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Modeling Exchange Rates: Smooth Transitions,
Neural Networks, and Linear Models

Marcelo C. Medeiros, Alvaro Veiga, and Carlos Eduardo Pedreira

~ Abstract—The goal of this paper is to test for and model non- autoregression (FAR) [4] and the single-index coefficient
linearities in several monthly exchange rates time series. We apply regression model [34]. A modeling strategy for the NCSTAR
two different nonlinear alternatives, namely: the artificial neural- model was developed in [19] and [20].

network time series model estimated with Bayesian regularization The bl f thi ; foll Section Il di th
and a flexible smooth transition specification, called the neuro-co- € plan or this paper Is as follows. section ISCusses the

efficient smooth transition autoregression. The linearity test rejects NCSTAR model and briefly describes the modeling strategy.
the null hypothesis of linearity in 10 out of 14 series. We compare, Section Ill outlines the neural network models with Bayesian
using different measures, the forecasting performance of the non- regularization. The benchmark models are described in Section
linear specifications with the linear autoregression and the random IV. Section V gives a description of an experiment comparing
walk models. _ o the forecasting performance of the NCSTAR and the neural net-

Index Terms—Bayesian regularization, exchange rates, neural \york models with the benchmark alternatives. The results are
networks, smooth transition models, time series. . . . . )

discussed in Section VI. Finally, Section VII concludes.

|. INTRODUCTION Il. THE NCSTAR MODEL

URING the last two decades many different nonlineak. Mathematical Formulation

models have been proposed in the Iltergture to model ar]dConsider a linear model with time-varying coefficients ex-
forecast exchange rates. Several authors claimed that excha&%gsed as
rates are rather unpredictable, and that a random walk mode

is often a better predictor than concurrent nonlinear models. Y = P\zs + & (1)
See, for example, [3], [9], [21], and [22]. With this concern in
mind, some questions should be raised: How relevant is th@ereg, = [¢\”, ¢{", ..., P is a vector of real coefficients

nonlinearity in the series? Is the nonlinearity uniformly spreadihdz, = [1,z,]'. z;, € IR” is a vector of lagged values gf
Are nonlinear models better predictors? If there are periogdad/or some exogenous variables. The random ¢giisia nor-
of the series with no nonlinearity, what is the lost (if any) ofmally distributed white noise with variane€. The time evolu-

applying a nonlinear model? Without having the intentiofion of the Coefﬁcientsi)gj) of (1) is given by
of solving these fundamental and complex questions, this

paper addresses the problem by benchmarking two nonlinear W) h , )

alternatives against the linear autoregressive (AR) and the®:” = Y Xl (@ixi = B;) = Xo.  j=0.....p (2)
random walk (RW) models. Several monthly exchange rates =1

time series are used. For similar papers, see [26] and [24]. where);; and )\ are real coefficients.

The nonlinear alternatives considered in this paper areThe function F(w)x; — ;) is the logistic function, where
the artificial neural network (ANN) model [14] and a novel, ¢ IR? is a vector of input variablesy; = [wii, .. . ,wq)
flexible model called the neuro-coefficient smooth transitiognd 3; are real parameters. The normufis called theslope
autoregression (NCSTAR). The NCSTAR specification can Byrameter In the limit, when the slope parameter approaches
interpreted as a linear model where its coefficients are giv@ifinity, the logistic function becomes a step function.
by a single hidden layer feedforward neural network and hasNote that (1) can be interpreted as a linear model where its co-
the main advantage of nesting several well-known nonlinegfiicients are given by a single hidden layer feedforward neural
formulations, such as the self-exciting threshold autoregressiggtwork. The neural-network architecture representing (2) is il-
(SETAR) [30], [31], the smooth transition autoregressiofystrated in Fig. 1. The elementsxf, called the transition vari-
(STAR) [2], [16], [28], and the ANN model. Furthermore, ifables, can be formed by lagged valueg;oind/or any exoge-
the neural network is interpreted as a nonparametric univerggls variables. In this paper, we assume thais formed by
approximation to any Borel-measurable function, the NCSTAR subset of the elements sf and that there are no exogenous
model is directly comparable to the functional coefficienfariables in the model specification.

Equations (1) and (2) represent a time-varying model with

Manuscript received August 25, 2000; revised March 15, 2001. a multivariate smooth transition structure defined/blidden
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1. Specification

a) Select the variables of the model.
b) Test linearity.

0) c) If linearity is rejected, determine the number of
q)t hidden units.

)] 2) Parameter estimation of the specified model.
q)t 3) Model evaluation based on misspecification testing.

a) Test for parameter constancy.
b) Test for serial independence of the error term.
c) Test for homoscedasticity of the error term .

These three stages are briefly described below.
1) Specification:
¢t(p) a) Variable Selection:The first step of the specification
stage is to select the variables of the model. In this step we will
not distinguish between the variablesanandx; in (4). Fol-
Fig. 1. Architecture of the neural network. lowing [18], we adopt the simple procedure proposed by [25].
Their proposal uses global parametric least squares estimation

linear

P h and is based on a polynomial expansion of the model. We pro-
=g+ Z aYi—j + Z AoiF(Wixy — 3:) vide a brief overview of the method. For more details see [25].
j=1 i=1 Consider model (4). The first step is to expand function
P R G(z,x¢; W) into a k-order polynomial expansion around an
+ Z {Z N F(wixy — /31)} Yi—j + & (3) arbitrary fixed point in the sample space. After merging terms,
j=1 \i=1 one obtains

or in vector notation P P
/
G(ze, % ¥) = 'z + Z Z Pz ZiitZja.t

ye = Gz, x;¥) + 4 s=ljz=j1
1B Y4 P
= a/Zt + Z )\IiZtF(w/iXt — ﬁz) + &¢ (4) 4+ ...+ Z . Z ejl...ijjht e Zgp ot
i=1 Jji=1 Je=jr—1
where + R(ze,x4; W) (5)
U=[a,A,.. X, w, -, B, 0] where R(z;,x; ¥) is the remainder and th#s, p's, andw €

IRP*! are parameters. Note that the terms involvingnerged
is a parameter vector witfy + 1) x A+ (p + 1) x (h+ 1) with the terms involvingz,.

elements The second step is to regregon all variables in the polyno-
mial expansion and compute the value of a model selection cri-
a=[ag, ..., ] =[=Aoo,. .., —Apo]'; and terion, such as, for example, the Akaike’s information criterion
Xi = [Aois - Al (AIC). After that, remove one variable from the original model

and regresg; on all the remaining terms in the expansion and

Note that model (4) is, in principle, neither globally nor lotompute the value of the AIC. Repeat this procedure by omit-
cally identified. To ensure the identifiability of (4) we have tQjng each variable in turn. Continue by simultaneously omitting
impose the following restrictiongh < ... < #, andwi; > 0,  two regressors of the original model and proceed in that way
@ = 1,..., h. For details on identifiability concepts see, e.gyntil the polynomial expansion becomes a function of a single
[27], [15], [12], [1], [32], [18]. regressor. Choose the combination of variables that yields the

The NCSTAR model has the main advantage of nesting se¥pest value of the AIC. The selected variables will compose
eral well-known nonlinear formulations, such as, for examplge vectorz,.
the SETAR, STAR, and ANN models. b) Testing Linearity:In practical nonlinear time series
modeling, testing linearity plays an important role. In the
context of model (4), testing linearity has two objectives. The

In this section, we briefly outline a modeling technique basdiist one is to verify if a linear model is able to adequately
on statistical inference to build the NCSTAR model. For morgescribe the data generating process. The second one refers
details, see [19] and [20]. This amounts to proceeding fromta the variable selection problem. The linearity test is used to
linear model to the smallest NCSTAR model and gradually taletermine the elements gf. After selecting the elements of
ward larger ones through a sequence of Lagrange multipligith the procedure described above, we choose the elements of
(LM) tests. Finally, after the model has been estimated, itis eval; by running the linearity test described below settagqual
uated by some misspecification tests. For similar ideas, see [38]gach possible subset of the elements,cdnd choosing the
[28], and [7]. The modeling cycle can be summarized as followsne that minimize the-value of the test.

B. Modeling Cycle
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In order to test for linearity, (4) is rewritten as using the linearity test described above and test the linear model
against the nonlinear alternative with only one hidden unit. If the
linearity is rejected, then fit a model with one hidden unit and
test for the second one. Proceed in that way until the first accep-

I
=0z + Y Nz F(vi(@ix — c)) + & (6)

=t tance of the null hypothesis. The individual tests are based on
wherey; = [lwil|, wi = wi/vi, ande; = Bi/vi, i = 1,...,h. linearizing the nonlinear contribution of the additional hidden
The transition functior”(v;(w;x; — ¢;)) is redefined as neuron. Consider the general case in which the model contains

h hidden units, and we want to know whether an additional unit

1 1
F(yi(@ix, — ¢;)) = : —=. (™ i i . Wri
(vi(@ixy — ¢;)) [ op—n@x —a) 2 (7) is required or not. Write the model as
. . . . . . . }L
Suptractlng or)e—half from thg Io_g|st|.c. funcuoq is useful just in v = a'zy + Z Nozy F (i (@)%, — ;)
deriving linearity tests where it simplifies notation but not affect =
the argument. The models estimated in this paper do not contain + F (s (@)1 X — agr)) + &1 (10)

that term.
Consider (6) with (7) and the testing of the hypothesis that An appropriate null hypothesis is

y: 1S a linear process. Note that(0) = 0, implying the null

hypothesis of linearity Ho : Y11 = 0. (11)

. — i Note that (10) is only identified under the alternative. Using a
Ho:v =0 i=1,...,h (8) ; ) . .
third-order expansion and after rearranging terms, the resulting
Hypothesis (8) offers a convenient starting point for studyingiodel is

the linearity problem in the LM (score) testing framework. n

Note that model (6) is not identified under the null. A con- y =n'zy + Z)\ 2 F (i (@)%, — ¢;))
sequence of this complication is that the standard asymptotic =1
distribution theory for the likelihood ratio or other classical test 7 g P—q q
statistics for testing (8) is not available. We solve the problem + Z Z Oijal i + Z Z Bij i 14t
by replacingF (~;(w'x; — ¢;)) by a third-order Taylor expan- i=1 j=i i=1 j=1

sion approximation about, = 0,7 =1,...,hA.
After rearranging terms, we get

+
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SN bt g ewn e The null hypothesis is defined agH 6;; = 0, 3;; = 0,
i=1 j=i k=j I=k pi; = 0. Again, standard asymptotic inference is available.
P~q 4 4 4 2) Parameter Estimation:After specifying the model, the

+ ZZZ/Jijklz;“‘yta:jyta:kytxu + &t (9) parameters should be estimated by nonlinear least squares
i=1 j=1 k=j I=k (NLS). Hence the parameter vectrof (4) is estimated as
wheree! = &, + R(z:,x4;¥). R(z:,%x:;¥) is the combined ¥ = argminQ (W)
w

remainder of the third-order Taylor expansion of the logistic
functions. The vectog; € IR” 7 is formed by the elements ) )
of z, that are not in,. The null hypothesis is defined as H = af%m'“Z@t — G(ze,x;¥))". (13)
971]' =0, /3“ =0, Huk =0, /3“k =0, Hijkl =0, andﬁijkl =0. =
From (9) it is seen that the test is just a test of a linear hypotbinder some regularity conditions the estimates are consistent
esis in a linear model, so that standard asymptotic inferencearsd asymptotically normal [5].
available. The estimation procedure is carried together with the test for
It is important to stress that the linearity test against a STAIRe number of hidden units. First we test for linearity against
model [28] and the neural-network linearity test [29] are specialmodel given by (4) witth = 1. If linearity is rejected we
cases of the test discussed here. estimate the parameters of the nonlinear model and test for the
c) Determining the Number of Hidden Unit$n a prac- second hidden unit. If the null hypothesis is rejected, we use the
tical situation one wants to be able to test for the number e§timated values for the first hidden unit as starting values and
hidden units of the neural network. The basic idea is to starse the procedure described in [19] to compute initial values for
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the second hidden unit. We proceed in that way until the firatell-specified distributions. The regularization parameters are
acceptance of the null hypothesis. related to the unknown variances associated with these distribu-

3) Model Evaluation: After the NCSTAR model has beentions and can be estimated with statistical techniques. Reference
estimated it has to be evaluated. This means that the assumpt[Bhgive a detailed discussion of the use of Bayesian regulariza-
under which the model has been estimated have to be checkih in combination with the Levenberg—Marquardt optimiza-
These assumptions include the hypothesis of no serial cortien algorithm. The main advantage of this method is that even
lation, parameter constancy, and homoscedasticity. Testing ifdhe ANN model is over-parametrized, the irrelevant parameter
normality is also a common practice in econometrics. In thestimates are likely to be close to zero and the model behaves
paper we use the tests discussed in [20]. They are Lagratige a small network.
multiplier (LM) type tests of parameter constancy against the Allthe ANN models in this paper are estimated with Bayesian
alternative of smoothly changing ones, of serial independerragularization in combination with the Levenberg-Marquardt al-
of the error term, and homoscedasticity against the hypotheg@ithm. The starting-values for the parameters are selected by
that the variance smoothly changes between regimes. To testha Nguyen—Widrow rule [23].
normality we use the Jarque—Bera test [13].

IV. BENCHMARK MODELS
lll. ARTIFICIAL NEURAL NETWORKS AND BAYESIAN

In this section we outline two simple linear models that are
REGULARIZATION

often used as benchmark formulations in the financial time se-
A feedforward artificial neural network (ANN) time seriesries literature.
model can be defined as
N A. The Random Walk (RW) Model

= G(z;W) = Ao + Z NF(Wlzy — Bi) + e (14) Consider the following RW model for the level of the ex-
i=1 change rate series

whered = [Ag, ..., A, an~dwi = [wi1i, ., wp| are vectors Pr =+ proy (17)

of real parameters, = [1,z;]’, z: € R? is a vector of lagged

values ofy,, {¢;} is assumed to be a sequence of independentherep, is the price at the time instaht« is a constant, and,
normally distributed random variables with zero mean and finite a random term identically distributed.

variance, andf(w}z, — /;) is the logistic function. Note that  Taking the first difference of the logarithms, the resulting

model (14) is just a special case of the NCSTAR model. model becomes
In this paper we adopt the regularization approach to estimate
the ANN models. The fundamental idea is to find a balance be- ye =In(p) —In(p—1) = c+e (18)

tween the number of parameters and goodness of fit by penak ) . . .

izing large models. The objective function is modified in such €'Yt 1S the refurn at time an_dc IS & constant. U.Slja”%.'s

a way that the estimation algorithm effectively prunes the ndssumed to b_e a no_rmally distributed random variable with zero
work by driving irrelevant parameter estimates to zero dum{aean and finite variance.

the estimation process. The parameter vet@ estimated as B. The Linear Autoregressive Model

V= argminQT(W) A linear autoregressive (AR) model of ordefor the returns
v . is defined as
= ar%mlr(nQT(i') + (1 -mQr¥)) (15)
Y=o+ o1+ ...+ opl—p et (19)
- T _ . 2 * H _
whereQr (W) =3 ,_, (i — G(z;¥))*, Q1 (¥) is theregular whereag, ay, .. . , o, are real coefficients and is a identically

ization or penalty termand»n > 0 is often called thelecay

constant The usual penalty is the sum of squared parameteré‘orma”y distributed random variable with zero mean and finite

variance. The order of the model is determined by inspection of
P I p I the autocorrelation and partial autocorrelation functions (ACF

Qr@) =) N +> A+> > Wl (16) and PACF).

=0 =1 j=1l:=1

The forecasting ability of the ANN model can depend cru- V. THE EXPERIMENT

cially on the decay constant especially with small in-sample  To assess the practical usefulness of the NCSTAR and ANN
periods. Ify is too large, the network may still overfit, and if itmodels in comparison with the linear AR and RW models
is too small, the ANN model does not have an adequate fit amd to address the questions proposed in the Introduction, an
the estimation period. Usually, different types of parameters @xperiment with 14 different monthly exchange rates time
the ANN model will usually require different decay constantseries is conducted. We have decided to work with monthly
for good forecasting ability. time series just to avoid to model any ARCH effect in the
One approach to determine the optimal regularization paragenditional variance of the series. It is well known that daily
etern is the Bayesian framework of [17], where the parame&xchange rates are more volatile than the monthly ones and,
ters of the network are assumed to be random variables with course, will have more nonlinearity to model. The data
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TABLE |
DATA SETS
Series Description Period T to
1 - Austria Austrian Schillings to one US Doilar Jan/1971-Jul/2000 354 298
2 - Belgium Belgian Francs to one US Dollar Jan/1971-Jul/2000 354 298
3 - Denmark Danish Krones to one US Dollar Jan/1971-Jul/2000 354 298
4 - Finland Finnish Markkas to one US Dollar Jan/1971-Jul/2000 354 298
5 - France French Francs to one US Dollar Jan/1971-Jul/2000 354 298
6 - Germany German Marks to one US Dollar Jan/1971-Jul/2000 354 298
7 - The Netherlands Dutch Guilders to one US Dollar Jan/1971-Jul/2000 354 298
8 - Norway Norwegian Krones to one US Dollar  Jan/1971-Jul/2000 354 298
9 - Sweden Swedish Krones to one US Dollar Jan/1971-Jul/2000 354 298
10 - Spain Spanish Pesetas to one US Dollar Jan/1973-Jul/2000 330 274
11 - India Indian Rupees to one US Dollar Jan/1973-Jul/2000 330 274
12 - Sri Lanka Sri Lanka Rupees to one US Dollar ~ Jan/1973-Jul/2000 330 274
13 - Australia US Dollars to one Australian Dollar  Jan/1971-Jul/2000 354 298
14 - United Kingdom US Dollars to one British Pound Jan/1971-Jul/2000 354 298
are summarized in Table I. The series were obtained from TABLE I
Economagiqwww.economagic.com). LINEARITY TEST
Both in-sample and out-of-sample performance are consi S - -
) . . o . . eries Lagsinz; Lagsinzx; p-value
ered. T_he first step is to test I|r_1ear|ty in all se_rles._We dlscardz [~ Ausia 1.4 1 0.0103
the series that do not have evidence of nonlinearity according ; _ gelgjum 1,2,3 1,3 0.0068
the test described in Section II-B. For the series that turn out 3 - penmark 1 1 0.4470
be nonlinear we proceed estimating linear and nonlinear mode 4 - Finland 1,2,3,4 2,4 2.0191 x 107°
each of which are evaluated according to their in-sample € 5 - France 1,3,6 3,6 0.0019
planatory power and out-of-sample forecasting ability. The for( 6 - Germany 1,4 1 0.0079
casts made by each estimated model are compared accorc¢ 7 - The Netherlands 1 1 0.5078
to the following statistics (described in Appendix A: nRMSE 8 - Norway 1 1 0.1300
MAE, MAD, and SIGN. - Sweden 1,6 L 0.0059
The forecasting experiment can be viewed of consisting - 10 - Spain 1,3 1 0.0085
; 11 - India 1,3,5,8 1,3,5,8 2.5690 x 10~1°
the following steps. 12 - Sri Lanka 1,2,6.8 8 0
1) Split the sample into two subsamples: the estimation € 13 - Australia 1,4 1,4 0.0001
(t=1,...,to) and the forecasting set£ to+1,...,7). 14 - United Kingdom 1,2 1 0.1961

2) Estimate the parameters of each model using only the es-

timation set and analyze the in-sample performance ofthe o ) ) ) ]
test linearity in a rolling window with 100 observations. The

Fort = to,...,T — 4, compute the out-of-sample fore-p-value of the linearity test for each sub-sample is shown in

3)

4)

estimated models.

casts of 1- to 4-step-ahedpl, .., and the associated fore-
cast errors denoted k¥ ;;, wherek is the forecasting
horizon. Multistep forecasts for the nonlinear models akf

Fig. 2. With the exception of the Sri Lanka, nonlinearity is
only significant in a few number of periods, specially in the
ginning or in the end of the series. This is an interesting

obtained by Monte Carlo simulation as described in Ad_esult and expl_ains why linearity is not strongly rejected for
most of the series considered here.

pendix B

For each forecasting horizon, compute different perfor-

mance measures.

VI. RESULTS

A. Specification and Estimation

Lanka, and India. The results are summarized in Table II.

estimating the models.
The specification and estimation results for the NCSTAR
models can be found in Table Ill. This table shows, for each
series, the estimated number of hidden units the p-value
of the LM test of serial correlation of orderin the residuals
(LM E4(r)), thep-value of the LM test of parameter constancy
Using the variables selected by the AIC and the linearity tegt M%), thep-value of the LM test of homocedasticitf{/Z),
described in Section 1I-B, evidence of nonlinearity was founithe p-value of the Jarque-Bera (JB) test of normality of the
in ten series: Austria, Belgium, Finland, France, Germamgsiduals, and, finally, the estimated residual standard deviation.
Sweden, Spain, India, Sri Lanka, and Australia. However, Analyzing the results in Table Ill, we observe that all the
linearity was strongly rejected only in Finland, Australia, Sréstimated models have uncorrelated errors at 0.01 level. Only

For those series that turned out to be nonlinear, we continue

Sweden and Australia have evidence of serial correlated errors

To check if the nonlinearity is uniformly spread over thé€of order 1) at 0.05 level. The hypothesis of parameter con-
in-sample period, we fix the specification af and x, and stancy is rejected at 0.05 level but not at 0.01 level for France
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Fig. 2. p-value of the linearity test.

TABLE Il
SPECIFICATION AND ESTIMATION RESULTS—NCSTAR MODEL

Series  h LM@(1) LM®(2) LM7%6) LMY LMZ JB E
Austria 1 07720 02933 06973 06270 08084 02314 0.0259
Belgium 1 04365 07502 02342 04537 0.1963 02208 0.0248
Finland | 04330 02944 07634 04206 0.6865 0.0000 0.0216
France 2 09072 04074  0.1935 00262 06150 0.0078 0.0239
Germany 1 04232 03812 05026 06417 06425 0.1050 0.0258
Sweden 1| 00203 00715 00240 05776 0.3946 0.0000 0.0216

1

1

2

2

Australia 0.0439 0.1281 0.3585  0.0144 0.0631 0.0000 0.0204
Spain 0.1706 0.2590 0.5155  0.3407 09207 0.0000 0.0242
Sri Lanka 0.6268 0.0758 0.0547  0.5389 0.8013 0.0000 0.0151
India 0.7260 0.4370 03675  0.1755 0.4691 0.0000 0.0130

and Australia. The only case where the null hypothesis of heersus the linear combination of transition variables. With few
moscedasticity is rejected (at 0.05 level) is France. Due the fasiceptions, the transitions between regimes are rather smooth.
that the null hypothesis of serial independence, parameter conThe specification and estimation results for the AR models
stancy, and homoscedasticity are not strongly rejected (see @ne shown in Table V. The columns show, respectively, the se-
p-values of the tests) we do not take this into account and \heted lags, the-value of the Ljung-Box test of order 1, 2, and
accept the estimated models as our final specifications. Fig63the p-value of the Jarque-Bera (JB) test of normality of the
shows, for each model, the scatter plot of the transition functioesiduals, and the estimated residual standard deviation.
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Fig. 3. Scatter plot of transition function versus the linear combination of transition variables.

SPECIFICATION AND ESTIMATION RESULTS—AR MODEL

TABLE IV

Series  Lags LB(l) LB(2) LB(6) JB &
Austria 1 0.8040 0.5350 0.6140 0.0522 0.0264
Belgium 1 0.8170 0.3461 0.2820 0.0921 0.0257
Finland 1.2 0.8020 0.8832 0.8210 0.0000 0.0224
France 1,3 0.6774 03760 0.6700 0.0004 0.0254
Germany 1 0.7630 0.4420 0.6110 0.0630 0.0266
Sweden 1,2 0.8862 0.7781 0.4851 0.0000 0.0223
Australia 1,4 08100 0.8781 0.9823 0.0000 0.0213
Spain 1 0.8540 0.3660 0.3290 0.0000 0.0250
SriLanka 1,8 0.8720 0.8810 0.9360 0.0000 0.0179
India 1,8 0.4390 0.7100 0.5550 0.0000 0.0281

are heavily correlated pointing to the fact that a model with only
one hidden unit will be enough to model the data. Although not
shown here, the plots of the outputs of the hidden units of most
of the estimated models indicate that the hidden neurons are al-
most linear. This can be also checked by comparing the standard
deviation of the residuals from the ANN and AR models.

Additionally, we should stress that the standard deviation of
residuals from the NCSTAR model is smaller than the ones from
the linear AR and the ANN for all the series.

B. Forecasting Experiment

The forecasting results are shown in Tables VI-VIII. Table |
shows the number of series where each model is the best model
according to the performance measures used here. Note that

Observing Table IV, we note that all the linear models hawaore than one model can be the “winner” for each series, spe-
uncorrelated errors.

In Table V we show the lags in the ANN models, the number For one-step-ahead forecasts the linear AR model has the best
of hidden units, the minimum value of the absolute correlatigrerformance in 50% of the cases when the nRMSE, the MAE,
between the outputs of the hidden units of the estimated AN#d the MAD are used as performance measures. According to
models, and the residual standard deviation.

By inspection of Table V, we observe that, with exception aidvantage. For two-, three-, and four-step-ahead forecasts the
Australia and Sri Lanka, the hidden units of the ANN model®sults are not very clear and there is no evidence of a “winner”

cially according to theSIGNcriterion.

SIGN, the results are mixed, with the RW model having a small
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TABLE V
ESTIMATION RESULTS—ANN M ODEL

Series  Lags Hidden Units min{|X|) &
Austria 6 5 0.9680 0.0264
Belgium 6 5 0.9098  0.0256
Finland 6 5 0.9603 0.0224
France 6 5 0.9997  0.0254
Germany 6 5 0.9603  0.0266
Sweden 6 5 09835  0.0223
Australia 6 5 0.2395  0.0213
Spain 6 5 0.8734 0.0248
SriLanka 10 12 0.0156 0.0051
India 10 12 1.0000 0.0177

TABLE VI

NUMBER OF SERIES WHEREEACH MODEL IS THE BESTMODEL

I-step-ahead 2-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW
nRMSE 1 2 5 2 2 1 3 4
MAE 2 2 5 I 2 0 5 3
MAD 2 1 5 2 3 5 1 1
SIGN 3 2 3 4 3 3 4 6
3-step-ahead 4-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW
nRMSE 2 2 4 2 4 2 3 [
MAE 3 1 2 4 2 1 3 4
MAD 6 2 0 2 4 3 1 2
SIGN 3 4 2 5 1 4 3 6
TABLE VI

NUMBER OF SERIES WHEREMODEL A (COLUMN) IS BETTER THAN MODEL B
(Row) ACCORDING TO THEMODIFIED DIEBOLD-MARIANO TEST AT A 0.05
LEVEL (NnRMSE TEST)

1-step-ahead 2-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW
NCSTAR - 0 0 0 - 0 3 0
ANN | - 1 1 I - 1 1
AR 1 0 - 0 0 0 - 2
RW 0 2 3 - 0 0 0 -
3-step-ahead 4-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW
NCSTAR - 0 1 0 - 0 1 1
ANN 1 - 1 2 1 - 1 0
AR 0 0 - 0 0 1 - 0
RW 0 0 0 - 0 0 0 -
TABLE VIl

NUMBER OF SERIES WHEREMODEL A (COLUMN) IS BETTER THAN MODEL B
(Row) ACCORDING TO THEMODIFIED DIEBOLD-MARIANO TEST AT A
0.05 LEVEL (MAE TEST)

1-step-ahead 2-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW
NCSTAR - 0 0 0 - { 2 1
ANN 1 - 1 I 1 - i 2
AR 1 0 - 0 0 0 - 1
RW 2 5 4 - 0 0 0 -
3-step-ahead 4-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW
NCSTAR - 0 1 1 - 0 0 0
ANN 1 - l 1 | - 1 1
AR 0 0 - 1 0 0 - 0
RW 0 0 0 - 0 0 0 -
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model when the nRMSE and the MAE are considered. However,
the RW model seems to be the best predictor of the SIGN. Itis
also important to notice that according to the MAD, that is a
measure robust to outliers, the nonlinear models outperform the
concurrent linear specifications in most of the cases.

To check if the forecasts produced by different models are
statistically different or not, the number of series where model
A (column) is better than model B (row) according to the mod-
ified Diebold-Mariano test [6], [11] at a 0.05 level are shown in
Tables VIl and VIII (see Appendix C for details). The results in
Table VIl concern to the nRMSE test and the ones in Table VIl
concern to the MAE test.

Observing Tables VII and VIII, we conclude that, in most
of the series, the differences in the forecast performance be-
tween NCSTAR, ANN, AR, and RW models are not signifi-
cant according to the Diebold-Mariano test. It is important to
notice that the NCSTAR model is better than the AR and ANN
specifications when the Sri Lanka series is considered. This is
not surprising, because that is the only series where the nonlin-
earity is uniformly spread. Itis also important to observe that for
1-step-ahead forecasts and specially when the MAE is used as
a comparison criterion, the results are quite supportive in favor
of the linear and nonlinear specifications against the naive RW
model.

VIl. CONCLUSION

This paper has presented and compared different alternatives
to model and forecast monthly exchange rates time series. The
models that have been used are the neuro-coefficient smooth
transition autoregressive (NCSTAR) model, artificial neural net-
works (ANN), linear autoregression (AR), and, the random walk
(RW) formulation.

In conclusion, we can now answer the questions raised ear-
lier. How relevant is nonlinearity in the series? Nonlinearity is
only relevant in some periods of the series, specially in the be-
ginning or in the end of the sample. Is the nonlinearity uniformly
spread? No, with the exception of the Sri Lanka, the nonlinearity
is concentrated in only a small subsample of the data. Are non-
linear models better predictors? Nonlinear models stand a better
chance only in the cases where nonlinearity is uniformly spread.
Otherwise, there is no significant differences in the forecasts
made by a concurrent linear model. What is the lost (if any)
of applying a nonlinear alternative when there is no evidence of
nonlinearity? If a statistical procedure to build nonlinear models
is used, probably the final estimated model will be close to a
linear specification and the forecasting ability will be close to
the one from a linear specification. In this paper we have used a
statistical approach to build the NCSTAR model and the ANN
formulations have been estimated with Bayesian regularization
that tries to build a parsimonious model based on Bayesian fun-
damentals. Concerning the predictability of exchange rates, we
conclude that for one-step-ahead forecasts and when the MAE
is used as a performance metric, there are some supportive re-
sults in favor of linear and nonlinear models against the simple
random walk.
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APPENDIX A where f(e,41) is the density ok, ;. Usually the expression
EVALUATING FORECASTS (26) is approximated by numerical techniques, such as, for ex-
%rpple, Monte Carlo or bootstrap.

The Monte Carlo method is a simple simulation technique for
obtaining multistep forecasts. For model (24), istep-ahead
forecast is defined as

The performance measures used in this paper are the
lowing.
1. Normalized root mean squared error (nRMSE):

T—4 1 N @)
1 Z ét2+k|t Yetrlt = 3y Zyt+k|t (@7)
nRMSE(k) = = (20) -
T—to—=3 Ty whereXV is the number of replications and
wheresy is the estimated in-sample unconditional vari- ?Jt(+)k|t = Gfsn_1; ) + gt(+)k|t_ (28)
ance of the series.
2. Mean absolute error (MAE): £t(ifk|t is a random number drawn from a normal distribution
1 T—4 with the same mean and standard deviation as the in-sample
MAEk) = ———= Y _ el (21) estimated residuals.

T—t-3 t=to In this paper we adopt the Monte Carlo method with 2000

3. Median absolute deviation (MAD): replications to compute the multistep forecasts.

MAD(k) = mediarf|é, 4 — mediar{é,re)]).  (22) APPENDIX C
THE DIEBOLD—MARIANO TEST

The MAD is as a measure that is robust to outliers. )
4. The proportion of times the sign of excess returns is cor-IN order to test if the forecasts produced by two concurrent

rectly forecasted (SIGN): methods are statistically different or not, we use the Diebold-
' Mariano statistic [6] with the correction proposed by [11]. Sup-

1 T4 pose that a pair ok-steps-ahead, forecasts have produced the
SIGN(k) = r— > 6 (23) errors(éii)klt, égklt),t =to,...,T—k. The quality of the fore-
=t casts is measured based on a specified loss fungtin,,; ) of
where the forecast error. Defining
i K > 0; . .
"= {(1): gtgte?l\;vyiggflt =0 de = 9(& ) — 9 D) (29)
and
APPENDIX B 3 1 T—4
FORECASTING WITHNONLINEAR MODELS d= ——— Z dy (30)
. . . . . T'—to—3 t=tg
Multistep forecasting with nonlinear models is more chal-
lenging than forecasting with linear models. See, for examplibe Diebold—Mariano statistic is
[10, Sec. 8.1] for a general discussion. . _
Consider the simple nonlinear model defined as S=[V(d)] d (31)
yr = Gyr—1;¥) + & (24) where
whereG(+) is a nonlinear function with parameter vectsr = N — N
The tern(w)t is an independent identically distributed random Vid) = T—t3—3 Yo+ ZZ%] (32)
variable with zero mean and finite variance. The history of the =t
process up to timeis called<s;. and
Due the fact thatF'(e;11|S:) = 0, the optimal one-step- T4
ahead forecast of;+1 is given by A = _ Z (dy — d)(dy_; — d). (33)
tT—to—3 t=to+ti Z
Ter1e = E(yr1|Sh) = G(y; W) (25) o

o _ _ Under the null hypothesis$ is asymptotic normally dis-
whichis equivalentto the optimal one-step-ahead forecast WhaR teq with zero mean and unit variance. However, the test
G(-) is linear. _ is oversized even in moderate samples. To circumvent this

For multistep forecasts, the problem is much more Compb'roblem, [11] proposed the following statistic:
cated. For two-step-ahead the optimal forecast is given by

. 1— 2k +n~ (k- 1)]"?
ot = E(ural30) = E(Cuas9)[30) g |2 HE T MEZ D s (e
= | G den:s @) o o
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Under the null,S* is assumed to have a Studerttdistribu-  [24] M. Qi and Y. Wu, “Exchange rates and fundamentals: Evidence from

tion with (n _ 1) degrees of freedom. ou-of-sitsr)rép;)lel\l;ﬁ_rregastingtusi)ing nke)ll,.ll'(;l]| r(ljetworks,” in Computational Fi-
. . . nance : ress, to be published.
In this paper we adOpt the foIIowmg loss functions: [25] G. Rech, T. Terasvirta, and R.Ql'schernig, “A simple variable selection
technique for nonlinear models,” \WWorking Paper Series in Economics
9(§t+k|t) = ét2+k|t7 for then RM S E test; and and Finance 296Stockholm School of Economics, 1999.
R . [26] N. Sarantis, “Modeling nonlinearities in real effective exchange rates,”
9(Etqrie) = [€tqrpel, forthe MAE test. J. Int. Money Financevol. 18, no. 1, pp. 27—45, 1999.
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