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Abstract. This paper considers a sequence of misspecification tests for a flexible
nonlinear time series model. The model is a generalization of both the smooth transition
autoregressive (STAR) and the autoregressive artificial neural network (AR-ANN)
models. The tests are Lagrange multiplier (LM) type tests of parameter constancy against
the alternative of smoothly changing ones, of serial independence, and of constant
variance of the error term against the hypothesis that the variance changes smoothly
between regimes. The small sample behaviour of the proposed tests is evaluated by a
Monte-Carlo study and the results show that the tests have size close to the nominal one
and a good power.
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1. INTRODUCTION

Over recent years, several nonlinear time series models have been proposed in the
literature. Models such as the threshold autoregressive (TAR) model (Tong, 1978,
1983, 1990; Tong and Lim, 1980), the smooth transition autoregressive (STAR)
model (Chan and Tong, 1986; Granger and Teräsvirta, 1993; Teräsvirtaa, 1994),
and the autoregressive artificial neural network (AR-ANN) model (Kuan and
White, 1994; Zhang et al., 1998; Leisch et al., 1999) have found a large number of
successful applications.
Recently, Medeiros and Veiga (2000a) proposed a flexible nonlinear time

series model, where the coefficients of a linear model are given by a single
hidden layer feed-forward neural network. The model is called neuro-coefficient
STAR (NCSTAR) model and has the main advantage of nesting several well-
known nonlinear specifications, such as the TAR, STAR, and AR-ANN
models. A modelling strategy for this family of models, following Teräsvirta
et al. (1993), Teräsvirta and Lin (1993), Eitrheim and Teräsvirta (1996) and
Rech, Teräsvirta and Tschernig (1999), was developed in Medeiros and Veiga
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(2000b). However, no model evaluation procedures were yet considered in the
last-mentioned paper.
This paper addresses the model evaluation issue. We present a number of

diagonistic tests partially based on the work of Eitrheim and Teräsvirta (1996)
and Godfrey (1988). They are Lagrange multiplier (LM) tests of parameter
constancy, serial independence, and constant error variance. As the NCSTAR
specification nests several well-known time series models, the tests can be directly
applied to these models as well. The plan of the paper is as follows. The nonlinear
model considered in this paper is presented in Section 2. The misspecification tests
are discussed in Section 3. Section 4 shows a Monte-Carlo experiment.
Concluding remarks are made in Section 5.

2. THE MODEL

2.1. Mathematical formulation

The flexible nonlinear NCSTAR model has the form

yt ¼ Gðzt; xt;WÞ þ et ¼ a0zt þ
Xh
i¼1

k0iztF ðx0
ixt � biÞ þ et ð1Þ

where Gðzt; xt;WÞ is a nonlinear function of the variables zt and xt with the
parameter vector W. The vector zt is defined as zt ¼ ½1;~zz0t�

0, where ~zzt is a p 	 1
vector of lagged values of yt and/or some exogenous variables. The function
F ðx0

izt � biÞ is the logistic function, where xt is a q	 1 vector of transition
variables, and xi ¼ ½x1i; . . . ;xqi�0 and bi are real parameters. fetg is a sequence of
independently normally distributed random variables with zero mean and
variance r2. The norm of xi called ci, is known as the slope parameter. In the
limit, when the slope parameter approaches infinity, the logistic function becomes
a step function. This model can be viewed as a linear model with time-varying
coefficients. More specifically, the coefficients are given by a single hidden layer
feed-forward neural network.
As pointed out in Medeiros and Veiga (2000b), model (1) is neither locally nor

globally identified. There are three characteristics of the model which cause the
non-identifiability. The first one is due to the symmetries in the neural network
architecture. The likelihood function of the model will be unchanged if we permute
the hidden units, resulting in h! possibilities for each one of the coefficients of the
model. The second reason is caused by the fact that F ðxÞ ¼ 1� F ð�xÞ; where F ð�Þ
is the logistic function. The third reason is the mutual dependence of the
parameters ki;xi and bi; i ¼ 1; . . . ; h. If all the elements of ki equal zero,
the correspondingxi and bi can assume any value without affecting the value of the
likelihood function. On the other hand, ifxi ¼ 0, then ki and bi can take any value.
To eliminate the first two sources of non-identifiability, we should restrict the

parameter space imposing the following restrictions: b1O � � �Obh and
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x1i > 0; i ¼ 1; . . . ; h. The third one is circumvented testing for the number of
hidden units in (1). The procedure is described in Medeiros and Veiga (2000b).
The NCSTAR model has the main advantage of nesting several nonlinear

specifications, such as, for example:


 The SETAR model, if xt ¼ yt�d and ci ! 1; i ¼ 1; . . . ; h

 The Logistic STAR (LSTAR) model, if xt ¼ yt�d and h ¼ 1

 The AR-ANN model, if xt ¼ zt and k0i ¼ ½k0i; 0; . . . ; 0�; i ¼ 1; . . . ; h

2.2. Model specification procedure

We now briefly outline the specification procedure for the NCSTAR model
developed in Medeiros and Veiga (2000b). This amounts to proceeding from a
linear model to the smallest NCSTAR model and gradually towards larger ones
through a sequence of LM tests. The specification phase of the modelling cycle
can be summarized as follows.

1 Select the variables in zt.
This is done using the method proposed by Rech et al. (1999). They make
use of a global approximation to the nonlinear model which is based on a
polynomial expansion of the process. Then the variables are selected
according to the value of an information criterion, such as, the AIC
(Akaike, 1974) or SBIC (Schwarz, 1978).

2 Test linearity.
In the context of model (1), testing linearity has two objectives: the first is to
verify if a linear model is able to adequately describe the data generating
process; the second refers to the variable selection problem. The linearity
test is used to determine the elements of xt. After selecting the elements of zt
with the procedure described above, we choose the elements of xt by running
the linearity test setting xt equal to each possible subset of the elements of zt
and choosing the one that minimizes the p-value of the test as in Teräsvirta
(1994) for the STAR case. The test is developed in the same spirit of
Luukkonen et al. (1988), Teräsvirta et al. (1993), and Teräsvirta (1994),
replacing the logistic function by a third-order Taylor expansion around the
null hypothesis of linearity.

3 If linearity is rejected, determine the number of hidden units.
The basic idea is to start using the linearity test described above and test the
linear model against the nonlinear alternative with only one hidden neuron.
If the null hypothesis is rejected, then fit the model with one hidden unit test
for the second one. Proceed in that way until the first acceptance of the null
hypothesis. The individual tests are based on lineraizing the nonlinear
contribution of the additional hidden neuron.
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3. DIAGNOSTIC CHECKING

Estimation of (1) has been discussed in Medeiros and Veiga (2000b). After the
model has been estimated, it has to be evaluated. We propose three
misspecification tests for this purpose. The first one tests for the constancy
of the parameters. The test is formulated in the same spirit as the model itself
(i.e., there is a possibility of having several nonlinear functions to describe the
changing parameters) and nests the special case of several structural breaks.
The second one tests the assumption of no serial correlation in the errors and
is an application of the results in Eitrheim and Teräsvirta (1996) and Godfrey
(1988). The third one is a test of constant variance against the alternative of a
smoothly changing one. The test is a special case of th test developed in
Breusch and Pagan (1979); see also Breusch and Pagan (1980) and Godfrey
(1988, pp. 123–36).
To derive the tests and following Eitrheim and Teräsvirta (1996), we make the

general assumption that, under the null hypothesis of all the tests, the nonlinear
least-squares estimate of the parameters is consistent and asymptotically normal.
The necessary and sufficient conditions for this are stated in Wooldrige (1994,
pp. 2653–5); see also Klimko and Nelson (1978) or Mira and Escribano (2000) for
an application with smooth transition time series models.

3.1. Test of parameter constancy

Testing parameter constancy is an important way of checking the adequacy of
linear or nonlinear models. Many parameter constancy tests are tests against
unspecified alternatives or a single structural break. In this section, we present a
parametric alternative to parameter constancy which allows the parameters to
change smoothly as a function of time under the alternative hypothesis. In the
following, we assume that the transition function has constant parameters
whereas both a and ki; i ¼ 1; . . . ; h; may be subject to changes over time.
Although, in this paper, we focus on diagnostic checking, the present test can be

used to build up a model with time-varying parameters in the spirit of the
time-varying smooth transition autoregressive (TVSTAR) model proposed by
Lundberg et al. (2000).
To develop the test, consider a model with time-varying parameters defined as

yt ¼ ~GGðzt; xt;W; ~WWÞ þ et ¼ ~aa0ðtÞzt þ
Xh
i¼1

~kk0iðtÞztF ðx0
ixt � biÞ

� �
þ et ð2Þ

where

~aaðtÞ ¼ a þ
XB
j¼1

�aajF ðfjðt � gjÞÞ ð3Þ
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and

~kkiðtÞ ¼ ki þ
XB
j¼1

�kkijF ðfjðt � gjÞÞ ð4Þ

~GGðzt; xt;W; ~WWÞ is a nonlinear function of zt and xt with parameter vectors W and ~WW
defined as

W ¼ ½a0; k01; . . . ; kh;x1; . . . ;xh; b1; . . . ; bh�0

and

~WW ¼ ½�aa01; . . . ; �aa0B; �kk011; . . . ; �kk01B; . . . ; �kk0h1; . . . ; �kk0hB; f1; . . . ; fB; g1; . . . ; gB�
0

To guarantee the identifiability of the model, we must impose the additional
restrictions: g1Og2O � � �OgB and fj > 0; j ¼ 1; . . . ;B. The parameters fj are
responsible for the smoothness of the changes in the autoregressive parameters.
When fj ! 1, (3) and (4) represent a model with B structural breaks. Combining
(3) and (4) with (2), we have the model.

yt ¼ a0 þ
XB
j¼1

�aa0jF ðfjðt � gjÞÞ
( )

zt

þ
Xh
i¼1

k0i þ
XB
j¼1

�kk0ijF ðfjðt � gjÞÞ
( )

ztF ðx0
ixt � biÞ þ et

ð5Þ

Testing B ¼ 0 Against B ¼ 1
Consider B ¼ 1, and rewrite model (5) as

yt ¼ fa0 þ �aa0F ðfðt � gÞÞgzt þ
Xh
i¼1

k0i þ �kk0iF ðfðt � gÞÞ
n o

ztF ðx0
ixt � biÞ þ et ð6Þ

The null hypothesis of parameter constancy is

H0 : f ¼ 0 ð7Þ

Note that model (6) is only identified under the alternative f > 0. A
consequence of this complication is that the standard asymptotic distribution
theory for the likelihood ratio or other classical test statistics for testing (7) is not
available. To remedy this problem, we expand F ðfðt � gÞÞ into a first-order Taylor
expansion around f ¼ 0, given by

TF ;1ðfðt � gÞÞ ¼ 1
4 fðt � gÞ þ Rðt; f; nÞ ð8Þ

where Rðt; f; gÞ is the remainder. Replacing F ðfðt � gÞÞ in (6) by (8) gives

yt ¼ ðh00 þ l0
0tÞzt þ

Xh
i¼1

ðh0i þ l0
itÞztF ðx0

i � biÞ þ e�t ð9Þ
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where h0 ¼ a � �aafg=4; l0 ¼ �aaf=4; hi ¼ ki � �kkifg=4; li ¼ �kkf=4; i ¼ 1; . . . ; h, and
e�t ¼ et þ Rðt; f; gÞ.
The null hypothesis becomes

H0 : l0 ¼ l1 ¼ � � � ¼ lh ¼ 0 ð10Þ

Under H0;Rðt; f; gÞ ¼ 0 and e�t ¼ et, so that standard asymptotic theory works
and Rðt; f; gÞ can be ignored. The local approximation to the normal log
likelihood function in a neighbourhood of H0 for observation t and ignoring
Rðt; f; gÞ is

lt ¼ � 1

2
lnð2pÞ � 1

2
ln r2

� 1

2r2
yt � ðh00 þ l0

0tÞzt �
Xh
i¼1

ðh0i þ l0
itÞztF ðx0

ixt � biÞ
( )2 ð11Þ

To derive a LM type test (assuming r2 constant), the consistent estimators of
the partial derivatives of the log likelihood under the null are

@l̂lt
@h00

�����
H0

¼ 1

r̂r2
êetzt ð12Þ

@l̂lt
@l0

0

�����
H0

¼ 1

r̂r2
êettzt ð13Þ

@l̂lt
@h0i

�����
H0

¼ 1

r̂r2
êetztF̂F ðx0

ixt � biÞ ð14Þ

@l̂lt
@l0

i

�����
H0

¼ 1

r̂r2
êettztF̂F ðx0

ixt � biÞ ð15Þ

@l̂lt
@x0

i

�����
H0

¼ 1

r̂r2
êetĥh

0
izt

@F̂F ðx0
ixt � biÞ
@x0

i
ð16Þ

@l̂lt
@bi

�����
H0

¼ 1

r̂r2
êetĥh

0
izt

@F̂F ðx0
ixt � biÞ
@bi

ð17Þ

where i ¼ 1; . . . ; h; r̂r2 ¼ ð1=T Þ
PT

t¼1 êe2t , and

êet ¼ yt � Gðzt; xt; ŴWÞ ¼ yt � âa0zt �
Xh
i¼1

k̂k0iztF̂F ðx0
ixt � biÞ

are the residuals estimated under the null hypothesis.
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The LM statistic can be written as

LM ¼ 1

r̂r2
XT
t¼1

êetm
0
t

XT
t¼1

m̂mtm̂m
0
t �
XT
t¼1

m̂mtĥh
0
t

XT
t¼1

ĥhtĥh
0
t

 !�1XT
t¼1

ĥhtm̂m
0
t

8<
:

9=
;
XT
t¼1

m̂mt êet ð18Þ

where

ĥht ¼
@ĜGðzt; xt;WÞ

@W0

and

m̂mt ¼ tz0t; tz
0
tF̂F ðx0

1xt � b1Þ; . . . ; tz0tF̂F ðx0
hxt � bhÞ

� �0
The test can be carried out in stages as follows:

1 Estimate model (1) under the null hypothesis (parameter constancy) and
compute the residual êet. When the sample size is small and the model is
difficult to estimate, numerical problems in applying the nonlinear least
squares algorithm may lead to a solution where the residual vector is not
exactly orthogonal to the gradient matrix of the nonlinear function
Gðzt; xt; ŴWÞ. This has an adverse effect on the empirical size of the test. To
solve this problem, we regress the residuals êet on ĥht, and compute the
residual sum of squares SSR0 ¼

PT
t¼1 ~ee

2
t .

2 Regress ~eet on ĥht and m̂mt. Compute the residual sum of squares
SSR1 ¼

PT
t¼1 v̂v

2
t .

3 Compute the v2 statistic

LMpc
v2 ¼ T

SSR0 � SSR1

SSR0
ð19Þ

or the F version of the test

LMpc
F ¼ ðSSR0 � SSR1Þ=m

SSR1=ðT � n� mÞ ð20Þ

where T is the number of observations, n is the number of elements of ĥht, and
m ¼ ðhþ 1Þðp þ 1Þ.
Under H0;LM

pc
v2 is asymptotically distributed as a v2 with m degrees of freedom

and LMpc
F has approximately an F distribution with m and T � n� m degrees of

freedom.
When applying the test, a special care should be taken. If the norm of x̂xi is

large, we may have numerical problems when carrying out the test in small
samples. A solution is to omit the terms that depend on the derivatives of the
logistic function from the test statistic. This can be done without significantly
affecting the value of the test statistic as pointed out in Eitrheim and Teräsvirta
(1996).
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Testing for B > 1
In a practical situation, it should be interesting to estimate the parameters of
model (5). To do that, we should determine the value of B. If the null hypothesis
defined by (10) is rejected at a given significance level a, we should estimate a
model with B ¼ 1 and test for B ¼ 2 at a significance level a=2. We proceed in that
way until the first acceptance of the null hypothesis, halving the significance level
of the test at each step. Letting the significance level converge to zero as B ! 1
keeps the dimensions of the model under control in the sense that an upper bound
of the overall significance level of the sequential test is obtained through the
Bonferroni upper bound.
Consider the model

yt ¼ fa0 þ �aa01F ðf1ðt � g1ÞÞ þ �aa02F ðf2ðt � g2ÞÞgzt

þ
Xh
i¼1

k0i þ �kk0i1F ðf1ðt � g1ÞÞ þ �kk0i2F ðf2ðt � g2ÞÞ
n o

ztF ðx0
ixt � biÞ þ et

ð21Þ

If we want to test for B ¼ 2 in (21), an appropriate null hypothesis is

H0 : f2 ¼ 0 ð22Þ

Note that, again, (21) is only identified under the alternative. Thus, we should
proceed as before and expand F ðf2ðt � g2ÞÞ into a first-order Taylor expansion
around f2 ¼ 0. After rearranging terms, the resulting model is

yt ¼ ðh00 þ �aa01F ðf1ðt � g1ÞÞ þ l0
0tÞzt

þ
Xh
i¼1

h0i þ �kk0i1F ðf1ðt � g1ÞÞ þ l0
it

� �
ztF ðx0

ixt � biÞ þ e�t ð23Þ

where h0 ¼ a � �aa2f2g2=4; l0 ¼ �aa2f2=4; hi ¼ ki � �kki2f2g=4;li ¼ �kki2f2=4; i ¼ 1; . . . ; h.
The null hypothesis becomes

H0 : l0 ¼ l1 ¼ � � � ¼ lh ¼ 0 ð24Þ

The LM statistic is (18) with

ĥht ¼
@ ~GGðzt; xt; ŴW; ~̂WW~WWÞ

@W0
@ ~GGðzt; xt; ŴW; ~̂WW~WWÞ

@ ~WW0

" #0

where

~GGðzt; xt; ŴW; ~̂WW~WWÞ ¼ âa0 þ �̂aa�aa01F̂F ðf1ðt � g1ÞÞ
n o

zt

þ
Xh
i¼1

k̂k0i þ �̂kk�kk
0
i1F̂F ðf1ðt � g1ÞÞþ

n o
ztF̂F ðx0

ixt � biÞ

Defining the residuals estimated under the null as êet ¼ yt � ~GGðzt; xt; ŴW; ~̂WW~WWÞ, the test
can be carried out in stages as before. The only difference is the new definition of ĥht.
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3.2. Test of serial independence

Consider that the errors in (1) follow an rth-order autoregressive process defined as

et ¼ p0mt þ ut ð25Þ

where p0 ¼ ½p1; . . . ; pr� is a parameter vector, m0t ¼ ½et�1; . . . ; et�r�, and ut � NID
ð0; r2Þ.We assume that et is stationary, and furthermore, that under the assumption
et � NIDð0; r2Þ, i. e., p ¼ 0; fytg is stationary and ergodic such that the parameters
of (25) can be consistently estimated by nonlinear least squares.
The null hypothesis is formulated as H0 : p ¼ 0.
The conditional normal log likelihood, given the fixed starting values has the

form

lt ¼ � 1

2
lnð2pÞ � 1

2
ln r2

� 1

2r2
yt �

Xr
j¼1

pjyt�j � Gðzt; xt;WÞ þ
Xr
j¼1

pjGðzt�j; xt�j;WÞ
( )2

ð26Þ

The information matrix related to (26) is block diagonal such that the element
corresponding to the second derivative of (26) forms its own block. The variance r2

can thus be treated as a fixed constant in (26) when deriving the test statistic. The
first partial derivatives of the normal log-likelihood with respect to p and W are

@lt
@pj

¼ ut
r2

� �
fyt�j � Gðzt�j; xt�j;WÞg; j ¼ 1; . . . ; r

@lt
@W

¼ � ut
r2

� � @Gðzt; xt;WÞ
@W

�
Xr
j¼1

pj
@Gðzt�j; xt�j;WÞ

@W

( ) ð27Þ

Under the null hypothesis, the consistent estimators of (27) are

@l̂lt
@p

�����
H0

¼ 1

r̂r2
êetm̂mt and

@l̂lt
@W

�����
H0

¼ � 1

r̂r2
êetĥht

where

m̂m0t ¼ ½êet�1; . . . ; êet�r�

êet�j ¼ yt�j � Gðzt�j; xt�j; ŴWÞ for j ¼ 1; . . . ; r

ĥht ¼
@Gðzt; xt; ŴWÞ

@W
and

r̂r2 ¼ 1

T

XT
t¼1

êet

The LM statistic is (18) with ĥht and m̂mt defined as above.
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Under the condition that the moments implied by (18) exist, the LM statistic is
asymptotic distributed as a v2 with r degrees of freedom.
The test can be performed in three stages as shown before. The only differences

are the new definition of m̂mt and ĥht at stage 2 and the degrees of freedom in the F
test, r and T � n� r.

3.3. Test of homoscedasticity against smoothly changing variance

In this section, we consider a test of constant variance against the specification

r2t ¼ r2 þ
Xh
i¼1

r2i F ðx0
r;ixt � br;iÞ ð28Þ

where br;1O � � �Obr;h, and xr;1i > 0; i ¼ 1; . . . ; hr, are identifying restrictions.
This formulation allows the variance to change smoothly between regimes. The
idea that the error variance changes within regimes is common in the TAR
literature, but, is frequently neglected in the smooth transition case. In this paper,
we derive a test statistic for smoothly changing variance against a constant one.
The restrictions on the parameters to guarantee a positive variance are rather

complicated and depend on the geometry of the hyperplanes defined by xr;i and
br;i ¼ 1; . . . ; h. To circumvent this problem, we rewrite equation (28) as

r2t ¼ expðGrðxt;WrÞÞ ¼ exp 1 þ
Xh
i¼1

riF ðx0
r;ixt � br;iÞ

 !
ð29Þ

where Wr ¼ ½1; 11; . . . ; 1h�0 is a vector of real parameters.
To derive the test, consider h ¼ 1. This is not a restrictive assumption because

the test statistic remains unchanged if h ¼ 1 or h > 1. Rewrite model (29) as

r2t ¼ expð1 þ 11F ðcrð ~xx0
rxt � crÞÞÞ ð30Þ

where k ~xxrk ¼ 1.
The null hypothesis of constant error variance is

H0 : cr ¼ 0 ð31Þ

Note that model (30) is only identified under the alternative cr 6¼ 0. To solve the
problem, we expand F ðcrð ~xx0

rxt � crÞÞ into a first-order Taylor expansion around
cr ¼ 0, given by

TF ;1ðcrð ~xx0
rxt � crÞÞ ¼ 1

4 cr

�Pq
i¼1

~xxr;ixi;t � cr

�
þ Rðxt; cr; ~xxr; crÞ ð32Þ

where Rðxt; cr; ~xxr; crÞ is the remainder. Replacing F ðcrð ~xx0
rxt � crÞÞ in (30) by

(32), and ignoring Rðxt; cr; ~xxr; crÞ gives

r2t ¼ exp q þ
Xq
i¼1

qixi;t

 !
ð33Þ
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where q ¼ 1 � 1
4

� �
crcr11; qi ¼ 1

4

� �
cr11 ~xxr;i; i ¼ 1; . . . ; q:

The null hypothesis becomes

H0 : q1 ¼ q2 ¼ � � � ¼ qq ¼ 0 ð34Þ

Under H0; expðqÞ ¼ r2: The local approximation to the normal log likelihood
function in a neighbourhood of H0 for observation t is

lt ¼ � 1
2 lnð2pÞ � 1

2 q þ
Pq
i¼1

qixi;t

� �
� e2t
2 expðq þ

Pq
i¼1 qixi;tÞ

ð35Þ

To derive a LM-type test, the partial derivatives of the log likelihood are

@lt
@q

¼ � 1

2
þ e2t
2 expðq þ

Pq
i¼1 qixi;tÞ

ð36Þ

@lt
@qi

¼ � xi
2
þ e2t xi
2 expðq þ

Pq
i¼1 qixi;tÞ

ð37Þ

Under the null hypothesis, the consistent estimators of (36) and (37) are

@l̂lt
@q

�����
H0

¼ 1

2

êe2t
r̂r2

� 1

� �

@l̂lt
@qi

�����
H0

¼ xi;t
2

êe2t
r̂r2

� 1

� �

where

r̂r2 ¼ 1

T

XT
t¼1

êe2t

The LM statistic can be written as

LM ¼ 1

2

XT
t¼1

êe2t
r̂r2

� 1

� �
~xxt

( )0 XT
t¼1

~xxt~xx
0
t

( )�1 XT
t¼1

êe2t
r̂r2

� 1

� �
~xxt

( )
ð38Þ

where ~xxt ¼ ½1; xt�0. For details, see the Appendix.
The test can be carried out in stages as follows:

1 Estimate model (1) assuming homoscedasticity and compute the residuals êet.
Orthogonalize the residuals by regressing them on @Gðzt; xt; ŴWÞ=@W, and
compute

SSR0 ¼
XT
t¼1

~ee2t
r̂r2~ee

� 1

� �2
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where r̂r2~ee is the unconditional variance of ~eet.

2 Regress ~ee2

r̂r2
~ee
� 1

� �
on ~xxt: Compute the residual sum of squares

SSR1 ¼
PT

t¼1 m̂m2t :
3 Compute the v2 statistic

LMr
v2 ¼ T

SSR0 � SSR1

SSR0
ð39Þ

or the F version of the test

LMr
F ¼ ðSSR0 � SSR1Þ=q

SSR1=ðT � 1� qÞ ð40Þ

where T is the number of observations.
Under H0;LM

r
v2 is approximately distributed as a v2 with q degrees of freedom

and LMr
F has approximately an F distribution with q and T � 1� q degrees of

freedom.

Estimation
If the null hypothesis is rejected, we can estimate the parameters of model (29).
The estimation algorithm is an extension of the three-phase procedure proposed
in Medeiros and Veiga (2000a) and the algorithm in Medeiros and Veiga (2000b).
The estimation process is divided into three steps as follows.

1 Estimate the parameters of model (1) with the algorithm proposed in
Medeiros and Veiga (2000b), assuming that the error variance is fixed.

2 Test the null hypothesis of homoscedasticity. If H0 is rejected, consider that
the conditional mean is correctly specified and estimate the parameters of
model (29) by minimizing

LT ðWrÞ ¼ 1
2

PT
t¼1

lnð2pÞ þ lnðGrðxt;WrÞÞ þ êe2t
Grðxt ;WrÞ

n o
ð41Þ

3 After h is determined, we estimate the full model by minimizing

LT ðW;WrÞ ¼ 1
2

PT
t¼1

lnð2pÞ þ lnðGrðxt;WrÞÞ þ
�
yt�Gðzt ;xt ;WÞ

�2
Grðxt ;WrÞ

( )
ð42Þ

using the parameters estimated is steps 1 and 2 as initial values.

4. MONTE-CARLO EXPERIMENT

In this section, we report the results of a simulation experiment designed to study
the behaviour of the proposed tests. For all the generated time series, we
discarded the first 500 observations to avoid any initialization effects. So as not to
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estimate a nonlinear model from a time series where there is not much evidence of
nonlinearity, we first test the linearity hypothesis and, if the null was not rejected
at a 5% level against the NCSTAR model, we discarded the series from the

FIGURE 1. Size discrepancy plot of the parameter constancy test at sample size of 100 observations
based on 1000 replications of model (43) with: (a) q ¼ 0 and r2t ¼ 1; (b) q ¼ 0:2 and r2t ¼ 1; (c) q ¼ 0:4

and r2t ¼ 1; (d) q ¼ 0 and r2t given by (47); and (e) q ¼ 0;r2t ¼ 1; and estimated with h ¼ 1.
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experiment as in Eitrheim and Teräsvirta (1996). We should also mention that the
behaviour of the diagnostic tests is also investigated under alternatives other than
the one for which they are derived. For example, the properties of the test of
parameter constancy are also examined under processes exhibiting residual serial
correlation and smoothly changing variance. Note that, strictly speaking, these
are neither true size not true power experiments. We should also stress that we do
not include a test of remaining nonlinearity (additional hidden unit) because it is
part of the specification procedure described in Medeiros and Veiga (2000b).
However, we do include a simulation study of the behaviour of the proposed tests
when the models are estimated with less hidden units than necessary.
The simulated models are as follows.


 Model I

yt ¼ 0:5þ 0:8yt�1 � 0:2yt�2 þ ð1:5þ 0:6yt�1 � 0:3yt�2ÞF1ð�Þ
þ ð�0:5� 1:2yt�1 þ 0:7yt�2ÞF2ð�Þ þ ut; ut ¼ qut�1 þ et and

et � NIDð0; r2t Þ ð43Þ

FIGURE 2. Power-size plot of the parameter constancy test at sample size of 100 observations based on
1000 replications of: (a) model (44); (b) model (45); and (c) model (46).
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 Model II

yt ¼

0:5þ 0:8yt�1 � 0:2yt�2 þ ð1:5þ 0:6yt�1 � 0:3yt�2ÞF1ð�Þ
�ð0:5þ 1:2yt�1 � 0:7yt�2ÞF2ð�Þ þ et if tO50
�0:8yt�1 þ ð1:2yt�1 � 0:7yt�2ÞF1ð�Þ
�ð0:6yt�1 � 0:3yt�2ÞF2ð�Þ þ et otherwise

8>><
>>: ð44Þ


 Model III

yt ¼

0:5þ 0:8yt�1 � 0:2yt�2 þ ð1:5þ 0:6yt�1 � 0:3yt�2ÞF1ð�Þ
�ð0:5þ 1:2yt�1 � 0:7yt�2ÞF2ð�Þ þ et if tO50
�0:8yt�1 þ ð1:2yt�1 � 0:7yt�2ÞF1ð�Þ
�ð0:6yt�1 � 0:3yt�2ÞF2ð�Þ þ et if 30 < tO60
3:0þ 0:8yt�1 þ ð0:1yt�1 � 0:3yt�2ÞF1ð�Þ
�ð0:5þ 1:2yt�1 � 0:7yt�2ÞF2ð�Þ þ et otherwise

8>>>>>><
>>>>>>:

ð45Þ

 Model IV

yt ¼ 0:5þ 0:8yt�1 � 0:2yt�2 þ ð�0:5� 1:6yt�1 þ 0:2yt�2ÞFtð�Þ
þ ½�0:5� 1:2yt�1 þ 0:7yt�2 þ ð0:5� 1:4yt�2ÞFtð�Þ�F1ð�Þ
þ ½3þ 0:8yt�1 þ ð0:8� 0:8yt�1 � 0:1yt�2ÞFtð�Þ�F1ð�Þ þ et ð46Þ

In models (44)–(46), et � NIDð0; 12Þ and in all simulated models

F1ð�Þ ¼ F ð8:49ð0:7071yt�1 � 0:7071yt�2 þ 1:0607ÞÞ

and

F2ð�Þ ¼ F ð8:49ð0:7071yt�1 � 0:7071yt�2 � 1:0607ÞÞ

In model (46), Ftð�Þ ¼ F ð0:25ðt � 50ÞÞ:
To evaluate the size and power of the tests, we assume that the elements of zt

and xt in (1) are correctly specified. In size simulations, we generated 1000 time
series from model (43) with q ¼ 0 and r2t ¼ 1: Each replication has 100
observations. To present the results, we used size discrepancy plots and power-
size curves as suggested in Davidson and MacKinnon (1998).

4.1. Test of parameter constancy

Results concerning size simulations are shown in Figure 1. We can see that the
empirical size is close to the nominal one. However, it is interesting to notice that
the test becomes rather conservative when the errors are autocorrelated.
In power simulations of the parameter constancy test, we generated data

from models (44) and (45). Figure 2 shows the power-size curve. The test has
good power against models with structural breaks. The power of the test
increases, as expected, when the parameters change smoothly as a function of
time.
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FIGURE 3. Size discrepancy plot of the serial independence test at sample size of 100 observations
based on 1000 replications of: (a) model (43) with q ¼ 0 and r2t ¼ 1; (b) model (44); (c) model (45); (d)
model (46); (e) model (43) with q ¼ 0 and r2t given by (47); and (f) model (43) with q ¼ 0 and r2t ¼ 1,

and estimated with h ¼ 1:
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4.2. Test of serial independence

Figure 3 shows the results of the size simulations. The empirical size is close to the
nominal one, except for the case where the model has structural breaks. Thus, the
serial independence test has non-trivial power against time-varying parameters. It
is interesting to mention that for r ¼ 12 in (25), the test has a behaviour slightly
different than the other cases. This may occur because of the small sample size
(100 observations).

FIGURE 4. Power-size curve of the test of serial independence at sample size of 100 observations based
on 1000 replications of: (a) model (43) with q ¼ 0:2 and r2t ¼ 1; (b) model (43) with q ¼ 0:4 and r2t ¼ 1:
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FIGURE 5. Size discrepancy plot of the heteroscedasticity test at sample size of 100 observations based
on 1000 replications of: (a) model (43) with q ¼ 0 and r2t ¼ 1; (b) model (43) with q ¼ 0:2 and r2t ¼ 1;
(c) model (44) with q ¼ 0:4 and r2t ¼ 1; (d) model (44); (e) model (45); (f ) model (46); and (g) model

(43) with q ¼ 0 and r2t ¼ 1, and estimated with h ¼ 1:
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In power simulations of the serial independence test, we generated the data from
model (43) with q ¼ 0:2; 0:4 and r2t ¼ 1: Power-size plots are shown in Figure 4.
The power of the test increases, as it should, when we increase the value of q.

4.3. Test of homoscedasticity

The results of the size simulations are shown in Figure 5. We observe that the
empirical size of the test is close to the nominal one. However, the test has non-
trivial power against time-varying parameters and remaining nonlinearity. In
power simulations of the test, we generated the data frommodel (43) with q ¼ 0 and

r2t ¼ expð�0:6931þ 0:6931F ð8:49ð0:7071yt�1 � 0:7071yt�2 þ 1:0607ÞÞ
þ 0:6931F ð8:49ð0:7071yt�1 � 0:7071yt�2 � 1:0607ÞÞÞ ð47Þ

Results are shown in Figure 6.

5. CONCLUSIONS

In this paper, we consider a sequence of misspecification tests for a flexible
nonlinear time series model, called the neuro-coefficient smooth transition
autoregressive (NCSTAR) model. They are LM-type tests for testing the
hypotheses of parameter constancy, serial independence, and homoscedasticity.
A simulation showed that the tests are well sized and have good power in
small samples. As the NCSTAR specification nests several well-known time
series models, the tests can be directly applied to these models as well. These

FIGURE 6. Power-size plot of the heteroscedasticity test at sample size of 100 observations based on
1000 replications of (43) with error variance given by (47).
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tests can be considered as a useful tool for the evaluation of estimated
nonlinear models.

APPENDIX

Rewrite (35) as

lt ¼ � 1

2
lnð2pÞ � 1

2
.0~xxt �

e2t
2 expð.0~xxtÞ

ð48Þ

where . ¼ ½q; q1; . . . ; qq�0. Assuming that the mean is corrected specified, the LM statistic
has the general form

LM ¼ T�qqT ð.Þ
0jH0

Ið.Þ�1jH0
�qqT ð.ÞjH0

ð49Þ

�qqT ð.Þ is the average score and Ið.Þ is the information matrix.

It is straightforward to show that

�qqT ð.Þ ¼
1

T

XT
t¼1

1

2

e2t
r2t

� 1

� �
~xxt ð50Þ

The population information matrix is defined as the negative expectation of the average
Hessian.

Ið.Þ ¼ �E
1

T

XT
t¼1

@2lt
@.@.0

 !
ð51Þ

where

@2lt
@.@.0

¼ � 1

2

e2t
expð.0~xxtÞ

~xxt~xx
0
t ð52Þ

Combining (51) with (52), the population information matrix becomes

Ið.Þ ¼ 1

2T
E
XT
t¼1

e2t
expð.0~xxtÞ

~xxt~xx
0
t

 !
ð53Þ

Under the null, the average score vector and the population information matrix can be
consistently estimated as

�̂qq�qqT ð.ÞjH0
¼ 1

2T

XT
t¼1

êe2t
r̂r2

� 1

� �
~xxt ð54Þ

and

ÎIð.ÞjH0
¼ 1

2T

XT
t¼1

~xxt~xx
0
t ð55Þ

where r̂r2 is the estimated unconditional variance of êet under the null hypothesis.
The LM statistic can therefore be written as
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LM ¼ T
1

2T

XT
t¼1

êe2t
r̂r
� 1

� �
~xxt

( )0
1

2T

XT
t¼1

~xxt~xx
0
t;

( )�1
1

2T

XT
t¼1

êe2t
r̂r
� 1

� �
~xxt

( )

¼ 1

2

XT
t¼1

êe2t
r̂r
� 1

� �
~xxt

( )0 XT
t¼1

~xxt~xx
0
t

( )�1 XT
t¼1

êe2t
r̂r
� 1

� �
~xxt

( ) ð56Þ
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