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Modeling Exchange Rates: Smooth Transitions,
Neural Networks, and Linear Models

Marcelo C. Medeiros, Álvaro Veiga, and Carlos Eduardo Pedreira

Abstract—The goal of this paper is to test for and model non-
linearities in several monthly exchange rates time series. We apply
two different nonlinear alternatives, namely: the artificial neural-
network time series model estimated with Bayesian regularization
and a flexible smooth transition specification, called the neuro-co-
efficient smooth transition autoregression. The linearity test rejects
the null hypothesis of linearity in 10 out of 14 series. We compare,
using different measures, the forecasting performance of the non-
linear specifications with the linear autoregression and the random
walk models.

Index Terms—Bayesian regularization, exchange rates, neural
networks, smooth transition models, time series.

I. INTRODUCTION

DURING the last two decades many different nonlinear
models have been proposed in the literature to model and

forecast exchange rates. Several authors claimed that exchange
rates are rather unpredictable, and that a random walk model
is often a better predictor than concurrent nonlinear models.
See, for example, [3], [9], [21], and [22]. With this concern in
mind, some questions should be raised: How relevant is the
nonlinearity in the series? Is the nonlinearity uniformly spread?
Are nonlinear models better predictors? If there are periods
of the series with no nonlinearity, what is the lost (if any) of
applying a nonlinear model? Without having the intention
of solving these fundamental and complex questions, this
paper addresses the problem by benchmarking two nonlinear
alternatives against the linear autoregressive (AR) and the
random walk (RW) models. Several monthly exchange rates
time series are used. For similar papers, see [26] and [24].

The nonlinear alternatives considered in this paper are
the artificial neural network (ANN) model [14] and a novel
flexible model called the neuro-coefficient smooth transition
autoregression (NCSTAR). The NCSTAR specification can be
interpreted as a linear model where its coefficients are given
by a single hidden layer feedforward neural network and has
the main advantage of nesting several well-known nonlinear
formulations, such as the self-exciting threshold autoregression
(SETAR) [30], [31], the smooth transition autoregression
(STAR) [2], [16], [28], and the ANN model. Furthermore, if
the neural network is interpreted as a nonparametric universal
approximation to any Borel-measurable function, the NCSTAR
model is directly comparable to the functional coefficient
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autoregression (FAR) [4] and the single-index coefficient
regression model [34]. A modeling strategy for the NCSTAR
model was developed in [19] and [20].

The plan of this paper is as follows. Section II discusses the
NCSTAR model and briefly describes the modeling strategy.
Section III outlines the neural network models with Bayesian
regularization. The benchmark models are described in Section
IV. Section V gives a description of an experiment comparing
the forecasting performance of the NCSTAR and the neural net-
work models with the benchmark alternatives. The results are
discussed in Section VI. Finally, Section VII concludes.

II. THE NCSTAR MODEL

A. Mathematical Formulation

Consider a linear model with time-varying coefficients ex-
pressed as

(1)

where is a vector of real coefficients
and . is a vector of lagged values of
and/or some exogenous variables. The random termis a nor-
mally distributed white noise with variance. The time evolu-
tion of the coefficients of (1) is given by

(2)

where and are real coefficients.
The function is the logistic function, where

is a vector of input variables,
and are real parameters. The norm of is called theslope
parameter. In the limit, when the slope parameter approaches
infinity, the logistic function becomes a step function.

Note that (1) can be interpreted as a linear model where its co-
efficients are given by a single hidden layer feedforward neural
network. The neural-network architecture representing (2) is il-
lustrated in Fig. 1. The elements of, called the transition vari-
ables, can be formed by lagged values ofand/or any exoge-
nous variables. In this paper, we assume thatis formed by
a subset of the elements of and that there are no exogenous
variables in the model specification.

Equations (1) and (2) represent a time-varying model with
a multivariate smooth transition structure defined byhidden
neurons.

Equation (1) can be rewritten as

1045–9227/01$10.00 © 2001 IEEE
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Fig. 1. Architecture of the neural network.

(3)

or in vector notation

(4)

where

is a parameter vector with
elements

and

Note that model (4) is, in principle, neither globally nor lo-
cally identified. To ensure the identifiability of (4) we have to
impose the following restrictions: and ,

. For details on identifiability concepts see, e.g.,
[27], [15], [12], [1], [32], [18].

The NCSTAR model has the main advantage of nesting sev-
eral well-known nonlinear formulations, such as, for example,
the SETAR, STAR, and ANN models.

B. Modeling Cycle

In this section, we briefly outline a modeling technique based
on statistical inference to build the NCSTAR model. For more
details, see [19] and [20]. This amounts to proceeding from a
linear model to the smallest NCSTAR model and gradually to-
ward larger ones through a sequence of Lagrange multiplier
(LM) tests. Finally, after the model has been estimated, it is eval-
uated by some misspecification tests. For similar ideas, see [33],
[28], and [7]. The modeling cycle can be summarized as follows:

1. Specification

a) Select the variables of the model.
b) Test linearity.
c) If linearity is rejected, determine the number of

hidden units.

2) Parameter estimation of the specified model.
3) Model evaluation based on misspecification testing.

a) Test for parameter constancy.
b) Test for serial independence of the error term.
c) Test for homoscedasticity of the error term .

These three stages are briefly described below.
1) Specification:

a) Variable Selection:The first step of the specification
stage is to select the variables of the model. In this step we will
not distinguish between the variables inand in (4). Fol-
lowing [18], we adopt the simple procedure proposed by [25].
Their proposal uses global parametric least squares estimation
and is based on a polynomial expansion of the model. We pro-
vide a brief overview of the method. For more details see [25].

Consider model (4). The first step is to expand function
into a -order polynomial expansion around an

arbitrary fixed point in the sample space. After merging terms,
one obtains

(5)

where is the remainder and the’s, ’s, and
are parameters. Note that the terms involvingmerged

with the terms involving .
The second step is to regresson all variables in the polyno-

mial expansion and compute the value of a model selection cri-
terion, such as, for example, the Akaike’s information criterion
(AIC). After that, remove one variable from the original model
and regress on all the remaining terms in the expansion and
compute the value of the AIC. Repeat this procedure by omit-
ting each variable in turn. Continue by simultaneously omitting
two regressors of the original model and proceed in that way
until the polynomial expansion becomes a function of a single
regressor. Choose the combination of variables that yields the
lowest value of the AIC. The selected variables will compose
the vector .

b) Testing Linearity: In practical nonlinear time series
modeling, testing linearity plays an important role. In the
context of model (4), testing linearity has two objectives. The
first one is to verify if a linear model is able to adequately
describe the data generating process. The second one refers
to the variable selection problem. The linearity test is used to
determine the elements of. After selecting the elements of
with the procedure described above, we choose the elements of

by running the linearity test described below settingequal
to each possible subset of the elements ofand choosing the
one that minimize the-value of the test.
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In order to test for linearity, (4) is rewritten as

(6)

where , , and , .
The transition function is redefined as

(7)

Subtracting one-half from the logistic function is useful just in
deriving linearity tests where it simplifies notation but not affect
the argument. The models estimated in this paper do not contain
that term.

Consider (6) with (7) and the testing of the hypothesis that
is a linear process. Note that , implying the null

hypothesis of linearity

H (8)

Hypothesis (8) offers a convenient starting point for studying
the linearity problem in the LM (score) testing framework.

Note that model (6) is not identified under the null. A con-
sequence of this complication is that the standard asymptotic
distribution theory for the likelihood ratio or other classical test
statistics for testing (8) is not available. We solve the problem
by replacing by a third-order Taylor expan-
sion approximation about , .

After rearranging terms, we get

(9)

where . is the combined
remainder of the third-order Taylor expansion of the logistic
functions. The vector is formed by the elements
of that are not in . The null hypothesis is defined as H

, , , , , and .
From (9) it is seen that the test is just a test of a linear hypoth-

esis in a linear model, so that standard asymptotic inference is
available.

It is important to stress that the linearity test against a STAR
model [28] and the neural-network linearity test [29] are special
cases of the test discussed here.

c) Determining the Number of Hidden Units:In a prac-
tical situation one wants to be able to test for the number of
hidden units of the neural network. The basic idea is to start

using the linearity test described above and test the linear model
against the nonlinear alternative with only one hidden unit. If the
linearity is rejected, then fit a model with one hidden unit and
test for the second one. Proceed in that way until the first accep-
tance of the null hypothesis. The individual tests are based on
linearizing the nonlinear contribution of the additional hidden
neuron. Consider the general case in which the model contains

hidden units, and we want to know whether an additional unit
is required or not. Write the model as

(10)

An appropriate null hypothesis is

H (11)

Note that (10) is only identified under the alternative. Using a
third-order expansion and after rearranging terms, the resulting
model is

(12)

The null hypothesis is defined as H , ,
. Again, standard asymptotic inference is available.

2) Parameter Estimation:After specifying the model, the
parameters should be estimated by nonlinear least squares
(NLS). Hence the parameter vectorof (4) is estimated as

argmin

argmin (13)

Under some regularity conditions the estimates are consistent
and asymptotically normal [5].

The estimation procedure is carried together with the test for
the number of hidden units. First we test for linearity against
a model given by (4) with . If linearity is rejected we
estimate the parameters of the nonlinear model and test for the
second hidden unit. If the null hypothesis is rejected, we use the
estimated values for the first hidden unit as starting values and
use the procedure described in [19] to compute initial values for
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the second hidden unit. We proceed in that way until the first
acceptance of the null hypothesis.

3) Model Evaluation: After the NCSTAR model has been
estimated it has to be evaluated. This means that the assumptions
under which the model has been estimated have to be checked.
These assumptions include the hypothesis of no serial corre-
lation, parameter constancy, and homoscedasticity. Testing for
normality is also a common practice in econometrics. In this
paper we use the tests discussed in [20]. They are Lagrange
multiplier (LM) type tests of parameter constancy against the
alternative of smoothly changing ones, of serial independence
of the error term, and homoscedasticity against the hypothesis
that the variance smoothly changes between regimes. To test for
normality we use the Jarque–Bera test [13].

III. A RTIFICIAL NEURAL NETWORKS AND BAYESIAN

REGULARIZATION

A feedforward artificial neural network (ANN) time series
model can be defined as

(14)

where and are vectors
of real parameters, , is a vector of lagged
values of , is assumed to be a sequence of independent,
normally distributed random variables with zero mean and finite
variance, and is the logistic function. Note that
model (14) is just a special case of the NCSTAR model.

In this paper we adopt the regularization approach to estimate
the ANN models. The fundamental idea is to find a balance be-
tween the number of parameters and goodness of fit by penal-
izing large models. The objective function is modified in such
a way that the estimation algorithm effectively prunes the net-
work by driving irrelevant parameter estimates to zero during
the estimation process. The parameter vectoris estimated as

argmin

argmin (15)

where = , is theregular-
ization or penalty term, and is often called thedecay
constant. The usual penalty is the sum of squared parameters

(16)

The forecasting ability of the ANN model can depend cru-
cially on the decay constant, especially with small in-sample
periods. If is too large, the network may still overfit, and if it
is too small, the ANN model does not have an adequate fit in
the estimation period. Usually, different types of parameters in
the ANN model will usually require different decay constants
for good forecasting ability.

One approach to determine the optimal regularization param-
eter is the Bayesian framework of [17], where the parame-
ters of the network are assumed to be random variables with

well-specified distributions. The regularization parameters are
related to the unknown variances associated with these distribu-
tions and can be estimated with statistical techniques. Reference
[8] give a detailed discussion of the use of Bayesian regulariza-
tion in combination with the Levenberg–Marquardt optimiza-
tion algorithm. The main advantage of this method is that even
if the ANN model is over-parametrized, the irrelevant parameter
estimates are likely to be close to zero and the model behaves
like a small network.

All the ANN models in this paper are estimated with Bayesian
regularization in combination with the Levenberg-Marquardt al-
gorithm. The starting-values for the parameters are selected by
the Nguyen–Widrow rule [23].

IV. BENCHMARK MODELS

In this section we outline two simple linear models that are
often used as benchmark formulations in the financial time se-
ries literature.

A. The Random Walk (RW) Model

Consider the following RW model for the level of the ex-
change rate series

(17)

where is the price at the time instant, is a constant, and
is a random term identically distributed.

Taking the first difference of the logarithms, the resulting
model becomes

(18)

where is the return at time and is a constant. Usually is
assumed to be a normally distributed random variable with zero
mean and finite variance.

B. The Linear Autoregressive Model

A linear autoregressive (AR) model of orderfor the returns
is defined as

(19)

where , are real coefficients and is a identically
normally distributed random variable with zero mean and finite
variance. The order of the model is determined by inspection of
the autocorrelation and partial autocorrelation functions (ACF
and PACF).

V. THE EXPERIMENT

To assess the practical usefulness of the NCSTAR and ANN
models in comparison with the linear AR and RW models
and to address the questions proposed in the Introduction, an
experiment with 14 different monthly exchange rates time
series is conducted. We have decided to work with monthly
time series just to avoid to model any ARCH effect in the
conditional variance of the series. It is well known that daily
exchange rates are more volatile than the monthly ones and,
of course, will have more nonlinearity to model. The data
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TABLE I
DATA SETS

are summarized in Table I. The series were obtained from
Economagic(www.economagic.com).

Both in-sample and out-of-sample performance are consid-
ered. The first step is to test linearity in all series. We discard all
the series that do not have evidence of nonlinearity according to
the test described in Section II-B. For the series that turn out to
be nonlinear we proceed estimating linear and nonlinear models,
each of which are evaluated according to their in-sample ex-
planatory power and out-of-sample forecasting ability. The fore-
casts made by each estimated model are compared according
to the following statistics (described in Appendix A: nRMSE,
MAE, MAD, and SIGN.

The forecasting experiment can be viewed of consisting of
the following steps.

1) Split the sample into two subsamples: the estimation set
( ) and the forecasting set ( ).

2) Estimate the parameters of each model using only the es-
timation set and analyze the in-sample performance of the
estimated models.

3) For , compute the out-of-sample fore-
casts of 1- to 4-step-ahead, , and the associated fore-
cast errors denoted by , where is the forecasting
horizon. Multistep forecasts for the nonlinear models are
obtained by Monte Carlo simulation as described in Ap-
pendix B

4) For each forecasting horizon, compute different perfor-
mance measures.

VI. RESULTS

A. Specification and Estimation

Using the variables selected by the AIC and the linearity test
described in Section II-B, evidence of nonlinearity was found
in ten series: Austria, Belgium, Finland, France, Germany,
Sweden, Spain, India, Sri Lanka, and Australia. However,
linearity was strongly rejected only in Finland, Australia, Sri
Lanka, and India. The results are summarized in Table II.

To check if the nonlinearity is uniformly spread over the
in-sample period, we fix the specification of and and

TABLE II
LINEARITY TEST

test linearity in a rolling window with 100 observations. The
-value of the linearity test for each sub-sample is shown in

Fig. 2. With the exception of the Sri Lanka, nonlinearity is
only significant in a few number of periods, specially in the
beginning or in the end of the series. This is an interesting
result and explains why linearity is not strongly rejected for
most of the series considered here.

For those series that turned out to be nonlinear, we continue
estimating the models.

The specification and estimation results for the NCSTAR
models can be found in Table III. This table shows, for each
series, the estimated number of hidden units (), the -value
of the LM test of serial correlation of orderin the residuals
( ), the -value of the LM test of parameter constancy
( ), the -value of the LM test of homocedasticity ( ),
the -value of the Jarque-Bera (JB) test of normality of the
residuals, and, finally, the estimated residual standard deviation.

Analyzing the results in Table III, we observe that all the
estimated models have uncorrelated errors at 0.01 level. Only
Sweden and Australia have evidence of serial correlated errors
(of order 1) at 0.05 level. The hypothesis of parameter con-
stancy is rejected at 0.05 level but not at 0.01 level for France
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Fig. 2. p-value of the linearity test.

TABLE III
SPECIFICATION AND ESTIMATION RESULTS—NCSTAR MODEL

and Australia. The only case where the null hypothesis of ho-
moscedasticity is rejected (at 0.05 level) is France. Due the fact
that the null hypothesis of serial independence, parameter con-
stancy, and homoscedasticity are not strongly rejected (see the
-values of the tests) we do not take this into account and we

accept the estimated models as our final specifications. Fig. 3
shows, for each model, the scatter plot of the transition function

versus the linear combination of transition variables. With few
exceptions, the transitions between regimes are rather smooth.

The specification and estimation results for the AR models
are shown in Table IV. The columns show, respectively, the se-
lected lags, the-value of the Ljung-Box test of order 1, 2, and
6, the -value of the Jarque-Bera (JB) test of normality of the
residuals, and the estimated residual standard deviation.
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Fig. 3. Scatter plot of transition function versus the linear combination of transition variables.

TABLE IV
SPECIFICATION AND ESTIMATION RESULTS—AR MODEL

Observing Table IV, we note that all the linear models have
uncorrelated errors.

In Table V we show the lags in the ANN models, the number
of hidden units, the minimum value of the absolute correlation
between the outputs of the hidden units of the estimated ANN
models, and the residual standard deviation.

By inspection of Table V, we observe that, with exception of
Australia and Sri Lanka, the hidden units of the ANN models

are heavily correlated pointing to the fact that a model with only
one hidden unit will be enough to model the data. Although not
shown here, the plots of the outputs of the hidden units of most
of the estimated models indicate that the hidden neurons are al-
most linear. This can be also checked by comparing the standard
deviation of the residuals from the ANN and AR models.

Additionally, we should stress that the standard deviation of
residuals from the NCSTAR model is smaller than the ones from
the linear AR and the ANN for all the series.

B. Forecasting Experiment

The forecasting results are shown in Tables VI–VIII. Table I
shows the number of series where each model is the best model
according to the performance measures used here. Note that
more than one model can be the “winner” for each series, spe-
cially according to theSIGNcriterion.

For one-step-ahead forecasts the linear AR model has the best
performance in 50% of the cases when the nRMSE, the MAE,
and the MAD are used as performance measures. According to
SIGN, the results are mixed, with the RW model having a small
advantage. For two-, three-, and four-step-ahead forecasts the
results are not very clear and there is no evidence of a “winner”
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TABLE V
ESTIMATION RESULTS—ANN MODEL

TABLE VI
NUMBER OF SERIES WHEREEACH MODEL IS THE BEST MODEL

TABLE VII
NUMBER OF SERIES WHEREMODEL A (COLUMN) IS BETTER THAN MODEL B
(ROW) ACCORDING TO THEMODIFIED DIEBOLD-MARIANO TEST AT A 0.05

LEVEL (nRMSE TEST)

TABLE VIII
NUMBER OF SERIES WHEREMODEL A (COLUMN) IS BETTER THAN MODEL B

(ROW) ACCORDING TO THEMODIFIED DIEBOLD-MARIANO TEST AT A

0.05 LEVEL (MAE TEST)

model when the nRMSE and the MAE are considered. However,
the RW model seems to be the best predictor of the SIGN. It is
also important to notice that according to the MAD, that is a
measure robust to outliers, the nonlinear models outperform the
concurrent linear specifications in most of the cases.

To check if the forecasts produced by different models are
statistically different or not, the number of series where model
A (column) is better than model B (row) according to the mod-
ified Diebold-Mariano test [6], [11] at a 0.05 level are shown in
Tables VII and VIII (see Appendix C for details). The results in
Table VII concern to the nRMSE test and the ones in Table VIII
concern to the MAE test.

Observing Tables VII and VIII, we conclude that, in most
of the series, the differences in the forecast performance be-
tween NCSTAR, ANN, AR, and RW models are not signifi-
cant according to the Diebold-Mariano test. It is important to
notice that the NCSTAR model is better than the AR and ANN
specifications when the Sri Lanka series is considered. This is
not surprising, because that is the only series where the nonlin-
earity is uniformly spread. It is also important to observe that for
1-step-ahead forecasts and specially when the MAE is used as
a comparison criterion, the results are quite supportive in favor
of the linear and nonlinear specifications against the naïve RW
model.

VII. CONCLUSION

This paper has presented and compared different alternatives
to model and forecast monthly exchange rates time series. The
models that have been used are the neuro-coefficient smooth
transition autoregressive (NCSTAR) model, artificial neural net-
works (ANN), linear autoregression (AR), and, the random walk
(RW) formulation.

In conclusion, we can now answer the questions raised ear-
lier. How relevant is nonlinearity in the series? Nonlinearity is
only relevant in some periods of the series, specially in the be-
ginning or in the end of the sample. Is the nonlinearity uniformly
spread? No, with the exception of the Sri Lanka, the nonlinearity
is concentrated in only a small subsample of the data. Are non-
linear models better predictors? Nonlinear models stand a better
chance only in the cases where nonlinearity is uniformly spread.
Otherwise, there is no significant differences in the forecasts
made by a concurrent linear model. What is the lost (if any)
of applying a nonlinear alternative when there is no evidence of
nonlinearity? If a statistical procedure to build nonlinear models
is used, probably the final estimated model will be close to a
linear specification and the forecasting ability will be close to
the one from a linear specification. In this paper we have used a
statistical approach to build the NCSTAR model and the ANN
formulations have been estimated with Bayesian regularization
that tries to build a parsimonious model based on Bayesian fun-
damentals. Concerning the predictability of exchange rates, we
conclude that for one-step-ahead forecasts and when the MAE
is used as a performance metric, there are some supportive re-
sults in favor of linear and nonlinear models against the simple
random walk.
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APPENDIX A
EVALUATING FORECASTS

The performance measures used in this paper are the fol-
lowing.

1. Normalized root mean squared error (nRMSE):

(20)

where is the estimated in-sample unconditional vari-
ance of the series.

2. Mean absolute error (MAE):

(21)

3. Median absolute deviation (MAD):

median median (22)

The MAD is as a measure that is robust to outliers.
4. The proportion of times the sign of excess returns is cor-

rectly forecasted (SIGN):

(23)

where

if ;
otherwise.

APPENDIX B
FORECASTING WITHNONLINEAR MODELS

Multistep forecasting with nonlinear models is more chal-
lenging than forecasting with linear models. See, for example,
[10, Sec. 8.1] for a general discussion.

Consider the simple nonlinear model defined as

(24)

where is a nonlinear function with parameter vector.
The term is an independent identically distributed random
variable with zero mean and finite variance. The history of the
process up to time is called .

Due the fact that , the optimal one-step-
ahead forecast of is given by

(25)

which is equivalent to the optimal one-step-ahead forecast when
is linear.

For multistep forecasts, the problem is much more compli-
cated. For two-step-ahead the optimal forecast is given by

(26)

where is the density of . Usually the expression
(26) is approximated by numerical techniques, such as, for ex-
ample, Monte Carlo or bootstrap.

The Monte Carlo method is a simple simulation technique for
obtaining multistep forecasts. For model (24), the-step-ahead
forecast is defined as

(27)

where is the number of replications and

(28)

is a random number drawn from a normal distribution
with the same mean and standard deviation as the in-sample
estimated residuals.

In this paper we adopt the Monte Carlo method with 2000
replications to compute the multistep forecasts.

APPENDIX C
THE DIEBOLD–MARIANO TEST

In order to test if the forecasts produced by two concurrent
methods are statistically different or not, we use the Diebold-
Mariano statistic [6] with the correction proposed by [11]. Sup-
pose that a pair of -steps-ahead, forecasts have produced the
errors , . The quality of the fore-
casts is measured based on a specified loss function of
the forecast error. Defining

(29)

and

(30)

the Diebold–Mariano statistic is

(31)

where

(32)

and

(33)

Under the null hypothesis, is asymptotic normally dis-
tributed with zero mean and unit variance. However, the test
is oversized even in moderate samples. To circumvent this
problem, [11] proposed the following statistic:

(34)

where .
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Under the null, is assumed to have a Student’sdistribu-
tion with degrees of freedom.

In this paper we adopt the following loss functions:

for the test; and

for the test.
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