
International Journal of Forecasting 25 (2009) 304–327
www.elsevier.com/locate/ijforecast

Asymmetric effects and long memory in the volatility of Dow
Jones stocks

Marcel Schartha, Marcelo C. Medeirosb,∗

a Department of Economics, The University of Amsterdam, Netherlands
b Department of Economics, Pontifical Catholic University of Rio de Janeiro, Brazil

Abstract

Does volatility reflect a continuous reaction to past shocks or do changes in the markets induce shifts in the volatility
dynamics? In this paper, we provide empirical evidence that cumulated price variations convey meaningful information about
multiple regimes in the realized volatility of stocks, where large falls (rises) in prices are linked to persistent regimes of high
(low) variance in stock returns. Incorporating past cumulated daily returns as an explanatory variable in a flexible and systematic
nonlinear framework, we estimate that falls of different magnitudes over less than two months are associated with volatility
levels 20% and 60% higher than the average of periods with stable or rising prices. We show that this effect accounts for large
empirical values of long memory parameter estimates. Finally, we show that, while introducing more realistic dynamics for
volatility, the model is able to overall improve or at least retain out-of-sample performance in forecasting when compared to
standard methods. Most importantly, the model is more robust to periods of financial crises, when it attains significantly better
forecasts.
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1. Introduction

Does stock return volatility reflect a long-lived
reaction to past shocks, or do structural breaks in-
duce shifts in the volatility dynamics? Long range
dependence (highly persistent autocorrelations) is a
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well documented stylized fact of the volatility of fi-
nancial time series. This effect was first analyzed
by Taylor (1986) for absolute values of stock re-
turns. Ding, Granger, and Engle (1993) and de Lima
and Crato (1993) considered powers of returns. More
recently, Andersen, Bollerslev, Diebold, and Ebens
(2001) studied the case of realized volatility.1 Even

1 Realized variance is defined as the sum of squared intraday
returns sampled at a sufficiently high frequency, consistently
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though the traditional GARCH (Generalized Au-
toregressive Conditional Heteroscedasticity) models
of Engle (1982) and Bollerslev (1986) are able to
describe the recurrent clusters in volatility, the short
run dynamics of those models were shown to be an
incomplete description of the data. Volatility breeds
volatility; but could volatility today reflect a particu-
larly volatile week a year ago? How do markets keep
the memory of past movements? Furthermore, is there
any explanation for the long-range dependence?

In this paper, we propose a novel approach to
modeling and forecasting volatility by considering the
possibility of structural changes and regime switches
in volatility dynamics. We inquire how changes in
the markets affect volatility. The goal is to link
regime switches to long-range dependence, as well
as to provide empirical evidence that long-term
price variations convey meaningful information about
multiple regimes in the realized volatility of stocks.
From the asymmetric effects literature, it is known that
negative returns are related to subsequent increases
in volatility. Econometric models such as Nelson’s
(1991) Exponential GARCH (EGARCH) and the
GJR-GARCH of Glosten, Jagannathan, and Runkle
(1993) have been proposed to capture this effect.
Nevertheless, the literature so far has focused almost
exclusively on the relationship observed over one or a
few days. For example, Andersen et al. (2001) ran a
regression with a lagged negative return dummy, and
concluded that the economic impact of the leverage
effect on the realized variance of stocks belonging
to the Dow Jones Industrial Average Index (DJIA)
is marginal. An exception is Bollerslev, Litvinova,
and Tauchen (2005), who examined evidence on the
negative correlation between stock market movements

approximating the integrated variance over the fixed interval where
the observations are summed. Realized volatility is the squared
root of the realized variance. In practice, high frequency measures
are contaminated by microstructure noise such as bid-ask bounce,
asynchronous trading, infrequent trading, and price discreteness,
among others; see Biais, Glosten, and Spatt (2005). Ignoring
the remaining measurement error, this ex post volatility measure
can be modeled as an “observable” variable, in contrast to the
latent variable models. See Andersen, Bollerslev, Diebold, and
Labys (2003) and Barndorff-Nielsen and Shephard (2002) for the
theoretical foundations of realized volatility. Several recent papers
have proposed corrections to the estimation of RV in order to take
the microstructure noise into account; see McAleer and Medeiros
(2008) for a review. In this paper, we refer to realized volatility as a
consistent estimator of the squared root of the integrated variance.
and stock market volatility over intraday sampling
frequencies.

Focusing on the realized volatility (RV) series
of sixteen Dow Jones Industrial Average (DJIA)
stocks over the period from 1994 to 2003, we
consider the following questions: Are volatility levels
the same in periods of significant losses, like the
end of 2002 (when the DJIA reached a 4 year
bottom), and periods of significant gains, like the
year 2003 (when the DJIA went up 25%)? Can
negative returns over some horizons be associated with
regimes of higher volatility? We pursue the argument
by incorporating past cumulated daily returns in the
modeling framework of volatility series. Then, if
price variations matter, what are the magnitudes that
can be associated with regime switching behavior?
And what are the relevant horizons? To tackle these
considerations, our econometric strategy is developed
around a flexible and systematic modeling cycle based
on the tree-structured smooth transition regression
model (STR-Tree) of da Rosa, Veiga, and Medeiros
(2008). We choose a particular set of series in order to
represent the most important components of the DJIA.

Our main result is that the effect on volatility of
falls and rises in prices is in fact highly significant,
and accounts for the evidence of long-range depen-
dence in volatility, even in samples spanning several
years. For example, we show that the daily volatility
series of the IBM stock can be described by a nonlin-
ear model where falls of various magnitudes over less
than two months are associated with volatility levels
20% and 60% higher than the average of periods with
stable or rising prices. Based on those findings, we
propose a new model to describe and forecast realized
volatility. When compared with alternative specifica-
tions with short and long memory, the more realistic
model proposed in this paper is able to at least retain,
and in some cases improve, the overall out-of-sample
forecasting performance. Most importantly, the model
is more robust to periods of financial crises and high
volatility (which are the crucial ones from the point of
view of risk management), when it attains significantly
better forecasts. A model that allows for smoothly
changing parameters across time (in order to capture
possible structural breaks) is also estimated. However,
the regime switching mechanism controlled by past
cumulated returns turns out to be statistically supe-
rior. The results are uniform across 15 of the 16 series
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considered in this paper. Another important empirical
finding is that, in terms of forecast ability, a simple ex-
ponentially weighted moving average model applied
to the realized volatility series exhibits competitive be-
havior when longer horizons are considered. This is
in part explained by the low and persistently decaying
volatility at the end of the sample.

The rest of the paper is structured as follows.
Section 2 briefly discusses the tree-structured smooth
transition regression model, describing the inference
procedures, model building strategy and estimation.
In Section 3, we describe the data and the
specification of our model, and present the estimations
for models with structural breaks and asymmetric
effects. The relationship between asymmetric effects
and long memory is investigated in Section 3.2.
Section 3.3 contains an analysis of point forecasting
performances, and Section 4 concludes.

2. Modeling framework

In this section, we present the non-linear economet-
ric model used in the paper. The discussion is partially
based on da Rosa et al. (2008).

2.1. A brief introduction to regression trees

Let xt = (x1t , . . . , xqt )
′
∈ X ⊆ Rq be a vector

which contains q explanatory variables (covariates
or predictor variables) for a continuous univariate
response yt ∈ R, t = 1, . . . , T . Suppose that the
relationship between yt and xt follows a regression
model of the form

yt = f (xt )+ εt , (1)

where the function f (·) is unknown, and, in principle,
there are no assumptions about the distribution of
the random term εt , apart from E(εt |xt ) = 0. A
regression tree is a nonparametric model based on
the recursive partitioning of the covariate space X,
which approximates the function f (·) as a sum of
local models, each of which is determined in K ∈
N different regions (partitions) of X. The model is
usually displayed in a graph which has the format
of a binary decision tree, with N ∈ N parent (or
split) nodes and K ∈ N terminal nodes (also called
leaves), and which grows from the root node to the
terminal nodes. Usually, the partitions are defined by
a set of hyperplanes, each of which is orthogonal to
the axis of a given predictor variable, called the split
variable. The most important reference in regression
tree models is the Classification and Regression Trees
(CART) approach put forward by Breiman, Friedman,
Olshen, and Stone (1984). In this context, the local
models are just constants.

To mathematically represent a regression-tree
model, we introduce the following notation. The root
node is at position 0, and a parent node at position j
generates left- and right-child nodes at positions 2 j+1
and 2 j + 2, respectively. Every parent node has an
associated split variable xs j t ∈ xt , where s j ∈ S =
{1, 2, . . . , q}. Furthermore, let J and T be the sets of
indexes of the parent and terminal nodes, respectively.
Then, a tree architecture can be fully determined by J
and T.

Example 1. Consider a regime switching volatility
model that allows for multiple regimes associated with
asymmetric effects, where the influence of a negative
return on volatility for the next day depends on the
behavior of returns over the past week. Define r5,t as
the cumulated return over a horizon of five days and
rt as the daily return. Suppose that the daily volatility
(σt ) follows a piecewise constant process, where the
conditional mean depends on the sign of the return on
the previous day. This effect itself is weaker in “good
weeks” (or a positive return over the last five days)
than in “bad weeks” (or a negative return over the
last five days), such that σt = ω1 + εt if rt−1 ≥ 0,
σt = ω2 + εt if rt−1 < 0 and r5,t−1 ≥ 0 and
σt = ω3 + εt if rt−1 < 0 and r5,t−1 < 0. εt is white
noise, and ω3 > ω2 > ω1 are constants. This model
can be described in the regression tree with two parent
nodes at positions 0 and 2 (N = 2, J = {0, 2}) and
three leaves or terminal nodes at positions 1,5 and 6
(K = 3,T = {1, 5, 6}). See Fig. 1.

2.2. Tree-structured smooth transition regression

The STR-Tree model is an extension of the regres-
sion tree model, where the sharp splits are replaced by
smooth splits given by a logistic function defined as

G(x; γ, c) =
1

1+ e−γ (x−c)
. (2)

The parameter γ , called the slope parameter, controls
the smoothness of the logistic function. The regression
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Fig. 1. Graphical representation of the volatility model described in
Example 1.

tree model is nested in the smooth transition specifica-
tion as a special case obtained when the slope param-
eter approaches infinity. The parameter c is called the
location parameter.

Define log(RVt ) as the logarithm of the daily
realized volatility. In this paper, log(RVt ) follows
an augmented specification of the STR-Tree model
defined as follows.

Definition 1. Let zt ⊆ xt , such that xt is defined as
in Eq. (1) and zt ∈ Rp, p ≤ q. The sequence of
real-valued vectors {zt }

T
t=1 is stationary and ergodic.

Set z̃t = (1, zt )
′ and wt ∈ Rd is a vector of

linear regressors, such that wt 6⊆ xt . The time
series {log(RVt )}

T
t=1 follows a Smooth Transition

Regression Tree model, STR-Tree, if

log(RVt ) = HJT(xt ,wt ;ψ)+ εt

= α′wt +
∑
i∈T

β ′i z̃t BJi (xt ; θ i )+ εt (3)

where

BJi (xt ; θ i ) =
∏
j∈J

G(xs j ,t ; γ j , c j )
ni, j (1+ni, j )

2

×
[
1− G(xs j ,t ; γ j , c j )

](1−ni, j )(1+ni, j ) (4)

and

ni, j =



−1 if the path to leaf i does not include
the parent node j;

0 if the path to leaf i includes the right-
child node of the parent node j;

1 if the path to leaf i includes the left-
child node of the parent node j,

(5)
where HJT (xt ,wt ;ψ) : Rq+1
× Rd

→ R is a
nonlinear function indexed by the vector of parameters
ψ ∈ Ψ and {εt } is a martingale difference sequence.
Let Ji be the subset of J containing the indexes of the
parent nodes that form the path to leaf i . Then, θ i is
the vector containing all the parameters (γk, ck) such
that k ∈ Ji , i ∈ T.

The functions BJi (xt ; θ i ), 0 < BJi (xt ; θ i ) < 1,
are known as membership functions, and it is easy to
show that

∑
i∈T BJi

(
xt ; θ j

)
= 1, ∀ xt ∈ Rq+1.

The parameters of Eq. (3) are estimated by
nonlinear least-squares (NLS), which is equivalent to
quasi-maximum likelihood estimation. Let ψ̂ be the
quasi-maximum likelihood estimator (QMLE) of ψ
given by

ψ̂ = argmin
ψ∈Ψ

QT (ψ) = argmin
ψ∈Ψ

1
T

T∑
t=1

qt (ψ)

= argmin
ψ∈Ψ

{
1
T

T∑
t=1

[
log(RVt )

− HJT(xt ,wt ;ψ)
]2}

. (6)

Under stationarity of log(RVt ) and the identifi-
cation of the STR-Tree model, it is straightforward
to show that the estimator in Eq. (6) is consistent
and asymptotically normal; see da Rosa et al. (2008)
and Hillebrand and Medeiros (2008) for details.

2.3. Growing the tree

In this section we briefly present the modeling cycle
adopted in this paper. The choice of relevant variables,
the selection of the node to be split (if applicable),
and the selection of the splitting (or transition) variable
are carried out by a sequence of Lagrange Multiplier
(LM) tests, following the ideas originally presented
by Luukkonen, Saikkonen, and Teräsvirta (1988) and
widely used in the literature.2

Consider that log(RVt ) follows a STR-Tree model
with K leaves and we want to test whether the terminal

2 See, for example, Teräsvirta (1994), van Dijk, Franses, and Paap
(2002), van Dijk, Teräsvirta, and Franses (2002), or Medeiros and
Veiga (2009).
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node i∗ ∈ T should be split or not. Write the model as

log(RVt ) = α
′wt +

∑
i∈T−{i∗}

β ′i z̃t BJi (xt ; θ i )

+β ′2i∗+1z̃t BJ2i∗+1 (xt ; θ2i∗+1)

+β ′2i∗+2z̃t BJ2i∗+2 (xt ; θ2i∗+2)+ εt , (7)

where

BJ2i∗+1 (xt ; θ2i∗+1) = BJi∗ (xt ; θ i∗)G(xi∗t ; γi∗ , ci∗)

BJ2i∗+2 (xt ; θ2i∗+2)

= BJi∗ (xt ; θ i∗) [1− G(xi∗t ; γi∗ , ci∗)] .

In a more compact form, Eq. (7) may be written as

log(RVt ) = α
′wt +

∑
i∈T−{i∗}

β ′i z̃t BJi (xt ; θ i )

+φ′1z̃t BJi∗ (xt ; θ i∗)

+φ′2z̃t BJi∗ (xt ; θ i∗)G(xi∗t ; γi∗ , ci∗)+ εt , (8)

where φ1 = β2i∗+2 and φ2 = β2i∗+1 − β2i∗+2.
In order to test the statistical significance of the

split, a convenient null hypothesis is H0 : γi∗ = 0
against the alternative Ha : γi∗ > 0. An alternative
null hypothesis is H′0 : φ2 = 0. However, it
is clear from Eq. (8) that under H0, the nuisance
parameters φ2 and ci∗ can assume different values
without changing the likelihood function, posing an
identification problem; see Davies (1977, 1987).

A solution to this problem, proposed by Luukkonen
et al. (1988), is to approximate the logistic function by
a third-order Taylor expansion around γi∗ = 0. After
some algebra, we get

log(RVt ) = α
′wt +

∑
i∈T−{i∗}

β ′i z̃t BJi (xt ; θ i )

+α′0z̃t BJi∗ (xt ; θ i∗)+ α
′

1z̃t BJi∗ (xt ; θ i∗) xi∗t

+α′2z̃t BJi∗ (xt ; θ i∗) x2
i∗t + α

′

3z̃t BJi∗ (xt ; θ i∗) x3
i∗t

+ et , (9)

where et = εt + φ2 BJi∗ (xt ; θ i∗) R(xi∗t ; γi∗ , ci∗) and
R(xi∗t ; γi∗ , ci∗) is the remainder. The parameters αk ,
k = 0, . . . , 3 are functions of the original parameters
of the model.

Thus, the null hypothesis becomes

H0 : α1 = α2 = α3 = 0. (10)

Under H0, R(xi∗t ; γi∗ , ci∗) = 0 and et = εt , such that
the properties of the error process remain unchanged
under the null, and thus asymptotic inference can be
used. The test statistic is given by3:

L M =
1

σ̂ 2

T∑
t=1

ût ν̂
′

t

 T∑
t=1

ν̂t ν̂
′

t −

T∑
t=1

ν̂t ĥ
′

t

×

(
T∑

t=1

ĥt ĥ
′

t

)−1 T∑
t=1

ĥt ν̂
′

t


−1

T∑
t=1

ν̂t ût , (11)

where ût = yt − HJT(xt ,wt ; ψ̂), σ̂ 2
=

1
T

∑T
t=1 û2

t ,

ĥt =
∂HJT(xt ,wt ;ψ)

∂ψ

′

|H0 , and

ν̂t =

[
z̃t BJi∗

(
xt ; θ̂ i∗

)
xi∗t , z̃t BJi∗

(
xt ; θ̂ i∗

)
x2

i∗t ,

z̃t BJi∗
(

xt ; θ̂ i∗
)

x3
i∗t

]′
.

Under H0, L M has an asymptotic χ2 distribution with
m = 3(p + 1) degrees of freedom.

As the assumption of normal and homoskedastic
errors is usually violated in financial data, we carry
out a robust version of the LM test, following the
results of Wooldridge (1990). The test is implemented
as follows:

(1) Estimate the model with K regimes. If the sample
size is small and the model is thus difficult
to estimate, numerical problems in applying the
maximum likelihood algorithm may lead to a
solution such that the residual vector is not
precisely orthogonal to the gradient matrix of
HJT(xt ,wt ; ψ̂). This has an adverse effect on
the empirical size of the test. To circumvent this
problem, we regress the residuals ût on ĥt and
compute the sum of squared residuals SS R0 =∑T

t=1 ũ2
t . The new residuals ũt are orthogonal

to ĥt .
(2) Regress ν̂t on ĥt and compute the residuals rt .
(3) Regress a vector of ones on ε̃t rt and calculate the

sum of squared residuals SS R1.
(4) The value of the test statistic is given by

L Mr
χ2 = T − SS R1. (12)

Under H0, L Mhn
χ2 has an asymptotic χ2 distribution

with m degrees of freedom.

3 See Teräsvirta (1994) for the technical conditions for the
validity of the test statistic.
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3. Empirical results

In this section we discuss how different specifica-
tions of the STR-Tree model actually describe the re-
alized volatility series of DJIA stocks. Are there sta-
tistically significant structural breaks and/or regime
shifts? What are the magnitudes and durations of those
regimes? Are the level changes economically rele-
vant? What does the estimation of structural breaks
say about the stock market in the period? What are the
in-sample fitting and out-of-sample forecasting prop-
erties of these models in relation to alternative models,
such as the ARFIMA and GARCH models?

The empirical analysis focuses on the realized
volatility of the sixteen Dow Jones Industrial Average
index stocks that were available to us: Alcoa (AA),
American International Group (AIG), Boeing (BA),
Caterpillar (CAT), General Electric (GE), General
Motors (GM), Hewlett Packard (HP), IBM, Intel
(INTC), Johnson and Johnson (JNJ), Coca-Cola (KO),
Merk (MRK), Microsoft (MSFT), Pfizer (PFE), Wal-
Mart (WMT), and Exxon (XON). The raw intraday
data consist of tick-by-tick quotes extracted from the
NYSE Trade and Quote (TAQ) database. The period
of analysis starts in January 3, 1994, and ends in
December 31, 2003. Trading days with an abnormally
small trading volume and volatility caused by the
proximity of holidays (for example, Good Friday) are
excluded, leaving a total of 2541 daily observations.

We start by removing non-standard quotes,
computing mid-quote prices, filtering possible errors,
and obtaining one-second returns for the 9:30 am to
16:05 pm period. Following the results of Hansen and
Lunde (2006b), we adopt the previous tick method
for determining prices at precise time marks. Based
on the results of Hasbrouck (1995), who reports a
median 92.7% information share at the NYSE for Dow
Jones stocks, and Blume and Goldstein (1997), who
conclude that NYSE quotes match or determine the
best displayed quote most of the time, we use NYSE
quotes (or NASDAQ, for Microsoft and Intel) if they
are close enough to the time marks in relation to other
updates.

In order to estimate our measure of the daily
realized volatility, we use the two time scales estimator
of Zhang, Mykland, and Aı̈t-Sahalia (2005),4 which is

4 With five-minute grids in the slow time scale and one-second
returns on the fast time scale.
among the most accurate estimators available, despite
requiring possibly unrealistic assumptions about the
noise for consistency. The final dependent variable is
the daily logarithm of the realized volatility. We also
consider dummies for the days of the week, as done
by Martens, van Dijk, and de Pooter (this issue),5

and dummies for the following macroeconomic
announcements: Federal Open Market Committee
meetings (FOM), the Employment Situation Report
from the Bureau of Labor Statistics (ESR), CPI
and PPI.

Concerning the macroeconomic announcements,
we have the following comments. It is not our goal
to estimate possible causal effects of announcements
on volatility. Of course, “good” announcements may
have a different impact from “bad” announcements,
although we suspect that this asymmetry affects
returns more than volatility. However, for all of the
series considered in this paper, the inclusion of a
single dummy variable for each announcement is
sufficient to smooth the effect of possible jumps
in the volatility process, which is our purpose in
including this type of variable.6 In Section 3.3.2 we
show that explicitly taking into account the presence
of jumps does not bring any significant benefit in
terms of forecasting performance. Furthermore, the
macroeconomic announcements included in the model
are the most relevant ones. Finally, including dummy
variables for all possible announcements and all
possible outcomes will heavily over-parameterize the
model, which is far beyond the scope of this paper.

In Section 3.1 we present the modeling cycle
adopted in the empirical experiment. We carefully
discuss variable selection and model specification. In
order to evaluate the benefits of the STR-Tree model
over standard models, we conduct a full sample study
in Section 3.2, using data from 1994 to 2003. The
goal of this analysis is to point out how the STR-
Tree models may be useful for describing interesting
stylized facts of financial time series such as long
range dependence and asymmetries. We highlight our
results for the particular case of the IBM stock. The

5 This is a standard practice in the literature.
6 Another possibility is to filter the jumps using an estimator such

as the one proposed by Barndorff-Nielsen and Shephard (2006).
However, this estimator is not robust to general microstructure
noise.
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results for the other 15 stocks are fairly similar, and
will be omitted for the sake of conciseness. Four
versions of the STR-Tree model are estimated: a
pure structural break model (STR-Tree/SB), where
time is the single transition variable; an asymmetric
effects model (STR-Tree/AE), where past cumulated
returns of the stock over different horizons (reflecting
the “long-run” dynamics of the market) are the
candidates for controlling the regime switches; an
asymmetric effects model (STR-Tree/DJIA), where
past cumulated returns of the DJIA index are used as
transition variables; and finally, a model combining
structural breaks and asymmetric effects (STR-
Tree/AE+SB), where both time and past cumulated
returns are considered as split variables. We show that
the asymmetric effects model successfully describes
the long range dependence in the volatility of the
stocks. Furthermore, using market returns (DJIA) or
firm-specific returns causes no important differences
in terms of in-sample performance. The in-sample
results are compared with the linear ARFIMA model
and the Heterogenous Autoregressive (HAR) model
put forward by Corsi (2004).

In Section 3.3 we conduct an out-of-sample
forecasting experiment, considering the last four years
of the sample, from January 3, 2000 to December 31,
2003, covering 983 days. Each model is re-estimated
daily using the full sample up to that date, and then
used for out-of-sample forecasting for the horizons
of 1, 5, 10 and 20 days ahead. The specifications
of the STR-Tree models are revised monthly. Point
forecasts for the nonlinear models are calculated
through conditional simulation,7 together with interval
forecasts for all models. As reference models, we also
include predictions from linear autoregressive (AR),
GARCH(1,1)8 and exponentially weighted moving
average (EWMA) models. With respect to the last,
we take a different approach from the literature and
compute an EWMA on the realized volatility itself.
The STR-Tree/DJIA is not used to compute forecasts
more than one day ahead, due the non-availability of
the realized variance series for the index, which is
essential in the conditional simulation.

7 See the Appendix for details.
8 We also considered other GARCH models such as EGARCH

and GJR-GARCH; however, the performance of such models is not
substantially different.
3.1. Specification

Following the specific-to-general principle, we start
the cycle from the root node (depth 0). Our general
basic linear equation is given by:

log(RVt ) = α1 log(RVt−1)+ · · · + αk log(RVt−k)

+ δ1 I [Mon]t + δ2 I [Tue]t + δ3 I [Wed]t
+ δ4 I [Thu]t + δ5 I [Fri]t + δ6 I [FOMC]t
+ δ7 I [EMP]t + δ8 I [CPI]t + δ9 I [PPI]t + εt ,

(13)

where I [Mon]t , I [Tue]t , I [Wed]t , I [Thu]t , and
I [Fri]t are days-of-the-week dummies and I [FOMC]t ,
I [EMP]t , I [CPI]t , and I [PPI]t are dummies in-
dicating dates for the following macroeconomic
announcements: Federal Open Market Committee
meetings, the Employment Situation report, CPI and
PPI. Some authors discuss the relationship between
macroeconomic announcements and jumps; see, for
example, Barndorff-Nielsen and Shephard (2006)
and Huang (2006).

The first step in the modeling cycle is to use Eq.
(13) to select the number of autoregressive lags and
relevant day-of-the-week and announcement effects
(variables that will be in wt ), resulting in the primary
specification that will be contrasted with non-linearity.
Autoregressive (AR) coefficients are tested up to
the 15th order. Seeking a parsimonious specification,
we base this selection on the Schwarz information
criterion (SBIC), which initially selects autoregressive
lags 1–3, 5, 7, 10 for all stocks, and keeps the Monday
dummy for some stocks and both the Monday and
Friday dummies for others. The SBIC also selects
the FOMC and EMP announcements. We verified
that the inclusion of a moving average (MA) term
could significantly cut down the number of AR terms,
but we chose the less parsimonious AR specification,
since the computational burden of estimating an MA
coefficient in a nonlinear framework is high, and there
are sufficient degrees of freedom. The presence of
an MA coefficient could be justified by the existence
of both persistent and non-persistent components
in volatility, such as measurement noise or jump
components.9 We consider the importance of jump
components in Section 3.3.2.

9 See Andersen, Bollerslev, and Diebold (2005) and Tauchen and
Zhou (2005).
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The next step is to select the set of variables
in vectors xt and zt . Over the next sections, the
candidate split variables zt falls in one of three
cases: structural breaks (time is the unique transition
variable), asymmetric effects (lagged returns and
lagged cumulated returns over the past 2 to 120
days), and finally, the combination of structural breaks
and asymmetric effects. A fourth possibility, explored
by Martens et al. (this issue), is the inclusion of
lags of the realized volatility itself as split variables.
However, this particular choice of asymmetry was
not significant in any of the cases analyzed. At each
node, the transition variable is selected as the one that
minimizes the p-value of the robust version of the LM
test.

The elements of the vector zt are selected as a trade-
off between parsimony/interpretability and fitting
properties. In the structural break case, we include the
first two lags of the logarithm of the realized volatility,
such that zt = (log(RVt−1), log(RVt−2))

′. In the
asymmetric effects model we set zt = ∅, such that
z̃t in Eq. (3) is just a constant.10 Diagnostic statistics
for all models are shown in Table 2.

3.2. Structural breaks, regime switches and long
memory: A full sample evaluation

We start by following the recent literature and
examining the effects of possible structural breaks
on volatility levels (see, for example, Granger &
Hyung, 2004; Martens et al., this issue; and Morana
& Beltratti, 2004). The final estimated model for the
case of IBM is given by

log(RVt ) = 0.261
(0.164)

log(RVt−1)+ 0.224
(0.078)

log(RVt−2)

+ 0.084
(0.021)

log(RVt−3)+ 0.074
(0.020)

log(RVt−5)

+ 0.044
(0.019)

log(RVt−7)+ 0.047
(0.018)

log(RVt−10)

− 0.064
(0.013)

I [Mon]t − 0.063
(0.014)

I [Fri]t

+ 0.067
(0.032)

I [FOMC]t + 0.094
(0.023)

I [EMP]t

+

{
0.005
(0.048)

+ 0.261
(0.164)

log(RVt−1)+ 0.224
(0.078)

log(RVt−2)

}

10 More general specifications of zt , while statistically signifi-
cantly different, brought no important out-of-sample gains, instead
excessively increasing the number of estimated parameters, and oc-
casionally causing numerical problems in the estimation algorithm.
×G

(
t; 13.359
(6.154)

, 1.744
(0.136)

)
G

(
t; 7.003
(12.716)

, 3.273
(0.101)

)
+

{
0.140
(0.021)

+ 0.449
(0.036)

log(RVt−1)+ 0.156
(0.037)

log(RVt−2)

}
×G

(
t; 13.359
(6.154)

, 1.744
(0.136)

)[
1− G

(
t; 7.003
(12.716)

, 3.273
(0.101)

)]
+

{
0.118
(0.014)

+ 0.409
(0.033)

log(RVt−1)+ 0.033
(0.080)

log(RVt−2)

}
×

[
1− G

(
t; 13.359
(6.154)

, 1.744
(0.136)

)]
×

[
1− G

(
t; 7.003
(12.716)

, 3.273
(0.101)

)]
+ ε̂t .

The final model has 23 estimated parameters.
Although it may seem over-parameterized, we
stress the fact that we have a large number of
observations. Two breaks are estimated: one in August
1998 (volatility and persistence11 go up, and the
unconditional mean of the daily realized volatility
goes from 1.50% to 2.10%, a 40% increase), and
another one in April 2003 (volatility markedly falls,
and the unconditional mean goes down from 2.10% to
1.15%, a 45% decrease). The first parameter change
is rather abrupt (large value of the slope parameter
γ ) and the second one is quite smooth (small γ ).
Note that the standard errors for the slope parameter
estimates are quite high. Nevertheless, this is not an
indication that the nonlinear effects are not significant.
Due to the identification problem previously discussed
in Section 2.3, the distribution of the usual t-statistic
is not standard under H0 : γ = 0. The LM test is an
adequate way to assess the statistical relevance of the
structural changes; see Eitrheim and Teräsvirta (1996)
for a discussion.

Fig. 2 puts the timing of the breaks in context,
depicting the two estimated transition functions
(dotted lines), the log realized volatility for the period,
and the evolution of the stock price, adjusted for
dividends for the 1995–2003 period. The first break
coincides exactly with the Russian Crisis in 1998,
whilst the second limits two distinct dynamics for
the Dow Jones Industrial Average (DJIA): while the
index reaches a four year bottom by October 2002,
the following year is a highly positive one for the
index, which climbed 25% through the period. It also

11 Measured as the sum of the autoregressive parameters.
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Fig. 2. IBM daily log realized volatility (1995–2003), the dividend-adjusted stock price (1995–2003), and the transition functions (dotted lines).
seems that the second break is capturing the apparent
negative trend in the volatility dynamics. Fig. 2 is
suggestive of other facts: there are several clusters of
high volatility associated with periods of large falls in
the stock price, followed by sharp declines in volatility
after the price jumps up again. Some examples are the
periods of the October 1997 mini-crash, the Russian
crisis, the NASDAQ bubble burst, the two clusters at
the end of 2000/beginning of 2001, the 9/11 period,
and the bear market of 2002. The subsample between
the first and second breaks (or the high volatility
period) is marked by a greater incidence of these price
decreases. In the next section, we turn our attention to
this specific aspect.

3.2.1. Asymmetric effects
The motivation for the estimation of lagged

cumulated returns as a source of multiple regimes
in volatility in the STR-Tree model is illustrated in
Fig. 3, which shows the realized volatility and monthly
returns of IBM and the DJIA index for the period 2000
to 2003. There seems to be a recurring pattern of shifts
to higher volatility levels being related to interludes of
negative returns and reversals to low volatility levels
in positive months. The single exception is the period
before the NASDAQ bubble burst.

As mentioned before, we estimate two asymmetric
effects models. In the first, past cumulated returns of
the stock over different horizons are the candidates
for controlling the regime switches (STR-Tree/AE),
while the second has past cumulated returns of the
DJIA index as transition variables (STR-Tree/DJIA).
The reason for also considering Dow Jones returns is
to check whether there are any substantial differences
between regime switches driven by idiosyncratic
factors (firm specific returns) and those driven by
market factors (DJIA returns). A third model which
was considered combines asymmetric effects and time
changes (both past cumulated returns and time are
candidate transition variables). The motivation for this
is clear from Fig. 3: there is clearly a break in the
volatility dynamics in 2003.

The estimated tree structure for the first model is
shown in Fig. 4, and is determined by the sets T =
{1, 6, 11, 23, 24} and J = {0, 2, 5, 12}. The transition
variables are divided by their respective standard
deviations. The model is described by five highly
statistically significant regimes, determined by four
levels of asymmetric effects. The first node indicates
a low volatility regime linked to a rising market at the
four month horizon. At the other extreme, a decline of
12% or more over nearly two months induces a regime
of high variance, while superior returns over this same
period bring intermediate volatility levels and short
run leverage effects. Negative returns over two days
also induce a regime of high variance. The estimated
transition functions are illustrated in Fig. 5.

The final estimated STR-Tree/AE model is
given by

log(RVt ) = 0.386
(0.022)

log(RVt−1)+ 0.118
(0.023)

log(RVt−2)

+ 0.107
(0.021)

log(RVt−3)+ 0.091
(0.020)

log(RVt−5)

+ 0.065
(0.019)

log(RVt−7)+ 0.078
(0.018)

log(RVt−10)

− 0.068
(0.012)

I [Mon]t − 0.064
(0.014)

I [Fri]t

+ 0.068
(0.032)

I [FOMC]t + 0.092
(0.023)

I [EMP]t
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Fig. 3. Panel (a): Realized volatility and monthly IBM returns. Panel (b): Realized volatility and monthly DJIA returns.
+ 0.081
(0.013)

×G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)
+ 0.184
(0.030)

×

[
1− G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)]
×

[
1− G

(
r39,t−1; 2.000

(1.018)
,− 0.955

(0.319)

)]
− 0.004
(0.046)

×

[
1− G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)]
×G

(
r39,t−1; 2.000

(1.018)
,− 0.955

(0.319)

)
×G

(
r5,t−1; 2.000

(1.794)
, 0.479
(0.469)

)
+ 0.069
(0.044)

×

[
1− G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)]
×G

(
r39,t−1; 2.000

(1.018)
,− 0.955

(0.319)

)
×

[
1− G

(
r5,t−1; 2.000

(1.794)
, 0.479
(0.469)

)]
×G

(
r2,t−1; 2.423

(1.211)
,− 1.091

(0.284)

)
+ 0.447
(0.127)

×

[
1− G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)]
×G

(
r39,t−1; 2.000

(1.018)
,− 0.955

(0.319)

)
×

[
1− G

(
r5,t−1; 2.000

(1.794)
, 0.479
(0.469)

)]
×

[
1− G

(
r2,t−1; 2.423

(1.211)
,− 1.091

(0.284)

)]
+ ε̂t .

Based on the estimated regimes and the transition
graphs displayed in Fig. 5, we divide the observations
into five different regimes. We split the observations
according to the value of the transition functions
(below or above 0.5). Table 1 reports the number
of observations in each group and the respective
mean and standard deviation of the realized volatility.
Group 1 refers to the observations associated with
terminal node 1 in Fig. 4. Groups 2 and 3 include
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Table 1
Volatility regimes for IBM. Mean and standard deviation of the
realized volatility for observations divided by a classification based
on the STR-Tree/AE model with lagged cumulated returns as split
variables.

Group Mean Standard
deviation

Number of
observations

Terminal
nodes

1 1.57 0.54 1264 1
2 1.71 0.69 494 11
3 1.76 0.72 368 23
4 2.39 0.88 96 6
5 2.46 0.82 254 24
All 1.75 0.71 2476 –

Fig. 4. Estimated tree for IBM daily log realized volatility.

observations associated with terminal nodes 11 and 23
(high returns, low volatility), respectively. Groups 4
and 5 relate to observations associated with nodes 6
and 24 (low returns, high volatility).

Finally, Fig. 6 shows the estimated functions
BJi (·) for each node. Although the regime changes
associated with nodes 11, 23, and 24 are quite erratic,
nodes 1 and 6 induce infrequent regime changes,
which, as conjectured before, may induce long range
dependence.

Concerning the STR-Tree/DJIA and the STR-
Tree/SB+AE, the final estimated tree architectures are
described in Figs. 7 and 8. When DJIA cumulated
returns are used as transition variables, the final
model specification is rather different. The first split
is associated with returns slightly over a month, and
the subsequent splits are all associated with returns
cumulated over less than a week. It seems that
only the short-run dynamics of the market influence
the volatility dynamics of IBM. On the other hand,
when firm specific returns are considered, long-
term returns appear as significant regime-switching
drivers. Now we turn to the analysis of the hybrid
specification, which combines both time and firm-
specific cumulated returns as transition variables.
First, in general the same horizons are selected
as transition variables, although the location of the
transition differs quite a bit. Second, two time breaks
are selected, the first in November 1996 and the second
in April 2003 (as in the pure break model).

3.2.2. Autoregressive fractionally integrated moving
average

We now turn to the comparison of volatility models.
We start with the standard ARFIMA(p, d, q), defined
as

φp(L)(1− L)d
[
log(RVt )− µt

]
= θq(L)εt , (14)

where d denotes the fractional differencing parameter,
the time-varying mean µt includes the day-of-the-
week and announcement dates dummies, L is the lag
operator, εt is a white noise, and φp(L) and θq(L) are
polynomials of order p and q , having all roots lying
outside the unit circle. For each series, we estimate
several ARFIMA(p, d, q) specifications by maximum
likelihood. The best combination of p, q and the
dummy variables is selected by SBIC. The method
leads to a choice of an ARFIMA(0, d, 0) for all
series. Predictions for the ARFIMA(0, d, 0) model
are computed through a truncation of the infinite
autoregressive representation after the 150th lag. The
final estimated model is given by:

(1− L)
0.516
(0.057)

{
log(RVt )− 0.502

(0.009)
+ 0.059
(0.019)

I [Mon]t

+ 0.032
(0.020)

I [Fri]t − 0.100
(0.045)

I [FOMC]t

− 0.081
(0.038)

I [EMP]t

}
= ε̂t . (15)

ARFIMA models have been estimated for realized
volatility by Andersen et al. (2003), Beltratti and
Morana (2005), Deo, Hurvich, and Lu (2006),
and Martens et al. (this issue), among many others.
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Fig. 5. Estimated transition functions.
Table 2
Estimation diagnostics. The table shows summary statistics for the residuals of six different models estimated for the log realized volatility of
IBM: the STR-Tree model with lagged cumulated returns as split variables (STR-Tree/AE), the STR-Tree model with time as the split variable
(STR-Tree/SB), the STR-Tree model with time and cumulated returns as transition variables (STR-Tree/SB+AE), a STR-Tree model with
cumulated returns of the DJIA index as transition variables (STR-Tree/DJIA), an ARFIMA(0, d , 0) model with exogenous variables, and the
HAR model. JB is the p-value of the Jarque-Bera normality test. Q(k) indicates the p-value of adequate tests for serial correlation up to the kth
lag. Q2(k) gives the p-value of the same tests for the squared residuals. SBIC is the Schwarz information criterion. The R2 is corrected as was
done by Andersen, Bollerslev, and Meddahi (2005).

STR-Tree/AE STR-Tree/SB STR-Tree/SB+AE STR-Tree/DJIA ARFIMA HAR

R2 0.631 0.619 0.624 0.621 0.505 0.610
SD 0.223 0.226 0.225 0.225 0.255 0.229
Skewness 0.697 0.725 0.707 0.736 0.336 0.707
Kurtosis 4.703 4.535 4.780 4.815 4.166 4.503
JB 0.000 0.000 0.000 0.000 0.000 0.000
Q(5) 0.367 0.432 0.382 0.189 0.000 0.637
Q(10) 0.115 0.308 0.157 0.079 0.000 0.275
Q(20) 0.399 0.422 0.432 0.101 0.000 0.530
Q2(10) 0.012 0.001 0.006 0.032 0.000 0.001
Q2(20) 0.032 0.008 0.041 0.086 0.000 0.008
SBIC −2.905 −2.889 −2.918 −2.919 −2.699 −2.918
3.2.3. Heterogenous autoregressive
The HAR (Heterogeneous Autoregressive) model

proposed by Corsi (2004) is grounded on the
Heterogeneous ARCH (HARCH) model developed
by Müller et al. (1997). It is specified as a
multi-component volatility model with an additive
hierarchical structure, leading to an additive time
series model of the realized volatility which specifies
the volatility as a sum of volatility components
over different horizons. The model has been used
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Fig. 6. Estimated regime probabilities (functions BJi (·) for each node). Panel (a) shows the estimated probabilities for nodes 1 (dark color) and
6 (light color). Panel (b) refers to node 11. Panel (c) refers to node 23. Panel (d) refers to node 24.
by Andersen, Bollerslev, and Diebold (2005), for
instance, for its estimation simplicity and its capacity
to reproduce the autocorrelation patterns of long
memory models over shorter horizons. Define the h-
horizon normalized realized volatility by

log(RVt )t+h

=
log(RVt+1)+ log(RVt+2)+ · · · + log(RVt+h)

h
.

(16)

The estimated HAR model (specified by the SBIC)
is given by:

log(RVt ) = − 1.046
(0.091)

+ 0.374
(0.023)

log RVt−1

+ 0.068
(0.026)

log RVt−2 + 0.247
(0.046)

log(RVt )t−5

+ 0.225
(0.032)

log(RVt )t−22 − 0.066
(0.012)

I [Mon]t

− 0.053
(0.013)

I [Fri]t + 0.072
(0.029)

I [FOMC]t

+ 0.093
(0.025)

I [EMP]t + ε̂t . (17)
We add a second order autoregressive term to the
typical formulation of the model to account for
remaining autocorrelation in lower lags. As before,
the dummy variables are selected by minimizing the
SBIC.

3.2.4. Summary and comparison of results
Table 2 shows summary statistics for the residuals

of the four models, where JB is the p-value of the
Jarque-Bera normality test, Q(k) indicates the p-value
of suitable tests of serial correlation up to the kth lag
(the Ljung-Box portmanteau test for the ARFIMA and
HAR models and a LM-type test for the nonlinear
models; see Medeiros & Veiga, 2003 for a description
of the latter), and Q(k)2 gives the p-value of the
same test for the squared residuals. The R2 statistics
are corrected according to Andersen, Bollerslev, and
Meddahi (2005).

The table shows that the STR-Tree/AE model has
superior in-sample fitting, as measured by R2, while
the STR-Tree/DJIA model is the best according to the
SBIC. The ARFIMA model has a remarkably inferior
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Fig. 7. Estimated tree for IBM log realized volatility with
cumulated returns of the DJIA index as transition variables.

Fig. 8. Estimated tree for IBM log realized volatility with
cumulated returns of IBM and time as transition variables.

fitting performance compared to the others, due to
the fact that the fractional differencing parameter on
the nonstationary region appears to be an inaccurate
description of the series for the early years of the
sample, an issue that will be discussed in more detail
in the next section. All models generate highly skewed
and leptokurtic residuals, indicating that the errors are
not normally distributed.

The Q(k) statistics in their turn indicate that
only the ARFIMA model has significant remaining
autocorrelation structure in the residuals up to the
20th lag at 5%. This could be due to ignored AR
or MA terms in the ARFIMA, but less parsimonious
models have been estimated and none of them was
capable of improving on this result. Finally, there is
strong evidence of dependence in squared residuals,
but unlike the results of Beltratti and Morana (2005)
for exchange rates, there is no indication of long
memory on the conditional variance of volatility. One
the other hand, all models have autocorrelated squared
residuals. This is in accordance with the findings
of Corsi, Mittnik, Pigorsch, and Pigorsch (2008), who
model the volatility of volatility. This has an impact
on the construction of the confidence intervals for
the volatility forecasts, but may not influence point
forecasts. The inclusion of a volatility of volatility
component in the models considered here is left for
future research. However, it is important to stress
that in the model building strategy for the STR-
Tree models, we explicitly take heteroskedasticity into
account by using a robust version of the LM test.

3.2.5. Long memory analysis
To assess the long memory characteristics of the

estimated STR-Tree models for IBM, we run 1000
simulations of alternative models (with the same
length as the sample), and evaluate estimates of
the fractional differencing parameter (d). We also
include AR simulations, using the linear parameters
of the STR-Tree/AE estimation to emphasize how the
non-linear effects do generate hyperbolic patterns in
autocorrelations beyond the possibly misleading effect
of persistent autoregressive structures.

We apply two methods for the estimation of
the long memory parameter: The widely used
log periodogram estimator (GPH) of Geweke and
Porter-Hudak (1983) and the bias reduced estimator
of Andrews and Guggenberger (2003). We employ
two values for the number of ordinates ` used
in each regression: T 1/2, the usual rule of thumb
value suggested by Geweke and Porter-Hudak (1983)
(simulation-based), and the value selected by the plug-
in method of Hurvich and Deo (1999), which points to
T 0.65 for all series. T is the sample size.

For each set of simulations, we also evaluate the
power of the Ohanissian, Russell, and Tsay (2004)
test of true long memory process, which is based on
the invariance property of the long memory parameter
over temporal aggregation under the null. Andersen
et al. (2001), for example, examine this property for
DJIA stocks as evidence of long memory.

Table 3 reports the mean and standard deviation (in
parentheses) of the fractional differencing parameter
(d) estimates for the log realized volatility of IBM
(entire sample), and over the simulations. The table
reveals that the model with regime switching accounts
for a large degree of long memory, even in large
samples. In line with the literature, the same is also
true for the model with structural breaks. The table
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Fig. 9. GPH estimates in a rolling window.
Table 3
Log-periodogram estimates — simulations and log realized volatility. The table reports the mean and standard deviation (in parentheses) of the
fractional differencing parameter (d) estimates of the IBM daily log realized volatility and over 1000 simulations of three models: the STR-Tree
model with lagged cumulated returns as split variables (STR-Tree/AE), the STR-Tree model with time as the split variable (STR-Tree/SB), and
the AR model. GPH and AG stand for the Geweke and Porter-Hudak (1983) and Andrews and Guggenberger (2003) estimators, respectively.
The number of ordinates (`) used in each regression is indicated in the first row. Two values for this parameter are employed: 0.5, the usual
rule of thumb for the GPH, and 0.65, selected by the plug-in method of Hurvich and Deo (1999). The last column (OHT) gives the results for
the Ohanissian et al. (2004) test of the null of a true long memory process: the first three numbers indicate the percentage of simulations where
the null is rejected at the 5% level, while the last line indicates the p-value of the test for the log realized volatility of IBM.

Model ` = T 0.5 ` = T 0.65 ` = T 0.7

GPH AG GPH AG OHT

STR-Tree/AE 0.48
(0.15)

0.30
(0.25)

0.60
(0.08)

0.44
(0.17)

33.8%

STR-Tree/SB 0.42
(0.08)

0.51
(0.12)

0.50
(0.04)

0.42
(0.09)

25.5%

AR 0.14
(0.11)

0.02
(0.16)

0.38
(0.05)

0.11
(0.11)

94.5%

Log realized vol 0.60
(0.10)

0.35
(0.17)

0.46
(0.05)

0.59
(0.10)

0.556
also shows that the Ohanissian et al. (2004) test
has little power relative to these alternatives. For the
log realized volatility series, the test does not reject
the null hypothesis, albeit this is sensitive to the
specification (` and the number of aggregations) and
the sample itself. For instance, if the first week is
removed from the sample, the test rejects the null of
long memory at the 5% level. Unfortunately, the test
can almost always be tailored to favor the hypotheses
of both true and spurious long memory.

An important issue with the ARFIMA approach,
initially documented by Granger and Ding (1996), is
the excessive variance of the fractional differencing
parameter estimates over time, possibly involving
extensive periods in non-stationary regions. This
problem is illustrated in Fig. 9, which shows the
evolution of GPH estimates (` = T 0.65) in a rolling
window of three years over our sample. The estimates
range from around 0.3 to 0.8.

An interesting feature of the STR-Tree/AE model
is that it can possibly account for this fact. We
illustrate this through a partial simulation of the model
using the actual return series as transition variables,
dividing the sample by the first estimated break in
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Table 4
Log-periodogram estimates — partial simulations and log realized volatility. The table reports the mean and standard deviation (in parentheses)
of the fractional differencing parameter (d) estimates of two subsamples of the daily log realized volatility of IBM and over 1000 (partial)
simulations of two models: the STR-Tree model with lagged cumulated returns as split variables (STR-Tree/AE) and the STR-Tree model with
time as the split variable (STR-Tree/SB). GPH and AG stand for the Geweke and Porter-Hudak (1983) and Andrews and Guggenberger (2003)
estimators, respectively.

Jan/1994 to Aug/1998 GPH
(
` = T 0.5

)
GPH

(
` = T 0.65

)
AG

(
` = T 0.65

)
STR-tree partial simulation 0.33

(0.13)
0.52
(0.07)

0.29
(0.14)

Log realized vol 0.34
(0.13)

0.29
(0.07)

0.36
(0.14)

Sep/1998 to Dec/2003 GPH
(
` = T 0.5

)
GPH

(
` = T 0.65

)
AG

(
` = T 0.65

)
STR-tree partial simulation 0.46

(0.11)
0.60
(0.06)

0.43
(0.12)

Log realized vol 0.65
(0.12)

0.66
(0.07)

0.74
(0.14)
Table 5
Forecasting results. The table reports the out-of-sample forecasting results for the IBM daily realized volatility for the period between 2000
and 2003 (983 trading days, excluding days affected by holidays), where each model is re-estimated daily and used for predictions 1, 5, 10
and 20 days ahead. MAE is the mean absolute error. R2 is the (corrected) R-squared of RVt = α + β R̂V t |t− j,i + εt,i , where R̂V t |t− j,i is
the prediction of model i for the realized volatility on day t , and RVt is the observed realized volatility on that day. F is the p-value of the
(heteroskedasticity robust) F test of the joint hypothesis that α = 0 and β = 1. HLN is the p-value of the Harvey, Leybourne, & Newbold
(1997) test of equality of the mean of loss functions, where the models are compared with the ARFIMA. SPA is the p-value of the superior
predictive ability test developed by Hansen (2005). The null hypothesis is that a given model is not inferior to any of the competing models in
terms of a given loss function. EWMA is the exponential weighted moving average of realized volatility itself.

MAE HLN SPA R2 HLN SPA F MAE HLN SPA R2 HLN SPA F

1 day 5 days
STR-Tree/AE 0.322 0.000 0.960 0.641 0.004 0.275 0.009 0.397 0.000 0.975 0.499 0.012 0.947 –
STR-Tree/SB 0.365 0.000 0.000 0.592 0.018 0.000 0.000 0.474 0.000 0.000 0.424 0.000 0.002 –
STR-Tree/DJIA 0.324 0.000 0.456 0.644 0.002 0.921 0.049 – – – – – – –
STR-
Tree/SB+AE

0.340 0.485 0.004 0.610 0.304 0.011 0.938 0.409 0.185 0.285 0.495 0.071 0.841 –

HAR 0.332 0.027 0.026 0.618 0.418 0.003 0.000 0.412 0.338 0.038 0.468 0.068 0.026 –
ARFIMA 0.339 – 0.001 0.617 – 0.009 0.169 0.414 – 0.032 0.478 – 0.228 –
AR 0.334 0.092 0.001 0.616 0.497 0.004 0.000 0.410 0.215 0.020 0.467 0.066 0.021 –
EWMA 0.348 0.031 0.001 0.598 0.015 0.006 0.412 0.407 0.098 0.517 0.492 0.032 0.733 –
GARCH 0.490 0.000 0.000 0.368 0.000 0.000 0.002 0.527 0.000 0.000 0.289 0.000 0.000 –

10 days 20 days
STR-Tree/AE 0.447 0.003 0.969 0.388 0.048 0.878 – 0.507 0.012 0.982 0.251 0.150 0.399 –
STR-Tree/SB 0.532 0.000 0.000 0.314 0.000 0.002 – 0.604 0.000 0.000 0.172 0.000 0.002 –
STR-Tree/DJIA – – – – – – – – – – – – – –
STR-
Tree/SB+AE

0.460 0.321 0.446 0.392 0.072 0.826 – 0.510 0.025 0.890 0.288 0.004 0.777 –

HAR 0.466 0.311 0.039 0.353 0.025 0.058 – 0.535 0.160 0.001 0.227 0.149 0.122 –
ARFIMA 0.463 – 0.287 0.370 – 0.565 – 0.524 – 0.489 0.237 – 0.269 –
AR 0.458 0.249 0.131 0.359 0.092 0.067 – 0.518 0.253 0.269 0.230 0.230 0.122 –
EWMA 0.463 0.473 0.390 0.390 0.028 0.907 – 0.536 0.090 0.233 0.252 0.107 0.370 –
GARCH 0.555 0.000 0.000 0.230 0.000 0.000 – 0.591 0.000 0.000 0.149 0.000 0.008 –
model STR-Tree/SB. Even though this simulation is
ad hoc and tends to underestimate the capacity of the
model to generate persistent autocorrelations, it can
provide an useful indication of this ability. Table 4
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shows the results, including the estimate of the log
realized volatility series. As is suggested by Fig. 9,
all estimates of the log realized volatility point to
a significantly lower estimate for the first part of
sample. In fact, this is the source of the weak in-
sample performance of the ARFIMA model analyzed
in Section 3.2.4—the high d estimate for the overall
series produces large errors in the first subsample, as
well as dependence in the residuals (which are also
induced by the period of the second break). Back
to the table, although the average estimates for the
partial simulations are lower than the ones in the
nonstationary region for the realized volatility in the
second subsample, the model in fact seems to be able
to reproduce this behavior.

3.3. Forecasting analysis

We base the out-of-sample analysis on the last
four years of the sample, from January 3, 2000
to December 31, 2003, covering 983 days. Each
model is re-estimated daily using the full sample
up to that date, and then used for point forecasting
for the horizons of 1, 5, 10 and 20 days ahead.
The specification of the STR-Tree models is revised
monthly. Point forecasts for the nonlinear models are
calculated through conditional simulation, as well as
interval forecasts for all models. We also include
predictions generated by a GARCH(1,1) model and
an exponentially weighted moving average (EWMA)
model. With respect to the latter, we take a different
approach from the literature, and compute an EWMA
of the realized volatility.

3.3.1. Point forecasts
The evaluation of forecasts is based on the

mean absolute error and the estimation of the
Mincer–Zarnowitz regression12

RVt = α + β R̂V t |t−1,i + εt,i ,

where RVt is the observed realized volatility on day t
and R̂V t |t−1,i is the one-step-ahead forecast of model

12 Hansen and Lunde (2006a) show that the R2 of the
Mincer–Zarnowitz regression ensures the correct ranking of
volatility forecasts in the presence of a noisy volatility proxy.
However, this is not the case with the mean absolute error, even
though this problem is unlikely to be severe with the two time scales
estimator of realized volatility, which appears to have a sufficiently
small standard error.
i for the volatility on day t . If the model i is correctly
specified, then α = 0 and β = 1. We compute the
(robust) p-value of the F test for this joint hypothesis
and report the (corrected) R2 of the regression as a
measure of the ability of the model to track variance
over time. However, the presence of heteroskedasticity
hinders the computation of appropriate statistics for 5,
10, and 20 days.

We also report two tests for superior predictive
ability. The first is the Harvey et al. (1997)
modification of the Diebold and Mariano (1995) test
of equal predictive accuracy. Each concurrent model
is compared with the ARFIMA model. Let g(e1t ) and
g(e2t ) denote the loss functions for the prediction
errors e1t and e2t of models 1 and 2 on day t . For
the MAE, g(ei t ) = |RVt − R̂V t |t− j,i | and for the R2,
g(ei t ) = [RVt − R̂V t |t− j,i ]

2. The null hypothesis is
E[g(e1t )− g(e2t )] = 0.

The second test is the Superior Predictive Ability
(SPA) test developed by Hansen (2005). The null
hypothesis is that a given model is not inferior to
any other competing model in terms of a given loss
function.

The point forecast results are reported in Table 5.
The table reports the out-of-sample forecasting results
for the IBM daily realized volatility for the period
between 2000 and 2003 (983 trading days). MAE
is the mean absolute error. R2 is the (corrected) R-
squared value of RVt = α + β R̂V t |t− j,i + εt,i ,
where R̂V t |t− j,i is the prediction of model i for
the realized volatility on day t . F is the p-value
of the (heteroskedasticity robust) F test of the joint
hypothesis that α = 0 and β = 1. HLN is the p-value
of the Harvey, Leybourne, and Newbold (1997) test
of equality of the mean of loss functions, where the
models are compared with the ARFIMA. SPA is the p-
value of the Superior Predictive Ability test developed
by Hansen (2005). For each forecasting horizon we
report two values for HLN and SPA; the first refers
to the MAE and the second to the R2 values.

For one-day-ahead forecasts, the STR-Tree/AE
models are superlative in terms of both MAE and R2,
significantly outperforming the ARFIMA model (with
errors 5% smaller on average), and being the only
ones not rejected by the SPA tests. In the sequence,
there is little distinction between the ARFIMA, AR
and HAR models in terms of R2, while the last two
are slightly better in terms of MAE (the differences
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are significant at the 10% and 5% levels, respectively).
The model with structural breaks is markedly inferior
to those alternatives. Table 8 shows the MAE for all
models when one-day-ahead forecasts are considered.
The values in parentheses are the p-values of the SPA
test. The model with asymmetric effects has at least a
small advantage for all stocks, with the exception of
Pfizer (see Table 8), with the ARFIMA model being
close, as the second best alternative. Although this
is not shown in the paper, the STR-Tree/AE model
is superior in 12 of the other series when the R2 is
considered. The ARFIMA, HAR and EWMA models
alternate as the second best in terms of R2.

The advantage of the STR-Tree/AE model in
terms of the MAE is preserved when the five-
day horizon is considered. The EWMA model
significantly outperforms the ARFIMA model. The
performances of the ARFIMA, HAR and AR models
are relatively similar with respect to the MAE, with
an advantage for fractional integration in R2. The
results for 10- and 20-days-ahead are similar: the
STR-Tree/AE model is still the best in terms of the
MAE, significantly exceeding the ARFIMA model,
and being almost identical to the EWMA when R2

is considered. However, the model with asymmetric
effects and structural breaks becomes superior in
R2 for 20-day forecasts. The null hypothesis of the
SPA test is no longer rejected at the 5% level for
the ARFIMA, AR and EWMA specifications; HAR
predictions come moderately behind.

Two surprising results that emerge from this analy-
sis, the advantage of the AR model over the ARFIMA
model in terms of MAE, even for long horizons,
and the competitiveness of the simple EWMA model,
highlight the difficulty of translating the long mem-
ory properties of the more advanced models into better
forecasts; simple but highly persistent models already
capture a good part of the predictability of the volatil-
ity series. The differences in results for the MAE and
R2 criteria, in their turn, suggest a certain degree of
noise in the data. Given the large number of observa-
tions in our analysis, we see this fact as supporting the
existence of structural breaks.

Back to the other stocks, Table 9 shows the MAEs
for ten-day-ahead forecasts. According to the MAE,
the STR-Tree/AE model is the best for twelve stocks
(being the only model not to be rejected by the SPA
test for at least one of the stocks), the EWMA model
for two and the HAR for only one. As for the one-
day-ahead forecasts, none of the ARFIMA, HAR or
EWMA forecasts consistently appear as the second
best. A different pattern emerges for the R2: the
EWMA model is the best for ten stocks, the STR-
Tree/AE model for three, and the HAR and STR-
Tree/SB+AE models each for one.

We also examine the forecasting performances
of the different models by year. After 2003, the
volatility consistently and sharply declined over the
period, inducing autocorrelations in the residuals of
all models. The results for 2000–2002 are presented
in Table 6, where we concentrate on the ARFIMA and
STR-Tree/AE models only. In the table, one, two or
three asterisks next to MAE and/or R2 indicate that the
model has a statistically significantly lower MAE/sum
of squared residuals at the 10%, 5% or 1% level,
respectively, according to the Harvey et al. (1997) test.

In 2000, the STR-Tree/AE is superior for one-
and five-day-ahead forecasts (significant at the 5%
level), while the criteria diverge for 10 and 20 days:
the ARFIMA outperforms the STR-Tree/AE in terms
of the MAE, and the reverse happens with R2.
The contradiction suggests a volatility level that is
unaccounted for by the STR-Tree/AE estimations,
which otherwise demonstrated a superior capacity to
track variations in the volatility. In 2001 and 2002,
however, the STR-Tree/AE consistently and strongly
outperforms the ARFIMA model over all horizons and
criteria.

The statistics for 2003 are given in Table 7. For
one-day-ahead forecasts, the performances of the
AR, EWMA, STR-Tree/AE and HAR models are
very similar, and are superior to ARFIMA, while
the EWMA and HAR models have better MAEs
and the ARFIMA model a higher R2 for 20-days-
ahead. The MAEs are considerably smaller than in
previous years, suggesting a lower variance of the log
realized volatility in the period. In fact, 20-day-ahead
forecasts from the ARFIMA model have lower MAEs
than the one-day-ahead forecasts for all previous
years. The table also shows that the STR-Tree/SB
model is strongly outperformed by ARFIMA and
EWMA over the period, as in previous periods. The
apparent contradiction posed by the weak performance
of the break model can be seen in light of the
analysis of Granger and Hyung (2004), who show that
prediction with structural break models tends to be
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Table 6
Forecasting results by year: 2000–2002. The table reports the out-of-sample forecasting results of the STR-Tree/AE, STR-Tree/DJIA, and
ARFIMA models for each year between 2000 and 2002, where each model is re-estimated daily and used for predictions 1, 5, 10 and 20 days
ahead. MAE is the mean absolute error. R2 is the corrected R-squared value of the following regression: RVt = α + β R̂V t,i + εt,i , where
R̂V t,i is the prediction of model i for the realized volatility on day t , and RVt is the “observed” realized volatility on that day. One, two or three
asterisks next to the MAE and/or the R2 indicate that the model has a statistically significantly lower MAE/sum of squared residuals according
to the Harvey et al. (1997) test at the 10%, 5% or 1% level respectively.

2000 2001 2002
MAE R2 MAE R2 MAE R2

1 day
ARFIMA 0.459 0.309 0.373 0.504 0.352 0.618
STR-Tree/AE 0.451 0.336** 0.350*** 0.550*** 0.328*** 0.644***
STR-Tree/DJIA 0.451 0.335** 0.353*** 0.556*** 0.326*** 0.652***

5 days
ARFIMA 0.536 0.129 0.465 0.390 0.454 0.357
STR-Tree/AE 0.547 0.153* 0.420*** 0.405 0.428*** 0.432***
STR-Tree/DJIA – – – – – –

10 days
ARFIMA 0.567*** 0.082 0.537 0.233 0.525 0.190
STR-Tree/AE 0.608 0.095 0.485*** 0.250 0.479*** 0.288***
STR-Tree/DJIA – – – – – –

20 days
ARFIMA 0.605*** 0.016 0.634 0.097 0.583 0.062
STR-Tree/AE 0.633 0.024 0.567*** 0.114 0.529*** 0.148***
STR-Tree/DJIA – – – – – –
Table 7
Forecasting results by year: 2003. The table reports the out-of-sample forecasting results for the IBM daily realized volatility for the year
2003, where each model is re-estimated daily and used for predictions 1, 5, 10 and 20 days ahead. MAE is the mean absolute error. R2 is the
(corrected) R-squared value of RVt = α + β R̂V t |t− j,i + εt,i , where R̂V t |t− j,i is the prediction of model i for the realized volatility on day
t , and RVt is the observed realized volatility on that day. F is the p-value of the (heteroskedasticity robust) F test of the joint hypothesis that
α = 0 and β = 1. HLN is the p-value of the Harvey et al. (1997) test of equality of the mean of loss functions, where the models are compared
with the ARFIMA. SPA is the p-value of the superior predictive ability test developed by Hansen (2005). The null hypothesis is that a given
model is not inferior to any of the competing models in terms of a given loss function. EWMA is the exponentially weighted moving average
of realized volatility itself.

1 day 20 days
MAE HLN SPA R2 HLN SPA F MAE HLN SPA R2 HLN SPA F

STR-Tree/AE 0.157 0.002 0.907 0.598 0.067 0.923 0.000 0.236 0.000 0.000 0.482 0.008 0.055 –
STR-Tree/SB 0.201 0.000 0.000 0.573 0.418 0.339 0.000 0.524 0.000 0.000 0.456 0.002 0.004 –
STR-Tree/DJIA 0.161 0.028 0.001 0.599 0.066 0.949 0.000
STR-
Tree/SB+AE

0.165 0.169 0.010 0.573 0.441 0.069 0.000 0.297 0.005 0.000 0.457 0.000 0.020 –

HAR 0.156 0.000 0.951 0.593 0.032 0.900 0.010 0.191 0.000 0.848 0.478 0.000 0.027 –
ARFIMA 0.170 – 0.000 0.569 – 0.166 0.000 0.274 – 0.000 0.546 – 0.880 –
AR 0.159 0.000 0.011 0.589 0.076 0.450 0.003 0.207 0.000 0.000 0.478 0.000 0.021 –
EWMA 0.158 0.005 0.695 0.586 0.158 0.606 0.010 0.200 0.000 0.539 0.479 0.000 0.001 –
GARCH 0.322 0.000 0.000 0.413 0.001 0.000 0.000 0.527 0.000 0.000 0.276 0.000 0.004 –
weaker even if the true process is a break process:
since there is a lag in the detection of the break,
moving average models perform better, a quality that
is also shared by spurious ARFIMA estimations.
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Table 8
One-day-ahead forecasting results for all series. The table reports the out-of-sample forecasting results (MAE) for the daily realized volatility
of 15 Dow Jones stocks. The figures in parentheses are the p-values of the superior predictive ability test developed by Hansen (2005). The null
hypothesis is that a given model is not inferior to any of the competing models in terms of a given loss function.

Series STR-Tree/AE STR-Tree/SB STR-Tree/AE+SB ARFIMA HAR EWMA

AA 0.450
(0.933)

0.476
(0.001)

0.560
(0.067)

0.456
(0.301)

0.474
(0.000)

0.465
(0.034)

AIG 0.359
(0.913)

0.371
(0.003)

0.372
(0.005)

0.364
(0.260)

0.369
(0.041)

0.371
(0.039)

BA 0.393
(0.837)

0.414
(0.002)

0.404
(0.057)

0.397
(0.469)

0.405
(0.099)

0.409
(0.063)

CAT 0.398
(0.904)

0.423
(0.000)

0.423
(0.000)

0.404
(0.152)

0.412
(0.044)

0.411
(0.063)

GE 0.340
(0.873)

0.369
(0.000)

0.363
(0.000)

0.349
(0.118)

0.355
(0.008)

0.361
(0.004)

GM 0.374
(0.920)

0.409
(0.000)

0.388
(0.003)

0.380
(0.181)

0.388
(0.003)

0.389
(0.007)

HP 0.574
(0.903)

0.604
(0.000)

0.585
(0.084)

0.579
(0.372)

0.599
(0.002)

0.583
(0.314)

INTC 0.436
(0.821)

0.490
(0.000)

0.443
(0.331)

0.448
(0.055)

0.459
(0.004)

0.466
(0.001)

JNJ 0.368
(0.806)

0.380
(0.015)

0.385
(0.008)

0.372
(0.579)

0.379
(0.139)

0.380
(0.113)

KO 0.335
(0.904)

0.360
(0.000)

0.346
(0.014)

0.341
(0.164)

0.348
(0.006)

0.339
(0.473)

MRK 0.367
(0.886)

0.389
(0.001)

0.377
(0.034)

0.370
(0.634)

0.381
(0.010)

0.378
(0.064)

MSFT 0.347
(0.827)

0.380
(0.000)

0.364
(0.000)

0.357
(0.133)

0.363
(0.013)

0.369
(0.013)

PFE 0.426
(0.036)

0.433
(0.001)

0.433
(0.002)

0.419
(0.893)

0.423
(0.531)

0.421
(0.669)

WMT 0.397
(0.882)

0.408
(0.026)

0.413
(0.008)

0.400
(0.690)

0.409
(0.036)

0.408
(0.125)

XON 0.306
(0.882)

0.322
(0.001)

0.323
(0.065)

0.312
(0.110)

0.323
(0.000)

0.321
(0.005)
3.3.2. The effect of jumps

So far, our analysis has not explicitly considered the
presence of less persistent elements in the volatility of
stocks, in contrast with the smooth and very slowly
mean-reverting part associated with long memory
properties. Jump components have been receiving
growing amounts of attention in the realized volatility
literature. Building on theoretical results for bi-power
variation measures, researchers such as Andersen,
Bollerslev, and Diebold (2005), Tauchen and Zhou
(2005), and Barndorff-Nielsen and Shephard (2006)
established related frameworks for non-parametric
estimation of the jump component in asset return
volatility. Empirically, Andersen, Bollerslev, and
Diebold (2005) incorporate the distinction between
jump and non-jump components into a forecasting
model for the DM/USD exchange rate, the S&P500
market index, and the 30-year U.S. Treasury bond
yield realized volatility series, and find substantial
performance improvements in daily, weekly and
monthly predictions.
To verify the direct impact of the jump component
on our conclusions, we closely follow Andersen,
Bollerslev, and Diebold (2005) and recalculate the
previous forecasts using the lagged jump series as an
explanatory variable for the STR-Tree/AE and HAR
models.13 The new results are displayed in Table 10.
In sharp contrast to the results of Andersen, Bollerslev,
and Diebold (2005), the outcome of additionally
considering jumps in the realized volatility of IBM is
marginal; for instance, the R2 of daily forecasts rise
from 0.641 to 0.644 and from 0.618 to 0.621 for the
STR-Tree/AE and HAR models respectively.14

4. Conclusion

In this paper, we considered the hypothesis
that cumulated price variations convey essential

13 The bi-power variation measure necessary for computing the
jump series is calculated with averaged five minute grids.
14 However, further investigation may be needed as the jump

estimators themselves become robust to microstructure noise.
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Table 9
Ten-day-ahead forecasting results for all series. The table reports the out-of-sample forecasting results (MAE) for the daily realized volatility
of 15 Dow Jones stocks. The figures in parentheses are the p-values of the superior predictive ability test developed by Hansen (2005). The null
hypothesis is that a given model is not inferior to any of the competing models in terms of a given loss function.

Series STR-Tree/AE STR-Tree/SB STR-Tree/AE+SB ARFIMA HAR EWMA

AA 0.583
(0.927)

0.644
(0.003)

0.585
(0.865)

0.603
(0.064)

0.605
(0.175)

0.597
(0.368)

AIG 0.460
(0.856)

0.472
(0.249)

0.472
(0.238)

0.460
(0.874)

0.470
(0.469)

0.481
(0.122)

BA 0.512
(0.902)

0.551
(0.000)

0.530
(0.188)

0.523
(0.203)

0.515
(0.845)

0.533
(0.225)

CAT 0.499
(0.855)

0.541
(0.011)

0.520
(0.135)

0.507
(0.368)

0.517
(0.321)

0.513
(0.366)

GE 0.452
(0.884)

0.489
(0.000)

0.459
(0.616)

0.467
(0.015)

0.457
(0.776)

0.464
(0.415)

GM 0.455
(0.921)

0.526
(0.000)

0.469
(0.088)

0.481
(0.000)

0.486
(0.008)

0.483
(0.054)

HP 0.744
(0.659)

0.759
(0.327)

0.756
(0.347)

0.746
(0.560)

0.745
(0.486)

0.731
(0.727)

INTC 0.607
(0.903)

0.754
(0.000)

0.640
(0.030)

0.629
(0.014)

0.640
(0.127)

0.625
(0.408)

JNJ 0.456
(0.899)

0.477
(0.020)

0.485
(0.003)

0.460
(0.592)

0.468
(0.345)

0.487
(0.048)

KO 0.411
(0.892)

0.448
(0.001)

0.433
(0.006)

0.414
(0.574)

0.429
(0.134)

0.430
(0.121)

MRK 0.436
(0.891)

0.466
(0.000)

0.446
(0.189)

0.437
(0.753)

0.441
(0.625)

0.440
(0.541)

MSFT 0.505
(0.862)

0.551
(0.000)

0.525
(0.081)

0.510
(0.250)

0.512
(0.727)

0.520
(0.354)

PFE 0.500
(0.540)

0.536
(0.000)

0.495
(0.938)

0.508
(0.180)

0.506
(0.243)

0.510
(0.172)

WMT 0.524
(0.478)

0.536
(0.001)

0.527
(0.296)

0.518
(0.734)

0.519
(0.535)

0.511
(0.689)

XON 0.395
(0.899)

0.410
(0.099)

0.400
(0.516)

0.396
(0.797)

0.427
(0.001)

0.432
(0.000)
Table 10
Forecasting results: jumps. The table reports the out-of-sample forecasting results for the IBM volatility over the period 2000–2003 (983
trading days, excluding days affected by holidays), where each model explicitly incorporates jump components, is re-estimated daily, and
is used for predictions 1, 5 and 10 days ahead. MAE is the mean absolute error. R2 is the corrected R-squared value of the regression
RVt = α + β R̂V t,i + εt,i , where R̂V t,i is the prediction of model i for the realized volatility on day t , and RVt is the “observed” realized
volatility on that day. HLN is the p-value of the Harvey et al. (1997) test of equality of the mean of loss functions (in the table, the absolute
deviation and the residuals of the regression above), where the models are compared with the ARFIMA model.

MAE HLN SPA R2 HLN SPA

1 day
STR-Tree/AE 0.324 0.000 0.340 0.644 0.001 0.785
HAR 0.334 0.079 0.001 0.621 0.259 0.004

5 days
STR-Tree/AE 0.398 0.000 0.793 0.500 0.005 0.968
HAR 0.410 0.198 0.004 0.472 0.194 0.007

10 days
STR-Tree/AE 0.450 0.008 0.504 0.386 0.068 0.742
HAR 0.463 0.480 0.014 0.355 0.033 0.041
information concerning shifts in the level of stock
volatility series, and can be related to multiple regimes
that induce highly persistent autocorrelations that
are hard to distinguish from the patterns generated
by fractionally integrated processes—even in sample
sizes of several years. Using realized volatilities
computed from intraday returns, we showed, not
surprisingly, that volatility levels in periods of losses,
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like the end of 2002 (when the DJIA index reached a
4 year bottom), are significantly higher than in periods
like 2003, when the index went up 25%; there is strong
evidence of multiple regimes linked to return patterns
in all series considered. The result was robust to the
choice of firm-specific or market returns as transition
variables.

We underline the importance of this analysis
by presenting further evidence that fractionally
integrated processes are an incomplete description
of the volatility process of stocks, arguing that
sharp differences in out-of-sample and in-sample
performances are closely related to the empirical issue
of excessive variation in estimates of the fractional
differencing parameter over time.

The empirical results, in their turn, indicate that
the multiple regime model proposed in the paper
is a promising alternative for applications. When
compared with alternative specifications with short
and long memory, the more realistic model proposed
in this paper is able to at least retain, and in some
cases improve, the overall out-of-sample performance
in forecasting. Most importantly, the model is more
robust to periods of financial crises and high volatility
(which are the crucial ones from the point of view
of risk management), when it attains significantly
better forecasts. In 15 of the 16 series considered in
the paper, the STR-Tree model with past cumulated
returns as transition variables is at least equivalent
to, and sometimes outperforms, several concurrent
models, such as the AR, ARFIMA, HAR, GARCH
and EWMA models. Surprisingly, the EWMA model
seems to be very competitive, especially when
volatility is low, such as in 2003.
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Appendix. Conditional simulation

Conditional on information up to day t , forecasts
for days t+1 through t+k for the STR-Tree models are
calculated through conditional simulation as follows.

(1) In the first step (one day ahead), the functional
form of the model (3) is used to construct
predictions conditional on past realized volatility
observations and returns. Set yt ≡ log(RVt ) and
ŷt+k|t ≡ E

[
yt+k |Ft

]
, where Ft is the σ -algebra

of all information up to time t . Hence,

ŷt+1|t = α̂
′wt +

∑
i∈T

β̂ i z̃t BJi
(

xt ; θ̂ i

)
.

(2) In order to compute multi-step forecasts, we
randomly generate 10,000 NID errors (εt+1, j , j =
1, . . . , 10,0000), which, when added to ŷt+1|t ,
make up a vector of simulated realized volatilities
for day t + 1. Even though Section 3.2 points
to the inaccuracy of the normality assumption,
residual bootstrapping and fat-tailed distributions
do not improve the results. Under the hypothesis
that standardized returns are normally distributed,
we employ each of these simulated volatilities to
simulate correspondent (cumulated) returns, and
use Eq. (3) to compute the forecasts.

(3) Simulations are repeated for each step, generating
ten thousand simulated volatility paths conditional
on information up to t . The averages of these paths
at each step yield the final forecasts.
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