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A Flexible Coefficient Smooth Transition
Time Series Model
Marcelo C. Medeiros and Álvaro Veiga

Abstract—In this paper, we consider a flexible smooth transition
autoregressive (STAR) model with multiple regimes and multiple
transition variables. This formulation can be interpreted as a time
varying linear model where the coefficients are the outputs of a
single hidden layer feedforward neural network. This proposal
has the major advantage of nesting several nonlinear models,
such as, the self-exciting threshold autoregressive (SETAR), the
autoregressive neural network (AR-NN), and the logistic STAR
models. Furthermore, if the neural network is interpreted as a
nonparametric universal approximation to any Borel measurable
function, our formulation is directly comparable to the functional
coefficient autoregressive (FAR) and the single-index coefficient
regression models. A model building procedure is developed based
on statistical inference arguments. A Monte Carlo experiment
showed that the procedure works in small samples, and its
performance improves, as it should, in medium size samples.
Several real examples are also addressed.

Index Terms—Neural networks, smooth transition models,
threshold models, time series.

I. INTRODUCTION

THE PAST few years have witnessed a vast development of
nonlinear time series techniques. Among the large amount

of new methodologies, the smooth transition autoregressive
(STAR) model, initially proposed, in its univariate form, by
[1] and further developed in [2] and [3], has found a number
of successful applications [4]. The term “smooth transition”
in its present meaning first appeared in [5]. They presented
their smooth transition model as a generalization to models of
two intersecting lines with an abrupt change from one linear
regression to another at some unknown change-point. [6, p.
263–264] generalized the so-called two-regime switching
regression model using the same idea.

This paper considers an additive smooth transition time se-
ries model with multiple regimes and transitions between them
defined by hyperplanes in a multidimensional space. We show
that this model can be interpreted as a time varying linear model
where the coefficients are the outputs of a single hidden layer
feedforward neural network. The proposed model allows that
each regime has distinct dynamics controlled by a linear combi-
nation of known variables such as, for example, several lagged
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values of the time series. The model is called the neuro-coef-
ficient smooth transition autoregressive (NCSTAR) model and
was introduced in [7] and [8].

This proposal can be interpreted as a generalization of the
STAR model with the major advantage of nesting several non-
linear models, such as, the self-exciting threshold autoregressive
(SETAR) model [9] with multiple regimes, the autoregressive
neural network (AR-NN) model [10], [11], and the logistic
STAR model [3]. The proposed model is also able to fit time
series were the true generating process is an exponential STAR
(ESTAR) model [3]. Furthermore, our model can be also com-
pared to the functional coefficient autoregressive (FAR) model
of [12], and the single-index coefficient regression model of
[13].

The motivation for developing a flexible model is twofold.
First, allowing for multiple regimes is important to model the
dynamics of several time series, as for example, the behavior
of macro-economic variables over the business cycle. Recent
studies conclude that a two-regime modeling of the business
cycle is rather limited. See, for example, [14], where a multiple
regime STAR (MRSTAR) model is proposed and applied to de-
scribe the behavior of the U.S. gross national product (GNP) and
U.S. unemployment rate [15], where an additive logistic STAR
model is applied to describe business cycle nonlinearity in U.K.
macroeconomic time series, or [16] where a regression tree ap-
proach is used to model multiple regimes in the U.S. industrial
production. In the framework of the SETAR model, modeling
multiple regimes is a well established methodology [9], [17].

Second, multiple transition variables are useful in describing
complex nonlinear behavior and allow for different sources of
nonlinearity. Several papers concerning multiple transition vari-
ables have appeared in the literature during the past years. How-
ever, they assumed that the transition variable was a known
linear combination of individual variables. See, for example,
[18], where the thresholds are controlled by two lagged values
of a transformed U.S. GNP series reflecting the situation of the
economy or [14]. In the present framework, we adopt a less re-
strictive formulation, assuming that the linear combination of
variables is unknown and is estimated jointly with the others
parameters of the model. This is a quite flexible approach that
lets the data to “speak by themselves” (for different approaches
see [19]–[21]).1

A modeling cycle procedure based on the work in [22]–[24],
consisting of the stages of model specification and parameter
estimation, is developed, allowing the practitioner to choose
among different model specifications during the modeling

1It is worth mentioning that the proposal of [21] is a special case of the
MRSTAR model proposed by [14].
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cycle. A Monte Carlo experiment showed that the procedure
works in small samples (100 observations), and its performance
improves, as it should, in medium size samples (500 obser-
vations). The model evaluation step of the modeling cycle is
developed in [25].

The plan of the paper is as follows. Section II presents the
model. Section III deals with the specification. Section IV
analyzes the estimation procedures. Section V presents a Monte
Carlo experiment to find out the behavior of the proposed
tests and Section VI shows some examples with real data.
Concluding remarks are made in Section VII.

II. NCSTAR MODEL

One important class of STAR models is the logistic STAR
model of order , LSTAR , proposed by [2] and defined as

(1)

where is a normally distributed white noise with variance ,
, is formed by a set of lagged values of ,

and is the logistic function

(2)

The parameter , , is responsible for the smoothness of
. The scalar is the location parameter and is known as

the delay parameter. The variable is called the transition
variable.

It is important to notice that the LSTAR model nests the
SETAR model with two regimes. When , model (1)
becomes a two-regime SETAR model [9, p. 183].

In the present paper, we consider an additive logistic
STAR model with multiple regimes and multivariate transi-
tion variables. This can be interpreted as a linear model with
time-varying coefficients given by the output of a neural net-
work with a single hidden layer, where the transition variable
is defined by the inputs of the network. This idea was first
introduced in literature by [7] and [8].

Consider a linear model with time-varying coefficients ex-
pressed as

(3)

where is a vector of coef-
ficients and and are defined as before. The time evolution
of the coefficients of (3) is given by the output of a single
hidden layer neural network with hidden units

(4)

where and are real coefficients.
The function is the logistic function, where
is a vector of input variables,

and are parameters. The norm of is called the slope
parameter. In the limit, when the slope parameter approaches
infinity, the logistic function becomes a step function. The ele-
ments of , called the transition variables, is formed by lagged

values of .2 Equations (3) and (4) represent a time-varying
model with a multivariate smooth transition structure defined
by hidden neurons.

Equation (3) can be rewritten as

(5)

or in vector notation

(6)

where ,
, is a parameter vector,
, and .

Note that model (6) is, in principle, neither globally nor lo-
cally identified. There are three characteristics of neural net-
works which cause nonidentifiability. The first one is due to the
symmetries in the neural network architecture. The value of the
likelihood function of the model will be unchanged if we per-
mute the hidden units, resulting in possibilities for each one
of the coefficients of the model. The second reason is caused
by the fact that , where is the logistic
function. Finally, the presence of irrelevant hidden units (over-
parametrized model) is a problem. If model (6) has at least one
hidden unit with , then parameters and are uniden-
tified. On the other hand, if , then and can take any
value without changing the value of the likelihood function.

The first problem is solved by imposing the restrictions
. The second problem can be circumvented, for ex-

ample, by imposing the restriction , .
To remedy the third problem, it is necessary to ensure that the
model contains no irrelevant hidden units. This is tackled with
the tests described in Section III. For further discussion of the
identifiability concepts see, e.g., [26]–[29].

For estimation purposes it is often useful to reparametrize
model (6) as

(7)

where and with

(8)

The parameter vector is redefined as

This reparametrization has been also applied in [24].

2It is important to mention that the NCSTAR model can be easily generalized
to include some exogenous variables in z and/or in x .
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The choice of the elements of , which determines the dy-
namics of the process, allows a number of special cases. An im-
portant one is where . In this case, model (7) becomes
a LSTAR model with regimes, expressed as

(9)

It should be noticed that model (9) nests the SETAR model with
regimes. When , model (9) becomes

a SETAR model with regimes.
When is a -dimensional vector, the dynamic properties of

(7) become rather more complex. When , the parame-
ters and define a hyperplane in a -dimensional Euclidean
space

(10)

The direction of determines the orientation of the hyperplane
and the scalar term determines the position of the hyperplane
in terms of its distance from the origin.

A hyperplane induces a partition of the space into two regions
defined by the halfspaces

(11)

and

(12)

With hyperplanes, a -dimensional space will be split
into several polyhedral regions. Each region is defined by the
nonempty intersection of the halfspaces (11) and (12) of each
hyperplane.

One particular case is when the hyperplanes are parallel to
each other. In this case, (7) becomes

(13)

and the input space will be split in regions.
Another interesting case is when in (9).

Then model (7) becomes an AR-NN model. AR-NN models
can be interpreted as a linear model where the intercept is time-
varying and changes smoothly between regimes.

An important point to mention is that if the neural network is
interpreted as a nonparametric universal approximation to any
Borel-measurable function to any degree of accuracy, model (7)
is directly comparable to the FAR model of [12], and the single-
index coefficient regression model of [13].

III. SPECIFICATION

From (7), two specification problems require special care.
The first one is the variable selection, that is, the correct se-
lection of elements of and . The problem of selecting the
right subset of variables is very important because selecting a
too small subset leads to misspecification whereas choosing too
many variables aggravates the “curse of dimensionality.”

The second problem is the selection of the correct number of
hidden units, which is essential to guarantee the identifiability
of the model and to avoid overfitting. It is well-known that for
neural network models overfitting is a serious problem and as
the NCSTAR model nests the neural network specification as a
special case, the same problem may occur here. To avoid over-
fitting a coherent specific-to-general model building procedure
is developed based on statistical arguments. The specification
strategy adopted here is based on the linearization of the non-
linear term of model (7) and a sequence of Lagrange multiplier
(LM) tests is developed to determine the number of hidden units
of the model, which is carried out together with the estimation
of the parameters of the model.

In order to select the variables of (7), we assume that is
formed by a subset of the elements of This is not a to restric-
tive assumption because we can always augment the elements
of to include all the variables in and then use standard hy-
pothesis tests to test the significance of the extra parameters in
the linear part of the model.

A. Variable Selection

In the context of STAR models, [3] suggests first specifying
a linear autoregressive model for the data under analysis using
an information criterion such as the Akaike’s information crite-
rion (AIC) [30] or the Schwarz’s Bayesian information criterion
(SBIC) [31]. The second step is to test the null hypothesis of lin-
earity against the alternative of STAR nonlinearity. If linearity
is rejected, select the appropriate transition variable by running
the linearity test for different variables and choose the one that
minimize the -value of the test.

Another possibility is to use nonparametric methods based
on local estimators [32]–[36]. However, those methods require
a large number of observations.

In this papeŗ we adopt a generalization of the method consid-
ered in [3] and is based on the procedure proposed by [23]. The
idea is to use a polynomial expansion of the model to select the
variables in and then, chose the elements of among every
possible combination of the elements of , by running the lin-
earity test for each one of them. We give a brief overview of the
method. For more details, see [23].

Consider model (7). The basic idea is to conduct the se-
lection on a parametric function which can approximate
the true function well but is much simpler to estimate. A
well-known class of simple approximating functions are series
expansions

with parameters , known basis functions and and
being general subvectors of and . Due to the linearity

one can estimate the parameters , by ordinary
least squares. Of course, the quality of approximation depends
on the choice of the basis functions and the length of the
expansion .

In order to define , assume that the sample space is
compact and that is continuous in . Then it fol-
lows from the Stone-Weierstrass theorem that can
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be uniformly approximated by a polynomial in the components
of and , see [37, pp. 150–151]. Thus, using a general

th-order polynomial one obtains

(14)

where is the remainder and
is the vector of parameters. Note that the terms involving
merged with the terms involving as we are considering in this
paper that the elements in are a subset of the elements in .

The second step is to regress on all variables in the poly-
nomial expansion and compute the value of a model selection
criterion, AIC or SBIC for example. In this paper, we use the
SBIC, which is a rather parsimonious criterion. After that, re-
move one variable from the original model and regress on
all the remaining terms in the polynomial expansion and com-
pute the value of SBIC. Repeat this procedure by omitting each
variable in turn. Continue by simultaneously omitting two re-
gressors of the original model and proceed in that way until the
expansion consists of a function of a single regressor. Choose
the combination of variables that yields the lowest value of the
SBIC.

If we test each possible combination of variables, we would
need to estimate different models. If is
very large, it is not reasonable to test every possible combina-
tion. In that case, the practitioner may only estimate models
where just the set

is considered.3 Not testing every possible combination of vari-
ables may cause an overparametrization of . However, this not
pose serious problems as far as hypothesis tests are carried out
to remove redundant variables. As suggested by one of the ref-
erees, another possibility to make the variable selection process
easier is to consider only a subset of the principal components
of .

B. Testing Linearity

In practical nonlinear time series modeling, testing linearity
plays an important role. In the context of model (7), testing lin-
earity has two objectives. The first one is to verify if a linear
model is able to adequately describe the data generating process.
The second one refers to the variable selection problem. The
linearity test is used to determine the elements of . After
selecting the elements of with the procedure described in Sec-
tion III-A, we choose the elements of by running the linearity
test described below setting equal to each possible subset
of the elements of and choosing the one that minimize the

-value of the test.

3Again the elements of x are omitted because we consider that x is a subset
of z .

In order to test for linearity, the transition function
is redefined as

(15)

Subtracting one-half from the logistic function is useful just in
deriving linearity tests where it simplifies notation but does not
affect the generality of the argument. The models estimated in
this paper do not contain that term.

Consider (7) with (15) and the testing of the hypothesis that
is a linear process, i.e. , assuming that it is

stationary. The null hypothesis may be defined as ,
. Note also that . This implies another

possible null hypothesis of linearity

(16)

Hypothesis (16) offers a convenient starting point for studying
the linearity problem in the LM (score) testing framework. First,
consider . Equation (7) becomes

(17)

Note that model (17) is only identified under the alternative
. A consequence of this complication is that the stan-

dard asymptotic distribution theory for the likelihood ratio or
other classical test statistics for testing (16) is not available. [38]
and [39] first discussed solutions to this problem. Following [2],
[40], and [41] we solve the problem by replacing
by a low-order Taylor expansion approximation about .
Consider a first-order Taylor expansion of (15)

(18)

where is the remainder of the expansion. Re-
placing (15) by (18) in (17) we get

(19)

where . Rearranging terms, (19)
becomes

(20)

where is formed by the elements of that are not
in .

Using (20) instead of (17) circumvents the identification
problem, and we obtain a simple test of linearity. The null
hypothesis can be defined as , , .
However, the parameters , , and do not depend on .
Thus, when the only nonlinear element in (17) is the intercept
the test has no power. To remedy this situation, [2] suggests
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a third-order Taylor approximation of the transition function,
expressed as

(21)

Replacing (15) by (21) in (17) we get

(22)

The null hypothesis is defined as , ,
, , and .

Now we can use (22) to test linearity. Note that
when the null hypothesis is true. The local approximation to the
log-likelihood for observation takes the form

(23)

At this point we make the following assumptions.
Assumption 1: The parameter vector

is an interior point of the compact parameter space
which is a subspace of , the -dimensional Euclidean
space.

Assumption 2: Under the null the data generating process
(DGP) for the sequence of scalar real valued observations

is an ergodic stochastic process, with true parameter
vector .

Assumption 3: , for some .
Assumption 2 implies that, under the null, the linear autore-

gressive process is ergodic.
Under and Assumptions 1–3 the standard LM or score

type test statistic

LM

(24)

where , and is formed by all nonlinear
regressors in (22), has an asymptotic distribution with
degrees of freedom when the null hypothesis holds, where
is the number of elements in (see [42] for details on LM type
tests).

The test can be carried out in stages as follows:

1) regress on and compute ;
2) regress on and on the nonlinear regressors of (22).

Compute the residual sum of squares ;
3) compute the statistic

LM (25)

or the version of the test

LM (26)

where is the number of observations.
When and have a large number of elements, the number

of auxiliary null hypothesis will sometimes be large compared
to the sample size. In that case, the asymptotic distribution
is likely to be a poor approximation to the actual small sample
distribution. It has been found (see [43, Ch. 7]) that an F-approx-
imation works much better. Another possibility to improve the
power of the test is to follow the idea of [29] and replace the vari-
ables present only under the alternative hypothesis by their most
important principal components. The number of principal com-
ponents to use can be chosen such that a high proportion of the
total variance is explained. Using the principal components not
only reduces the number of summands, but also remove multi-
collinearity amongst the regressors. [2] suggests to augment the
first-order Taylor expansion only by the terms that are functions
of , and this is called the “economy version” of the test. In the
present framework, this means removing the fourth-order terms
in (22).

C. Determining the Number of Hidden Neurons

In a practical situation, we want to be able to test for the
number of hidden units of the neural network.

A way of doing this is applying popular methods such as
pruning, in which a neural network model with a large number
of hidden units is estimated first, and the size of the model is
subsequently reduced. Another possibility is to sequentially add
hidden units to the model based on the use of model a selection
criterion such as SBIC or AIC.
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However, this technique has a major drawback. Suppose
the data have been generated by a NCSTAR model with
hidden units. Applying, for example, to SBIC to decide if
another hidden unit should be added requires estimation of a
model with hidden neurons. In this situation, the larger
model is not identified and its parameters cannot be estimated
consistently. This is likely to cause numerical problems in
maximum likelihood estimation. Besides, even when conver-
gence is achieved, lack of identification causes problems in
interpreting the SBIC. A comparison of the two models based
on the SBIC is then equivalent to a likelihood ratio test of
units against ones; see, for example, [44] for discussion.
But then, when the larger model is not identified under the
null hypothesis, the likelihood ratio statistic does not have its
standard asymptotic distribution when the null holds.

In this paper, we also select the hidden units sequentially but
circumvent the identification problem in a way that enables us
to control the significance level of the tests in the sequence and,
thus, also the overall significance level of the procedure. This
can be done combining the ideas of the neural network test of
[41], the test of remaining nonlinearity of [22] and the results
in [24] and [45]. The basic idea is to start using the test of Sec-
tion III-B and test the linear model against the nonlinear alter-
native with only one hidden neuron. If the null hypothesis is
rejected, then fit the model with one hidden unit and test for
the second one. Proceed in that way until the first acceptance
of the null hypothesis. At every step we halve the significance
level of the test. This way we avoid overfitting and control the
overall significance level of the procedure. An upper bound for
the overall significance level may be obtained using the Bonfer-
roni bound; see [46, p. 59].

The individual tests are based on linearizing the nonlinear
contribution of the additional hidden neuron. Consider first the
simplest case in which the model contains one hidden unit, and
we want to know whether an additional unit is required or not.
Write the model as

(27)

If we want to test for the second hidden unit in (27), an ap-
propriate null hypothesis is

(28)

whereas the alternative is . We assume that
under this null hypothesis the parameters , , , and

can be consistently estimated and that the estimators are
asymptotically normal. Note that (27) is only identified under
the alternative. We may solve this problem in the same fashion
we did in Section III-B, using a low-order Taylor expansion of

about . Using a third-order expansion
and after rearranging terms, the resulting model is

(29)

The null hypothesis is defined as , , ,
, , , and . We define the

residuals estimated under the null hypothesis as
.

The local approximation to the normal log likelihood func-
tion in a neighborhood of for observation and ignoring the
remainder is

(30)

The LM statistic is given by (24) with

Under and Assumptions 1–3, the LM statistic has an
asymptotic distribution with degrees of freedom and
is the number of nonlinear regressors in (29).
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In the present case, Assumption 2 implies that the NCSTAR
model under the null is ergodic.

The test can be carried out in stages as follows.

1) Estimate model (7) with only one hidden neuron. If the
sample size is small and the model is difficult to esti-
mate, then numerical problems in applying the nonlinear
least squares routine may lead to a solution such that
the residual vector is not precisely orthogonal to the
gradient matrix of . This has an adverse
effect on the empirical size of the test. To circumvent this
problem, we follow [22] and regress the residuals on

, and compute the residual sum of squares
.

2) Regress on and . Compute the residual sum of
squares

3) Compute the statistic

LM (31)

or the version of the test

LM (32)

where and are, respectively, the number of elements
of and .

Under , LM is approximately distributed as a with
degrees of freedom and LM has approximately an dis-

tribution with and degrees of freedom.
When applying the test a special care should be taken. If

is very large, the gradient matrix becomes near-singular and the
test statistic numerically unstable, which distorts the size of the
test. The reason is that the vectors corresponding to the partial
derivatives with respect to , , and , respectively, tend to
be almost perfectly linearly correlated. This is due to the fact
that the time series of those elements of the gradient resemble
dummy variables being constant most of the time and noncon-
stant simultaneously. In those cases, a solution is to omit the
terms that depend on the derivatives of the logistic function from
the regression in step 2; see [22] for a complete discussion. This
can be done without significantly affecting the value of the test
statistic. Note that the same comments about the power of the
linearity test of the previous section apply here.

IV. ESTIMATION PROCEDURES AND PARAMETER INFERENCE

As selecting the number of hidden units requires estimation
of neural network models, we now turn to this problem. A large
number of algorithms for estimating the parameters of neural
network type models are available in the literature. In this paper,
we estimate the parameters of our NCSTAR model by maximum
likelihood. This is because our modeling procedure is built on
the use of statistical inference, and most of the algorithms ap-
plied to the estimation of neural network type models do not
allow that. As a by-product, the use of maximum likelihood also
makes it possible to obtain an idea of the uncertainty in the pa-
rameter estimates through asymptotic standard deviation esti-
mates. It may be argued that maximum likelihood estimation
of neural network models is most likely to lead to convergence

problems, and that penalizing the log-likelihood function one
way or the other is a necessary precondition for satisfactory re-
sults. Two things can be said in favor of maximum likelihood
here. First, in this paper, model building proceeds from spe-
cific-to-general (small to large) models, so that estimation of
unidentified or nearly unidentified models, a major reason for
penalizing the log-likelihood, is avoided. Second, the starting
values are chosen carefully.

In the case where is a Gaussian white noise with zero
mean and finite variance, , maximum likeli-
hood is equivalent to nonlinear least squares. Hence, the param-
eter vector of (7) is estimated as

(33)

Consider the following additional assumptions.
Assumption 4: The parameters satisfy the conditions

, , and is defined as in (8) for
.

Assumption 5: The NCSTAR model has no irrelevant hidden
units.

Assumptions 4 and 5 guarantees the global identifiability of
the NCSTAR model.

Theorem 1: Under Assumptions 1, 2, 4, and 5 the maximum
likelihood estimator is almost surely consistent for and

(34)

where .
Proof: To prove consistency we use [47, Th. 3.5], showing

that the assumptions stated therein are fulfilled.
Assumptions 2.1 and 2.3, related to the probability space and

to the density functions, are trivial.
Let . Assumption 3.1a

states that for each , exists and is finite
for . Under Assumption 2 and the fact that is
a zero mean normally distributed random variable with finite
variance, hence, -integrable, Assumption 3.1a in [47] follows.

Assumption 3.1b states that is continuous
in , . Let , since for any , is
continuous on , then , (point-
wise convergence). From the continuity of on
the compact set , we have uniform continuity and we obtain
that is dominated by an integrable function .
Then, by Lebesgue’s dominated convergence theorem, we get

, and is
continuous.

Assumption 3.1c states that obeys the
strong (weak) uniform law of large numbers (ULLN). [48,
Lemma A2] guarantees that obeys the strong
law of large numbers. The set of hypothesis (b) of this lemma
is satisfied:

1) we are working with an ergodic process;
2) from the continuity of and from the

compactness of we have that
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for , and with Assumption 3.1a
in [47] we may guarantee that exists and
is finite, getting that .

Assumption 3.2 is related to the unique identifiability of .
Under Assumptions 4 and 5 the NCSTAR model is globally
identifiable.

To prove normality, we use [47, Th. 6.4] and check its
assumptions.

Assumptions 2.1, 2.3, and 3.1 follow from the proof of con-
sistency showed above.

Assumptions 3.2 and 3.6 follow from the fact that
is continuously differentiable of order 2 on

in the compact space .
In order to check Assumptions 3.7a and 3.8a we have to prove

that and , . The
expected gradient and the expected Hessian of are given
by

and

respectively.
Assumptions 3.7a and 3.8a follow considering the normality

condition on , the properties of the function , and
the fact that and contains at most
terms of order , , .

Assumption 3.8b: Under Assumption 1, the fact that the func-
tion is continuous, and dominated convergence,
Assumption 3.8b follows.

Assumption 3.8c: The proof of consistency and the ULLN
from [48] yields the result.

Assumption 3.9: White’s
is in our setup.

Assumption 5, the properties of function , and
the unique identification of imply the nonsingularity of

.
Assumption 6.1: Using [49, Th. 2.4] we can show

obeys the central limit theorem
(CLT) for some vector , such that . As-
sumptions A(i) and A(iii) of [49] hold because is a
Gaussian white noise. Assumption A(ii) holds with

. Furthermore, since
any measurable transformation of mixing processes is itself
mixing (see [49, Lemma 2.1]), is a strong
mixing sequence and obeys the CLT. By using the Cramér–Wold
device also obeys the CLT with covariance matrix

which is
and nonsingular.

The estimation of the parameters is not easy, and in general
the optimization algorithm is very sensitive to the choice of the
starting values of the parameters. The use of algorithms like
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm or
the Levenberg–Marquardt are strongly recommended. See [50]

for details about the optimization algorithms. Another impor-
tant question that should be addressed is the choice of the
linear search procedure to select the size of the step. Cubic
or quadratic interpolation are usually a good choice. All the
models in this paper are estimated with the Levenberg-Mar-
quardt algorithm with cubic interpolation linear search. Another
possibility is to use constrained optimization techniques, such
the sequential quadratic programming (SQP) algorithm and
impose the identification restrictions. However, by our own
experience with several simulated data-sets, using the SQP
algorithm turns the estimation process rather slow and does
not improve the precision of the estimation.

A. Concentrated Least-Squares

In order to reduce the computational burden we apply concen-
trated maximum likelihood to estimate as follows. Consider
the th iteration and rewrite model (7) as

(35)

where , ,
and

...
...

. . .
...

with . Assuming
fixed, the parameter vector can be estimated analytically by

(36)

The remaining parameters are estimated conditionally on by
applying the Levenberg–Marquadt algorithm which completes
the th iteration. This form of concentrated maximum likelihood
was proposed by [51]. It reduces the dimensionality of the iter-
ative estimation problem considerably.

B. Starting Values

The iterative optimization algorithms are often sensitive to
the choice of starting values, and this is certainly so in the case
of NCSTAR models. Besides, a NCSTAR model with hidden
units contains , parameters, , , that are not
scale-free. Our first task is, thus, to rescale the input variables
such that they have the standard deviation equal to unity. In the
univariate NCSTAR case, this simply means normalizing . If
the model contains exogenous variables, they are normalized
separately. This, together with the fact that , gives
us a basis for discussing the choice of starting values of ,

. Furthermore, in the multivariate case normal-
izing generally makes numerical optimization easier as all vari-
ables have the same standard deviation. Then we draw sets
of values , and , for the parameters

, , and , compute the value of the log-likelihood, and se-
lect the values for which the log-likelihood is maximized. This
is done as follows.
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1) For :

a) construct a vector such that

and , .

The values for are drawn from a uniform (0, 1]
distribution and the ones for ,
from a uniform [ 1, 1] distribution;

b) define , which guarantees
;

c) let , where .
2) Define a grid of positive values , for

the slope parameter. This need not be done randomly. As
the changes in have a small effect of the slope when
is large, only a small number of large values are required.

3) For and , compute the value
of for each combination of starting values. Choose
the values of the parameters that maximize the concen-
trated log-likelihood function as starting values.

After selecting the starting values of the th hidden unit we
have to reorder the units if necessary in order to ensure that the
identifying restrictions are satisfied.

Typically, 1000 and 20 will ensure good estimates
of the parameters. We should stress, however, that is a nonde-
creasing function of the number of input variables. If the latter
is large we have to select a large as well.

C. Estimation of the Slope Parameter

Concerning the slope parameter, we should stress that it is
very difficult to have a precise estimate of , . One
of the reasons is that for large , the derivatives of the transi-
tion function, as already mentioned in Section III-C, approach
to degenerate functions. Hence, to obtain an accurate estimate
of one needs a large number of observations in the neighbor-
hood of . In general, we have only few observations near
and rather imprecise estimates of the slope parameter, causing
that the parameters of the logistic function to have -statistics
very close to zero. In that sense, the model builder should, thus,
not automatically take a low absolute value of the -statistic of
the parameters of the transition function as an evidence against
the estimated nonlinear model. Another reason for not consid-
ering low values of the -statistic is that under the null hypoth-
esis , because of the identification problem, it does not
have the usual -distribution. Again, see [22] for discussion.

V. MONTE CARLO EXPERIMENT

In this section, we report the results of a simulation study
designed to find out the behavior of the proposed tests, the
estimation algorithm, and the variable selection procedure.
We simulated the following models, discarding the first 500
observations to avoid any initialization effects.

Model 1:

(37)

Model 2:

(38)

Model 3:

(39)

Model 4:

(40)

Model 5:

(41)

Model 1 is a stationary linear autoregressive model and
is just used to check the empirical size of the linearity
test. Models 2–5 are all different specifications of the NC-
STAR model and have distinct dynamic properties. Considering
Model 2, [3] discussed a similar specification. The only dif-
ference is that in his paper instead of 20. Model
2 is a logistic STAR model of order 2 with two extreme
regimes. The “lower regime” of the process, corresponding to

, is such that the roots of the charac-
teristic polynomial are complex pair
with modulus 1.03, so that the regime is explosive. The roots
of the characteristic polynomial
corresponding to the “upper regime,” ,
are also a complex pair with modulus 0.51, so the regime is
not explosive. As to the long-term behavior, the model has
a unique stable stationary point, . Model 3 has
three limiting regimes. The “lower regime,” corresponding
to and ,
has a characteristic polynomial with roots equal to 0.62 and

0.32, so the regime is stationary. The characteristic equa-
tion in the “middle regime,” and

, has roots 1.4 and 0.5, thus, the regime
is explosive. Finally, the “upper regime,”

and , is also explosive with the roots
of the characteristic polynomial being 1.33 and 0.43. Consid-
ering the long-term behavior, the model has a limit cycle with
a period of 8 time units. Model 4 has two extreme regimes. The
first one, ,
has a characteristic equation with a complex pair of roots
with modulus 0.45, so the regime is stable. The character-
istic polynomial of the second regime,

, has roots 1 and 0.6, so the
regime is nonstationary. However, considering the long-term
behavior, the process has two stable stationary points, 0.38 and

0.05. Finally, Model 6 has three limit regimes. In the “lower
regime,”
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TABLE I
MEDIAN AND MAD OF THE NLS ESTIMATES OF THE PARAMETERS. TRUE VALUES BETWEEN PARENTHESES

and
, the characteristic equation has a complex pair

of roots with modulus 0.45. The “middle regime,”
and

, is
stable and the characteristic equation has also a complex
pair of roots with modulus 0.71. The “upper regime,”

and
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TABLE II
RELATIVE FREQUENCY OF SELECTING CORRECTLY THE VARIABLES OF

THE MODEL AT SAMPLE SIZES 100 AND 500 OBSERVATIONS BASED

ON 1000 REPLICATIONS AMONG THE FIRST 5 LAGS AND USING A

THIRD ORDER POLYNOMIAL EXPANSION

, has a
characteristic equation with roots 0.56 and 0.36. The process
has only one stable stationary point, .

A. Estimation Algorithm

To evaluate the performance of the estimation algorithm
in small samples, we simulated 1000 replications of models
(38)–(41) each of which with 100 and 500 observations. We
estimated the parameters for each replication, with and
correctly specified. Table I shows the median and the median
absolute deviation (MAD) of the estimates, defined as

(42)

The true value of the parameters are shown between paren-
theses.

Reporting the median and MAD was suggested by [52] and
can be interpreted as measures that are robust to outliers.

In small samples, the discrepancies between the estimates and
their true values are small, except for the case of slope param-
eter, and when we increase the sample size we obtain rather pre-
cise estimates. Considering Model 2, it is interesting to notice
that is strongly overestimated when only 100 observations
are considered. When the number of observations is increased
the estimation of the parameter improves substantially.

B. Model Selection Tests

1) Variable Selection: Tables II and III show, respectively,
the results of the variable selection procedure using a third-order
polynomial expansion in (14) and using only the linear term
(no cross-products) in (14). The selection was made among the
first five lags of . We report only the results concerning the
nonlinear models. The column C indicates the relative frequency
of correctly selecting the elements of . The columns U and O
indicate, respectively, the relative frequency of underfitting and
overfitting the dimension of . The cases where the number of
variables is correct but the combination is not the correct one
appear under the heading “U.”

Observing Table II, we can see that the SBIC outperforms the
AIC in most of the cases. With a sample size of 500 observations

TABLE III
RELATIVE FREQUENCY OF SELECTING CORRECTLY THE VARIABLES OF THE

MODEL AT SAMPLE SIZES 100 AND 500 OBSERVATIONS BASED ON 1000
REPLICATIONS AMONG THE FIRST 5 LAGS AND NO CROSS-PRODUCTS

OF THE REGRESSORS

the SBIC always find the correct set of variables, and in small
samples the SBIC has a satisfactory performance with models
(38) and (41), but underfits models (39) and (40) in more than
50% of the replications. As we expected, the algorithm works
better when we use the third-order polynomial expansion than
in the linear case (Table III). Further simulation results can be
found in [23].

2) Linearity Tests: Concerning the size of the linearity test
developed in Section III-B, hereafter LM and its “economy
version,” LM , we show the plot of the deviation of empirical
size from the nominal size versus the nominal size. The results
are shown in Fig. 1. The results are based on 1000 replications
of model (37). Observing the plots we can see that the size
is acceptable and the distortions seem smaller at low levels
of significance.

In power simulations of the linearity test, the data were gener-
ated from models (38)–(41). The results are shown in Figs. 2–5.

In both size and power simulations we assume that is
correctly specified. In power simulations, we also tested the
ability of the linearity test to identify the correct set of elements
of . We expect that when is correctly defined, the power
increases.

In Figs. 2 and 3 we can observe that the power of the test
improves when we select as the transition variable and in
Fig. 4 the power increases when we use and as transi-
tion variables. With model (41) the power is always 1 when the
transition variable is correctly chosen.

3) Tests for the Number of Hidden Units: To study the be-
havior of the tests for the number of hidden neurons we simu-
lated 1000 replications of models (38)–(41) at sample sizes of
100 observations. In all models, we tested for the second hidden
unit after estimating the first one. The results are reported in
Figs. 6 and 7. As we can see the test is conservative with the
empirical size well below the corresponding nominal one. How-
ever, the test has good power when model (38) is considered.
An interesting point to mention is the relatively low power of
the additional hidden unit test when model (40) is considered,
despite the fact that the power of the linearity test is always one
when the correct transition variables are selected; see Fig. 4.
A possible explanation is that although the model is strongly
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Fig. 1. Discrepancy between the empirical and the nominal sizes of the linearity tests at sample size of 100 observations based on 1000 replications of model
(37). (a) Refers to the LM test. (b) Refers to the LM test.

Fig. 2. Power-size curve of the linearity tests at sample size of 100 observations based on 1000 replications of model (38). Panel (a) refers to the LM test. Panel
(b) refers to the LM test.

Fig. 3. Power-size curve of the linearity tests at sample size of 100 observations based on 1000 replications of model (39). (a) Refers to the LM test. (b) Refers
to the LM test.
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Fig. 4. Power-size curve of the linearity tests at sample size of 100 observations based on 1000 replications of model (40). (a) Refers to the LM test. (b) Refers
to the LM test.

Fig. 5. Power-size curve of the linearity tests at sample size of 100 observations based on 1000 replications of model (41). (a) Refers to the LM test. (b) Refers
to the LM test.

Fig. 6. Discrepancy between the empirical and the nominal sizes of the additional hidden unit tests at sample size of 100 observations based on 1000 replications
of model (37). (a) Refers to model (38). (b) Refers to model (40).
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Fig. 7. Power-size curve of the additional hidden unit tests at sample size of 100 observations based on 1000 replications of model (39) and (41). (a) Refers to
model (39). (b) Refers to model (41).

nonlinear, reason that makes the power being always one, it has
more parameters than model (38), imposing a large number of
regressors in the additional hidden unit test when the alternative
hypothesis is considered even with the economy version of the
test. For that reason, the test is conservative in small samples.
As the sample sizes increases, the problem will vanish.

VI. EXAMPLES

In this section we present an illustration of the modeling
techniques discussed in this work. The first example considers
only the in-sample fitting and the second one considers one-step
ahead forecasts. In all cases, the variables of the model were
selected using the procedure described in Section III-A based
on a third-order Taylor expansion, and the transition variables
were chosen according to the -value of the linearity test (full
version).

A. Example 1: Canadian Lynx

The first data set analyzed is the 10-based logarithm of the
number of Canadian Lynx trapped in the Mackenzie River
district of Northwest Canada over the period 1821–1934. For
further details and a background history see Tong [9, Ch. 7].
Some previous analyses of this series can be found in [3],
[9], [13], [17], and [53]. We report only results for in-sample
fitting because the number of observations is rather small and
also because most of the previous studies in the literature have
only considered in-sample analysis.

We start selecting the variables of the model among the first
7 lags of the time series. With the procedure described in Sec-
tion III-A and using the SBIC, we identified lags 1 and 2 and
with the AIC, lags 1, 2, 3, 5, 6, and 7. We continue building a
model considering only lags 1 and 2, which is more parsimo-
nious. The -value of the linearity test is minimized with
as transition variable value .

The sequence of including hidden units is discontinued after
adding the first hidden unit and the estimated model is

ARCH ARCH

ARCH ARCH (43)

where is the residual standard deviation, is the ratio
between the standard deviation of the residuals from the non-
linear model and a linear AR(2) model, is the determination
coefficient, is the -value of the Jarque-Bera test of nor-
mality, and ARCH , , is the -value of the LM
test of no autoregressive conditional heteroskedasticity (ARCH)
against ARCH of order .

The estimated residual standard deviation is
smaller than in other models that use only the first two lags as
variables. For example, the nonlinear model proposed by Tong
[9, p. 410], has a residual standard deviation of 0.222, the ex-
ponential autoregressive (EXPAR) model proposed by [53] has

, and for the single-index coefficient regression
model of [13], . [3] found a better result

, but he included up to lag 11 in his model. Table IV shows
the results of the misspecification tests developed in [25]. They
are Lagrange Multiplier tests for th-order serial correlation in
the residuals against no serial correlation, parameter constancy
against smoothing changing ones, and constant error variance.
The results indicate no model misspecification.

B. Example 2: Annual Sunspot Numbers

In this example we consider the annual sunspot numbers
over the period 1700–1998. The observations for the period
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TABLE IV
RESULTS OF MISSPECIFICATION TESTS OF THE ESTIMATED NCSTAR MODEL

TABLE V
RESULTS OF MISSPECIFICATION TESTS OF THE ESTIMATED NCSTAR MODEL

1700–1979 were used to estimate the model and the remaining
were used to forecast evaluation. We adopted the same trans-
formation as in [9], , where is
the sunspot number. We selected lags 1, 2, and 7 using SBIC
and lags 1, 2, 4, 5, 6, 7, 8, 9, and 10 with AIC. However, the
residuals of the estimated linear AR model are strongly auto-
correlated. The serial correlation is removed by also including

in the set of selected variables. Choosing the lags selected
by SBIC, linearity was rejected and the -value of the linearity
test was minimized with lags 1 and 2 as transition variables.
The sequence of including hidden units is discontinued after
adding the third hidden unit and the final estimated model is

(44)

ARCH ARCH

ARCH ARCH (45)

As in the previous example, the value of the estimated in-sample
residual standard deviation is smaller than other
nonlinear models. For example, [13] estimated a model where

and Tong [9, p. 420] estimated a two-regime SETAR
model which has residual standard deviation of 1.932. The es-
timated correlation matrix of the output of the hidden units,

, , is

(46)

indicating that there is no irrelevant neurons in the model as
none of the correlations is close to unity in absolute value. Fur-
thermore, the results of the misspecification tests of model (44)
in Table V indicate no model misspecification.

In order to assess the out-of-sample performance of the esti-
mated model we compare our forecasting results with the ones
obtained from the two SETAR models, the one reported in Tong
[9, p. 420] and the other in [54], an artificial neural network
(ANN) model with five hidden neurons and the first nine lags
as input variables, estimated with Bayesian regularization [55],
[56], and a linear model with lags selected using SBIC. The
SETAR model estimated by [54] is one in which the threshold
variable is a nonlinear function of lagged values of the time se-
ries whereas it is a single lag in Tong’s model.

Table VI shows the one-step ahead forecasts, their root mean
square errors, and mean absolute errors (MAEs) for the annual
number of sunspots for the period 1980–1998.

Both the root mean squared errors (RMSE) and the MAEs of
our model are lower than the ones of the other models consid-
ered here.

VII. CONCLUSION

In this paper, we consider a generalization of the logistic
STAR model in order to deal with multiple regimes and to obtain
a flexible specification of the transition variables. Furthermore,
the results presented here can be easily generalized into a mul-
tivariate framework with exogenous variables. The proposed
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TABLE VI
ONE-STEP AHEAD FORECASTS, THEIR ROOT MEAN SQUARE ERRORS, AND MEAN ABSOLUTE ERRORS FOR THE ANNUAL NUMBER OF SUNSPOTS FROM A SET OF

TIME SERIES MODELS, FOR THE PERIOD 1980–1998

model nests several nonlinear models, such as, for example, the
SETAR, STAR, and AR-NN models and, thus, is very flexible.
Even more, if the neural network is interpreted as a nonpara-
metric universal approximation to any Borel-measurable func-
tion, the proposed model is comparable to the FAR model, and
the single-index coefficient regression model. A model specifi-
cation procedure based on statistical inference is developed and
the results of a simulation experiment showed that the proposed
tests are well sized and have good power in small samples. When
put into test in real experiments, the proposed model seems to
perform better than the linear model and other nonlinear spec-
ifications considered in the paper. Finally, both the simulation
study and the real examples suggest that the theory developed
here is useful and the proposed model, thus, seems to be a useful
tool for the practicing time series analysts.
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