
doi: 10.1111/j.1467-6419.2010.00640.x

FORECASTING REALIZED VOLATILITY
WITH LINEAR AND NONLINEAR

UNIVARIATE MODELS
Michael McAleer

Erasmus University Rotterdam and National Chung Hsing
University

Marcelo C. Medeiros

Pontifical Catholic University

Abstract. In this paper, we consider a nonlinear model based on neural networks
as well as linear models to forecast the daily volatility of the S&P 500 and
FTSE 100 futures. As a proxy for daily volatility, we consider a consistent
and unbiased estimator of the integrated volatility that is computed from high-
frequency intraday returns. We also consider a simple algorithm based on bagging
(bootstrap aggregation) in order to specify the models analysed in this paper.
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1. Introduction

Modelling and forecasting the conditional variance, or volatility, of financial time
series has been one of the major topics in financial econometrics. It is widely known
that the daily returns of financial assets, especially of stocks, are difficult, if not
impossible, to predict, although the volatility of the returns seems to be relatively
easier to forecast. Therefore, it is hardly surprising that financial econometrics and,
in particular, the modelling of financial volatility, has played such a central role in
modern pricing and risk management theories.

There is, however, an inherent problem in using models where the volatility
measure plays a central role. The conditional variance is latent, and hence is
not directly observable. It can be estimated, among other approaches, by the
(generalized) autoregressive conditional heteroskedasticity, or (G)ARCH, family
of models proposed by Engle (1982) and Bollerslev (1986), stochastic volatility
models (see, for example, Taylor, 1986) or exponentially weighted moving averages,
as advocated by the Riskmetrics methodology (see McAleer (2005) for a recent
exposition of a wide range of univariate and multivariate, conditional and stochastic,

Journal of Economic Surveys (2011) Vol. 25, No. 1, pp. 6–18
C© 2010 Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA 02148, USA.



FORECASTING REALIZED VOLATILITY WITH LINEAR/NONLINEAR MODELS 7

models of volatility, and Asai et al. (2006) for a review of the growing literature
on multivariate stochastic volatility models). However, as observed by Bollerslev
(1987), Malmsten and Teräsvirta (2004) and Carnero et al. (2004), among others,
most of the latent volatility models fail to describe satisfactorily several stylized
facts that are observed in financial time series.

An empirical fact that standard latent volatility models fail to describe in an
adequate manner is the low, but slowly decreasing, autocorrelations in the squared
returns that are associated with high excess kurtosis of returns. Correctly describing
the dynamics of the returns is important in order to obtain accurate forecasts of
the future volatility which, in turn, is important in risk analysis and management.
In this sense, the assumption of Gaussian standardized returns has been refuted in
many studies, and heavy-tailed distributions have instead been used. See Jondeau
et al. (2007) for a nice discussion on the application of non-Gaussian distributions
in finance.

The search for an adequate framework for the estimation and prediction of
the conditional variance of financial assets returns has led to the analysis of high-
frequency intraday data. Merton (1980) noted that the variance over a fixed interval
can be estimated arbitrarily, although accurately, as the sum of squared realizations,
provided the data are available at a sufficiently high sampling frequency. More
recently, Andersen and Bollerslev (1998) showed that ex post daily foreign exchange
volatility is best measured by aggregating 288 squared 5-minute returns. The 5-
minute frequency is a tradeoff between accuracy, which is theoretically optimized
using the highest possible frequency, and microstructure noise that can arise through
the bid–ask bounce, asynchronous trading, infrequent trading and price discreteness,
among other factors (see Madhavan, 2000; Biais et al., 2005, for very useful
surveys).

Ignoring the remaining measurement error, which can be problematic, the ex
post volatility essentially becomes ‘observable’. Andersen and Bollerslev (1998)
and Patton (2008) used this new volatility measure to evaluate the out-of-sample
forecasting performance of GARCH models. As volatility becomes ‘observable’,
it can be modelled directly, rather than being treated as a latent variable. Based
on the theoretical results of Barndorff-Nielsen and Shephard (2002), Andersen
et al. (2003) and Meddahi (2002), several recent studies have documented the
properties of realized volatilities constructed from high-frequency data. However,
microstructure effects introduce a severe bias on the daily volatility estimation.
Zhang et al. (2005), Bandi and Russell (2006), Hansen and Lunde (2006) and
Barndorff-Nielsen et al. (2008), among others, have discussed various solutions to
the inconsistency problem.

In this paper, we consider the forecasting of stock market volatility via nonlinear
models based on a neural network (NN) version of the heterogeneous autoregressive
model (HAR) of Corsi (2009). As in Hillebrand and Medeiros (2009) we evaluate
the benefits of bagging (bootstrap aggregation) in forecasting daily volatility as
well as the inclusion of past cumulated returns over different horizons as possible
predictors. As the number of predictors can get quite large, the application of
bagging is recommended as a device to improve forecasting performance.
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The remainder of the paper is organized as follows. In Section 2, we briefly
discuss the main concepts in construction realized volatility measures. In Section 3,
the models considered in this paper are presented, whereas in Section 4 we
describe the bagging methodology to specify the models and construct forecasts.
The empirical results are presented in Section 5. Section 6 concludes the
paper.

2. Realized Volatility

Suppose that, during day t, the logarithmic prices of a given asset follow a
continuous time diffusion process, as follows:

dp(t + τ ) = μ(t + τ )dτ + σ (t + τ )dW (t + τ ) 0 ≤ τ ≤ 1, t = 1, 2, 3, . . . (1)

where p(t + τ ) is the logarithmic price at time t + τ , μ(t + τ ) is the drift
component, σ (t + τ ) is the instantaneous volatility (or standard deviation) and
W (t + τ ) is a standard Brownian motion.

Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002) showed
that daily returns, r (t) = p(t) − p(t − 1), are Gaussian conditionally on Ft ≡
F{μ(t + τ − 1), σ (t + τ − 1)}τ=1

τ=0, the σ -algebra (information set) generated by
the sample paths of μ(t + τ − 1) and σ (t + τ − 1), 0 ≤ τ ≤ 1, such that

rt | Ft ∼ N

[∫ 1

0
μ(t + τ − 1)dτ,

∫ 1

0
σ (t + τ − 1)dτ

]

The term IVt = ∫ 1
0 σ (t + τ − 1)dτ is known as the integrated variance, which

is a measure of the day-t ex post volatility. The integrated variance is typically the
object of interest as a measure of the true daily volatility.

In practical applications, prices are observed at discrete and irregularly spaced
intervals and there are many ways to sample the data. Suppose that on a given
day t , we partition the interval [0, 1] and define the grid of observation times
{τ1, · · · , τn}, 0 = τ1 < τ2 · · · < τn = 1. The length of the ith subinterval is given by
δi = τi − τi−1. The most widely used sampling scheme is calendar time sampling,
where the intervals are equidistant in calendar time, that is δi = 1/n. Let pt,i , i =
1, . . . , n, be the ith log price observation during day t , such that rt,i = pt,i − pt,i−1

is the ith intra-period return of day t . Realized variance is defined as

RVt =
n∑

i=2

r2
t,i (2)

Realized volatility is the square-root of (2).
Under regularity conditions, including the assumption of uncorrelated intraday

returns, realized variance RV2
t is a consistent estimator of integrated variance, such

that RVt
p→ IVt . However, when returns are serially correlated, realized variance

is a biased and inconsistent estimator of integrated variance. Serial correlation
may be the result of market microstructure effects such as bid–ask bounce and
discreteness of prices (Campbell et al., 1997; Madhavan, 2000; Biais et al., 2005).
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These effects prevent very fine sampling partitions. Realized volatility is therefore
not an error-free measure of volatility.

The search for asymptotically unbiased, consistent and efficient methods for
measuring realized volatility in the presence of microstructure noise has been one
of the most active research topics in financial econometrics over the last few years.
Although early references in the literature, such as Andersen et al. (2001), advocated
the simple selection of an arbitrary lower frequency (typically 5–15 minutes) to
balance accuracy and the dissipation of microstructure bias, a procedure that is
known as sparse sampling, recent articles have developed estimators that dominate
this procedure.

Recently, Barndorff-Nielsen et al. (2008), hereafter BHLS (2008), proposed the
flat-top kernel-based estimator

RV (BHLS)
t = RVt +

H∑
h=1

k

(
h − 1

H

)
(γ̂h + γ̂−h) (3)

where k(x) for x ∈ [0, 1] is a non-stochastic weight function such that k(0) = 1
and k(1) = 0, RVt is defined as in (2) and

γ̂h = n

n − h

n−h∑
j=1

rt, j rt, j+h

BHLS (2008) discussed different kernels and provided all the technical details.

3. The Models

Let yt be the square-root of the logarithm of a consistent and unbiased estimator
for the integrated variance of day t , such as the estimator in (3), and call it the daily
‘realized volatility’.1 Define daily accumulated logarithm returns over an h-period
interval as

rh,t =
h−1∑
i=0

rt−i (4)

where rt is the daily return at day t . Furthermore, define the average log realized
volatility over h days as

yh,t = 1

h

h−1∑
i=0

yt−i (5)

3.1 The Linear Heterogeneous Autoregressive Model

The linear HAR model proposed by Corsi (2009) is defined as

yt = β0 +
∑
ιi ∈I

βi yιi ,t−1 + εt = β0 + β ′xt−1 + εt (6)
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10 MCALEER AND MEDEIROS

where xt−1 = (yι1,t−1, . . . , yιp,t−1)′, I = (ι1, ι2, . . . , ιp) is a set of p indices with
0 < ι1 < ι2 < · · · < ιp < ∞ and i = 1, . . . , p. Throughout the paper, εt is a
zero-mean and uncorrelated process with finite, but not necessarily constant
variance (Corsi et al., 2008). Corsi (2009) advocated the use of I = (1, 5, 22).
His specification builds on the HARCH model proposed by Müller et al. (1997).
This type of specification captures long-range dependence by aggregating the log
realized volatility over the different time scales in I (daily, weekly and monthly).

Hillebrand and Medeiros (2009) consider more lags than 1, 5 and 22, as well
as dummy variables for weekdays and macroeconomic announcements and past
cumulated returns over different horizons as defined in (3). Hence,

yt = δ′d t +
∑
ιi ∈I

βi yιi ,t−1 +
∑
κ j ∈k

λ j rκ j ,t−1 + εt = δ′d t + β ′xt−1 + λ′r t−1 + εt (7)

where d t is a vector of n dummy variables as described above, xt−1 is defined
as in (6), r t−1 = (rκ1,t−1, . . . , rκq ,t−1)′, k = (κ1, κ2, . . . , κq )′ is a set of q indices
with 0 < κ1 < κ2 < · · · < κq < ∞ and i = 1, . . . , κ . The final set of variables in
the model was determined by a bagging strategy as a flexible choice of the lag
structure imposes high computational costs.

3.2 The Nonlinear HAR Model

McAleer and Medeiros (2008) proposed an extension of the linear HAR model by
incorporating smooth transitions. The resulting model is called the multiple-regime
smooth transition HAR model and is defined as

yt = δ′d t + β ′
0xt−1 +

M∑
i=1

β ′xt−1 f [γi (zt − ci )] + εt (8)

where zt is a transition variable, d t and εt are defined as before, and

f [γi (zt − ct )] = 1

1 + e−γi (zt −ci )
(9)

is the logistic function. The authors also presented a modelling cycle based on
statistical arguments to select the set of explanatory variables as well as the number
of regimes, M.

Hillebrand and Medeiros (2009) put forward a nonlinear version of the HAR
model based on NN. Their specification is defined as follows:

yt = β ′
0wt−1 +

m∑
i=1

βi f (γ ′
iwt−1) + εt (10)

where wt−1 = (d ′
t , x′

t−1, r ′
t−1)′, εt is defined as above, and f (γ ′

iwt−1) is the logistic
function as in (9).

As first discussed in Kuan and White (1994), the model defined by equa-
tion (10) may alternatively have a parametric or a non-parametric interpretation.
In the parametric interpretation, the model can be viewed as a kind of smooth
transition regression where the transition variable is an unknown linear combination
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of the explanatory variables in wt−1 (van Dijk et al., 2002). In this case, there is
an optimal, fixed number M of logistic transitions that can be understood as the
number of limiting regimes (Medeiros and Veiga, 2000; Trapletti et al., 2000;
Medeiros et al., 2006). On the other hand, for M → ∞, the NN model is a
representation of any Borel-measurable function over a compact set (Hornik et al.,
1989, 1994; Chen and Shen, 1998; Chen and White, 1998; Chen et al., 2001).
For large M , this representation suggests a non-parametric interpretation as series
expansion, sometimes referred to as sieve approximator. In this paper, we adopt
the non-parametric interpretation of the NN model and show that it approximates
typical nonlinear behaviour of realized volatility well.

As model (10) is, in principle, more flexible than model (8) we will consider
only the NN-HAR model in our empirical experiment.

4. Bagging Linear and Nonlinear HAR Models

4.1 What is Bagging?

The idea of bagging was introduced in Breiman (1996), studied more rigorously
in Bühlmann and Yu (2002), and introduced to econometrics in Inoue and Kilian
(2004). Bagging is motivated by the observation that in models where statistical
decision rules are applied to choose from a set of predictors, such as significance
in pre-tests, the set of selected regressors is data dependent and random. Bootstrap
replications of the raw data are used to re-evaluate the selection of predictors, to
generate bootstrap replications of forecasts, and to average over these bootstrapped
forecasts. It has been shown in a number of studies that bagging reduces the
mean squared error of forecasts considerably by averaging over the randomness
of variable selection (Lee and Yang, 2006; Inoue and Kilian, 2008). Applications
include, among others, financial volatility (Huang and Lee, 2007; Hillebrand and
Medeiros, 2009), equity premium (Huang and Lee, 2008) and employment data
(Rapach et al., 2010).

4.2 Bagging the Linear HAR Model

Selecting the regressors in the flexible HAR model (7) involves a number of
decisions, such as the choice of significance levels for t-tests. As in Inoue and
Kilian (2004), we expect that the application of bagging will improve the forecasting
performance of the flexible HAR model.

Using the same notation as in Section 3, set wt−1 = (d ′
t , x′

t−1, r ′
t−1)′ ∈ R

J , J =
p + q + n, and write (7) as

yt = θ ′wt−1 + εt (11)

The bagging forecast for model (11) is constructed in steps as follows:

Proposal 1: Bagging the linear HAR model.

(1) Arrange the set of tuples ( yt ,wt−1)′, t = 1, . . . , T , in the form of a matrix X
of dimension T × J .
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12 MCALEER AND MEDEIROS

(2) Construct bootstrap samples of the form {(y∗
(i)1,w

′∗
(i)0), . . . , (y∗

(i)T ,

w′∗
(i)T −1)}, i = 1, . . . , B, by drawing blocks of m rows of X with replacement,

where the block size m is chosen to capture possible dependence in the error
term of the realized volatility series, such as conditional variance (‘volatility
of volatility’).

(3) Compute the ith bootstrap one-step ahead forecast as

ŷ∗
(i)t | t−1 =

⎧⎨
⎩

0 if |t j | < c ∀ j

θ̂
′
w̃∗

(i)t−1 otherwise

where t j is the t-statistic for the null hypothesis H0: θ j = 0, w̃∗
(i)t−1 =

S∗w∗
t−1, S∗ is a diagonal selection matrix, which depends on the bootstrap

sample, with the jth diagonal element given by

S∗
j j =

⎧⎨
⎩

1 if |t j | ≥ c ∀ j

0 otherwise

c is a pre-specified critical value of the test, and θ̂ is the ordinary least squares
(LS) estimator given by

θ̂ =
[

T∑
t=1

w̃∗
(i)t−1w̃

′∗
(i)t−1

]−1 T∑
t=1

w̃′∗
(i)t−1 y∗

t

(4) Compute the average forecast over the bootstrap samples:

ŷt | t−1 = 1

B

B∑
i=1

ŷ∗
(i)t | t−1

We choose a block size of m = T 1/3 for the bootstrap procedure described above.
This allows for dependence in the error term of equation (11). The critical value c
is set equal to 1.96, corresponding to a two-sided test at the 96% confidence level.

4.3 Bagging Nonlinear HAR Models

There are two main problems in specifying model (10): the selection of variables
in the vector x and the number of hidden units M. There are many approaches in
the literature to tackle these problems. For example, when model (10) is seen as a
variant of parametric smooth transition models, Medeiros et al. (2006) proposed a
methodology based on statistical arguments to variable selection and determination
of M . However, this approach is not directly applicable here, as we advocate
model (10) as a semi-parametric specification. On the other hand, as shown in
Hillebrand and Medeiros (2009), Bayesian regularization (BR; MacKay, 1992) is
a viable alternative, which is equivalent to penalized quasi-maximum likelihood.
However, relaying on a single specification of the model may deliver a very poor
out-of-sample performance.
Journal of Economic Surveys (2011) Vol. 25, No. 1, pp. 6–18
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Figure 1. Upper Panel: Daily Returns for the S&P 500 Index. Lower Panel: Daily Log
Realized Volatility Computed Via the Method Described in BHLS (2008) and Using the
Tukey–Hanning Kernel. We Use High-frequency Tick-by-tick on S&P 500 Futures from

2 January 1996 to 29 March 2007.

In this paper, we do not specify either the elements of x or the number of hidden
units, M. In turn, in each bootstrap sample, we randomly select M from a uniform
distribution on the interval [0, 20], and the elements of x are selected as the ones
with significant coefficients in the linear HAR case. The bagging procedure can be
summarized as follows:

Proposal 2: Bagging the NN-HAR model.

(1) Repeat steps (1) and (2) in Proposal 1.
(2) For each bootstrap sample, first remove insignificant regressors by pre-testing

as in step (3) of Proposal 1. Then, estimate the NN-HAR model randomly
selecting M from a uniform distribution on the interval [0, 20]. Compute the
ith bootstrap one-step ahead forecast and call it ŷ∗

(i)t | t−1.
(3) Compute the average forecast over the bootstrap samples:

ŷt | t−1 = 1

B

B∑
i=1

ŷ∗
(i)t | t−1
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Figure 2. Upper Panel: Daily Returns for the FTSE Index. Lower Panel: Daily Log
Realized Volatility Computed Via the Method Described in BHLS (2008) and Using the
Tukey–Hanning Kernel. We Use High-frequency Tick-by-tick on FTSE 100 Futures from

2 January 1996 to 28 December 2007.

5. Empirical Results

We use high-frequency tick-by-tick on S&P 500 futures from 2 January 1996 to 29
March 2007 (2796 observations) and FTSE 100 futures from 2 January 1996 to 28
December 2007 (3001 observations). In computing the daily realized volatilities,
we employ the realized kerned estimator with the modified Tukey–Hanning kernel
of BHLS (2008). As it is a standard practice in the literature, we focus on the
logarithm of the daily realized volatilities. Figures 1 and 2 illustrate the data. The
last 1000 observations are left out the estimation sample in order to evaluate the
out-of-sample performance of different models.

In this paper, we consider the following competing models: the standard HAR
model with average volatility over 1, 5 and 22 days as regressors (see equation (6));
the flexible HAR model where cumulated returns over 1 to 200 days and average
past volatility over 1 to 60 days are initially included as possible regressors; the
NN-HAR model estimated with BR and the same set of regressors as the flexible
HAR model; and finally, the NN-HAR model estimated by nonlinear LS. Bagging
is applied to all models apart from the standard HAR specification.
Journal of Economic Surveys (2011) Vol. 25, No. 1, pp. 6–18
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Table 1. Forecasting Results: Main Statistics.

Model RMSE MAE Mean SD Max. Min.

S&P 500
Flexible HAR w/ bagging 0.228 0.180 −0.038 0.225 1.326 −0.853
NN-HAR (BR) w/ bagging 0.229 0.179 −0.043 0.225 1.305 −0.865
NN-HAR (LS) w/ bagging 0.247 0.195 −0.096 0.228 1.208 −0.870
HAR (1, 5, 22) w/o bagging 0.237 0.186 −0.041 0.233 1.268 −0.896

FTSE 100
Flexible HAR w/ bagging 0.264 0.198 −0.011 0.264 1.745 −0.900
NN-HAR (BR) w/ bagging 0.266 0.198 −0.015 0.266 1.720 −0.882
NN-HAR (LS) w/ bagging 0.292 0.224 −0.094 0.277 1.570 −1.000
HAR (1, 5, 22) w/o bagging 0.270 0.202 −0.016 0.268 1.694 −0.912

The table shows the RMSE and the MAE as well as the mean, the standard deviation, the maximum
and the minimum one-step-ahead forecast error for the following models: the standard HAR model;
the flexible HAR model where cumulated returns over 1 to 200 days and average past volatility over
1 to 60 days are initially included as possible regressors; the NN-HAR model estimated with BR
and the same set of regressors as the flexible HAR model; and the NN-HAR model estimated by
nonlinear LS. Bagging is applied to all models, apart from the standard HAR specification.

Table 2. Forecasting Results: Diebold–Mariano Test.

Model Squared errors Absolute errors

S&P 500
Flexible HAR w/ bagging 4.52e-5 1.36e-4
NN-HAR (BR) w/ bagging 2.89e-4 3.23e-4
NN-HAR (LS) w/ bagging 0.001 0.004

FTSE 100
Flexible HAR w/ bagging 0.011 0.006
NN-HAR (BR) w/ bagging 0.144 0.016
NN-HAR (LS) w/ bagging 5.68e-11 1.30e-10

The table shows the p-value of the modified Diebold–Mariano test of equal predictive accuracy of
different models with respect the benchmark standard HAR model. The test is applied to the squared
errors as well as to the absolute errors. The following models are considered : the flexible HAR
model where cumulated returns over 1 to 200 days and average past volatility over 1 to 60 days are
initially included as possible regressors; the NN-HAR model estimated with BR and the same set of
regressors as the flexible HAR model; and the NN-HAR model estimated by nonlinear LS. Bagging
is applied to all models, apart from the benchmark standard HAR specification.

The forecasting results are presented in Tables 1 and 2. Table 1 shows the
root mean squared error (RMSE) and the mean absolute error (MAE) as well
as the mean, the standard deviation, the maximum and the minimum one-step-
ahead forecast error for the four models considered in the empirical exercise. From
Journal of Economic Surveys (2011) Vol. 25, No. 1, pp. 6–18
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16 MCALEER AND MEDEIROS

the table it is clear that the flexible linear HAR model and the nonlinear HAR
model estimated with BR (NN-HAR (BR)) are the two best models. However, the
performance of the standard HAR specification is not much worse. On the other
hand, the NN-HAR model without BR seems to be the worst model among the
four competing ones. One possible explanation is that without BR, the NN-HAR
model can be overparametrized when M is large, leading to a very poor in-sample
estimates and out-of-sample-performance. In this case, bagging will not help. The
results are similar for the S&P 500 and the FTSE 100.

Table 2 presents the p-value of the modified Diebold–Mariano test of equal
predictive accuracy of different models with respect the benchmark standard HAR
model. The test is applied to the squared errors as well as to the absolute errors.
It is clear from the table that both the flexible linear HAR and the NN-HAR (BR)
models have superior out-of-sample performance than the standard HAR model in
the case of the S&P 500 index. For the FTSE 100, the NN-HAR (BR) model has a
statistically superior performance than the standard HAR specification only when
the absolute errors are considered.

6. Conclusions

In this paper, we considered linear and nonlinear models to forecast daily realized
volatility: the standard HAR model with average volatility over 1, 5 and 22 days as
regressors; the flexible HAR model where cumulated returns over 1 to 200 days and
average past volatility over 1 to 60 days are initially included as possible regressors;
the NN-HAR model estimated with BR and the same set of regressors as the flexible
HAR model and finally, the NN-HAR model estimated by nonlinear LS. Both the
flexible HAR and the NN-HAR (BR) models outperformed the benchmark HAR
model. The NN-HAR model estimated with nonlinear LS was the worst model
among all the alternatives considered. Finally, it is important to mention that the
models considered in this paper might be used to construct out-of-sample value-at-
risk estimates.
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Notes

1. In fact, there is an abuse of terminology here as ‘realized volatility’ specifically
refers to the square root of the sum of the squared intraday returns, which is a biased
and inconsistent estimator of the daily integrated volatility under the presence of
micro-structure noise. However, to simplify notation and terminology, we will refer
to any unbiased and consistent estimator as realized volatility.
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