +
M−1∑
m=1

β′mxt f (zt; γm, cm)+ α
′

1xtzt + α
′

2xtz
2
t

+α′3xtz
3
t + ε

∗

t , (13)

where ε∗t = ε∗t + R(zt; γM , cM), R(zt; γM , cM) is the remainder,

β̃0 = β0 +
(
1
2 −

γM cM
4 −

γ 3M c
3
M

96

)
βM , α1 =

(
γM
4 +

γ 3M c
2
M

32

)
βM ,

α2 = −
γ 3M cM
32 βM , and α3 =

γ 3M
96 βM .

Consider the following additional assumption.

Assumption 4 (Moments). E
(
xtx′tz

δ
t

)
<∞, for δ > 6.

Under H0, R(zt; γM , cM) = 0 and we can state the following
result:

Theorem 6. Under Assumptions 1–4, the LM statistic given by

LM =
1
σ̂ 2

T∑
t=1

ε̂tv′t

×

 T∑
t=1

vtv′t −
T∑
t=1

vt ĥ
′

t

[
T∑
t=1

ĥt ĥ
′

t

]−1 T∑
t=1

ĥtv′t


−1

×

T∑
t=1

vt ε̂t , (14)

where σ̂ 2t =
1
T

∑T
t=1 ε̂

2
t , {̂εt}

T
t=1 is the estimated sequence of residuals

under the null hypothesis, vt =
(
x′tzt , x

′
tz
2
t , x
′
tz
3
t

)′, and
ĥt =

(
x′t , x

′

t f (zt; γ̂1, ĉ1), . . . , x
′

t f (zt; γ̂M−1, ĉM−1),

β̂
′

1xt
∂ f (zt; γ̂1, ĉ1)

∂γ1
, . . . , β̂

′

M−1xt
∂ f (zt; γ̂M−1, ĉM−1)

∂γM−1
,

β̂
′

1xt
∂ f (zt; γ̂1, ĉ1)

∂c1
, . . . , β̂

′

M−1xt
∂ f (zt; γ̂M−1, ĉM−1)

∂cM−1

)′
,

asymptotically has a χ2 distribution with 3(p+1) degrees of freedom
under the null hypothesis.

Under the normality assumption, the test can be performed in
stages, as follows:

2 If zt is an element of xt =
(
1, yt−ι1,t−1, . . . , yt−ιp,t−1

)′ , then the resultingmodel
should be

yt = β̃
′

0xt +
M−1∑
m=1

β′mxt f (zt ; γm, cm)+ α
′

1̃xt zt + α
′

2̃xt z
2
t + α

′

3̃xt z
3
t + ε

∗

t ,

where x̃t =
(
yt−ι1,t−1, . . . , yt−ιp,t−1

)′ .
(1) Estimate model (5) under H0 and compute the sequence of
residuals {̂εt}Tt=1. When the sample size is small, numerical
problems in applying the quasi-maximum likelihood algo-
rithm may lead to a solution such that the residual vector is
not orthogonal to the gradient matrix of G(xt , zt; ψ̂). This has
an adverse effect on the empirical size of the test. In order to
circumvent this problem, we regress the residuals ε̂t on ĥt and
compute the sum of squared residuals, SSR0 =

∑T
t=1 ε̃

2
t . The

new residuals, {̃εt}Tt=1, are orthogonal to ĥt .
(2) Regress ε̃t on ĥt and vt , and compute the sum of squared
residuals, SSR1.

(3) Compute the LM statistic:

LMχ = T
SSR0 − SSR1
SSR0

, (15)

or the F statistic:

LMF =
(SSR0 − SSR1)/3(p+ 1)

SSR1/[T − (3M − 5)(p+ 1)]
. (16)

UnderH0, LMχ is asymptotically distributed asχ2with 3(p+1)
degrees of freedom and LMF has an asymptotic F distribution with
3(p+ 1) and T − (3M − 5)(p+ 1) degrees of freedom.
Although the test statistic is constructed under the assumption

of normality, it is straightforward to follow Lundbergh and
Teräsvirta (2002) and consider a robust version of the LM test
against nonnormal errors. The robust version of the test statistic
can be constructed following Procedure 4.1 in Wooldridge (1990).
The test statistic can be calculated as follows:

(1) As above.
(2) Regress v̂t on ĥt and compute the residual vectors, r̂t , t =
1, . . . , T .

(3) Regress 1 on εt̂rt and compute the residual sumof squares, SSR.
The test statistic given by:

LMR = T − SSR (17)

has an asymptotic χ2 distribution with kx degrees of freedom
under the null hypothesis.

5. Model selection

The modelling cycle of the HARST model involves three
steps, namely specification, estimation, and model evaluation. The
specification consists of three decisions:

(1) choice of relevant variables;
(2) selection of the transition variable; and
(3) determination of the number of regimes.

In addition to the set of lagged variables as defined in (5),
other possible candidate variables are sets of (weakly) exogenous
variables. For example, in the context of volatility forecasting,
these variables may be dummies for the days of the week
and dates of macroeconomic announcements. The set of lags
ι in the HARST model should be determined first. There are
several ways of selecting the relevant variables. In the STAR
literature, is common to select the set of relevant variables using
information criteria, making use of a linear approximation to the
true DGP. This is also a possibility for the HARST specification.
However, as noted in Pitarakis (2006), this method may have
an adverse effect on the final model specification. An alternative
approach, which is adopted here, is to consider a k-th order
polynomial approximation to the nonlinear component of the
DGP, as proposed in Rech et al. (2001), and applied with success
in Medeiros et al. (2006), Medeiros and Veiga (2005), and Suarez-
Fariñas et al. (2004). As the logistic functions in (5) depend only
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on the scalar variable zt , the polynomial approximation can be
simplified dramatically as follows3:

yt = α′0xt + α
′

1xtzt + α
′

2xtz
2
t + α

′

3xtz
3
t + · · · + α

′

kxtz
k
t + ε

∗

t , (18)

where ε∗t = εt+R(xt , zt;ψ). In this paper we choose a third-order
polynomial approximation.
In Eq. (18), every product of variables involving at least one

redundant variable in xt has the coefficient set equal to zero. The
idea is to sort out the redundant variables by using this property
of (18). In order to do so, we first regress yt on all the variables
on the right-hand side of Eq. (18), assuming R(xt , zt;ψ) = 0,
and compute the value of a model selection criterion (MSC), such
as AIC or BIC. This leads to the removal of one variable from the
original vector, xt . Then regress yt on all the remaining terms in
the corresponding polynomial, and again compute the value of
the MSC. This procedure is repeated sequentially by omitting each
variable in turn, and can be continued by simultaneously omitting
two regressors in the original model, and proceeding until the
vector xt is just a constant. The combination of variables is chosen
to yield the lowest value of the MSC. Rech et al. (2001) showed
that the procedure works well in small samples when compared
with well known nonparametric techniques. Furthermore, the
procedure can be applied successfully even in large samples when
nonparametric model selection is not computationally feasible.
The selection of the transition variable is determined by testing

linearity for different possible choices of zt .4 We choose the
transition variable that minimizes the p-value of the test. Finally,
the number of regimes is determined by the sequence of LM tests,
as described in Section 4.
We now combine the above procedure into a coherent

modelling strategy that involves a sequence of LM tests. The idea
is to test a linear HAR model against an alternative HARST model
withmore than one regime at aλ1 level of significance. In the event
that the null hypothesis is rejected, HARST with two regimes is
estimated and than tested against an alternative with more than
two regimes. The procedure continues testing J regimes against
alternative models with J∗ ≥ J + 1 regimes at significance level
λJ = λ1 C J−1 for some arbitrary constant 0 < C < 1. The testing
sequence is terminated at the first nonrejection outcome, and then
the number of additional regimes,M , for the HARST specification is
estimated by M̂ = J̄ − 1, where J̄ refers to how many testing runs
are necessary to lead to the first nonrejection result. By reducing
the significance level at each step of the sequence, it is possible
to control the overall level of significance, and hence to avoid
excessively large models. The Bonferroni procedure ensures that
such a sequence of LM tests is consistent, and that

∑J̄
J=1 λJ acts

as an upper bound on the overall level of significance. As for the
determination of the arbitrary constant C , it would be sensible
practice to perform the sequential testing procedurewith different
values of C to avoid selecting models that are too parsimonious.
Estimation of the parameters of the model will be determined

by nonlinear least squares, which is equivalent to quasi-maximum
likelihood estimation, as discussed in Section 3.4.
What follows is evaluation of the final estimated model.

Time series models are typically evaluated by their out-of-
sample predictive performance. However, a sequence of neglected
nonlinearity tests can also be interpreted as model evaluation
tests. The construction of tests for serial correlation, in the spirit
of Eitrheim and Teräsvirta (1996) and Medeiros and Veiga (2003),
is also possible.

3 Although themotivation is different, this approximation is rather similar to the
one used in Section 4.
4 The transition variable may also be selected by minimizing the MSC in

expression (18).
6. Monte Carlo simulation

The goal of this section is to evaluate the finite sample
performance of the modelling cycle, as described in the previous
section. We simulated two different specifications as follows:

(1) Model 1: HARST (Asymmetric effects)

rt = exp(σt)ut , ut ∼ NID(0, 1)
σt = 0.010+ 0.95σt−1
−
(
0.006+ 0.60σt−1 − 0.25σt−1,5 − 0.15σt−1,22

)
× f (rt−1; 5,−3.0)
+
(
0.004+ 0.30σt−1 − 0.16σt−1,5 − 0.09σt−1,22

)
× f (rt−1; 5, 2.5)+ εt , εt ∼ NID

(
0, 0.52

)
. (19)

(2) Model 2: HARST (Asymmetric effects)

rt = exp(σt)ut , ut ∼ NID(0, 1)
σt = 0.05+ 0.95σt−1
−
(
0.035+ 0.58σt−1 − 0.27σt−1,5 − 0.21σt−1,22

)
× f (r22,t−1; 4,−10)

+
(
0.03+ 0.30σt−1 − 0.20σt−1,5 − 0.18σt−1,22

)
× f (r22,t−1; 4, 13)+ εt , εt ∼ NID

(
0, 0.252

)
. (20)

The simulated models have been analyzed in Examples 1 and
2 in Section 3, and each has three regimes. In the first model the
regime switches are more frequent as the transition variable is
the past return, while in the second model the switches are less
frequent and the model spends a larger fraction of time in each
regime. We consider different sample sizes for each model: 300,
500, 1000, 1500, 3000 and5000. It should be noted that, in financial
applications, 300 and 500 observations comprise rather small
samples. Most of the datasets, especially those dealing with high
frequency data, have more than 2000 observations. We simulate
each specification 1000 times, with two different values of the
starting significance level of the sequence of tests, namely 0.05 and
0.10, and halve the level of significance at each step. It is important
to mention that the tests for the third regime are conducted at the
0.025 and 0.05 levels, respectively.
Table 2 presents the results concerning the determination of

the number of regimes. The table shows the frequency of correctly
selecting the number of regimes under the correct choice of
explanatory variables in the model. The number in parentheses
is the frequency of underfitting. Several facts emerge from the
table. Both the robust and nonrobust sequence of tests seem to be
consistent, as the frequency of success increases with the sample
size. Furthermore, as expected, the procedure is more accurate
when the first model is considered, as the switches are far more
frequent. It is also clear that the procedure is conservative as the
frequency of underfitting is very high. Finally, the procedureworks
well for the typical sample sizes that are observed in financial
applications.

7. Empirical application

7.1. The data

The empirical analysis focuses on the realized volatility
of sixteen Dow Jones Industrial Average index stocks: Alcoa,
American International Group, Boeing, Caterpillar, General Electric,
General Motors, Hewlett Packard, IBM, Intel, Johnson and Johnson,
Coca-Cola, Microsoft, Merck, Pfizer, Wal-Mart and Exxon. The
raw intraday data are constituted of tick-by-tick quotes extracted
from the NYSE Trade and Quote (TAQ) database. The period of
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Table 2
Simulation results: number of regimes.

Model True value Initial significance level: 0.05
300 observations 500 observations
Non-Robust test Robust test Non-Robust test Robust test

1 3 0.05 (0.95) 0 (1) 0.07 (0.92) 0.01 (0.99)
2 3 0.02 (0.98) 0.01 (0.99) 0.03 (0.97) 0.02 (0.98)

1000 observations 1500 observations
1 3 0.19 (0.80) 0.06 (0.94) 0.30 (0.69) 0.14 (0.86)
2 3 0.06 (90.93) 0.04 (0.96) 0.10 (0.90) 0.04 (0.96)

3000 observations 5000 observations
1 3 0.56 (0.43) 0.41 (0.59) 0.86 (0.12) 0.76 (0.24)
2 3 0.17 (0.82) 0.10 (0.89) 0.28 (0.71) 0.13 (0.87)

Initial significance level: 0.10
300 observations 500 observations

1 3 0.07 (0.93) 0.01 (0.99) 0.10 (0.88) 0.02 (0.98)
2 3 0.03 (0.96) 0.01 (0.99) 0.09 (0.90) 0.04 (0.96)

1000 observations 1500 observations
1 3 0.25 (0.73) 0.09 (0.91) 0.34 (0.65) 0.20 (0.80)
2 3 0.12 (0.86) 0.06 (0.93) 0.17 (0.82) 0.09 (0.91)

3000 observations 5000 observations
1 3 0.68 (0.31) 0.52 (0.48) 0.90 (0.09) 0.85 (0.15)
2 3 0.21 (0.78) 0.16 (0.83) 0.34 (0.62) 0.25 (0.73)

Relative frequency of selecting correctly the number of regimes of the model based on 1000 replications with different sample sizes. The number between parentheses is
the frequency of underfitting (selection of fewer regimes).
analysis starts in January 3, 1994, and ends in December 31, 2003.
Trading days with abnormally small trading volume and volatility
caused by the proximity of holidays (for example, Good Friday) are
excluded, leaving a total of 2541 daily observations.
We start by removing nonstandard quotes, computing mid-

quote prices, filtering possible errors, and obtaining one second
returns for the 9:30 am to 4:05 p.m. period. Following the results
of Hansen and Lunde (2006), we adopt the previous tick method
for determining prices at precise time marks. Based on the results
of Hasbrouck (1995), who reports a median 92.7% information
share at the NYSE for Dow stocks, and Blume and Goldstein (1997),
who conclude that NYSE quotes match or determine the best
displayed quotemost of the time,we useNYSE quotes (or NASDAQ,
for Microsoft and Intel) if they are close enough to the time marks
in relation to other updates.
In order to estimate our measure of the daily realized volatility,

we use the two time scales estimator of Zhang et al. (2005)
with five-minute grids. The final dependent variable is the daily
logarithm of the realized volatility. As in Martens et al. (2004)
and Scharth and Medeiros (2006) we also consider dummies
for the days of the week and dummies for the following
macroeconomic announcements: Federal OpenMarket Committee
meetings (FOM), The Employment Situation Report from the
Bureau of Labor Statistics (ESR), CPI and PPI.
Data are used from 1993 to 1999 in order to estimate the

models, and from 2000 to 2003 to evaluate the forecasting
performance of the different specifications. The estimated models
have the following structure:

yt = α′wt + β′0xt +
M∑
m=1

β′mxt f (zt; γm, cm)+ εt , (21)

where yt is the logarithm of the daily realized volatility computed
as described above, wt is a vector containing selected dummies
for the days-of-the-week and announcement dates, xt =(
1, yt−1,ι1 , . . . , yt−1,ιp

)′, f (·) is the logistic function as in (5) and
zt is the past return (rt−1).

7.2. Model specification and estimation

We start by selecting the relevant explanatory variables. All
the variables are selected according to the procedure described in
Section 5 using BIC. In order to keep interpretability of the selected
lags and to avoid serious ‘‘data mining’’ problems, we consider the
following set of possible lags: X = {1, 2, 5, 10, 15, 22}. Table 3
shows the selected variables. Several interesting facts emerge
from the table. First, for 10 of 16 series, the selected lags are
1, 5, and 22, meaning that daily, weekly, and monthly volatility
are highly relevant. Second, announcement effects are selected
as explanatory variables in seven cases. The most important
announcement seems to be the Federal Open Market Committee
meetings. Finally, there is not a clear pattern with respect to the
presence of the days-of-the-week dummies in the model.
After selecting the relevant variables, we continue estimating a

linearHARmodel. Table 4 shows several statistics for the estimated
model. The table shows the p-values for the following tests: LM test
for residual serial autocorrelation of orders 1, 5, and 10; LM test for
ARCH effects of orders 1, 5, and 10; Jarque-Bera test for normality
of the residuals; and finally the linearity test against the HARST
alternative. As one of our main goals is to model asymmetries and
leverage in the volatility dynamics, we fix the transition variable to
be the past daily return, rt−1. We report both robust and nonrobust
versions of the linearity test.Wehave also tested linearity choosing
other transition variables, such as past daily, weekly, and monthly
volatilities. However, the best and more significant results are
obtained with the past daily return as the transition variable.
According to the results in Table 4 and at a 5% significance

level, the linear HAR model fails to account for serial correlation
in 8 of the 16 series. In addition, there is evidence of conditional
heteroskedasticity in 12 of 16 series (which may be due to
nonlinear effects). Furthermore, normality is strongly rejected in
all cases. For this reason, we will use the robust sequence of LM
tests to specify the HARST model.
Finally, we estimate the HARST model for each series. The

dummies for the announcement dates and days-of-the week enter
only in the linear part of the model. The results are shown in
Table 5, which presents the following diagnostic statistics: p-value
of the test of remaining nonlinearity (additional regimes), p-value
of the LM residual serial correlation test, p-value of the LM test
for ARCH effects, and p-value of the Jarque-Bera test for normality.
Only for ALCOA (AA) is there no evidence of more than a single
regime. For all the other series there is strong evidence of two
regimes, with the exception of Microsoft, where we find evidence
of three regimes.
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Table 3
Selected variables.

Series Lags FOM ESR CPI PPI Monday Tuesday Wednesday Thursday

AA 1, 5, and 22 No No No No No Yes No No
AIG 1, 5, and 22 No No No No No No No No
BA 1, 5, and 22 No No No No No No No No
CAT 1 and 15 Yes No No No No No No No
GE 1, 5, and 22 Yes No No No Yes No Yes No
GM 1 and 10 No No No No No No No No
HP 1, 5, and 22 Yes No No No No No No Yes
IBM 1, 5, and 22 Yes No No No No No Yes No
INTC 1, 5, and 22 No Yes Yes Yes No No No No
JNJ 1, 5, and 15 No No No No No No No No
KO 1, 5, and 15 No No No No No No No No
MRK 1, 5, and 22 Yes No No No No No Yes No
MSFT 1, 5, and 22 No Yes No No No No No No
PFE 1 and 10 No No No No No No No No
WMT 1, 2, and 10 Yes No No No No No No No
XON 1, 5, and 22 No No No No No No No Yes

The table shows for each series the selected lags in ι in (5) and indicates whether or not announcement effects and days-of-the-week dummies are included in the model
specification. FOM indicates the dates of the Federal Open Market Committee meetings, ESR is related to the announcement of The Employment Situation Report, and CPI
and PPI indicate the dates of the announcement of the CPI and PPI, respectively. We omit the dummy for Friday to avoid perfect collinearity as our model includes a constant
in its specification.
Table 4
Linear HAR model: Diagnostic tests.

Series Serial correlation ARCH Normality Linearity test
1 5 10 1 5 10 Kurtosis Skewness Jarque-Bera Non-Robust Robust

AA 0.2005 0.6551 0.6749 0.3076 0.7205 0.8943 4.0196 0.4018 0.0000 0.0021 0.1016
AIG 0.1866 0.2808 0.4959 0.3485 0.1760 0.1198 3.9749 0.0105 0.0000 0.0000 0.0000
BA 0.0294 0.0891 0.2338 0.1540 0.1396 0.2598 5.1427 0.7398 0.0000 0.0000 0.0002
CAT 0.0772 0.0878 0.4366 0.2165 0.4454 0.6576 4.1846 0.3151 0.0000 0.0000 0.0014
GE 0.8184 0.0010 0.0011 0.0000 0.0001 0.0027 4.1731 0.3512 0.0000 0.0000 0.0000
GM 0.0292 0.1359 0.1601 0.0000 0.0000 0.0000 8.4597 0.0494 0.0000 0.0000 0.0004
HP 0.8155 0.8511 0.7802 0.0474 0.0226 0.0292 3.4459 0.2120 0.0000 0.0080 0.0042
IBM 0.3504 0.1704 0.0471 0.0038 0.0588 0.0973 4.1146 0.6374 0.0000 0.0000 0.0000
INTC 0.8656 0.9396 0.9611 0.0000 0.0000 0.0010 4.8292 0.1013 0.0000 0.0000 0.0000
JNJ 0.1568 0.7515 0.7011 0.0006 0.0035 0.0140 4.8042 0.5194 0.0000 0.0000 0.0000
KO 0.0275 0.0493 0.1128 0.0000 0.0000 0.0000 5.4411 0.5049 0.0000 0.0000 0.0006
MRK 0.1103 0.0101 0.0034 0.0000 0.0001 0.0004 4.4371 0.4482 0.0000 0.0000 0.0001
MSFT 0.0123 0.0576 0.1785 0.0000 0.0000 0.0004 4.4653 −0.0350 0.0000 0.0000 0.0000
PFE 0.0457 0.1398 0.2206 0.0049 0.0077 0.0325 4.7666 0.4908 0.0000 0.0000 0.0049
WMT 0.0781 0.1209 0.0973 0.0000 0.0000 0.0001 4.0922 0.2602 0.0000 0.0000 0.0000
XON 0.0069 0.1075 0.1432 0.0001 0.0007 0.0016 4.1868 0.4313 0.0000 0.0000 0.0080

The table shows for each series the p-values for the following tests: LM test for residual serial autocorrelation of orders 1, 5, and 10; LM test for ARCH effects of order 1, 5,
and 10; the Jarque-Bera test for normality; and finally, the linearity test against the HARST alternative using rt−1 as transition variable. The table also reports estimates for
the residuals kurtosis and skewness.
Table 5
HARST model: Diagnostic tests.

Series Serial correlation ARCH Normality Remaining nonlinearity Number of regimes
1 5 10 1 5 10 Kurtosis Skewness Jarque-Bera

AA 0.2005 0.6551 0.6749 0.3076 0.7205 0.8943 4.0196 0.4018 0.0000 0.1016 1
AIG 0.0643 0.1654 0.3805 0.4938 0.1863 0.1485 4.0691 0.0121 0.0000 0.5553 2
BA 0.0545 0.0590 0.1799 0.1644 0.2947 0.4262 5.1785 0.7496 0.0000 0.1229 2
CAT 0.0529 0.0785 0.3722 0.3529 0.4661 0.6939 4.0072 0.2700 0.0000 0.1364 2
GE 0.0566 0.0066 0.0139 0.8282 0.2193 0.5961 3.8596 0.2246 0.0000 0.0275 2
GM 0.1526 0.7447 0.1778 0.7072 0.9948 0.9990 8.8480 −0.1085 0.0000 0.0370 2
HP 0.1527 0.1693 0.3740 0.0203 0.0155 0.0294 3.3080 0.1683 0.0014 0.2538 2
IBM 0.0611 0.2651 0.0506 0.0909 0.2743 0.3694 4.1327 0.6122 0.0000 0.3097 2
INTC 0.3359 0.5605 0.7286 0.0000 0.0018 0.0206 4.7615 0.0506 0.0000 0.1122 2
JNJ 0.0580 0.1140 0.3196 0.0001 0.0023 0.0145 4.5882 0.4361 0.0000 0.0662 2
KO 0.0573 0.1017 0.3312 0.0000 0.0000 0.0006 5.3710 0.2829 0.0000 0.2093 2
MRK 0.1048 0.1128 0.0810 0.0460 0.0512 0.3181 4.3829 0.3893 0.0000 0.0866 2
MSFT 0.0004 0.0067 0.0133 0.0001 0.0008 0.0071 4.6288 −0.0695 0.0000 0.1550 3
PFE 0.0111 0.0564 0.0882 0.0022 0.0129 0.0485 4.7709 0.4197 0.0000 0.0433 2
WMT 0.0556 0.0494 0.1020 0.0169 0.0111 0.0289 3.7307 0.1502 0.0000 0.3956 2
XO 0.0568 0.1612 0.3681 0.0013 0.0086 0.0275 4.1490 0.4080 0.0000 0.3141 2

The table shows for each series the p-values for the following tests: LM test for residual serial autocorrelation of orders 1, 5, and 10; LM test for ARCH effects of order 1, 5,
and 10; Jarque-Bera test for normality of the residuals; and finally the remaining nonlinearity test (robust version). The table also shows the kurtosis and skewness for the
estimated residuals.
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Table 6
Forecasting results: Mean absolute errors and root mean squared errors.

Series MAE
HARST HAR HARST + HAR GARCH EGARCH GJR

AA – 0.4725 – 0.6170 0.7082 0.5972
AIG 0.3691 0.3671 0.3653 0.4648 0.4330 0.4648
BA 0.4164 0.4150 0.4135 0.5153 0.5054 0.5297
CAT 0.4069 0.4053 0.4051 0.5604 0.5405 0.5879
GE 0.3666 0.3569 0.3541 0.4949 0.4363 0.4715
GM 0.4390 0.4282 0.4267 0.5001 0.4676 0.4891
HP 0.6456 0.5999 0.6189 0.8768 0.8567 0.8716
IBM 0.3424 0.3444 0.3417 0.5527 0.5175 0.5499
INTC 0.4890 0.4776 0.4812 0.6787 0.6814 0.7411
JNJ 0.3703 0.3679 0.3641 0.4718 0.4550 0.4606
KO 0.3414 0.3441 0.3405 0.4316 0.4046 0.4145
MRK 0.3726 0.3712 0.3705 0.4635 0.4342 0.4628
MSFT 0.3695 0.3707 0.3641 0.5761 0.5361 0.5780
PFE 0.4207 0.4186 0.4190 0.4723 0.5310 0.4758
WMT 0.4168 0.4102 0.4050 0.5296 0.5062 0.5194
XON 0.3111 0.3119 0.3096 0.4004 0.4052 0.4001

RMSE
AA – 0.6808 – 0.8483 0.9668 0.8041
AIG 0.5516 0.5544 0.5489 0.6347 0.6276 0.6264
BA 0.6132 0.6208 0.6139 0.7340 0.6973 0.7556
CAT 0.5962 0.5938 0.5937 0.7750 0.7460 0.8130
GE 0.5481 0.5423 0.5329 0.6869 0.6082 0.6503
GM 0.6731 0.6538 0.6547 0.6829 0.6755 0.6733
HP 0.9328 0.8595 0.8903 1.1188 1.0995 1.1080
IBM 0.5520 0.5479 0.5487 0.7353 0.6671 0.7421
INTC 0.7154 0.6927 0.7020 0.9130 0.9151 1.0613
JNJ 0.5847 0.5826 0.5769 0.7175 0.7089 0.7103
KO 0.5138 0.5147 0.5119 0.6290 0.6013 0.6042
MRK 0.5859 0.5813 0.5816 0.6820 0.6538 0.6795
MSFT 0.5429 0.5488 0.5311 0.7584 0.6870 0.7718
PFE 0.6784 0.6694 0.6727 0.7367 0.7995 0.7450
WMT 0.6659 0.6598 0.6517 0.8212 0.7906 0.8086
XON 0.4677 0.4777 0.4700 0.6148 0.6248 0.6144

The table shows for each series the mean absolute errors (MAE) and the root mean squared errors (RMSE) for the forecasts computed from different models.
Table 7
Forecasting results: Diebold-Mariano test.

Series HARST+HAR versus HAR HARST versus HAR
MAE RMSE MAE RMSE

AA – – – –
AIG 0.2002 0.0638 0.7009 0.3452
BA 0.2149 0.0372 0.6434 0.1500
CAT 0.4466 0.5182 0.7714 0.7813
GE 0.1965 0.0403 0.9466 0.7045
GM 0.2913 0.6125 0.9818 0.9965
HP 1.0000 1.0000 1.0000 1.0000
IBM 0.0075 0.7350 0.1732 0.9428
INTC 0.9863 1.0000 0.9998 1.0000
JNJ 0.0603 0.1144 0.6889 0.5862
KO 0.0096 0.1417 0.1668 0.4258
MRK 0.3391 0.5454 0.7103 0.8744
MSFT 0.0058 0.0135 0.4281 0.3431
PFE 0.6153 0.9548 0.8058 0.9870
WMT 0.0665 0.0484 0.8653 0.7413
XO 0.0788 0.0092 0.3939 0.0559

The table shows for each series the p-value of the modified Diebold-Mariano test of
equal forecast accuracy. We compare the combination of HAR and HARST models
against the HAR model.

From the results presented in Table 5, there is still some
evidence of residual autocorrelation in some cases, although, for
most of the series, the HARST model correctly describes the
dynamics of the logarithm of the realized volatility.
Fig. 3 displays the estimated transition functions. It is inter-

esting to note that in all cases the asymmetry is not around zero
returns, as is strongly advocated in the literature. The regime
switches are associated with very negative past returns (or ‘‘very
bad news’’). The smoothness of the transition varies according to
each series. In some cases, Caterpillar for example, the transition
is abrupt. In others, such as General Electric, the transition is very
smooth.

7.3. Forecasting results

After estimating the HARST model for each series, the one-
day ahead forecasts are computed. The forecasting performance
of the HARST model is compared with the following competing
specifications: Linear HAR, linear ARFIMA, GARCH, GJR, and
EGARCH models. In addition, the forecast combination of a simple
model average of the linear HAR and HARST models is examined.
As the regime switches are associated with very negative returns,
the benefits of using the nonlinear model should become apparent
only in periods following very negative returns, such that a
combination of forecasts will improve the performance of both
models.
The results are reported in Tables 6 and 7. Table 6 presents

the mean absolute errors (MAE) and the root mean squared
errors (RMSE) for the forecasts from the different models. It can
be seen from the table that the forecasting performance of the
HARST model is not significantly better than from the linear HAR
model in most cases. However, this is likely for the reasons given
previously. When the HAR and HARST models are combined,
the forecasting performance improves. When compared with the
alternative latent volatility models, the performance of both the
HAR and HARST models is far superior.
In order to determine if the combination of the linear HAR and

HARST models generates more accurate one-step-ahead forecasts
than does the linear HAR model, we apply the modified Diebold
and Mariano (1995) test of Harvey et al. (1997) to these series
of forecasts. In Table 7, the p-values of the test are shown.
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Fig. 3. Estimated transition functions.
We compare forecast differences using both the absolute value
loss function (MAE) and the quadratic loss function (RMSE).
Concerning the absolute errors, the combination ofmodels delivers
superior forecasts in six cases. In seven cases, the forecasts are not
statistically different, and in only two cases does the linear HAR
model performs the best. When squared errors are considered, the
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combination of models produces better forecasts in six cases, the
forecasts are not statistically different in a further six cases, and
in three cases the linear HAR has the best performance. In a direct
comparison of the linear HAR and HARST models, the forecasts are
not statistically different in 12 cases.

8. Conclusion

This paper developed a new flexible nonlinear model that can
simultaneously describe long-range dependence and asymmetries
in time series dynamics. The model is a generalization of the Het-
erogeneous Autoregression (HAR)model and is called theMultiple
Regime Smooth TransitionHeterogeneous Autoregressive (HARST)
model. Following results in the nonlinear time series literature, we
developed an estimation and testing procedure, including an eas-
ily implemented sequence of Lagrange multiplier tests to deter-
mine the number of regimes in the model. A modelling cycle was
proposed, and simulations were used to evaluate the finite sam-
ple performance of the estimation and testing methods. The new
model was used to describe and forecast realized volatility of high
frequency financial time series, and the empirical results indicated
strong practical support for the model.
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Appendix. Proofs of theorems

A.1. Proof of Theorem 1

This is a standard result and the proof will be omitted. �

A.2. Proof of Theorem 2

The result follows directly from the application of Theorem 1.1
in Chen and Tsay (1993). �

A.3. Proof of Theorem 3

It is easy to see that G (xt , zt;ψ) in (5) is continuous in the
parameter vector ψ. This follows from the fact that, for each
value of xt and zt , f (zt; γm, cm), m = 1, . . . ,M , in (5) depend
continuously on γm and cm. Similarly, G (xt , zt;ψ) is continuous
in xt and zt , and therefore measurable, for each fixed value of
the parameter vector ψ. Again, under stationarity, it is clear that
E[qt(ψ)] <∞, ∀ t .
Restrictions (R.1)–(R.3) in Assumption 3 guarantee that the

HARST model is identifiable, so that Q(ψ) is uniquely maximized
at ψ0. This completes the proof. �

A.4. Proof of Theorem 4

Following White (1994, page 29), ψ
p
−→ψ0 if the following

conditions hold:

(1) The parameter space Ψ is compact.
(2) QT (ψ) is continuous in ψ ∈ Ψ . Furthermore, QT (ψ) is a
measurable function of yt , t = 1, . . . , T , for all ψ ∈ Ψ .

(3) Q(ψ) has a unique maximum at ψ0.
(4) QT (ψ)

p
−→Q(ψ).
Condition (1) is satisfied by Assumption 2. Theorem 3 shows
that Conditions (2) and (3) are satisfied.
Now set g(ψ) = qt(ψ) − E [qt(ψ)]. Theorem 3 implies that

E

[
sup
ψ∈Ψ

|g(ψ)|

]
<∞. In addition, because g(ψ) is stationary with

E [g(ψ)] = 0, by Theorem3.1 in Ling andMcAleer (2003) it follows
that sup

ψ∈Ψ

∣∣∣T−1∑T
t=1 g(ψ)

∣∣∣ = op(1) and Condition (4) is satisfied.
�

A.5. Proof of Theorem 5

To prove the asymptotically normality of the QMLE, we need
the following conditions in addition to those given in the proof of
Theorem 4 (see White (1994, page 92)).

(5) The true parameter vector ψ0 is interior to Ψ .
(6) The matrix

AT (ψ) =
1
T

T∑
t=1

(
∂2qt(ψ)
∂ψ∂ψ′

)
exists and is continuous in Ψ .

(7) The matrix AT (ψ)
p
−→A(ψ0), for any sequence ψT such that

ψT
p
−→ψ0.

(8) The score vector satisfies

1
T

T∑
t=1

(
∂qt(ψ)
∂ψ

)
D
−→N(0, B(ψ0)).

Condition (5) is satisfied by assumption. Condition (6) follows
from the fact that qt(ψ) is differentiable of order two on ψ ∈ Ψ
and the stationarity of the HARST model. Condition (7) is verified
by using the same reasoning as in the proof of Theorem 4 and the
results of Theorem 3.1 in Ling and McAleer (2003). Furthermore,
nonsingularity of A(ψ0) follows immediately from identification
of the HARST model and the nonsingularity of B(ψ0) (see Hwang
and Ding (1997)).
Define

∇G
(
xt , zt;ψ0

)
≡
∂G (xt , zt;ψ)

∂ψ

∣∣∣∣
ψ=ψ0

and

∇
2G
(
xt , zt;ψ0

)
≡
∂2G (xt , zt;ψ)

∂ψ∂ψ′

∣∣∣∣
ψ=ψ0

.

Using Theorem 2.4 from White and Domowitz (1984), the
sequence 2ξ′∇G

(
xt , zt;ψ0

)
εt obeys the Central Limit Theorem

(CLT) for some (r × 1) vector ξ, such that ξ′ξ = 1. Assumptions
A(i) and A(iii) of White and Domowitz (1984) hold because
εt is a martingale difference sequence. Assumption A(ii) holds
with V = 4σ 2ξ′E

[
∇G

(
xt , zt;ψ0

)
∇
′G
(
xt , zt;ψ0

)]
. Furthermore,

since any measurable transformation of mixing processes is
itself mixing (see Lemma 2.1 in White and Domowitz (1984)),
2ξ′∇G

(
xt , zt;ψ0

)
εt is a strong mixing sequence and obeys

the CLT. By using the Cramér-Wold device, ∇Q (xt , zt;ψ) also
obeys the CLT with covariance matrix B(ψ0), which is O(1) and
nonsingular. This completes the proof. �

A.6. Proof of Theorem 6

This is the precise form of the LM test statistic for an
additional regime in the HARST model. Under Assumptions 1–4,
the asymptotic distribution of the LM statistic is a standard result
for nonlinear regression models. �
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