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Local Global Neural Networks: A New Approach for
Nonlinear Time Series Modeling

Mayte SUAREZ-FARINAS, Carlos E. PEDREIRA, and Marcelo C. MEDEIROS

We propose the local-global neural networks model within the context of time series models. This formulation encompasses some already
existing nonlinear models and also admits the mixture of experts approach. We emphasize the linear expert case and extensively discuss
the theoretical aspects of the model: stationarity conditions, existence, consistency and asymptotic normality of the parameter estimates,
and model identifiability. The proposed model consists of a mixture of stationary and nonstationary linear models and is able to describe
“intermittent” dynamics; the system spends a large fraction of time in a bounded region, but sporadically develops an instability that grows
exponentially for some time and then suddenly collapses. Intermittency is a commonly observed behavior in ecology and epidemiology,
fluid dynamics, and other natural systems. A model-building strategy is also considered, and the parameters are estimated by concentrated
maximum likelihood. The procedure is illustrated with two real time series.

KEY WORDS: Model building; Model identifiability; Neural network: Nonlinear model; Parameter estimation; Sunspot number;

Time series.

1. INTRODUCTION

The past few years have witnessed a vast development of
nonlinear time series techniques (Tong 1990; Granger and
Terédsvirta 1993). Among these, nonparametric models that do
not make assumptions about the parametric form of the func-
tional relationship between the variables to be modelled have
become widely applicable due to computational advances. (For
some references on nonparametric time series models, see
Hirdle 1990; Hardle, Liitkepohl, and Chen 1997; Heiler 1999;
Fan and Yao 2003.) Another class of models, flexible functional
forms, offers an alternative that also leave the functional form
of the relationship partially unspecified. Although these models
do contain parameters (often a large number of them) the pa-
rameters are not globally identified. Identification, if achieved,
is local at best, with no restrictions imposed on the parameters.
Usually the parameters are not interpretable, as they often are
in parametric models.

The artificial neural network (ANN) model is a prominent
example of such a flexible functional form. It has found appli-
cations in a number of fields, including economics, finance, en-
ergy, and epidemiology. The use of the ANN model in applied
work is generally motivated by the mathematical result stating
that under mild regularity conditions, a relatively simple ANN
model is capable of approximating any Borel-measurable func-
tion to any given degree of accuracy (Funahashi 1989; Cybenko
1989; Hornik, Stinchombe, and White 1989, 1990; White 1990,
Gallant and White 1992).

Another example of a flexible model, derived from ANNs,
is the mixture-of-experts model. The idea behind this model,
proposed by Jacobs, Jordan, Nowlan, and Hinton (1991), is
to “divide and conquer.” The motivation for the development
of this model is twofold: first, the ideas of Nowlan (1990),
viewing competitive adaptation in unsupervised learning as
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an attempt to fit a mixture of simple probability distributions
into a set of data points, and second, the ideas developed
by Jacobs (1990) using a similar modular architecture but a
different cost function. Jordan and Jacobs (1994) generalized
the foregoing ideas by proposing the so-called “hierarchical
mixture-of-experts” model. Both the mixture-of-experts and the
hierarchical mixture-of-experts models have been applied with
success in different areas. In terms of mixtures-of-experts of
time series models, the literature focuses mainly on mixtures
of Gaussian processes. For example, Weigend, Mangeas, and
Srivastava (1995) provided an application to financial time se-
ries forecasting. Good applications of hierarchical mixtures-of-
experts models in time series have been given by Huerta, Jiang,
and Tanner (2001, 2003). Carvalho and Tanner (2002a,b) pro-
posed the mixture of generalized linear time series models and
derived several asymptotic results. It is also worth mention-
ing the mixture autoregressive (AR) model proposed by Wong
and Li (2000) and its generalization developed by Wong and Li
(2001).

In this article we propose a new model, based on ANNs and
partly inspired by the ideas from the mixture-of-experts litera-
ture, termed the local global neural nenwork (LGNN). The main
idea is to locally approximate the original function by a set of
very simple approximation functions. The input—output map-
ping is expressed by a piecewise structure. The network out-
put constitutes a combination of several pairs, each composed
of an approximation function and an activation-level function.
The activation-level function defines the role of an associated
approximation function, for each subset of the domain. Partial
superposition of activation-level functions is allowed. In this
way, modeling is approached by the specialization of neurons
in each sector of the domain. In other words, the neurons are
formed by pairs of activation-level and approximation func-
tions, which emulate the generator function in different subsets
of the domain. The level of specialization in a given sector is
proportional to the value of the activation-level function. This
formulation encompasses some already existing nonlinear mod-
els and can be interpreted as a mixture-of-experts model. We
emphasize the linear expert case. The model is then called the
linear local global neural network (L2GNN) model. Here we
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give geometric interpretation of the model and discuss the con-
ditions under which the proposed model is asymptotically sta-
tionary. We show that the LZGNN model consists of a mixture
of stationary and nonstationary linear models that are able to
describe “intermittent” dynamics; the system spends a large
fraction of the time in a bounded region, but sporadically de-
velops an instability that grows exponentially for some time
and then suddenly collapses. Furthermore, based on the work
of Trapletti, Leisch, and Hornik (2000), we extensively discuss
the existence, consistency, and asymptotic normality of the pa-
rameter estimates. We also carefully consider conditions under
which the L2GNN model is identifiable. Identification is essen-
tial for consistency and asymptotic normality of the parameter
estimates. We develop a model building strategy and estimate
the parameters by concentrated maximum likelihood, which
dramatically reduces the computational burden. The whole pro-
cedure is illustrated with two real time series. Similar proposals
are the stochastic neural network (SNN) model developed by
Lai and Wong (2001) and the neuro-coefficient smooth transi-
tion AR (NCSTAR) model of Medeiros and Veiga (2000a).

The article proceeds as follows. Section 2 presents the model,
and Section 3 discuss the geometric interpretation for it. Sec-
tion 4 presents some probabilistic properties of the L>?GNN
model. Section 5 considers parameter estimation, and Section 6
presents a model building strategy. Section 7 gives examples
with real time series, and Section 8 briefly summarizes our re-
sults. A technical Appendix provides the proofs of the main
results.

2. MODEL FORMULATION

The LGNN model describes a stochastic process y; € R
through the following nonlinear model:

y=G&;¥) + e, t=1,....T, (1

where x; € R? represents a vector of lagged values of y, and/or
some exogenous variables and {g;} is sequence of indepen-
dently and identically distributed random variables with mean 0
and variance 62 < oc. The function G (x; ¥) is a nonlinear
function of x,, with the vector of parameters ¥ belonging to a
compact subspace ¥ of the Euclidean space, and is defined as

G(X,;1II)=ZL(X[;1/ILI.)B(X,;1/IB’.), (2)

i=1

where ¥ = [¥). %51, ¥, = W),....¥, ). ¥p =
[¥,..... ¥}, |, and the functions B(x;; ¥ 5):R? — R and
L(x;;¥p,):R?Y — R are activation-level and approximation
functions. Furthermore, B(X;; ¥ ) is defined as

1
1 +exp(y; ((d;, x;) —

B p) = —[ Py

1 ]
1+ exp(yi ({di, x1) — BN

(3)

where

2 ’
¥ =[ri.di, ‘,,,d,rq,ﬂi“).ﬂ,-( ]
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Figure 1. Example of an Activation-Level Function With

~ Unif(—30,30), y = 1,d=1, (" = — 10, and @ = 10.

and (-,-) denotes the internal product in Euclidean space,
yieR,d; eRY, BV cR.and 87 € R,i =1,....m.Itis clear
that due to the existence of y; in (3), the restriction ||d; || = |
can be made without loss of model generality. Figure 1 shows
an example of an activation-level function.

In this article, the approximation functions are linear, that
is, L(x;; ¥p,) =ax; + b;, with a; = [a(1, a12....,a14] € RY
and b; € R. In this case the model is called the L>GNN model,
where

m
yi=Y @x +b)B(x¥p)+e
i=1
Vi, = lait,....aiq.bil, ¥ € R2(2+4)  and the stochastic
process y; consists of a mixture of linear processes. In (4) we
consider &; to be a random noise normally distributed. The nor-
mality assumption can be relaxed and substituted by some mo-
ment conditions.

This architecture, initially proposed by Pedreira, Pedroza,
and Farinas (2001) for the problem of approximations of
L’-integrable real functions in the univariate case, can be rep-
resented by the diagram in Figure 2. Notice that the hidden
layer is formed by m pairs of neurons. Each pair of neurons
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Figure 2. Neural Network Architecture.

r=1,....T, (4
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is composed of the activation-level unit, represented by func-
tion B(X;; ¥ p,), and the approximation unit related to function
L 9p,), i =1,...,m. We should, however, stress the fact
that model (4) is in principle neither globally nor locally iden-
tified. We address this issue fully in Section 5.2.

As pointed out in Section 1, the L2GNN model is closely re-
lated to the NCSTAR model of Medeiros and Veiga (2000a) and
the SNN model of Lai and Wong (2001). But although these
models are closely related, they have some significant differ-
ences. The NCSTAR model can be written as

m
ye=agk +ho+ Y (@% +b)F(x;di, B+ (5)
i=1
where F(x;;d, B;) is a single logistic function, unlike our (3),
which is the difference between two logistic functions, defined
as
_ 1
 Lexp(—(dix + )’

and ¢, is a Gaussian white noise. The SNN model starts from
this same equation [see eq. (8) in Lai and Wong 2001], and
then replaces the logistic functions F(-) by stochastic Bernoulli
variables I;;, i = 1,...,m, whose expectation value equals
F(x,; d;, Bi) [egs. (9a) and (9b) in Lai and Wong 2001]. These
differences have two main implications. First, in contrast to the
NCSTAR and L2 GNN models, the SNN model is a stochas-
tic linear map; because given the choice of /;;, the map is lin-
ear, the nonlinearities appear not in the maps themselves, but
rather in the probabilities of choosing which particular map is
applied at a specific timestep. This allows Lai and Wong to use
the notion of soft splits proposed by Jordan and Jacobs (1994),
mapping the model to a hierarchical mixture of experts and to
use a fast EM estimation algorithm. But although the introduc-
tion of the random variables I;; looks minor, in fact it changes
the asymptotics of the model in some important ways. First, it
should be noted that the one-step-ahead predictor is the same
in the SNN model and in (5), because the expected value of
the variables I;; is F(x;;d;, B;); however, the residuals, and
with them the variance of the predictor, are different, because,
for a given timeset, the variables /;;, i = 1,..., m, can assume
2™ distinct values and so introduce a new source of variability
beyond the &,. Therefore, the n-step dynamics of the L2GNN,
NCSTAR, and SNN models are quite different, and the esti-
mators differ accordingly. The second difference sets apart the
L2GNN model from both the NCSTAR and SNN models, and is
in our opinion more fundamental. Given a random choice of the
model parameters, if an eigenvalue of the characteristic equa-
tion of some of the limiting linear model falls outside the unit
circle, then the NCSTAR and SNN models will be asymptoti-
cally nonstationary with probability strictly greater than 0; par-
ticular (i.e., measure zero) choices of parameters must be made
to guarantee asymptotic stationarity in this case. In contrast, the
L2GNN model will remain asymptotically stationary with prob-
ability 1 by imposing some very weak restrictions on the para-
meter d (see Theorem 1); particular choices of parameters must
be made to permit the dynamics to diverge. It is thus interesting
to note that although the NCSTAR and SNN models are in some
sense “supersets” of the LZGNN model, because each L2GNN
map can be written as two maps in (5), an important property

F(x:;d;. Bi)
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that is generic for the L>GNN case (asymptotic stationarity) is
not generic for the “more general” models. Furthermore, the
stationarity condition presented in section 3 of Lai and Wong
(2001) eliminates the possibility of mixing nonstationary linear
models. Asymptotic stationarity of the L2GNN model is dis-
cussed in Section 4. The core of the idea is that the activation
functions of the NCSTAR and SNN models are “large,” being
“active” in half the space, whereas the activation functions of
the L?’GNN model are “small,” because they cover a small frac-
tion of any sufficiently large sphere. Thus if the NCSTAR or
SNN models are nonstationary, then the dynamics can easily
escape to infinity; if an L2GNN model is nonstationary, then
the trajectory has to escape along a direction exactly perpen-
dicular to d, and any deviation will cause the trajectory to “fall
off” the activation function and return close to the origin. Both
the NCSTAR and SNN models could do exactly this by using
extra maps; however, the parameters of these extra maps have
to be chosen exactly, and a small random perturbation of the
model parameters would, with probability 1, destroy the prop-
erty. An important type of dynamical behavior is called “inter-
mittent” dynamics; the system spends a large fraction of the
time in a bounded region, but sporadically develops an instabil-
ity that grows exponentially for some time and then suddenly
collapses. Intermittency is a commonly observed behavior in
ecology and epidemiology (breakouts), fluid dynamics (turbu-
lent plumes), and other natural systems. The L>GNN model can
fit such dynamics robustly, meaning that small perturbations of
the parameters do not change the behavior; the NCSTAR and
SNN models can by definition fit that dynamic also, but the fit
is sensitive to small perturbations.

3. GEOMETRIC INTERPRETATION

In this section we give a geometric interpretation of a layer
of hidden neuron pairs. Let be x, € X, where X is a vector space
with internal product denoted by (-, -). The parameters d, gV,
and 8% in (4) define two parallel hyperplanes in X,

Hi = {x e R7|(d, x;) = "}

and (©6)
H, = {x, e RY|(d. x,) = gP}.

The position of each hyperplane is determined by direction vec-
tor d. The scalars 81 and 8® determine the distance of the hy-
perplanes to the origin of coordinates. Because a hyperplane has
infinite direction vectors, the restriction ||d|| = 1 reduces this
multiplicity, without loss of generality. Thus the hyperplanes
H, and Hj are parallel due to the fact that they have the same
direction vector, and they divide X into three different regions,
H—, HY, and H*, defined as

H™ = {x eR7[(d.x) < gV},
HO = {x; e RY[(d, x;) > B and (d.x,) < g7}, (D)
H* = {x e R7|(d, x;) > 7).

The region HO represents the active state of the neuron pair,
and regions H~ and H* represent the inactive state. The ac-
tive or nonactive state of the neuron pair is represented by
activation-level function B(x;; ¢ 3). Parameter y determines
the slope of the activation-level function, characterizing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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smoothness of transition from one state to another. Thus the
extreme case y — 0O represents an abrupt transition between
states.

When m neuron pairs are considered, there are m pairs of
hyperplanes. Therefore, m closed H -type regions will exist
that could intercept one another or not. Thus X will be divided
into polyhedral regions. If not all hyperplanes are parallel (i.e.,
if 34, j, i # j, such that d; 5 d;), then the region formed by
the interception of hyperplanes, ]HI?J. = H? n H(/) is a nonempty
region and represents the region where the neuron pairs i and j
are both active.

One case worth special mention is when the hyperplanes are
parallel to one another, that is, d; = d Vi. In that case we
would have m parallel regions of the H? type. Under condi-
tion ﬁim < ,Bi(}r)l
The L2 GNN model can thus be interpreted as a piecewise lin-
ear model with a smooth transition between regimes. (For a
review of smooth transition time series models, see van Dijk,
Terasvirta, and Franses 2002.)

Vi, the intersection of these regions is empty.

4. PROBABILISTIC PROPERTIES

Deriving necessary and sufficient conditions for stationarity
of nonlinear time series models is usually not easy, and this is
also true for the LZGNN model. One possibility, because the
L2GNN model can be interpreted as a functional coefficient au-
toregressive (FAR) model if X; = [y;—1,..., y;—p]’, is to apply
the results derived by Chen and Tsay (1993) and applied by
Lai and Wong (2001). However, the resulting restrictions are
extremely restrictive. For example, as &, is normally distrib-
uted, y; is geometrically ergodic if all roots of the character-
istic equation A7 — ¢ AP — ... — ¢p = 0 are inside the unit
circle, where ¢; = /L lai;|, j = 1,..., p. Fortunately, fol-
lowing a similar rationale as in the case of linear AR processes,
Theorem 1 gives less-restrictive sufficient conditions for the as-
ymptotic stationarity of the L’GNN model. It is easy to verify

that model (4) has at most N limiting linear models of the form
(k) (k)

yi=c¢g ¢y Vo1t ~—}—c§,k)y,,p—|—£,, where N =Y 7", (';1)
Theorem 1. The L?’GNN model is asymptotically stationary
if one of the following restrictions is satisfied:

a. Therootsofl”—cik)kp“—~--—cf,,k)=0,k= l,...,N,

are inside the unit circle,

b. Thereis a k € {1,2,..., N} such that at least one root of
M — cik)kp_l — = cg() =0 is outside the unit circle
andd,-j #O,i: 1....,m,j= sy P

c. Thereisak €{1,2,..., N} such that at least one root of
P VAL % = 0is equal to 1, the others are
inside the unit circle, and d;, [ = 1, ..., m, is not orthog-

onal to the eigenvectors of the transition matrix

_Cgk) C;k) C;k) L C;k,)l Cﬁ)k)
1 0 o .- 0 0
@ 0 1 o ... 0 0
AV =1 0 1 ... 0 o |- @&
L0 0 0 10

1095

The proof of this theorem, given in the Appendix, is based on
the results for linear AR models. The intuition behind the fore-
going result is that when y, grows in absolute value, the func-
tions B(x;; '1’3,-) —0,i=1,...,m, and thus y, is driven back
to 0. Condition a is trivial and implies that all of the limiting AR
models are asymptotically stationary. Condition b considers the
case where there are explosive regimes. Finally, condition ¢ is
related to the unit-root case.

Remark 1. When p = 1,the L2GNN model is asymptotically
stationary independent of the conditions on the AR parameters.

The following examples demonstrate the behavior of some
simulated L2GNN models. Examples 1 and 2 show two sta-
tionary L2GNN models that are combinations of explosive lin-
ear AR models. To illustrate the dependency on the elements
of vector d;, i = 1, ..., m, Example 3 shows a model where
d> =[1,0]. Example 4 considers the case with unit roots.

Example 1. Consider 1,000 observations of the following
L2GNN model:

V= ("‘5 - 1.5y,_1)

1 1
X ——
iil +exp(10(y;—1+6)) T4+exp(10(y;—) — 1)):|
+(=5—-12y_1)

1 1
x [1 +exp(10(y—1 +2)) 1 +exp(10(y,—1 — 2)):|
+ &, (9)

where &, ~ NID(0, 1). Figure 3 shows the generated time se-
ries, the activation-level functions, the autocorrelogram of se-
ries, and the histogram of the data. Model (9) is a mixture of two
explosive AR processes. When either only one of the activation-
level functions is active or both of them equal 1, the AR model
driving the series is explosive. However, as can be observed,
the series is stationary. The distribution of the data is highly
asymmetrical, and there is also some evidence of bimodality.
When iterating the skeleton of model (9) and making ¢ — oo,
the process has, in the limit, three stable points: .0052, 1.0140,
and 2.6567.

Example 2. Consider 3,000 observations of the following
L2GNN model:

yi=(=5-22y 1+25y.2)

1
x
|:1 +exp(Tyr— — Tyi-2 +10)

1
T T exp(Ty—1 — Tyi—2 — 10)}
+ (5 - 1.9))[71 - ]2))[_.2)

1
X
[1 4+ exp(1.5(.7y;—1 — Tyi—2+2))

1
C 1+exp(1.5(Ty—1 — Ty — 40))]

+ &, (10)
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Figure 3. Example 1. (a) Generated time series. (b) Scatterplot of the activation-level functions against y;_ 1. (c) Autocorrelogram of the series.

(d) Histogram of the series.

where &; ~ NID(0, 1). Figure 4 shows the generated time se- plosive when & = O but is asymptotically stationary when 6 =

ries, the activation-level functions, the autocorrelogram of se- 10710,
ries, and the histogram of the data. As can be observed, even . . .

. . £ © L . . Example 4. Consider 3,000 observations of the following
with explosive regimes, the series is stationary; however, it is L2GNN model:

strongly not normal and bimodal.
Example 3. Consider 3,000 observations of the following =342y = vi-2)

L2GNN model: y 1
1 +exp(7y—1 —.78y—2 + 10)
yi = (“5 - 2.2}‘fv1 + 2.5'\"[~_2) 1
x |:1 2 1 = 0 1 +exp(.7Tyi—1 — . 18yi—2 — 10)]
+exp(.7yr-1 — Ty—2+
P (5= Symt +.5y-2)
1
— 1
1 .77_—.7'_—1():| X
+exp(.7yi—1 Yi-2 ) l:l U S T
+ (5= 19y -1 — 1.2y 2) |
[ 1 ] +exp(.Tyr—1 — T8vi—2 — 15):|
1 1.5(vi—1 +0y—2+2
+exp(1.5(yr—1 +8yr—2+2)) te (12)
1
- ~ NID(0,1) and § = —1, 1. It can be seen that
1 1.5(yi—1 +8y,_2— 40 ] where £ .
exp(l30n—1 0y ) model (12) has three limiting AR regimes. The associated tran-
+érn (1 sition matrixes [see eq. (8)] are
where ¢, ~ NID(0, 1) and § = 0, 1071°. Figure 5 shows the A — 2 ] AQ _ 1.5 -5
generated time series. As can be observed, the process is ex- 11 o0 | 11 0o’
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Figure 4. Example 2. (a) Generated time series. (b) Scatterplot of the activation-level functions against y; _ 1 — y;_ ». (c) Autocorrelogram of the

series. (d) Histogram of the series.

and

-5 5
(3)_ Ire
A= 3]

with the respective eigenvalue pairs (1. 1), (1,.5),and (-1, .5).
Figure 6 shows the generated time series. As can be observed,
the process is not stationary when § = 1 but is asymptotically
stationary when § = —1.

5. PARAMETER ESTIMATION

Numerous algorithms for estimating the parameters of mod-
els based on neural networks are available in the literature. In
this article we estimate the parameters of our L2GNN model
by maximum likelihood, making use of the assumptions made
for &, in Section 2. The use of maximum likelihood or quasi-
maximum likelihood makes it possible to obtain an idea of
the uncertainty in the parameter estimates through (asymptotic)
standard deviation estimates. However, it may be argued that
maximum likelihood estimation of neural network models will
most likely lead to convergence problems, and that penalizing
the log-likelihood function in one way or another is a necessary
precondition for satisfactory results. Two things can be said in
favor of maximum likelihood here. First, we suggest a model-
building strategy that proceeds from small to large models, so
that estimation of unidentified or nearly unidentified models

(a major reason for the need to penalize the log-likelihood) is
partially avoided. Second, the starting values of the parameter
estimates must be chosen carefully, as we discuss in detail later
in this section.

The L>GNN model is similar to many linear or nonlinear
time series models in that the information matrix of the logarith-
mic likelihood function is block diagonal in such a way that we
can concentrate the likelihood and first estimate the parameters
of the conditional mean. Thus conditional maximum likelihood
is equivalent to nonlinear least squares. Hence the parameter
vector ¥ of the L’GNN model defined by (4) is estimated as

T
—“ ] R
l[r:arg;,nin QT(K”)Z? E fve — G(x;: )] (13)

=1
The least squares estimator (LSE) defined by (13) belongs to
the class of M estimators considered by Potscher and Prucha
(1986). We next discuss the conditions that guarantee the ex-
istence, consistency, and asymptotic normality of the LSE. We
also state sufficient conditions under which the L°’GNN model
is identifiable.

5.1 Existence of the Estimator

The proof of existence is based on lemma 2 of Jennrich
(1969), which establishes that the LSE exists under certain con-
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Figure 5. Example 3, Generated Time Series. (a) 8 = 0; (b) 6 = 10~ 10.

ditions of continuity and measurability on the mean squared er-
ror (MSE) function. Theorem 2 states the necessary conditions
for existence of the LSE.

Theorem 2. The L>GNN model satisfies the following con-
ditions, and the LSE exists:

a. For each x; € X, function G4 (¥) = G(x;; ¥) is continu-
ous in a compact subset W of the Euclidean space.

b. For each ¢ € W, function Gy (X) = G(X;; ¥) is measur-
able in space X.

c. & are independent and identically distributed errors with

mean 0 and variance o2,

Remark 2. To extend the set of approximation functions be-
yond linear functions, we need to verify conditions a and b
of Theorem 2. Thus the class of functions L(x;; le_), I =
1,...,m, to be considered must be a subset of the continuous
functions on compact set W that are also measurable in X.

Remark 3. The hypothesis of compactness of the parame-
ter space may seem a little too restrictive. Huber (1967) pre-
sented results that require only locally compact spaces, and an
extension of this can be applied to obtain similar results in the
present case. However, the compactness assumption is conve-
nient for theoretical reasons and is still general enough to be

(a)

applied whenever the optimization procedure is carried out by
a computer.

5.2 I|dentifiability of the Model

A fundamental problem for statistical inference with non-
linear time series models is the unidentifiability of the model
parameters. To guarantee unique identifiability of the MSE
function, the sources of uniqueness of the model must be iden-
tified. These questions have been studied by Sussman (1992),
Kurkovd and Kainen (1994), Hwang and Ding (1997), Trapletti
et al. (2000), and Medeiros, Ter#svirta, and Rech (2002) in the
case of a feedforward neural network model. Here we briefly
discuss the main concepts and results. In particular, we estab-
lish and prove the conditions guaranteeing that the proposed
model is identifiable and minimal. Before tackling the problem
of the identifiability of the model, we discuss two related con-
cepts: the concept of minimality of the model, established by
Sussman (1992) and “nonredundancy” termed by Hwang and
Ding (1997), and the concept of model reducibility.

Definition 1. The L>GNN model is minimal (or nonredun-
dant), if its input—output map cannot be obtained from another
model with fewer neuron pairs.

(b)

2000 -

Time

L L 5 L L
500 1660 1500 2000 2500 3300

40 L L L A
0 560 100C 1500 2000 2500 3000
Time

Figure 6. Example 4, Generated Time Series. (a)é =1, (b)§=—1.
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One source of unidentifiability comes from the fact that a
model may contain irrelevant neuron pairs. This means that
there are cases in which the model can then be reduced, elim-
inating some neuron pairs without changing the input—output
map. Thus the minimality condition can hold only for irre-
ducible models.

Definition 2. Define 8;; = [y;.d}. "]’ and let p(x;: 0,¢) =
v (di, X)) — ,Bi((‘)), i=1,...,m and £ = 1,2. The L°GNN
model defined in (4) is reducible if one of the following three
conditions holds:

a. One of the pairs (a;, ;) vanishes jointly for some | =

l,....m.
b. yy=0forsomei=1,...,m.
c. There is at least one pair (i,j), i # j, i =1,.... m,

J=1.....m,suchthat ¢(x;: 8;¢) and @(x;; @ ;¢) are sign-
equivalent. That is, Jo(x;; 8;¢)| = lp(X,;: 0¢)| VX, € RY,

Definition 3. The L°GNN model is identifiable if there are
no two sets of parameters such that the corresponding distribu-
tions of the population variable y are identical.

Four properties of the L’ GNN model cause unidentifiability
of the models:

(P.1) The property of interchangeability of the hidden neu-
ron pairs. The value of the likelihood function of the
model does not change if the neuron pairs in the hidden
layer are permuted. This results in m! different mod-
els that are indistinct among themselves (related to the
input—output map). As a consequence, in the estimation
of parameters, we will have m! equal local maxima for
the log-likelihood function.

The symmetry of the function B(x;; 1//31 Y, i=1,..., m.
The fact that the activation-level function satisfies that

B(Xl; V- dis ﬁj“)e ﬂ,(z)) = _B(XI: y-dl'* :6,'(2)! ﬂ,’“))v

establishes another indetermination in the model, be-
cause we may have 2 equivalent parameterizations.

(P.3) The fact that F(—z) =1 — F(z), where F(2) = [l +
exp(—z)]~!, which implies that the activation-level
function satisfies the condition

b a2 (2) L)
B(xiy.di i B7) = = B(xi: —v.di. 87 47)
or
(1) o2
B(xiv.di gV B
2 (1)
=-B(x:y, —di. — 8" —B").
The presence of irrelevant hidden neuron pairs. Condi-
tions a and b in the definition of reducibility give infor-
mation about the presence of pairs of irrelevant units,
which translate into identifiability sources. If the model
contains some pair such that a; = 0 and b; = 0, then
parameters d;, /Bl.m, and 61.(2) remain unidentified. On
the other hand, if y; = 0, then parameters a; and b; may
take on any value without affecting the value of the log-
: 2
likelihood function. Furthermore, if ,8;1) = ﬁ,.( ), then
v;, a;, and b; remain unidentified.

(P2)

(P4)
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Properties (P.2) and (P.3) are related to the concept of re-
ducibility. In the same spirit of the results given by Sussman
(1992) and Hwang and Ding (1997), we show that if the model
is irreducible, then property (P.1) is the only way to modify the
parameters without affecting the distribution of y. Hence, by
establishing restrictions on the parameters of (4) that simulta-
neously avoid reducibility and any permutation of hidden units,
we guarantee identifiability of the model.

The problem of interchangeability {property (P.1)] can be
prevented with the following restriction:

R B < gl and g7 <P i=1, . m.

Now the consequences due to the symmetry of the activation-
level function [property (P.2)] can be resolved if we consider
the following:

(R2) BV < g i=1.....m.

To remove the lack of identification caused by property (P.3),
we need to impose two additional restrictions:

R3) yi>0,i=1,..., .
RA) di) >0,i=1,....m.

The first of these prevents the possibility of a simple change
of sign in parameter y leading to problems in model identifica-
tion. As discussed previously, condition ||d|| = 1 restricts this
multiplicity in the direction vector of the hyperplane. However,
there is still some ambivalence arising from the tact that both
d and —d have the same norm and are orthogonal to the hyper-
plane. Restriction (R.4) avoids this problem.

Because d; is a unit vector, we have

The presence of irrelevant hidden neuron pairs, property (P.4),
can be circumvented by applying a “specific-to-general” model
building strategy, as suggested in Section 6.

Corollary 2.1 of Sussman (1992) and corollary 2.4 of Hwang
and Ding (1997) guarantee that an irreducible model is mini-
mal. The fact that irreducibility and minimality are equivalent
implies that there are no mechanisms, other than the ones listed
in the definition of irreducibility, that can be used to reduce the
number of units without changing the functional input—output
relation. Then restrictions (R.1)-(R.4) guarantee that if irrele-
vant units do not exist, the model is identifiable and minimal.

Before stating the theorem that gives sufficient conditions un-
der which the L’GNN model is globally identifiable, we state
the following assumptions.

Assumption 1. The parameters a; and b; do not vanish jointly
. . (1) (2)
tor some i = 1, ...,m. Furthermore y; > 0 Vi and 8, # B;
Vi.
Assumption 2. The covariate vector X; has an invariant dis-
tribution that has a density everywhere positive in an open ball.

Assumption 1 guarantees that there are no irrelevant hidden
neuron pairs as described in property (P.4), and Assumption 2
avoids problems related to multicollinearity.

Theorem 3. Under the following restrictions:
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2
(R.1) B(l)<ﬁl+l and'B() ﬂ1+]
R2) BV <BPi=1,....m,

(R3) i >0,i=1,.

(R.4) d,-lzw/l— j_,d2 >0,i=1,

and Assumptions 1 and 2, the L°GNN model is globally identi-
fiable.

5.3 Strong Consistency of Estimators

White (1981) and White and Domowitz (1984) established
the conditions that guarantee strong consistency of the LSE. In
the context of stationary time series models, the conditions that
ensure (almost certain) consistency have been established by
White (1994) and Wooldridge (1994). In what follows we state
and prove the theorem of consistency of the estimators of the
L>GNN model.

Assumption 3. The DGP for the sequence of scalar real-
valued observations {y,} | 1s a stationary and ergodic L2GNN
process with the true parameter vector ¥~ € W. The parameter
space W is a compact subset of R", where r =2m (2 + g).

Theorem 4. Under restrictions (R.1)—(R.4) and Assumptions
1 and 3, the least squares estimator is almost surely consistent.

5.4 Asymptotic Normality

The following two conditions are required for the asymptotic
normality of the LSE.

Assumption 4. The true parameter vector ¥ * is interior to W.
Assumption 5. The family of functions
{x} U{BG: ¥t
U{VB(x; '/’B)} U {x: B(xy; 1/'3)} Ux; VB(x;: '/’B)}-,

x; € R and V¢, is linearly independent, as long as the functions
£ :
o (i 0i).i=1. ...

Theorem 5. Under restrictions (R.1)-(R.4) and Assump-
tions 1-5,

m, £ =1, 2, are not equivalent in sign.

1 . —1/2 N
[%ﬁzszT('/f*)} JT @ — S N@©. D,

where V207 (¥*) = E[VZQ7 ()], V2 Q, (¥*) is the Hessian
matrix of Q7 (¥) at ¥*, and o2 is the variance of &;.

5.5 Concentrated Likelihood

To reduce the computational burden, we can apply the con-
centrated maximum likelihood method to estimate ¢ as fol-
lows. Consider the /th iteration of the optimization algorithm
and rewrite model (1)-(3) as

Y=Z(¥p)¥, +e,

where ¥y = [y1, y2, ..., yrl, e’ =[e1.e2...., ,er], and

z, By, )7 B(x1: ¥,z

(14)

ZYp) =

zy Bt ¥, )7; B(xr;¥,,)2y
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with z; = [1, x}]’. Assuming ¥ ; fixed, the parameter vector ¥,
can be estimated analytically by

Vi =ZW)ZW ) ZW )y

The remaining parameters are estimated conditionally on ¥
by applying the Levenberg-Marquadt algorithm, which com-
pletes the ith iteration. This form of concentrated maximum
likelihood, proposed by Leybourne, Newbold, and Vougas
(1998), considerably reduces the dimensionality of the iterative
estimation problem.

(15)

5.6 Starting Values

Many iterative optimization algorithms are sensitive to the
choice of starting values, and this is certainly so in the estima-
tion of L>GNN models. Assume now that we have estimated
an L?’GNN model with m — | hidden neuron pairs and want
to estimate one with m neuron pairs. Our specific-to-general
specification strategy has the consequence that this situation
frequently occurs in practice. A natural choice of initial values
for the estimation of parameters in the model with m neuron
pairs is to use the final estimates for the parameters in the first
m — | ones. The starting values for the parameters in the mth
hidden neuron pair are obtained in the following steps:

1. Fork=1,.... K:

a. Construct a vector v,
(L)

Vim

& _ [vgl;n),... qm] such that

€ (0. 1]and v{)) € [~1.1]. j=2.....q. The val-

ues for v]k) are drawn from a uniform (0, 1] distribu-

tion, and the values for U(k) j=2,....q, are drawn

from a uniform [—1, 1] dlStI‘lbUtiOH.

b. Define d% = v v -1,

c. Compute the projections p,n = (di,}f), x), where x =
[X1,..., X7 ].

d. Let clm = Zl/z(pm)) and sz = Za/z(pm)) where
Zy 1s the w-percentile of the empirical distribution
of p”‘).

2. Define a grid of N positive values y', n=1,...,
the slope parameter and estimate ¥ ; using (15).
..... K and n =1,..., N, compute the value
of Q7 (¥) for each combination of starting values. Choose
the values of the parameters that maximize the concen-

trated log-likelihood function as starting values.

N, for

After selecting the starting values, we have to reorder the units
if necessary, to ensure that the identifying restrictions are satis-
fied. A similar procedure was proposed by Medeiros and Veiga
(2000b) and Medeiros et al. (2002).

Typically, K = 1,000 and N = 20 will ensure good estimates
of the parameters. We should stress, however, that X is a nonde-
creasing function of the number of input variables. If the latter
is large, then we have to select a large K as well.

6. MODEL BUILDING

In this section we develop a specific-to-general specification
strategy. From (4), two specification problems require special
care. The first is variable selection, that is, the correct selection
of elements x,. The problem of selecting the right subset of
variables is very important because selecting a too small subset
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leads to misspecification, whereas choosing too many variables
aggravates the “curse of dimensionality.” The second problem is
selecting the correct number of neuron pairs. The specification
procedure as a whole may be viewed as a sequence consisting
of the following steps:

1. Selecting the elements of x,
2. Determining the number of neuron pairs
3. Evaluating the estimated model.

We discuss the first two steps of the modeling cycle in detail.
The evaluation step is beyond the scope of this article; however,
the results of Medeiros and Veiga (2002) and Medeiros et al.
(2002) can be easily generalized to the case of L2GNN models.

6.1 Variable Selection

The first step in our model specification process is to choose
the variables for the model from a set of potential vari-
ables. Several nonparametric variable selection techniques exist
(Tcherning and Yang 2000; Vieu 1995; Tjgstheim and Auestad
1994; Yao and Tong 1994; Auestad and Tjgstheim 1990), but
they are computationally very demanding, particularly when
the number of observations is not small. Here were carry out
variable selection by linearizing the model and applying well-
known techniques of linear variable selection to this approxi-
mation. This keeps the computational cost to a minimum. For
this purpose, we adopt the simple procedure proposed by Rech,
Terdsvirta, and Tschernig (2001) to approximate the station-
ary nonlinear model by a polynomial of sufficiently high order.
Adapted to the present situation, the first step is to approximate
function G(x;; ¥) in (4) by a general kth-order polynomial. By
the Stone—Weierstrass theorem, the approximation can be made
arbitrarily accurate if some mild conditions, such as the parame-
ter space ¥ being compact, are imposed on function G(x;; ¥).
Thus the L’GNN model is approximated by another function.
This yields

q q
Gix; ¥) =n'% + Z Z O pXjraXjpr + o

J1=1ja=j

q q
+ Z Z 1 X it X jer

A=l jk=jk-1
+ R(Xf; W)v

where X; =[1, x;]’ and R(x,; ¥) is the approximation error that
can be made negligible by choosing k sufficiently high. The
6's are parameters, and ¥ € RY*! is a vector of parameters. The
linear form of the approximation is independent of the number
of neuron pairs in (4).

In (16), every product of variables involving at least one re-
dundant variable has the coefficient 0. The idea is to sort out
the redundant variables by using this property of (16). To do
this, we first regress y, on all variables on the right side of (16),
assuming that R(x;; ¥) = 0, and compute the value of a model
selection criterion (MSC), such as the Akaike information cri-
terion (AIC) (Akaike 1974) or the Bayes information criterion
(BIC) (Schwarz 1978). After doing this, we remove one vari-
able from the original model and regress y, on all of the remain-
ing terms in the corresponding polynomial and again compute

(16)
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the value of the MSC. This procedure is repeated by omitting
each variable in turn. We continue by simultaneously omitting
two regressors of the original model and proceed in this way
until the polynomial is of a function of a single regressor and,
finally, just a constant. Having done this, we choose the com-
bination of variables that yields the lowest value of the MSC.
This amounts to estimating Y_7_, (¢) + 1 linear models by or-
dinary least squares. Note that by following this procedure,
the variables for the whole L’GNN model are selected at the
same time. Rech et al. (2001) showed that this procedure works
well already in small samples when compared with well-known
nonparametric techniques. Furthermore, it can be successfully
applied even in large samples when nonparametric model se-
lection becomes computationally infeasible.

6.2 Determining the Number of Neuron Pairs

In real applications, the number of neuron pairs is not known
and should be estimated from the data. In the neural network
literature, a popular method for selecting the number of neu-
rons is pruning, in which a model with a large number of neu-
rons is estimated first, and the size of the model is subsequently
reduced by applying an appropriate technique, such as cross-
validation. Another technique used in this connection is regu-
larization, which may be characterized as penalized maximum
likelihood or least squares applied to the estimation of neural
network models (see, e.g., Fine 1999, pp. 215-221). Bayesian
regularization may serve as an example (MacKay 1992a,b).

Another possibility is to use a MSC to determine the number
of hidden neuron pairs. Swanson and White (1995, 1997a,b) ap-
plied the BIC model selection criterion as follows. They started
with a linear model, adding potential variables to it until the
BIC indicated that the model cannot be further improved. Then
they estimated models with a single hidden neuron and selected
regressors sequentially to it one by one unless the BIC showed
no further improvement. Next, they added another hidden unit,
and proceeded by adding variables to it. The selection process
is terminated when BIC indicates that no more hidden units or
variables should be added or when a predetermined maximum
number of hidden units has been reached. This modeling strat-
egy can be termed fully sequential.

Here we adopt a similar strategy. After the variables have
been selected with the just-described procedure, we start with a
model with a single neuron pair and compute the value of the
BIC. We continue adding neuron pairs until the BIC indicates
no further improvement. The BIC is defined as

In(T)
T

BIC(h) = In(6%) + x 2mQ2+¢)]. (17)

where 52 is the estimated residual variance. This means that to
choose a model with mn neuron pairs, we need to estimate m + 1
models.

Another way of determining the number of neuron pairs is to
follow Medeiros and Veiga (2000b) and Medeiros et al. (2002)
and use a sequence of Lagrange multiplier tests. However, this
approach is beyond the scope of this article.
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7. NUMERICAL EXAMPLES

In this section we present numerical results for the LZGNN
model with real time series data. The first example considers
only in-sample fitting, and the second considers one-step-ahead
forecasts. The modeling cycle strategy described earlier was
used to select the models.

7.1 The Canadian Lynx Series

The first dataset analyzed is the classic 10-based logarithm
of the number of Canadian lynx trapped in the Mackenzie
River district of Northwest Canada over the period 1821-1934,
(For further details and a background history, see Tong 1990,
chap. 7.) Previous analyses of this series have been given by
Ozaki (1982), Tsay (1989), Teriisvirta (1994), and Xia and Li
(1999). We start by selecting the variables of the model among
the first seven lags of the time series. With the procedure de-
scribed in Section 6.1 and using the BIC, we identified lags
| and 2; using the AIC, we identified lags 1, 2, 3, 5, 6, and 7.
We continue building an L2GNN model with only lags 1 and 2,
which is more parsimonious. The final estimated mode has two
neuron pairs (m = 2), and when compared with a linear AR(2)
model, the ratio between the standard deviation of the residuals
from the nonlinear model and linear one is ’r?f =.876.

The estimated residual standard deviation (¢ = .204) is
smaller than that in other models that use only the first two
lags as variables. For example, the nonlinear model proposed by
Tong (1990, p. 410), has a residual standard deviation of .222,
and the exponential AR (EXPAR) model proposed by Ozaki
(1982) has &, = .208.

7.2 The Sunspot Series

In this example we consider the annual sunspot numbers over
the period 1700-1998. We used the observations for the period
1700-1979 to estimate the model and used the remaining ob-
servations to forecast evaluation. We adopted the same transfor-
mation as used by Tong (1990), y, = 2[/(1 -+ N;) ~ 1], where
N; is the sunspot number. The series was obtained from the
National Geophysical Data Center web page (http://www.ngdc.
noaa.gov/stp/SOLAR/SSN/ssn.html). The sunspot numbers are
a heavily modeled nonlinear time series; a neural network ex-
ample was provided by Weigend, Huberman, and Rumelhart
(1992).

We begin L’GNN modeling of the series by selecting the rel-
evant lags using the variable selection procedure described in
Section 6.1. We use a third-order polynomial approximation to
the true model. Applying the BIC, lags 1, 2, and 7 are selected,
whereas the AIC yields lags 1, 2,4,5,6,7. 8,9, and 10. As in
the previous example, we proceed with the lags selected by the
BIC; however, the residuals of the estimated model are strongly
autocorrelated. We remove the serial correlation by also includ-
ing y;_3 in the set of selected variables. When building the
L2GNN model, we select the number of hidden neuron pairs
using the BIC, as described in Section 6.2.

After estimating a model with three neuron pairs, we con-
tinue considering the out-of-sample performance of the esti-
mated model. To assess the out-of-sample performance of the
L2GNN model, we compare our one-step-ahead forecasting re-
sults with the ones obtained from the two SETAR models, the
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one reported by Tong (1990, p. 420) and the other reported by
Chen (1995); an ANN model with 10 hidden neurons and the
first 9 lags as input variables, estimated with Bayesian regu-
larization (MacKay 1992a,b); the SNN model estimated in Lai
and Wong (2001); the NCSTAR model of Medeiros and Veiga
(2000a), and a linear AR model with lags selected using the
BIC. The threshold variable is a nonlinear function of lagged
values of the time series in the SETAR model estimated by
Chen (1995), whereas it is a single lag in Tong’s model. The
estimated SNN model of Lai and Wong (2001) can be viewed
as a form of smooth transition AR with multivariate transition
variables in the same spirit as the NCSTAR model of Medeiros
and Veiga (2000a).

Table 1 shows the results of the one-step-ahead forecast-
ing for the period 1980-1998, with the respective root mean
squared error (RMSE) and mean absolute error (MAE). As
shown in the table, the L’GNN model has the smallest RMSE
and MAE among the alternatives considered herein. Over
19 forecasts, the L>GNN model outperforms the ANN and
Tong’s SETAR models in 12 cases, the SETAR model of Chen
(1995) in 15 cases, the AR specification in 11 cases, and the
SNN and NCSTAR models in 10 cases.

8. CONCLUSIONS

In this article we have proposed a new nonlinear time series
model based on neural networks. This model, the LGNN, can be
interpreted as a mixture-of-experts model. We analyzed the case
of linear experts in detail and discussed its probabilistic and sta-
tistical properties. The proposed model consists of a mixture of
stationary and nonstationary linear models and is able to de-
scribe “intermittent” dynamics; the system spends a large frac-
tion of the time in a bounded region, but sporadically develops
an instability that grows exponentially for some time and then
suddenly collapses. Intermittency is a commonly observed be-
havior in ecology and epidemiology, fluid dynamics, and other
natural systems. A specific-to-general model-building strategy,
based on the BIC, has been suggested to determine the variables
and the number of hidden neuron pairs. When put to the test in a
real experiment involving one-step-ahead forecasting, the pro-
posed model outperforms the linear model and other nonlinear
specifications considered in this article, suggesting that the the-
ory developed here is useful. Thus the proposed model appears
to be a useful tool for practicing time series analysts.

APPENDIX: PROOFS

A.1 Lemmas

LemmaA.l. 1f the functions ¢ (x) = hx —yB'D, ¢ = 1.2, x € R,
h>0. g0 < 82 are not equivalent in sign, then the class of func-
tions {B(x; ¥ g)} U {x B(x: ¥ g)}, where

B(x:yg)=—{[1 +exp(<p(1)(.\'))]_1 -1 +exp(<p(2)(x))]_]}
is linearly independent.

Lemma A.2. Let {d;} be a family of vectors in RY such that dj; > 0
for every i. Let v be the unitary vector that, according to Hwang and
Ding (1997), exists and satisfies the following:

a. (d;.v) > 0.

b. If d; # d/', then (d;. v) # (d/'. v).
Thus it follows that there exists a vector base vy, ..., vy that satisfies
these same conditions.
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Table 1. One-Step-Ahead Forecasts, Their RMSES, and MAEs for the Annual Number of Sunspots From a Set of Time Series Models,
for the Period 1980-1998

SETAR model  SETAR model

L°NGG ANN model (Tong 1990) (Chen 1995) AR model SNN NCSTAR
Year  Observation Forecast Error Forecast Error Forecast Error Forecast Error Forecast Error Forecast Error Forecast Error
1980 154.6 149.1 55 136.9 177 1610 -64 1343 203 1598 -52 1575 -29 1320 23.0
1981 1404 131.1 9.3 130.5 9.9 135.7 4.7 1254 15.0 123.3 17.1 130.5 9.9 134.0 6.4
1982 1159 101.8 141 101.1 14.8 98.2 17.7 99.3 16.6 99.6 16.3 106.3 9.6 94.9 21.0
1983 66.6 812 —146 88.6 —-22.0 76.1 -95 85.0 -—-18.4 789 -123 773 —-107 775 -109
1984 45.9 42.7 3.2 45.8 A 35.7 10.2 413 4.7 33.9 12.0 36.5 9.4 33.6 12.3
1985 17.9 224 -45 295 -116 24.3 —6.4 298 -119 29.3 -11.4 23.5 -5.6 24.5 —6.6
1986 13.4 10.0 3.4 9.5 39 10.7 2.7 9.8 3.6 10.7 2.7 8.8 4.6 12.6 .8
1987 294 19.4 10.0 25.2 4.2 20.1 9.3 16.5 12.9 23.0 6.4 26.8 2.6 8.8 20.6
1988 100.2 71.9 28.3 76.8 23.4 54.5 45.7 66.4 33.8 61.2 38.9 68.1 32.1 84.3 16.0
1989 157.6 160.7 3.1 152.9 46 1558 1.8 1218 358 1592 -16 1674 -98 1424 15.2
1990 142.6 1459 -33 1473 -47 1564 -138 1525 -99 1755 -329 1686 -26.0 1443 17
1991 145.7 118.1 275 121.2 245 93.3 524 1237 220 11941 266 1186 271 1271 18.6
1992 94.3 1018 -75 1143 -200 1105 -162 1159 -217 1189 -246 1101 -—-158 1053 -11.0
1993 54.6 69.3 -—-14.7 71.0 -164 67.9 -13.3 69.2 —14.6 579 -33 60.8 -6.2 665 -11.9
1994 29.9 29.8 1 329 -30 27.0 2.9 357 58 29.9 -1 27.7 2.2 25.0 4.9
1995 17.5 14.0 3.5 192 17 18.4 -9 189 -14 17.6 -1 14.3 3.2 19.1 -1.6
1996 8.6 148 -6.2 102 -16 18.1 -9.5 116 -3.0 157 71 1.7  -31 8.3 3
1997 21.5 17.2 4.3 21.3 2 12.3 9.2 11.8 9.7 16.0 5.5 242 =27 13.3 8.2
1998 64.3 63.9 4 676 -33 48.7 17.6 58.5 5.8 52.5 11.8 56.2 8.1 669 -26
RMSE 11.7 13.8 18.7 16.9 16.5 13.3 124
MAE 8.6 11.2 131 14.0 12.4 10.1 10.2
A.2 Proofs of Theorems Model (A.2) will be asymptotically stationary if [[,A; — 0 as
A.2.1 Proof of Theorem 1. Write model (4) as t > oo This will be of course the case if condition a in Theorem 1
is satisfied. As
Y, =a, | +A, 1Y, 1 t+e;. Al 1 -1
A A e AU Bt =~ {[1 + exp(ri (1. Yoy - )]
where 2111
—[1+exp(ri (@i Yo - 8] 7'}
Ve Yr—1 .
Ye—1 vj_o [, Ar = 0 if Bi(Y)— 0, i=1..., m. This will be true if
Y = ) . Y1 = . . [{d;, Y} — M, where M > max (/Sim. ﬁi(z)). If at least one limit-
: : ing AR regime is explosive, then |{d;, Y;}| — 00 as far as d;; # 0
Vi—p-1 Yi—p (condition b in Theorem 1). When a given limiting AR regime has
& Z:ﬁ:l b B(Y;_{) unit roots, to guarantee‘ that |{(d; . Y;)| > M, theyectors d, must npt
0 0 be orthogonal to the eigenvectors of the respective transition matrix
e=1 .|, a_| = . . (condition ¢ in Theorem 1).
6 () A.2.2 Proof of Theorem 2. Lemma 2 of Jennrich (1969) shows that
- " conditions a—c in Theorem 2 are sufficient to guarantee the existence
LiliainBi(Y, ) Yl anBi(Y ) - (and measurability) of the LSE. To apply this result to the L2GNN
1 0 e model, we need to check whether these conditions are satisfied by the
Ay = 0 | model.
: . Condition ¢ of Theorem 2 was already assumed when defining the
0 0 model. It is easy to prove in our case that G(X,; ¥) is continuous In
the parameter vector . This follows from the fact that B(x;; ¢ 8)
n .
Z;n:1aip~lBi(Yt—l) 2 dipBi (Y1) and L;(x;; %), i =1....,m, depend continuously on ¢ g and ¥,
0 0 for each value of x;. Similarly, we can see that G(x,. ¥) is continuous
0 0 , in x;, and thus is measurable, for each fixed value of the parameter
: : vector ¥ . Thus conditions a and b are satisfied.
1 0

A.2.3 Proof of Theorem 3. Suppose that {& = [1;/1 J,B], 1s another
and B;(Y;_1)=B(Y;_1:¥p). vector of parameters such that

After recursive substitutions, model (A.1) can be written as m

m
=21 -1 i—1 Z(a;xf+bi\)B(x’:V’Bi)=Z(§;x’+l’i)B(xf:'/'Bi)' (A.3)
Y, =a, | + [ l—l A]}ai+|:1—[ Aji|Y0 i=1 i=1
(=0L j=i+l j=0 To show global identifiability of the L2GNN model, we need to
—1ri—1 prove that, under Assumption 1 and restrictions (R.1)~(R.4), (A.3} is
|: :|e,- +e. (A2)

. satisfied if and only if a; = ;. b; = b;, and = Ji=1,..., m,
+Z n A‘, p y i i» O i ¥Yp=Y3
i=1L j=i VX[ cRY.
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Equation (A.3) can be rewritten as

2m

Z(C,I'Xz +€j)B(X[.1/;BJ)=O

i=I

(A4)

where B(x,,r/}B,) = B(x,.n/fBj) for j=1,...

B(x;. 1031 ) for j =m + 1,
a, —mfor j=m+ 1.

LM, B(Xr:'/fBJ) =
,2m. ¢ =a; for j =1,...,m,
¢ = L, 2m, ej_h for j=1,...,m, and
e; = bj mfor j=m+1...., 2m.

To relate this problem to Lemma A.1, we reduce the dimension of x;
to one. Following Hwang and Ding (1997), let v be the unit vector
such that for distinct d; ’s, the projections over v are likewise different.
Because the set {d,..., d;»} has a finite number of points, y; > 0
[restriction (R.3)], and ;1 > O [restriction (R4)], i = 1,..., m, it is
possible to construct a vector v such that the projection h; = y;(d;, v}
is positive. Replacing x; in (A.4) by x;v, x; € R, leads to

2m
> (@ +ej)B(xv. ¥5,)=0. (A.5)
Jj=I
where ¢; = {c;. ).
For simplicity of notation, let go}“ = <p(x,' jes Jo= 1

....2m. Lemma A.l implies that if qojlt and (p 2 are not sign-
equivalent, then j; € {l...., 2m}, j, € {1....,2m}, and (A.5) holds
if and only if ¢; and ¢; vanish jointly for every j € {1..... 2m}. How-
ever, the condition ¢, j = 1,...,2m, does not imply that ¢; = 0.
Lemma A.2 in fact shows that vector v is not unique and that there
exist vectors vy, ..., v4 that satisfy the same conditions as v and form
a basis for RY. Then the inner product {(¢;,v;) =0 Vj, implying
that ¢; = 0. However Assumption 1 precludes that possibility. Hence
¢ must be sign-equivalent. But restrictions (R.2)~(R.4)

(£)

avoid the p0§51b111ty that two functions e ) and go Loming from

the same model are sign-equivalent. Consequently, 3 jrell,....m}

and pe{m+1,..., 2m} such that (p(“ and w(@) ¢ =1,2 are sign-

equivalent. Under restrictions (R.2)— (R.4), the only possibility is that
the hidden neuron pairs are permuted. Restriction (R.1) excludes that
possibility. Hence the only case where (A.3) holds is when a; = a;,
b; =Ei,and1/f3:$3,i= I,....m, ¥x, € RY.

A.2.4 Proof of Theorem 4.  For the proof of this theorem, we draw
on theorem 3.5 of White (1994), showing that the assumptions stated
therein are fulfilled. Assumptions 2.1 and 2.3, related to the probability
space and to the density functions, are trivial.

Let g(x¢: %) = [ye — G(xXg; ¢)]- Assumption 3.1a states that for
each ¥ € W, —E(q(x;: ¥)) exists and is finite, r =1, ..., T. Under the
conditions of Theorem 3 and the fact that &, is a mean 0, normally dis-
tributed random variable with finite variance, and hence k-integrable,
Assumption 3.1a follows.

Assumption 3.1b states that —E(g(x;: ¥)) is continuous in W,
t=1,..., T. Let ¥y — ¥*, because for any 1, G(x,; ¥) is continu-
ous on W; then gq(x;;¥) — q(x;; ¥*) Vr (pointwise convergence).
From the continuity of G(X;, ¥) on the compact set ¥, we have uni-
form continuity and obtain that ¢ (x;; ¥) is dominated by an integrable
function d F. Then, by Lebesgue’s dominated convergence theorem,
we get fq(x,; Y)dF — fq(x,: ¥*)dF, and E(g(x;; ¥)) is continu-
ous.

Assumption 3.1c states that —E(g (x;: ¥)) obeys the strong (weak)
uniform law of large numbers (ULLN). Lemma A2 of Pétscher and
Prucha (1986) guarantees that E(g(x;; %)) obeys the strong law of
large numbers. The set of hypothesis (b) of this lemma is satisfied:

1. We are working with a strictly stationary and ergodic process.
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2. From the continuity of E(g(x,: ¥)) and from the compactness
of W, we have that infE(g (x/: ¥)) = E(q(xs; ™)) for y* € W,
and with Assumption 3.1a we may guarantee that E(g(x;: ¢*))
exists and is finite, getting that infE(¢g(x,; ¥)) > —oc.

Assumption 3.2 is related to the unique identifiability of ¥*. Theo-
rem 3 demonstrates that under Assumption 1 and with the restrictions
(R.1)~(R.4) imposed, the LZGNN is globally identifiable.

A.2.5 Proof of Theorem 5. We use theorem 6.4 of White (1994)
and check its assumptions. Assumptions 2.1, 2.3, and 3.1 follow from
the proof of Theorem 4 (consistency).

Assumptions 3.2" and 3.6 follow from the fact that G(x;; ¥ ) is con-
tinuously differentiable of order 2 on ¥ in the compact space W.

To check Assumptions 3.7a and 3.8a, we have to prove that
E(VQ,(#¥)) < o and E(Van(lll)) < oc Vn. The expected gradi-
ent and the expected Hessian of @, (¥) are given by

E(VOn(¥)) = —2B(VG(xs: ¥) (¥

- Gx3 )

and

E(V20n(¥)) = 2E(VG (x: )V G (X413 ¥)

— V3G xe W) (3 — Gxe: ¥))).

Assumptions 3.7a and 3.8a follow considering the normality con-
dition on &,, the properties of the function G(x;; ¥), and the fact that
VG(x;: ¥) and V2G(x;: ¥) contains at most terms of order Xi1%j1s
i=1,...,q9,i=1,...,¢q. Following the same reasoning used in the
proof of Assumptlon 3 la in Theorem 4, Assumptions 3.7a and 3.8a
hold.

Assumption 3.8b: Under Assumption 4, the fact that the function
G(x: ¥) is continuous, and dominated convergence, Assumption 3.8b
follows.

Assumption 3.8¢c: The proof of Theorem 4 and the ULLN from
Potscher and Prucha (1986) yields the result.

Assumption 3.9: White’s A* = E(V2Q(y™)) = 2E(VG(x; ¥¥) x
V' G(x;; ¥x)) is O(1) in our setup. Assumption 5, the properties of
function G(x;; ¥ ), and the unique identification of ¥ imply the non-
singularity of E(VG(x: ¥ *)V'G(x;: ¥%)).

Assumption 6.1: Using theorem 2.4 of White and Domowitz
(1984) we can show that the sequence 2§'VG(x;;¥*)s, obeys
the central limit theorem (CLT) for some (r x 1) vector &, such
that £'£ = 1. Assumptions A(i) and A(iii) of White and Domowitz
(1984) hold becaunse ¢; is NID. Assumption A(ii) holds with V =
402E'B(VG(x;: ¥*)V' Gix; ¥*)). Furthermore, because any mea-
surable transformation of mixing processes is itself mixing (see
lemma 2.1 in White and Domowitz 1984), 2§’ VG(x,; ¥*)e; is a
strong mixing sequence and obeys the CLT. Using the Cramér-
Wold device, VQ(x;; ¥) also obeys the CLT with covariance matrix
BY =40 2E(VG (%; ¥*)V'G (%1 ¥)) = 202 A%, which is O(1) and
nonsingular.

A.3 Proofs of Lemmas

A.3.1 Proof of Lemma A.l. To make the proof clearer, let
m(x} = (hjx — )/,5 ) where h; = y;(d;.v), and write B(x; ¥ g,)

m(x), (pl-(z)(x)). Let n be a positive integer. We should prove

as B(go
7

that if there are scalars A;, w;, y; > 0, h; > 0, and ﬁi(l) < ﬁi{“).

. 1 2 1) 2 , ,

onwith (v B0 B £ (g BB for i £
(due to their not being equivalent in sign) such that V.x € R, we have

i=1,...

n
Y i+ o BV 0. P ) =
i=1

(A.6)
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then A; =w; =0,i =1,

that 2)

B(w(”(x)rp @) = F—" )

F(— (p(z)(x)) where F(-) is the logistic function, (A.6) is equivalent
to

Considering

n
3 04 + o0 [F(—¢!0) - F(—oP (0))] = (A7)
i=l
Developing the Taylor series of F(~— <p(£)(x)). £=1,2, we have
—¢f (1) = Z( ek khix (A.8)

. o al®
The series converges absolutely when e kyib;

(£)
(y”3 ). Therefore, there exist M small enough such that (A.8) con-

verges for every x € (—oo, M). Substituting (A.8) in (A.7) and writing
C[(Z) =y ﬁ[.m, we obtain

n o0 m
Z{(Ai +wix) Yy (=D G

i=1 k=1

< 1, that 1s, for x <

(2)
— G k]ekhiX}:o. (A.9)

Notice that because y; is positive, Cm
-C(

in (A.9),

Z{(x +w,x>>:<

i=1

(2) p (£)
< Ci . Denoting Wi =

(2)

, £ =1,2, we have that Wi(]) < W;”" and, substituting

W(l) (Wi(ZJ)k]ekh,x} —0.
This series can be written (as it is absolutely convergent) as

%)

* *
Zazehkx + az*xehk‘x =0,
k=1

(A.10)

where hf < hy < --- < h%. and each h¥ is an integer multiple of
some A ;. However we can prove that ak = ak = (.

Dividing (A.10) by xe"1*, we obtain
o0 . x(hE—hT)
Z{a,’:e"(hk‘hl)+a2f*e— =0, (A.11)

k=1

and, assuming the limit in (A.11) as x — oo and considering that
hy — k] > 0, for k # 1, we conclude that ] = 0. Considering the

expression (A.10) with a = 0 and dividing by M , we obtain

o
af* + Z(a/’: +xa,t*)ex(hz7h7) =0.
k=2
Now, taking the limit when x — —oo, the terms in the sum go to 0,
and we obtdm al = (). Repeating this procedure, we thus will obtain
thata —“k *=0.

There remains to prove that starting from o = ¥ =0, it follows
that A; = w; = 0. The expressions for 2; and w; in terms of &)} and o)™
are similar, so we present the proof only for a,f.

Let J ={j e {l, m}:hj = hi}. We should prove that 2; =
wj=0VjeJ. For each s € N, there exist ks, such that hk =shj.
Also, there exists an integer N > 0 such that for every ¢ and i>2
(1 + N&)hy is not an integer multiple of 4;. Denote 6; As
0 < Ay < h;, 6; is a noninteger number smaller than 1. So we must
prove that there is a sequence K, such that for all i > 2, K,;9; is
not an integer. Let Jz = (j € J | 3r integer, such that r8; € Z}. Se-
lect K = ]—I i, 7j- Then the sequence K, = (1 + nK) satrqﬁes the
desired statement If i € J7, then K,60; =6; +n ]_[Jej/ i i,
where ;6;, ]_[J rj,and n are all integer numbers and ¢; is a noninteger,
s0 K,8; cannot be an integer number. Otherwise, if i ¢ Jz, then there
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are no integer numbers such that K,8; would be an integer. Because
Ky is an integer number, K,6; is not an integer.
For each kg it is satisfied that O‘k =0; in particular, for s = (1+ N¢)

we have
I)ys
af =3 0wy -
jed

that is,

ZAJ W(l)

jed

=3 x( W”

jeJ

(A.12)

If j € J,then hj = h;,, and due to the definition of the A;’s, this
can happen only it V j € J. d; = dj, . It then follows that dj =d;, and

io
(1
Yi=VYi Con%tdermg that (h;, y;. B, ) ﬁ( )) #hjv;, ﬂm.ﬁj ))
it follows that ,3 # ;‘5(1) and ;6 ) #* ﬁm
taining that Vj, j' € J, j # j/ Wm #* W(“, and considering that

We then have ob-

ﬂj(»l) ﬂ;z) it follows that Wj(l) < W; = ,Vjeld.
Let ny be the cardinal of J and let ¢: {1, ...
(l) < W(l) W( )

.ny} — J repre-
sent a reordering of J such that W and

B e = Te = $ins)
) 2
Wity < Woiay <= < Wy, - Dividing (A.12) by W(b“), , and pass-

ing, to the limit as k — 00, we have

M “1,ow ok
W 1y W
éJ) _ i A
k'_‘f“x(z(wm ) )—“¢('m+k£fgo(z (W@’ ) )
dng) Jj=l1 ¢{ny)

and from this we obtain ay(, ) = 0. Repeating this procedure, we ob-
=ag(y) = 0. Considering i =2. ..., m, and with
the corresponding set J that defines group J and following an identical
line of reasoning, we arrive at the conclusion that 3; =0,i =1...., m.
Similarly, we obtain w; =0,i=1....,m.

tain dgn;—1) = -

A.3.2 Proof of Lemma A.2.  Let v be a unitary vector such that
for different d; ’s, the projections on vy, b; = (d;, vg) are also different
and positive. We should find a vector base vy. ..., v; such that these
vectors satisfy the same conditions as vq. Let vg be given; then define
the v;’s as

V] = vp, V) =vg — 8rer,

(A.13)

vy = vg—d83e3,..., Vg = Vg — g€y,

where €; is the canonical vector with 1 in position j and O otherwise
and §; is small enough. We should prove that these vectors satisfy
the conditions of Lemma A.2 and (2) also that they form a vector
base of the space. For every j, the projection of the d;’s on v; is
bi ={d;.v;} ={d;, vp) + ;d;;, where the first terms in the sums are
always positive and different when the d;’s are different. Therefore,
we can choose §; small enough such that b; = (d;, v;) remains posi-
tive and different for different d; ’s. To show that the ¢ vectors already
defined form a vector base, it is enough to show that they are linearly
independent. Let us consider an arbitrary linear combination of these
vectors equal to 0,

q q
Zajvj-:() - Ol]Vo%-Zaj(V()—(ﬁjej):O
j=I j=2

q q
= Vo) aj—y a;dje;=0.  (Al4)
i=1 j=2
From this, it follows that
q q
v Z o= Z ajdje;. (A.15)
j=2

J=1
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Writing the previous equality for the first component of each vector
and taking into consideration that the left member contains sums of the
canonical vectors from 2 to g, we have that

q q
(Vozaj> :(Zajsjej) :0,
j=1 1 1

i=2

(A.16)

because v Zj‘:l a; =0 and vy # 0. Writing (A.16) for the com-

ponent k, k =2.3...., ¢, we have that

q :
0= (Z“j%?/) =0y + 0k
k

j=2

= =0, k=2....q. (Al7)

Considering that Z‘;.:l a — j =0, it follows that ¢ = 0. Therefore,
all of the ;'s are O and the {v,}’s are linearly independent, forming a
base of RY.

[Received December 2002. Revised March 2004. ]
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