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Abstract

In this paper, we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and

neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies

that typically consider multiple but fixed model specifications, we use a single but dynamic specification for each model class.

The point forecast results indicate that the STAR model generally outperforms linear autoregressive models. It also improves

upon several fixed STAR models, demonstrating that careful specification of nonlinear time series models is of crucial

importance. The results for neural network models are mixed in the sense that at long forecast horizons, an NN model obtained

using Bayesian regularization produces more accurate forecasts than a corresponding model specified using the specific-to-

general approach. Reasons for this outcome are discussed.
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1. Introduction

In recent years, numerous forecasting competitions

between linear and nonlinear models for macroeco-
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nomic time series have been held. Comparisons based

on a large number of variables have been carried out,

and the results on forecast accuracy have generally not

been particularly favourable to nonlinear models.

In a paper with impressive depth and a wealth of

results, Stock and Watson (1999), henceforth SW,

addressed the following four issues, among many

others. First, do nonlinear time series models produce

forecasts that improve upon linear models in real-
sting 21 (2005) 755–774
rs. Published by Elsevier B.V. All rights reserved.
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time? Second, if they do, are the benefits greatest for

relatively tightly parameterized models or for more

nonparametric approaches? Third, if forecasts from

different models are combined, does the combination

forecast outperform its components? Finally, are the

gains from using nonlinear models and combination

forecasts over simple linear autoregressive models

large enough to justify their use?1

In this paper, we re-examine these four issues. The

reason for this, and the motivation for this paper, is the

following. SW used two nonlinear models to generate

their forecasts: a btightly parameterizedQ model and a

bmore nonparametricQ one. The former model was the

(logistic) smooth transition autoregressive ((L)STAR)

model, (see Bacon & Walts, 1971; Chan & Tong,

1986; and Teräsvirta, 1994) and the latter the autore-

gressive single hidden layer feedforward neural net-

work (AR-NN) model; see Fine (1999) for a general

overview of neural network models. SW applied these

models to 215 monthly US macroeconomic time ser-

ies. They considered three forecast horizons, 1, 6 and

12 months ahead, constructing a different model for

each horizon. Furthermore, since they were interested

in real-time forecasting, the models were re-estimated

each time another observation was added to the infor-

mation set. Repeating this procedure some 300 times

for each of the series (as the (longest possible) fore-

casting period was January 1972 to December 1996)

amounted to estimating a remarkably large number of

both linear and nonlinear models.

Carrying out these computations obviously re-

quired some streamlining of procedures. Thus, SW

chose to employ a large number of different specifica-

tions of STAR and AR-NN models, keeping these

specifications fixed over time and only re-estimating

the parameters each period. This simplification was

necessary in view of the large number of time series

and forecasts. But then, it can be argued that building

nonlinear models requires a large amount of care. As an
1 An advantage of this simulation approach is that forecast den-

sities are obtained directly as a by product. These densities can in

turn be used for constructing interval forecasts. It is sometimes

argued that the strength of nonlinear models in macroeconomic

forecasting lies in such interval and density forecasts; see for

example Lundbergh and Teräsvirta (2002) and Siliverstovs and

van Dijk (2003). Nevertheless, since useful methods for comparing

density forecasts from different models are not as yet available,

neither interval nor density forecasts are considered in this study.
example, consider the STAR model. First, when the

data-generating process is a linear AR model, some of

the parameters of the STAR model are not identified.

This results in inconsistent parameter estimates, in

which case the STAR model is bound to lose any

forecast comparison against an appropriate linear AR

model. Hence, it is essential to first test linearity before

considering a STARmodel at all. Second, the transition

variable of the STAR model is typically unknown and

has to be determined from data. Fixing it in advance

may lead to a badly specified model and, again, to

forecasts inferior to those from a simple linear model.

Similar arguments can be made for the AR-NN

model. The ones SW used contained a linear compo-

nent, that is, they nested a linear autoregressive model.

This is reasonable when NN models are fitted to

macroeconomic time series because the linear compo-

nent can in that case be expected to explain a large

share of the variation in the series. But then, if the

data-generating process is linear, the nonlinear

bhidden unitsQ of the AR-NN model are redundant,

and the model will most likely lose forecast compar-

isons against a linear AR model. Testing linearity is

therefore important in this case as well. Furthermore,

if the number of hidden units in the AR-NN model is

too large, in the sense that some of the units do not

contribute to explaining the variation in the time

series, convergence problems and implausible para-

meter estimates may occur. This calls for a careful

modelling strategy for AR-NN models as well.

An important part of our re-examination concerns

the potential benefits of careful specification of STAR

as well as AR-NN models. Specifically, instead of

examining the forecasting performance of multiple

but fixed specifications of STAR and AR-NN models,

we consider a single but dynamic specification of these

nonlinear models. For this purpose, model building is

carried out bmanuallyQ as follows. Linearity is tested

for every series and a STAR or AR-NN model is

considered only if linearity is rejected. The nonlinear

models are then specified using available data-based

techniques that will be described in some detail below.

This would be a remarkable effort if, to approximate a

real-time forecasting situation as closely as possible, it

were done sequentially every time another observation

is added to the in-sample period. In order to keep the

computational burden manageable, the models are

respecified only once every 12 months. Besides, we
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shall consider fewer time series than SW did. Even

with these restrictions, the human effort involved is

still quite considerable. As described below, our data

set consists of 47 monthly time series, and for most of

these the forecasting period covers 20 years. The

scarcity of resources has also forced us to ignore an

important part of model building, namely detailed in-

sample evaluation of estimated models before apply-

ing them to out-of-sample forecasting. This omission

may have had an adverse effect on our results.

As noted before, SW defined a different model for

each forecast horizon. This approach has the advan-

tage that the complications involved in computing

multiple-period ahead forecasts from nonlinear mod-

els are avoided. In the case of nonlinear models such

as STAR and AR-NN models, it may, however, be

difficult to find a useful model for longer horizons.

Another part of our re-examination thus consists of

asking what happens if we specify a nonlinear model

for one-period ahead forecasts only and obtain the

forecasts for longer horizons numerically, by simula-

tion or bootstrap.2 Can such forecasts compete with

ones from a linear AR model?

Finally, following SW, we shall also consider com-

binations of point forecasts. The difference between

our study and SW is that the number of forecasts to be

combined here will be considerably smaller. This is

due to the fact that we generate fewer forecasts for the

same variable and time horizon than SW did. One of

the most remarkable results in SW was that a combi-

nation of a large number of forecasts from nonlinear

models performed much better than any individual

nonlinear forecast. In this study, we only consider a

small number of models and thus do not particularly

focus on this issue here; see Granger and Jeon (2004)

for an extensive discussion of this topic.

Another difference between our study and SW is that

they applied a rolling window in estimating the para-

meters, whereas we use expanding windows. This
2 An advantage of this simulation approach is that forecast den-

sities are obtained directly as a byproduct. These densities can in

turn be used for constructing interval forecasts. It is sometimes

argued that the strength of nonlinear models in macroeconomic

forecasting lies in such interval and density forecasts; see for

example Lundbergh and Teräsvirta (2002) and Siliverstovs and

van Dijk (2003). Nevertheless, since useful methods for comparing

density forecasts from different models are not as yet available,

neither interval nor density forecasts are considered in this study.
means that we use all observations available at each

forecast origin to estimate the parameters. An important

reason for doing this is that neural network models do

not work very well in small samples, and we would like

to give them a decent chance to perform well. Conse-

quently, the possibility of structural breaks in series we

are going to forecast is de-emphasized in our approach.

The plan of the paper is as follows. Section 2

contains a brief review of previous relevant studies

on forecasting with neural network and STAR models.

These two models are presented in Section 3 with a

short discussion of their specification procedures. The

issues involved in forecasting with nonlinear models

are discussed in Section 4, including forecast combi-

nation. The recursive procedure employed to mimic

real-time forecasting is presented in Section 5. The

data set is described in Section 6. The empirical

results are presented and analyzed in Section 7 and,

finally, conclusions can be found in Section 8.
2. Previous studies

There exists a vast literature on comparing time series

forecasts from neural network and linearmodels; Zhang,

Patuwo, and Hu (1998) provide a recent survey. Many

applications are to other than macroeconomic vari-

ables, and the results are mixed. In addition to SW,

recent articles that examine macroeconomic forecast-

ing with linear and AR-NN models include Swanson

and White (1995, 1997a, 1997b), Tkacz (2001), Mar-

cellino (2005), Rech (2002) and Heravi, Osborn, and

Birchenhall (2004). The approach taken by Swanson

and White in their articles is quite close in spirit to

ours, in the sense that their idea was to select either a

linear or an AR-NN model and to choose the size of

the NN model using a model selection criterion such

as BIC; see Rissanen (1978) and Schwarz (1978).

Rech (2002) compared forecasts obtained from sev-

eral neural network models specified and estimated

using different methods and algorithms.

The general conclusion from the papers cited above

appears to be that, in general, there is not much to gain

from using an AR-NN model instead of the simple

linear autoregressive model, at least as far as point

forecasts are concerned. Marcellino (2005) is to some

extent an exception to this rule. The data set in his

study consisted of 480 monthly macroeconomic series
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from the 11 countries that originally formed the Eur-

opean Monetary Union. While a linear AR model was

the best overall choice in terms of point forecast

accuracy, there was a reasonably large number of

time series that were predicted most accurately by

AR-NN models when the criterion for comparison

was the root-mean-squared forecast error.

The number of studies examining the forecasting

performance of STAR models relative to linear or

other nonlinear models is appreciably smaller.3 Ter-

äsvirta and Anderson (1992) considered forecasting

the volume of industrial production with STAR mod-

els. Even here, the results were mixed when the root-

mean-squared forecast error was used as a criterion for

comparison with linear models. Sarantis (1999) fore-

cast real exchange rates using linear and STAR mod-

els and found that there was not much to choose

between them. STAR models did, however, produce

more accurate point forecasts than Markov-switching

models. Similarly, Boero and Marrocu (2002) found

that STAR models did not perform better than linear

AR models in forecasting nominal exchange rates,

although Kilian and Taylor (2003) did find consider-

able improvements in forecast accuracy from using

STAR models for such series, in particular for longer

horizons. The results in SW did not suggest that

forecasts from individual LSTAR models are more

accurate than forecasts from linear models. The find-

ings of Marcellino (2005) were similar to his findings

concerning AR-NN models: a relatively large fraction

of the series were most accurately forecast by LSTAR

models, but for many other series this model clearly

underperformed.
3. The models

In this section, we present the LSTAR and AR-NN

models and the modelling techniques used in this

study. Throughout, we denote by yt,h the h-month
3 It should be mentioned though that there is a sizeable literature

on the forecasting performance of the threshold autoregressive

(TAR) model which, in its simplest form (a single threshold), is

nested in the logistic STAR model considered here; see Clements

and Krolzig (1998), Clements and Smith (1999), and Siliverstovs

and van Dijk (2003), among many others.
(percent) change between times t–h and t of the

macroeconomic time series of interest, and yt,1uyt.

3.1. The smooth transition autoregressive model

3.1.1. Definition

The smooth transition autoregressive (STAR)

model is defined as follows:

yt ¼ /Vwt þ hVwtGðyt�d;h;c;cÞ þ et; ð1Þ

where wt =(1, yt–1, . . . , yt–p)V consists of an intercept

and p lags of yt, / =(/0, /1, . . . , /p)V and h =(h0, h1,

. . . , hp)V are parameter vectors, and et ~IID(0, r2).

Note that the model in Eq. (1) can be rewritten as

yt ¼ f/ þ hGðyt�d;h;c;cÞgVwt þ et;

which shows that the STAR model can be interpreted

as a linear model with stochastically time-varying

coefficients / +hG( yt–d,h; c, c).
In general, the transition function G( yt–d,h; c, c) is

a bounded function of yt–d,h, continuous everywhere

in the parameter space for any value of yt–d,h. In the

present study, we employ the logistic transition func-

tion, which has the general form

(2)

Gðyt�d;h;c;cÞ ¼
�
1þ exp

�
�c

YK
k¼1

ðyt�d;h � ckÞ
���1

;

cN0; c1V . . .VcK;

with dz1, and where the restrictions on the slope

parameter and on the location parameters c =(c1, . . .,

cK)V are identifying restrictions. Eqs. (1) and (2)

jointly define the LSTAR model; see Teräsvirta

(1994) for more discussion.

The most common choices of K in the logistic

transition function (2) are K =1 and K =2. For K =1,

the parameters / +hG( yt–d,h; c, c) change monotoni-

cally from / to / +h as a function of yt–d,h. When

cY0, the LSTAR model becomes a linear AR model

with coefficient / +h / 2, while the model becomes a

two-regime TAR model with c1 as the threshold value

when cY1.

For K =2, the parameters in Eq. (1) change sym-

metrically around the mid-point (c1+c2) /2 where this

logistic function attains its minimum value. The mini-
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mum lies between zero and 1/2, reaching zero when

cYl and equaling 1/2 when c1=c2 and c bl. The

parameter controls the slope and c1 and c2 determine

the locations of the transitions.

LSTAR models are capable of generating asym-

metric realizations, which makes them an interesting

tool for modelling macroeconomic time series, exhi-

biting, for example, changes in their dynamic proper-

ties over the business cycle. Building upon this idea,

in our application K in Eq. (2) is set equal to 1 (the

same choice is made by SW) and the transition vari-

able yt–d,h is taken to be a lagged annual difference,

that is, h =12. As a consequence, for most series in our

data set, the resulting regimes associated with the

extreme values of the logistic transition function

G( yt–d,h; c, c) correspond quite closely with business

cycle expansions and recessions. A lagged first differ-

ence would be too volatile a transition variable for that

purpose. A similar choice was made in Skalin and

Teräsvirta (2002) for modelling business cycle asym-

metries in quarterly unemployment rate series.

3.1.2. Building STAR models

In building STAR models, we shall follow the

modelling strategy presented in Teräsvirta (1998),

see also van Dijk, Teräsvirta, and Franses (2002)

and Lundbergh and Teräsvirta (2002). As already

indicated, building STAR models has to be initiated

by testing linearity. The LSTAR model reduces to a

linear AR model when either h =0 or c =0 in Eqs. (1)

and (2). Testing the linearity hypothesis is not straight-

forward, however, due to the presence of unidentified

nuisance parameters that invalidate the standard

asymptotic inference. In the STAR context, it is cus-

tomary to circumvent this problem by approximating

the alternative model using a Taylor series expansion

of the transition function, as discussed in Luukkonen,

Saikkonen, and Teräsvirta (1988). Linearity is tested

for a number of bcandidateQ transition variables yt–d,h,

daD ={1, 2, . . ., dmax} where we set dmax=6, using a

significance level of 0.05 for each individual test. The

test results are at the same time used to select the delay

parameter d, which is taken to be the value for which

the p-value of the linearity test is smallest; see Ter-

äsvirta (1994, 1998) for details. Because of our choice

to set K equal to 1 a priori, the data-based choice

between K =1 and K =2, which normally is part of the

specification procedure, need not be made.
The lag structure of the LSTAR model can in prin-

ciple be specified by starting with a blargeQ model and

removing redundant lags, that is (sequentially) impos-

ing zero restrictions on parameters. During this reduc-

tion process, the estimated models can be evaluated by

various misspecification tests as discussed in Teräs-

virta (1998) to monitor their adequacy. Preliminary

experiments indicated, however, that doing so often

impairs forecasts, and as a result, this reduction is not

used in this paper. Hence, we restrict ourselves to

bfullQ LSTAR models containing all lags up to a

certain order p in both the linear and nonlinear parts

of the model (as represented by the parameter vectors

/ and h, respectively), where p is determined using

BIC, allowing for a maximum lag order of 12.

As a whole, the modelling strategy requires a sub-

stantial amount of human resources and consequently,

as mentioned in the introduction, the STAR model is

respecified only once every year. However, the para-

meters are re-estimated every month.

3.2. The autoregressive artificial neural network

model

3.2.1. Definition

The autoregressive single hidden layer feedforward

neural network (AR-NN) model used in our work has

the form

yt ¼ b0Vwt þ
Xq
j¼1

bjG cjVwt

� �
þ et; ð3Þ

where wt =(1, yt–1, . . ., yt–p)V as before, and bj, j=1,

. . ., q, are parameters, called bconnection strengthsQ in
the neural network literature. Furthermore, the func-

tion G(d ) is a bounded function called a bhidden unitQ
or bsquashing functionQ and cj, j =1, . . ., q, are para-

meter vectors. Our squashing function is the logistic

function G(z)=1 / (1+exp(�z)), comparable to Eq. (2)

with K =1. The errors et are assumed to be IID (0, r2).

We include the blinear unitQ b0Vwt in Eq. (3) despite the

fact that many neural network users assume b0=0.

A theoretical argument used to motivate the use of

(AR-)NN models is that they are universal approxi-

mators. Suppose that yt =H(wt) for some nonlinear

function H(d ), that is, there exists a functional rela-

tionship between yt and the variables in wt. Then,

under mild regularity conditions on H, there exists a
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positive integer qVq0bl such that for arbitrary d N0,
|H(wt)�Aq

j = 1bjG(cjVwt)|bd for all wt. This is an

important result because q0 is finite, so any unknown

function H(d ) can be approximated arbitrarily accu-

rately by a linear combination of a finite number of

hidden units G(cjVwt). This universal approximator

property of Eq. (3) has been discussed in several

papers including Cybenko (1989), Funahashi (1989),

Hornik, Stinchombe, and White (1989), andWhite

(1990). In principle, Eq. (3) offers a very flexible

parametrization for describing the dynamic structure

of yt.

3.2.2. Building AR-NN models using statistical

inference

Building AR-NN models involves two crucial

choices. First, one has to select the input variables,

wt, for the model. In the univariate case considered

here, this is equivalent to selecting the relevant lags of

yt. Second, one has to choose the number of hidden

units, q, to be included in the model. Broadly speak-

ing, there exist two alternative ways of building AR-

NN models. On the one hand, one may begin with a

small model and gradually increase its size. This is

sometimes called a bbottom-upQ approach or bgrowing
the networkQ and is applied, for example, in Swanson

and White (1995, 1997a, 1997b). On the other hand, it

is also possible to have a large model as starting-point

and bpruneQ it, which means (sequentially) removing

hidden units and variables. In this paper, we apply

both approaches and shall first describe a bottom-up

approach based on the use of statistical inference,

originally suggested in Medeiros, Teräsvirta, and

Rech (2005).

The first step of the bottom-up inference-based

strategy is to select the input variables. This is done

by applying another universal approximator, a general

polynomial. For example, approximating the right-

hand side of Eq. (3) by a third-order polynomial yields

yt ¼ l0 þ
Xp
i¼1

aiyt�i þ
Xp
i¼1

Xp
i¼j

aijyt�iyt�j

þ
Xp
i¼1

Xp
j¼i

Xp
k¼j

aijkyt�iyt�jyt�k þ eTt : ð4Þ

An appropriate model selection criterion such as BIC

is used to sort out the redundant combinations of
variables and thus select the relevant lags of yt,

as described in Rech, Teräsvirta, and Tschernig

(2001). The automated selection technique by Krolzig

and Hendry (2001) may also be used for this purpose.

The second step consists of selecting the number of

hidden units. Linearity is tested first, which entails an

identification problem similar to the one encountered

in STAR models. This is circumvented by using Eq.

(4) and the neural network linearity test of Teräsvirta,

Lin, and Granger (1993). If linearity is rejected, a

model with a single hidden unit ( q=1 in Eq. (3)) is

estimated using conditional maximum likelihood.

Next, this model is tested against an AR-NN model

with qz2 hidden units as described in Medeiros et al.

(2005) and, if rejected, an AR-NN model with two

hidden units is estimated. This procedure is continued

until the first non-rejection of the null hypothesis. We

favour parsimonious models and therefore follow the

suggestion of Medeiros et al. (2005) to let the sig-

nificance levels in the testing sequence form a

decreasing sequence of positive real numbers. More

specifically, the significance level is halved at each

stage, while we set the significance level of the first

(linearity) test equal to 0.05.

3.2.3. Building AR-NN models using Bayesian

regularization

There exist many methods for pruning a network,

see for example Fine (1999, Chapter 6) for an infor-

mative account. In this paper, we apply a technique

called bBayesian regularization,Q as described in

MacKay (1992a). The aim of Bayesian regularization

is twofold. First, it is intended to facilitate maximum

likelihood estimation by penalizing the log-likelihood

in case some of the parameter estimates become exces-

sively large. Second, the method is used to find a

parsimonious model within a possibly very large

model. In order to describe the former aim in more

detail, suppose that the estimation problem is bill-
posedQ in the sense that the likelihood function is

very flat in several directions of the parameter

space. This is not uncommon in large neural network

models, and it makes numerical maximization of the

likelihood difficult. Besides, the maximum likelihood

value may be strongly dependent on a small number

of data points. An appropriate prior distribution on the

parameters acts as a bregularizerQ that imposes smooth-

ness and makes estimation easier. For example, the



T. Teräsvirta et al. / International Journal of Forecasting 21 (2005) 755–774 761
prior distribution may be defined such that it shrinks

the parameters or some linear combinations of them

towards zero. Information in the time series is used to

find the boptimalQ amount of shrinkage. Furthermore,

a set of smaller models nested within the large original

model is defined. The algorithm allows to choose one

of these sub-models and thus reduce the size of the

neural network. This requires determining prior prob-

abilities for the models in the set and finding the one

with the highest posterior probability.

Bayesian regularization can be applied to feedfor-

ward neural networks of type (3), as discussed in

MacKay (1992b). In this context, the set of eligible

AR-NN models does not usually contain models with

a linear unit, and we adhere to that practice here. In

our case, the largest model has nine hidden units

( q =9 in Eq. (3)), and the maximum lag p equals

six. We apply the Levenberg–Marquardt optimization

algorithm in conjunction with Bayesian regularization

as proposed in Foresee and Hagan (1997).

As already mentioned, in the approach based on

statistical inference (discussed in Section 3.2.2) parsi-

mony is achieved by starting from a small model and

growing the network by applying successively tigh-

tening tests for remaining nonlinearity. Bayesian reg-

ularization also has parsimony as a guiding principle,

but it is achieved from the opposite direction by

pruning a large network. In what follows and in all

tables, a neural network model obtained this way is

called the NN model, whereas a neural network model

built as explained in Section 3.2.2 is called the AR-

NN model.
4. Forecasting with STAR and neural network

models

As pointed out in the introduction, we obtain fore-

casts for different horizons for a given variable from

the same (one-step ahead) model. This means that the

forecasts from nonlinear models have to be generated

numerically as discussed in Granger and Teräsvirta

(1993). Let

yt ¼ f ðyt�1;N ;yt�p;hÞ þ et; ð5Þ

be a nonlinear model with an additive error term,

where h is the parameter vector and et ~IID (0, r2).

The STAR model (1)–(2) and the AR-NN model (3)
considered here are special cases of Eq. (5). The one-

step ahead point forecast for yt+1 equals

ŷytþ1jt ¼ f ðyt;N ;yt�pþ1;ĥhtÞ;

where ĥt indicates that parameter estimates are

obtained using observations up to time period t. For

the two-step ahead forecast of yt+2 one obtains

ŷytþ2jt ¼
Z l

�l
f ðŷytþ1jt þ etþ1;yt;N ;yt�pþ2;ĥhtÞdetþ1: ð6Þ

For longer horizons, obtaining the point forecast

would even require solving a multidimensional inte-

gral. Numerical integration in Eq. (6) can be avoided

either by approximating the integral by simulation or

by bootstrapping the residuals. The latter alternative

requires the assumption that the errors of model (5) be

independent.

In this paper, we adopt the bootstrap approach (see

Lundbergh and Teräsvirta (2002) for another applica-

tion of this method in the context of STAR models). In

particular, we simulate N paths for yt + 1, yt +2, . . .,
yt + hmax

, where we set N =500 and hmax=12, and

obtain the h-period ahead point forecast as the average

of these paths. For example, the two-step ahead point

forecast is computed as

ŷytþ2jt ¼
1

N

XN
i¼1

ŷytþ2jt ið Þ

¼ 1

N

XN
i¼1

f ŷytþ1jt þ êei;yt;N ;yt�pþ2;ĥh

 �

;

where êi are resampled residuals from the model

estimated using observations up to time period t. In

addition, in this paper, we do not consider h-step

ahead forecasts of the 1-month growth rate by ŷt+h |t
but focus instead on the economically more interes-

ting forecasts of the h-month growth rate, denoted by

ŷt+h,h |t=A
h
j=1ŷt+j |t.

Note that by building a separate model for each

forecast horizon as in SW and Marcellino (2005),

numerical forecast generation is avoided. In that

case point forecasts for the h-month growth rate are

of the form

ŷytþh;hjt ¼ fhðyt;N ;yt�pþ1;ĥhhÞ; hz1;

where fh ( yt, . . ., yt–p+1; ĥh) is the estimated condi-

tional mean of yt+h,h at time t according to the model

constructed for forecasting h periods ahead.
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We also consider combining forecasts from differ-

ent models, where we limit ourselves to combinations

of pairs of models and exclude the combination of

forecasts from the NN and AR-NN models. Following

Granger and Bates (1969), the composite point fore-

cast based on models Mi and Mj is given by

ŷy
i;jð Þ
tþh;hjt ¼ 1� ktð Þŷy ið Þ

tþh;hjt þ kt ŷy
ið Þ
tþh;hjt; ð7Þ

where kt is the weight of the h-month forecast by

ŷ( j)t+h,h |t from model Mj, where the restriction 0VktV1
may or may not be imposed. The weights can be time-

varying and based on previous forecasting perfor-

mance of Mi and Mj, but they may also be fixed. In

fact, a general conclusion from the literature on fore-

cast combination, also reached by SW, appears to be

that equal weighting, that is ktu1 /2, does an ade-

quate job in the sense that more refined weighting

schemes generally do not lead to further improvements

in forecast accuracy. We follow this approach here. In

combination forecasts that include the AR model as

one of the components, the equal weighting scheme

actually favours the linear model. In both STAR and

AR-NN approaches, forecasts are obtained from a

linear model when linearity is not rejected. The implicit

weight of the linear model in combination forecasts is

thus greater than the weight indicated by kt.
5. Recursive specification, estimation, and

forecasting

Specification, estimation, and forecasting are car-

ried out recursively using an expanding window of

observations. For most of the series considered in this

paper, the first window starts in January 1960 and ends

in December 1980, whereas the last window (also

starting in January 1960) ends in December 1999.

However, for a few series, the starting-date for the

windows and the ending date for the last window are

slightly different. The general rule is that all windows

begin from the first observation and the last window is

closed 12 months before the final observation. As

already mentioned, all models are respecified only

once a year, but parameters are re-estimated each

month. For every window we compute point forecasts

{ŷt=h,h |t}
R +P–1
t=R of the h-month growth rate yt+h,h of all

variables, where h =1, . . ., 12, R is the point where the
first forecast is made, and P is the number of win-

dows. This procedure gives us P forecasts for all

horizons; for most series in our data set P=228.

Neural network models have a tendency to overfit

in the sense that the specification procedure may lead

to a large number of hidden units and poor out-of-

sample performance. Furthermore, as will be pointed

out in Section 7.3, estimated AR-NN models may

sometimes be explosive although the time series to

be modelled appear stationary. For these reasons, we

impose an binsanity filterQ on the forecasts; see also

Swanson and White (1995). If a forecast deviates

more than plus/minus two standard deviations from

the average of the observed h-month differences, it is

replaced by the arithmetic mean of yt,h computed with

the available observations up until t. bInsanityQ is thus
replaced by bignorance.Q SWapply a similar technique

and call it trimming the forecast.
6. Data

We consider the following monthly macroeco-

nomic variables for each of the G7 countries: volume

of industrial production (IP), consumer price index

inflation (CPI), narrow money (M1), short-term (3-

month) interest rate (STIR), volume of exports (VEX),

volume of imports (VIMP), and unemployment rate

(UR). The unemployment rates for France and Italy

are excluded because sufficiently long monthly series

are not available, such that the data set consists of 47

monthly time series. Most series start in January 1960

and are available up to December 2000.

The series are seasonally adjusted with the excep-

tion of the short-term interest rate and inflation. With

the exception of the NN models estimated with Baye-

sian regularization, seasonality in these series is mod-

elled by including monthly dummy variables, which

are restricted to enter linearly in all models. In the NN

model seasonality is modelled by including the first

12 lags as input variables. For all series except the

interest rates and unemployment rates, models are

specified for monthly growth rates yt, obtained by

first differencing the logarithm of the levels. For

interest rates, plain first differences are used. For

unemployment rates, models are specified for the

levels of the series, which is effectively done by

including a lagged level term as an additional variable
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in the model for the 1-month change. Most series have

been adjusted to remove the influence of outliers.

Details, including the data sources and the types of

adjustments made, can be obtained from the authors

upon request.
7. Results

Before we turn to the empirical results of the

forecasting exercise, we briefly discuss the results of

the linearity tests. These are summarized in Table 1,

showing the fraction of times linearity is rejected with

tests performed once a year when the models are

respecified.

The results for the two models (or linearity tests)

are not identical, the differences being most pro-

nounced for the IP series. There are at least three

reasons for this. First, the linear models that form

the null hypotheses are not the same for the STAR

and AR-NN alternatives. In the STAR case, the linear

models contain all lags up to the order p selected by

BIC. In the AR-NN case, the variables to be included

in the AR-NN model are selected first by means of the

technique described in Section 3.2.2. Second, the
Table 1

Linearity test results

IP CPI M1 STIR VEX VIMP UR

STAR

Canada 0.95 0.25 1 1 0.05 0 0.90

France 1 1 0.77 1 0.55 0 –

Germany 0.90 1 0 1 0 0.60 0.95

Italy 0 1 0.22 1 1 1 –

Japan 0.15 1 0.85 1 0.35 0 0.95

UK 0 0.35 0.95 1 0.25 0.20 0

USA 1 1 0.80 1 0.50 1 1

AR-NN

Canada 0 0.95 0.47 1 0.11 1 0.74

France 0 1 0.35 0.84 0 0 –

Germany 0 1 0 1 0 1 1

Italy 0 1 0.25 0.95 1 1 –

Japan 0.53 0.95 0 0.37 0.16 0.11 0.84

UK 0 1 0.58 1 0.32 1 1

USA 1 0.95 1 1 1 1 0.32

The table contains rejection frequencies of the linearity hypothesis

against STAR (upper panel) and AR-NN (lower panel) models,

with the respective linearity tests performed once a year when the

models are respecified. A dash indicates that the series is not

available.
alternative against which linearity is tested is not the

same either. Finally, a brejectionQ against the STAR

model is the result of carrying out the test against a

number of dmax alternatives in which the transition

variable of the model is different; see Section 3.1.2.

Linearity is rejected somewhat more frequently

against LSTAR than against AR-NN models. The

short-term interest rate, inflation and the unemploy-

ment rate series appear to be most systematically

nonlinear when linearity is tested against STAR. In

the AR-NN case, inflation, interest rates, and imports

are the bmost nonlinearQ variables. Also note that there
are country/series combinations for which linearity is

never rejected.

The fact that linearity is always rejected does not,

however, imply stability of the STAR and AR-NN

specifications over time. As an example, the AR-NN

model for the German unemployment rate contains

two hidden units. This number first declines to one for

a period of time, then fluctuates between two and four

before it drops to one again towards the end of the

observation period. There are other examples, how-

ever, such as the Canadian VIMP, in which the num-

ber of hidden units remains unchanged, in this case

one, over the whole period.

7.1. Comparing point forecasts using the root-mean-

squared forecast error

The point forecasts are evaluated by using the root-

mean-squared forecast error (RMSFE). We also com-

puted the mean absolute forecast errors (MAFE), but

because they do not seem to contain information not

already available in RMSFE values, they are not

reported here. Table 2 reports the ratios of the

RMSFE for a given forecast horizon, h =1, 3, 6, and

12 months, relative to the RMSFE of the linear AR( p)

model with p selected by BIC, which we use as

benchmark. It also contains the ranks of the four

forecasting methods.

We assess the significance of observed differences

in MSFE between models by applying the pairwise

Diebold–Mariano test of equal forecast accuracy,

using the modified form of Harvey, Leybourne, and

Newbold (1997), and the pairwise forecast encom-

passing test developed in Harvey, Leybourne, and

Newbold (1998). It should be noted that the standard

asymptotic theory for the Diebold–Mariano and fore-



Table 2

Point forecast evaluation: RMSFE ratios

IP CPI M1 STIR

1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12

Canada AR [0.012] (4) [0.018] (3) [0.029] (3) [0.042] (3) [0.004] (1) [0.004] (1) [0.004] (1) [0.005] (2) [0.014] (3) [0.023] (2) [0.030] (2) [0.044] (1) [0.776] (2) [1.511] (2) [2.144] (1) [2.765] (1)

NN 0.994 (3) 0.990 (2) 0.989 (2) 0.941 (2) 1.119 (4) 1.144 (3) 1.174 (3) 1.069 (3) 1.002 (4) 1.032 (4) 1.078 (3) 1.152 (3) 1.022 (2) 1.108 (4) 1.092 (4) 1.178 (4)

AR-NN 0.983 (1) 1.034 (4) 1.088 (4) 1.236 (4) 1.001 (3) 1.167 (4) 1.332 (4) 1.251 (4) 1.000 (2) 1.008 (3) 1.081 (4) 1.166 (4) 0.930 (1) 0.964 (1) 0.995 (1) 1.049 (2)

STAR 0.989 (2) 0.938 (1) 0.890 (1) 0.871 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (2) 0.992 (1) 0.966 (1) 0.997 (1) 1.025 (2) 1.078 (4) 1.019 (3) 1.006 (2) 1.083 (3)

France AR [0.011] (3) [0.014] (3) [0.020] (3) [0.031] (3) [0.003] (1) [0.003] (2) [0.003] (2) [0.004] (1) [0.007] (1) [0.013] (2) [0.020] (2) [0.034] (2) [0.565] (2) [1.092] (1) [1.566] (1) [1.830] (1)

NN 0.992 (2) 0.971 (1) 0.972 (2) 0.961 (1) 1.004 (2) 0.990 (1) 0.933 (1) 1.040 (2) 1.134 (4) 1.073 (3) 1.130 (3) 1.182 (3) 1.001 (3) 1.099 (4) 1.145 (4) 1.233 (3)

AR-NN 1.009 (4) 1.031 (4) 1.051 (4) 1.105 (4) 1.107 (4) 1.620 (4) 1.936 (4) 1.760 (4) 1.087 (3) 1.189 (4) 1.349 (4) 1.493 (4) 0.903 (1) 1.016 (3) 1.073 (3) 1.152 (2)

STAR 0.983 (1) 0.985 (2) 0.964 (1) 0.971 (2) 1.023 (3) 1.034 (3) 1.061 (3) 1.061 (3) 1.084 (2) 0.910 (1) 0.835 (1) 0.763 (1) 1.017 (3) 1.011 (2) 1.039 (2) 1.240 (4)

Germany AR [0.015] (4) [0.019] (3) [0.027] (3) [0.042] (4) [0.003] (2) [0.004] (1) [0.004] (1) [0.005] (1) [0.008] (2) [0.015] (2) [0.022] (2) [0.029] (1) [0.371] (1) [0.739] (1) [1.174] (1) [1.606] (1)

NN 0.985 (3) 0.991 (2) 0.970 (2) 0.913 (2) 1.155 (4) 1.101 (3) 1.309 (3) 1.278 (4) 1.006 (4) 1.000 (4) 0.993 (1) 1.021 (3) 1.005 (2) 1.067 (3) 1.050 (2) 1.068 (2)

AR-NN 0.970 (1) 1.007 (4) 1.007 (4) 0.998 (3) 0.995 (1) 1.128 (4) 1.337 (4) 1.110 (3) 1.001 (3) 0.998 (1) 1.022 (4) 1.146 (4) 1.035 (4) 1.083 (4) 1.073 (3) 1.097 (3)

STAR 0.971 (2) 0.902 (1) 0.832 (1) 0.783 (1) 1.000 (2) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (2) 1.000 (2) 1.000 (2) 1.000 (1) 1.013 (3) 1.042 (2) 1.094 (4) 1.186 (4)

Italy AR [0.020] (2) [0.023] (2) [0.031] (2) [0.047] (2) [0.003] (2) [0.004] (4) [0.003] (3) [0.004] (4) [0.007] (2) [0.014] (2) [0.023] (2) [0.039] (2) [0.597] (1) [1.151] (1) [1.617] (1) [2.171] (1)

NN 0.995 (1) 0.992 (1) 0.962 (1) 0.893 (1) 1.119 (4) 0.958 (3) 1.075 (4) 0.890 (1) 1.065 (3) 1.109 (4) 1.130 (3) 1.193 (3) 1.092 (3) 1.270 (3) 1.350 (3) 1.435 (3)

AR-NN 1.003 (4) 1.013 (4) 1.018 (4) 1.040 (4) 1.073 (3) 0.952 (2) 0.968 (1) 0.927 (2) 1.081 (4) 1.107 (3) 1.137 (4) 1.233 (4) 1.490 (4) 1.489 (4) 1.519 (4) 1.468 (4)

STAR 1.000 (2) 1.000 (2) 1.000 (2) 1.000 (2) 0.956 (1) 0.919 (1) 0.995 (2) 0.986 (3) 0.986 (1) 0.974 (1) 0.927 (1) 0.887 (1) 1.070 (3) 1.121 (2) 1.207 (2) 1.220 (2)

Japan AR [0.015] (3) [0.019] (2) [0.031] (2) [0.045] (2) [0.005] (1) [0.006] (2) [0.005] (1) [0.007] (1) [0.009] (2) [0.018] (2) [0.028] (2) [0.041] (2) [0.355] (4) [0.751] (2) [1.083] (2) [1.461] (2)

NN 0.992 (2) 0.972 (1) 0.973 (1) 0.889 (1) 1.160 (3) 1.185 (3) 1.467 (3) 1.551 (4) 1.010 (3) 1.021 (3) 1.037 (3) 1.087 (3) 0.928 (1) 1.049 (4) 1.121 (4) 1.076 (4)

AR-NN 0.989 (1) 1.022 (4) 1.068 (4) 1.210 (4) 1.289 (4) 1.605 (4) 1.580 (4) 1.408 (3) 1.056 (4) 1.098 (4) 1.148 (4) 1.394 (4) 0.977 (2) 1.015 (3) 1.012 (3) 1.031 (3)

STAR 1.000 (4) 1.000 (3) 1.002 (3) 1.000 (3) 1.005 (2) 0.979 (1) 1.014 (2) 1.018 (2) 0.984 (1) 0.894 (1) 0.838 (1) 0.870 (1) 0.978 (3) 0.971 (1) 0.941 (1) 0.855 (1)

UK AR [0.011] (1) [0.016] (2) [0.024] (3) [0.031] (2) [0.004] (1) [0.005] (1) [0.004] (2) [0.005] (2) [0.005] (3) [0.009] (2) [0.015] (2) [0.028] (2) [0.526] (1) [1.092] (1) [1.577] (1) [2.208] (1)

NN 1.020 (4) 0.998 (1) 0.995 (1) 0.981 (1) 1.325 (4) 1.257 (3) 1.585 (3) 1.539 (3) 0.994 (2) 1.031 (3) 1.012 (3) 1.018 (3) 1.009 (2) 1.054 (4) 1.150 (3) 1.199 (4)

AR-NN 1.006 (3) 1.002 (4) 0.997 (2) 1.012 (4) 1.315 (3) 1.997 (4) 2.282 (4) 2.165 (4) 1.075 (4) 1.396 (4) 1.284 (4) 1.227 (4) 1.022 (3) 1.000 (2) 1.014 (2) 1.015 (2)

STAR 1.000 (1) 1.000 (2) 1.000 (3) 1.000 (2) 1.066 (2) 1.012 (2) 1.003 (1) 1.026 (1) 0.951 (1) 0.860 (1) 0.692 (1) 0.604 (1) 1.023 (4) 1.047 (3) 1.085 (3) 1.101 (3)

USA AR [0.007] (4) [0.015] (3) [0.023] (2) [0.034] (3) [0.003] (3) [0.004] (2) [0.004] (2) [0.004] (2) [0.006] (3) [0.012] (3) [0.020] (2) [0.035] (3) [0.705] (2) [1.323] (4) [1.686] (3) [2.320] (4)

NN 0.992 (2) 1.002 (4) 1.001 (3) 0.990 (2) 0.920 (1) 0.924 (1) 0.966 (1) 0.907 (1) 0.992 (1) 1.000 (2) 1.004 (3) 0.976 (2) 1.006 (3) 0.988 (3) 0.968 (3) 0.891 (3)

AR-NN 0.995 (3) 0.997 (2) 1.016 (4) 1.080 (4) 0.987 (2) 1.052 (4) 1.194 (4) 1.149 (4) 1.028 (4) 1.126 (4) 1.168 (4) 1.216 (4) 0.966 (1) 1.008 (4) 0.961 (2) 0.856 (1)

STAR 0.954 (1) 0.941 (1) 0.919 (1) 0.902 (1) 1.000 (3) 1.000 (2) 1.000 (2) 1.000 (2) 0.995 (2) 0.975 (1) 0.949 (1) 0.902 (1) 1.090 (4) 0.974 (1) 0.859 (1) 0.859 (2)

Table entries are ratios of root-mean-squared forecast errors and ranks (in parentheses) of the models by variable, country, and forecast horizon, where the linear AR model is the baseline model. For the AR model, entries in square brackets are

RMSFE values.
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VEX VIMP

1 3 6 12 1 3 6 12 3 6 12

Canada AR [0.040] (1) [0.048] (2) [0.060] (2) [0.090] (2) [0.043] (3) [0.051] (2) [0.069] (2) [0.108] (3) .250] (3) [0.488] (3) [0.785] (3) [1.181] (3)

NN 1.036 (4) 1.060 (4) 1.042 (4) 1.045 (4) 0.973 (2) 0.992 (1) 0.978 (1) 0.958 (1) 79 (2) 0.978 (1) 0.976 (2) 0.958 (2)

AR-NN 1.001 (2) 0.988 (1) 1.005 (3) 1.009 (3) 0.931 (1) 1.008 (4) 1.001 (4) 0.995 (2) 53 (1) 0.980 (2) 1.080 (4) 1.229 (4)

STAR 1.004 (3) 0.995 (2) 0.995 (1) 0.995 (2) 1.000 (3) 1.000 (2) 1.000 (2) 1.000 (3) 09 (3) 0.982 (3) 0.964 (1) 0.920 (1)

France AR [0.040] (3) [0.042] (2) [0.050] (1) [0.070] (1) [0.033] (2) [0.040] (2) [0.055] (2) [0.088] (1) – – –

NN 0.992 (2) 1.011 (3) 1.105 (3) 1.230 (3) 0.992 (1) 1.000 (1) 0.989 (1) 1.003 (3) – – –

AR-NN 1.012 (4) 1.029 (4) 1.147 (4) 1.307 (4) 1.014 (4) 1.041 (4) 1.053 (4) 1.084 (4) – – –

STAR 0.969 (1) 0.984 (1) 1.076 (2) 1.201 (2) 1.000 (2) 1.000 (2) 1.000 (2) 1.000 (1) – – –

Germany AR [0.038] (2) [0.043] (1) [0.057] (1) [0.084] (1) [0.046] (3) [0.048] (3) [0.065] (3) [0.101] (3) .106] (3) [0.257] (2) [0.438] (2) [0.625] (3)

NN 1.025 (4) 1.028 (4) 1.028 (4) 1.040 (4) 1.016 (3) 0.987 (2) 0.968 (2) 0.895 (2) 73 (1) 0.977 (1) 0.970 (1) 0.991 (2)

AR-NN 0.999 (1) 1.007 (3) 1.004 (3) 1.005 (3) 1.017 (4) 1.043 (4) 1.036 (4) 1.023 (4) 89 (2) 1.032 (4) 1.199 (4) 1.492 (4)

STAR 1.000 (2) 1.000 (1) 1.000 (1) 1.000 (1) 0.979 (1) 0.941 (1) 0.889 (1) 0.833 (1) 19 (4) 1.015 (3) 1.002 (3) 0.962 (1)

Italy AR [0.087] (2) [0.084] (2) [0.097] (1) [0.137] (1) [0.093] (2) [0.092] (2) [0.111] (2) [0.159] (2) – – –

NN 1.012 (3) 1.056 (4) 1.064 (4) 1.029 (3) 1.007 (3) 1.034 (3) 1.067 (4) 1.054 (4) – – –

AR-NN 0.999 (1) 0.997 (1) 1.006 (2) 1.016 (2) 0.993 (1) 0.995 (1) 1.004 (3) 1.011 (3) – – –

STAR 1.018 (4) 1.033 (3) 1.052 (3) 1.048 (4) 1.032 (4) 0.994 (1) 0.981 (1) 0.972 (1) – – –

Japan AR [0.038] (1) [0.044] (3) [0.067] (3) [0.114] (2) [0.066] (3) [0.069] (2) [0.104] (2) [0.159] (2) .091] (1) [0.126] (2) [0.170] (2) [0.277] (2)

NN 1.011 (3) 0.986 (1) 0.966 (1) 0.934 (1) 0.999 (2) 0.997 (1) 0.973 (1) 0.858 (1) 00 (2) 0.977 (1) 0.981 (1) 0.974 (1)

AR-NN 1.046 (4) 1.107 (4) 1.140 (2) 1.175 (4) 0.992 (1) 1.042 (4) 1.062 (4) 1.116 (4) 07 (3) 1.203 (3) 1.297 (3) 1.305 (4)

STAR 1.003 (2) 0.997 (2) 0.994 (2) 1.016 (3) 1.000 (3) 1.000 (2) 1.000 (2) 1.000 (2) 24 (4) 1.384 (4) 1.380 (4) 1.220 (3)

UK AR [0.043] (1) [0.047] (1) [0.062] (1) [0.092] (3) [0.040] (1) [0.052] (2) [0.073] (3) [0.101] (3) .116] (3) [0.291] (2) [0.501] (2) [0.703] (1)

NN 1.008 (3) 1.027 (3) 1.005 (3) 0.997 (2) 1.001 (2) 1.007 (4) 0.997 (2) 0.949 (1) 29 (1) 0.922 (1) 0.971 (1) 1.162 (3)

AR-NN 1.013 (4) 1.062 (4) 1.009 (4) 1.026 (4) 1.025 (4) 1.012 (4) 1.008 (4) 1.000 (2) 86 (2) 1.116 (4) 1.278 (4) 1.744 (4)

STAR 1.003 (2) 1.004 (2) 0.997 (1) 0.973 (1) 1.007 (4) 1.006 (3) 1.012 (4) 1.015 (4) 00 (3) 1.000 (2) 1.000 (2) 1.000 (1)

USA AR [0.035] (1) [0.042] (1) [0.051] (1) [0.077] (1) [0.053] (2) [0.058] (3) [0.073] (3) [0.100] (3) .176] (3) [0.362] (4) [0.598] (4) [0.911] (2)

NN 1.052 (4) 1.060 (3) 1.196 (4) 1.274 (4) 1.019 (3) 0.972 (1) 0.965 (1) 0.903 (1) 02 (4) 0.997 (3) 0.997 (3) 1.011 (3)

AR-NN 1.019 (2) 1.079 (4) 1.179 (3) 1.264 (3) 0.980 (1) 0.980 (2) 0.979 (2) 0.971 (2) 85 (2) 0.934 (2) 0.942 (2) 1.020 (4)

STAR 1.039 (3) 1.029 (2) 1.107 (2) 1.141 (2) 1.032 (4) 1.048 (4) 1.070 (4) 1.092 (4) 68 (1) 0.902 (1) 0.891 (1) 0.922 (1)

Table 2 (continued)
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casting encompassing test statistics are invalid when-

ever the two models involved are nested, see Clark

and McCracken (2001), among others. At first sight,

in our case this appears to exclude comparisons

between the AR, LSTAR and AR-NN models. How-

ever, the linear AR model and the linear components

in the LSTAR and AR-NN models do not generally

contain the same lags, as they are selected using

different techniques. We thus maintain that these mod-

els are approximations of the same unknown data-

generating process and include them in our compar-

isons. This argument is not valid, however, in cases

where linearity is never rejected against STAR; see
Table 3

Point forecast evaluation: testing equal forecast accuracy

h =1 h =3

AR NN AR-NN STAR AR NN AR-NN

IP AR – 1 0 0 – 0 2

NN 1 – 0 0 2 – 2

AR-NN 0 0 – 0 0 0 –

STAR 2 2 2 – 3 3 4

Inflation AR – 3 4 2 – 2 5

NN 1 – 1 1 1 – 4

AR-NN 0 2 – 0 0 0 –

STAR 0 4 4 – 1 3 5

M1 AR – 3 4 1 – 3 4

NN 0 – 3 0 0 – 4

AR-NN 0 0 – 0 0 0 –

STAR 0 1 3 – 4 4 5

STIR AR – 1 1 2 – 4 1

NN 1 – 1 1 0 – 1

AR-NN 2 2 – 2 0 1 –

STAR 1 0 1 – 1 1 2

VEX AR – 3 1 1 – 4 4

NN 0 – 1 0 0 – 1

AR-NN 0 1 – 0 0 2 –

STAR 1 2 2 – 1 4 5

VIMP AR – 0 2 2 – 0 2

NN 0 – 1 0 0 – 2

AR-NN 2 1 – 3 0 0 –

STAR 1 1 2 – 1 1 2

UR AR – 0 0 2 – 0 1

NN 1 – 1 3 1 – 2

AR-NN 0 0 – 1 0 0 –

STAR 0 0 0 – 1 1 0

All AR – 11 12 10 – 13 19

NN 4 – 8 5 4 – 16

AR-NN 4 6 – 6 0 3 –

STAR 5 10 14 – 12 17 23

Table entries represent the number of times the model indicated by row h

according to the pairwise modified Diebold–Mariano test, using a nomina
Table 1, and these cases are removed from compar-

isons. The NN model does not contain a linear unit, so

it can be tested against all the other models without

problem. Table 3 contains results of pairwise model

comparisons in terms of MSFE, using the Diebold–

Mariano test. The entries represent the number of

times the model indicated by row has smaller MSFE

than the model indicated by column at the 5% sig-

nificance level. Forecast encompassing results are

shown in Table 4.

Several interesting conclusions emerge from these

tables. Results in Table 2 suggest, as expected, that no

model or method dominates the others, and the model
h =6 h =12

STAR AR NN AR-NN STAR AR NN AR-NN STAR

0 – 0 2 0 – 0 5 0

1 1 – 3 0 3 – 6 2

0 0 0 – 0 0 0 – 0

– 3 3 5 – 1 0 5 –

1 – 3 6 1 – 2 3 2

1 1 – 3 1 1 – 4 1

0 0 0 – 0 0 0 – 0

– 0 3 6 – 0 2 3 –

0 – 3 5 0 – 3 6 0

0 0 – 4 0 0 – 5 0

0 0 0 – 0 0 0 – 0

– 3 4 5 – 2 4 6 –

1 – 4 1 1 – 4 2 2

0 0 – 0 0 1 – 0 0

1 0 2 – 0 1 1 – 0

– 2 2 3 – 2 1 2 –

1 – 4 3 1 – 4 4 1

0 1 – 2 0 1 – 2 1

1 0 2 – 0 0 1 – 0

– 0 3 3 – 0 3 4 –

1 – 0 2 1 – 0 2 1

1 1 – 2 2 5 – 6 3

1 1 0 – 1 0 0 – 1

– 2 2 4 – 2 1 4 –

1 – 0 3 1 – 0 4 1

1 1 – 3 1 1 – 4 1

0 0 0 – 0 0 0 – 0

– 1 1 2 – 1 1 3 –

5 – 14 22 5 – 13 26 7

4 5 – 17 4 12 – 27 8

3 1 4 – 1 1 2 – 1

– 11 18 28 – 8 12 27 –

as significantly smaller MSFE than the model indicated by column

l significance level 0.05.
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performing best is not the same across countries,

variables and forecast horizons. This holds in particu-

lar for the forecasting performance of the nonlinear

STAR and (AR-)NN models relative to the linear AR

model. For example, AR models clearly render the

most accurate forecasts for the interest rate series.

Incidentally, linearity was systematically rejected for

these series. But then, with few exceptions, the linear

forecasts are consistently beaten by at least one of the

nonlinear models for IP, M1, VIMP and unemploy-

ment rates. Hence, for some variables, our results

support the conventional wisdom that linear time

series models are robust forecasting devices, while

for others, it seems that there is considerable scope
Table 4

Point forecast evaluation: testing forecast encompassing

h =1 h =3

AR NN AR-NN STAR AR NN AR-NN

IP AR – 5 3 4 – 3 0

NN 1 – 4 5 0 – 0

AR-NN 3 3 – 6 4 4 –

STAR 0 2 3 – 0 3 0

Inflation AR – 4 3 1 – 7 4

NN 6 – 6 6 6 – 4

AR-NN 6 6 – 7 6 7 –

STAR 3 5 3 – 1 7 4

M1 AR – 3 2 5 – 1 1

NN 5 – 2 7 4 – 0

AR-NN 6 4 – 6 6 4 –

STAR 2 2 1 – 0 1 1

STIR AR – 2 6 1 – 1 3

NN 5 – 6 2 6 – 7

AR-NN 3 4 – 4 5 3 –

STAR 5 6 6 – 2 2 3

VEX AR – 1 0 1 – 1 0

NN 6 – 4 6 6 – 3

AR-NN 4 2 – 3 5 4 –

STAR 2 1 2 – 2 1 1

VIMP AR – 2 4 1 – 3 1

NN 3 – 4 3 1 – 2

AR-NN 3 3 – 3 4 4 –

STAR 2 3 4 – 1 2 1

UR AR – 3 5 1 – 4 1

NN 0 – 4 1 0 – 1

AR-NN 3 3 – 3 3 3 –

STAR 3 4 4 – 2 3 2

All AR – 20 23 14 – 20 10

NN 26 – 30 30 23 – 17

AR-NN 28 25 – 32 33 29 –

STAR 17 23 23 – 8 19 12

Table entries represent the number of times the model indicated by row does

the pairwise modified Diebold–Mariano test, using a nominal significance
for forecast improvement by using nonlinear models.

It should be mentioned though that there does not

exist a single country/variable combination such that

all three nonlinear models generate more accurate

forecasts than the linear AR model; German IP

being the example that comes closest. From Table 3,

it is seen that in terms of the MSFE, the linear AR

model is rejected 25 times against the NN model, 6

times against the AR-NN specification and 36 times

against the LSTAR model. The relative performance

of the AR-NN model deteriorates with the forecast

horizon.

On the whole, the LSTAR model appears to

perform slightly better in terms of raw MSFE
h =6 h =12

STAR AR NN AR-NN STAR AR NN AR-NN STAR

4 – 3 0 4 – 5 0 3

3 0 – 0 3 0 – 0 2

6 4 4 – 6 6 7 – 6

– 0 2 0 – 0 2 0 –

3 – 6 2 0 – 3 4 0

6 6 – 5 5 5 – 4 4

7 6 7 – 7 6 7 – 6

– 1 6 3 – 2 4 5 –

5 – 1 1 4 – 0 0 4

6 4 – 0 5 3 – 0 5

6 6 5 – 6 6 7 – 7

– 0 0 0 – 0 0 0 –

2 – 2 1 2 – 1 1 2

6 7 – 7 5 6 – 7 3

6 5 3 – 5 5 3 – 3

– 2 2 0 – 2 2 1 –

2 – 1 0 1 – 1 0 0

6 5 – 4 6 4 – 2 3

5 6 2 – 6 4 2 – 4

– 3 1 0 – 1 1 0 –

1 – 3 1 2 – 5 0 2

3 0 – 1 2 0 – 0 2

3 4 3 – 4 2 6 – 4

– 1 2 1 – 1 3 1 –

1 – 3 0 1 – 2 0 1

1 0 – 0 1 1 – 0 2

3 4 4 – 4 4 4 – 5

– 1 2 0 – 1 1 0 –

18 – 19 5 14 – 17 5 12

31 22 – 17 27 19 – 13 21

36 35 28 – 38 33 36 – 35

– 8 15 4 – 7 13 7 –

not forecast encompass the model indicated by column according to

level 0.05.
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values than the neural network models, especially

for IP and M1, and for series from Canada, Ger-

many and the US. The relative performance of the

LSTAR model often improves considerably with the

forecast horizon; see German IP and VIMP, and

French and UK M1 for examples. SW in their

study found that the individual NN models per-

formed better than the individual LSTAR models,

whereas the situation is rather the opposite here. A

probable cause for this is that SW used a separate

model for each forecast horizon, whereas we

employ the same model for all horizons. Because

the NN model is a flexible functional form, it

suffers less from an omission of the shortest lags

in the forecasting model than the tightly parameter-

ized LSTAR model. As a whole, the results in Table

3 indicate that the LSTAR model shows better relative

performance than the NN model when the linear AR

model is the benchmark. The DM test rejects the

linear AR model more often when the alternative is

the LSTAR model than it does when the AR model is

tested against the NN model.

Regarding the two neural network-based methods,

the NN models obtained by pruning a large model

clearly perform better on average than the bottom-up

procedure employed for the AR-NN model, except

for the shortest forecast horizon h =1, in particular for

IP and unemployment rates. Reasons for this will be

discussed in Section 7.3. Sometimes both neural net-

work models produce inferior forecasts: inflation for

Japan and UK or even Germany are examples. In

forecasting inflation, however, the relative differences

between models can be large whereas the absolute

ones remain small: note the small RMSFE values

for the AR model in brackets.

7.2. Value of careful specification: STAR models

The results in the preceding subsection suggest that

the LSTAR model is often among the best ones when

it comes to forecasting, and it may be argued that on

average, it even performs better than the linear AR

model. But then, it would also be useful to know

whether the modelling strategy applied to building

LSTAR models is an important factor for this result.

This is a relevant question because it is possible to just

choose an LSTAR model without any model selection

and use it for forecasting, as SW did. As already
mentioned, this may not always be a very good idea

because of the identification problem present when the

data-generating process is linear. In fact, results in

Table 2 already hint at the possibility that linearity

tests provide a useful insurance against outright bad

forecasts. There are several series for which linearity

is never rejected; see the VIMP series of Canada,

France and Japan, for example. Consequently, the

LSTAR model rarely fails badly. The reader is

reminded of the fact that no in-sample evaluation of

LSTAR models by misspecification tests is carried out

before forecasting, but the quality of forecasts sug-

gests that serious specification failures have been rare.

In order to investigate the value of careful model

building, we define three additional LSTAR specifica-

tions. First, an LSTAR model is specified without

testing linearity first. This means that the linearity

tests are performed as described in Section 3.1.2,

but only to select the value of the delay parameter

d. The maximum lag p is again determined with BIC.

In the second and third LSTAR models, we not only

skip linearity testing but in addition fix the lag order p

in Eq. (1) at 1 and 6, respectively, and set the delay

d =1. The whole forecasting exercise is repeated using

each of these three model specifications, and the

results are compared to the ones obtained using the

LSTAR model of previous sections as the benchmark.

Table 5 contains the relevant RMSFE ratios, where the

RMSFE of the forecasts from the original LSTAR

model is the denominator.

The results show, somewhat surprisingly, that test-

ing linearity does not seem to matter very much, but

carefully selecting the lag order and delay parameter

in the LSTAR model does. The overall RMSFE ratios

for the first specification are only marginally above

one for forecast horizons of 1, 3 and 6 months, and

marginally below one for the 12-month horizon. On

the other hand, fixed LSTAR models perform less

well, which indicates that selecting the delay para-

meter d and the lag order p is important. The only

exception is the short-term interest rate, which appears

to be best predicted by a fixed first-order LSTAR

model. A closer scrutiny of the results reveals, how-

ever, that the gains originate from just two series: the

ones for Canada and the US. Fixed models, both of

order one and six, can also fail quite badly, as the

results of forecasting the unemployment rate series

indicate.
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In order to shed more light on the issue of testing

linearity, we repeated the analysis by applying signif-

icance levels 0.10 and 0.20 in the linearity tests. For

the 10% level, the results were very similar to the ones

in Table 6. When the significance level was increased

to 0.20, however, the models built conditionally on

the results of linearity tests performed somewhat bet-

ter than the three others. It thus appears that it may be

advantageous to reject linearity and select the LSTAR

model more often than is done when the 5% signifi-

cance level for each individual test for daD is

applied.

7.3. Value of careful specification: AR-NN models

Our previous results suggest that the AR-NN mod-

els do not perform as well as the other nonlinear

models, including the NN models specified using

Bayesian regularization. This could be due either to

the different specification strategies employed or to

the treatment of the linear unit. Recall that the AR-NN

model includes a linear unit, while the Bayesian reg-

ularization approach omits it. In order to shed light on

these issues, we repeat the forecasting exercise for

four alternative NN model specifications. First, we

use Bayesian regularization to estimate an NN

model with a linear unit included, denoted as NN-L

in the following. In addition, we use conditional max-

imum likelihood to estimate three fixed NN model

specifications without a linear unit. The first one,

called the S(mall)-NN model, contains three hidden

units and just the first lag of the series as the input

variable. The second one, the L(arge)-NN model, also

has 3 hidden units but uses (the first) six lags as

inputs; and, finally, the third one, called the

XL(arge)-NN specification, has 10 hidden units and

six lags as input variables. Table 6 shows the ratios of

the RMSFE of the these models with respect to the

bfully specifiedQ AR-NN models.

This table gives rise to three clear-cut conclusions.

First, inclusion of a linear hidden unit improves the

forecasting performance. This follows from the obser-

vation that the NN-L model renders more accurate

forecasts than the NN model, while the same generally

holds for the AR-NN models compared with the fixed

specifications S-, L- and XL-NN. Second, specifica-

tion (in the sense of selecting the input variables and

the number of hidden units) is an important factor. The
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three fixed model specifications do not fare well. In

fact, the XL-NN specification is the worst performing

model on average, while the S-NN model performs

badly, in particular at long forecast horizons. Third,

NN models specified with Bayesian regularization

outperform the AR-NN models, as the RMSFE ratios

for both the NN and NN-L models are always less

than one. The problem with the estimated AR-NN

models turns out to be that they are frequently explo-

sive or close to nonstationary. This is only possible

when the model contains an autoregressive linear unit;

see Trapletti, Leisch, and Hornik (2000). This is less

of a problem in the NN-L model because the para-

meters of the linear unit are also shrunk towards zero.

We conclude that in-sample evaluation of NN models

is important. In this study, it has not been possible to

evaluate every AR-NN model before using it for

forecasting and, due to this omission, explosive AR-

NN models have been used. Damage control has only

occurred in the form of the insanity filter, which

apparently does not work sufficiently well. A possible

way of avoiding explosive models could be to shrink

the parameters of the linear unit towards zero in the

estimation as is done in the context of Bayesian

regularization.

7.4. Combining point forecasts

As indicated in Section 4, our aim is also to con-

sider the accuracy of combination forecasts. We con-

sider the three possible combinations of pairs

involving a linear AR model and two combinations

that only involve nonlinear models. The latter ones are

labelled NN+STAR and AR-NN+STAR.

Table 7 contains results for the RMSFE compar-

isons. The benchmark is again the linear AR model,

which means that the entries in the table are ratios of

the RMSFE of the combination forecast and the cor-

responding RMSFE of the linear AR model. A general

conclusion is that combining often improves forecast

accuracy, unless one of the models generates strongly

inferior forecasts. In that case, the forecasts are more

accurate than the ones from the inferior model but still

less accurate than the linear AR benchmark. In this

study, the inferior model is most often the AR-NN

model.

Sometimes, the combination of two nonlinear mod-

els produces very good results. A case in point is the



Table 7

Performance of combination forecasts

IP CPI M1 STIR VEX VIMP UR

1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12

Canada AR+NN 0.989 0.960 0.936 0.926 1.000 1.000 1.000 1.000 0.990 0.980 0.996 1.010 1.026 0.987 0.971 1.030 1.001 0.996 0.996 0.995 1.000 1.000 1.000 1.000 0.998 0.982 0.973 0.948

AR+AR-NN 0.982 1.001 1.029 1.111 0.962 1.011 1.067 1.022 0.993 0.999 1.035 1.080 0.956 0.971 0.987 1.016 0.998 0.992 0.999 1.000 0.957 1.001 0.997 0.996 0.962 0.969 1.014 1.096

AR+STAR 0.996 0.994 0.993 0.969 1.000 0.999 0.995 0.935 0.994 1.011 1.034 1.072 0.998 1.042 1.035 1.082 1.014 1.027 1.019 1.022 0.982 0.993 0.987 0.978 0.985 0.983 0.983 0.975

NN+STAR 0.985 0.954 0.929 0.893 1.000 0.999 0.995 0.935 0.994 0.994 1.033 1.084 1.030 1.041 1.021 1.119 1.016 1.024 1.016 1.017 0.982 0.993 0.987 0.978 0.986 0.969 0.960 0.927

AR-NN+STAR 0.975 0.968 0.970 1.040 0.962 1.011 1.067 1.022 0.992 0.983 1.035 1.093 0.982 0.961 0.964 1.050 1.000 0.989 0.995 0.994 0.957 1.001 0.997 0.996 0.962 0.956 0.991 1.053

France AR+NN 0.988 0.988 0.977 0.981 1.009 1.014 1.027 1.029 1.017 0.936 0.888 0.837 0.983 0.985 1.002 1.104 0.978 0.984 1.026 1.094 1.000 1.000 1.000 1.000 – – – –

AR+AR-NN 1.001 1.012 1.021 1.051 1.036 1.163 1.283 1.221 1.023 1.078 1.154 1.236 0.931 0.987 1.017 1.062 0.996 1.002 1.058 1.146 1.005 1.017 1.023 1.040 – – – –

AR+STAR 0.993 0.983 0.983 0.979 0.951 0.954 0.933 0.998 1.031 1.029 1.058 1.084 0.992 1.043 1.066 1.111 0.994 1.000 1.044 1.110 0.991 0.997 0.993 1.000 – – – –

NN+STAR 0.981 0.973 0.962 0.962 0.959 0.968 0.961 1.028 1.049 0.960 0.940 0.913 0.979 1.026 1.068 1.220 0.975 0.993 1.087 1.213 0.991 0.997 0.993 1.000 – – – –

AR-NN+STAR 0.994 1.005 1.004 1.034 1.044 1.177 1.302 1.247 1.038 1.001 1.021 1.052 0.937 0.987 1.033 1.179 0.982 1.000 1.106 1.250 1.005 1.017 1.023 1.040 – – – –

Germany AR+NN 0.980 0.943 0.907 0.883 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.005 1.016 1.040 1.082 1.000 1.000 1.000 1.000 0.987 0.967 0.941 0.914 1.007 1.005 0.997 0.967

AR+AR-NN 0.979 1.000 1.001 0.998 0.944 0.976 1.046 0.965 0.995 0.992 1.004 1.070 0.970 1.013 1.020 1.037 0.998 1.003 1.001 1.002 1.003 1.013 1.012 1.009 0.961 0.945 1.024 1.177

AR+STAR 0.991 0.993 0.982 0.955 0.983 0.963 1.043 1.036 1.002 0.998 0.995 1.009 0.958 0.996 0.984 0.977 1.003 1.006 1.008 1.018 1.001 0.986 0.976 0.944 0.979 0.982 0.977 0.982

NN+STAR 0.973 0.939 0.894 0.840 0.983 0.963 1.043 1.036 1.002 0.998 0.995 1.009 0.962 1.009 1.023 1.066 1.003 1.006 1.008 1.018 0.990 0.957 0.922 0.860 0.986 0.985 0.970 0.945

AR-NN+STAR 0.962 0.943 0.907 0.879 0.944 0.976 1.046 0.965 0.995 0.992 1.004 1.070 0.974 1.027 1.059 1.129 0.998 1.003 1.001 1.002 0.990 0.978 0.952 0.923 0.966 0.947 1.015 1.139

Italy AR+NN 1.000 1.000 1.000 1.000 0.967 0.947 0.991 0.988 0.987 0.978 0.951 0.924 1.025 1.043 1.081 1.087 1.002 1.010 1.018 1.017 1.013 0.996 0.990 0.985 – – – –

AR+AR-NN 1.001 1.006 1.008 1.020 1.015 0.954 0.968 0.950 1.005 0.990 0.992 1.045 1.139 1.164 1.177 1.189 0.998 0.998 1.003 1.007 0.996 0.997 1.002 1.005 – – – –

AR+STAR 0.991 0.991 0.975 0.944 1.010 0.933 0.982 0.926 0.999 0.991 0.985 1.017 1.022 1.111 1.152 1.191 0.990 1.011 1.016 1.007 0.988 1.000 0.991 0.985 – – – –

NN+STAR 0.991 0.991 0.975 0.944 0.988 0.890 0.974 0.916 0.994 0.981 0.950 0.960 1.048 1.155 1.235 1.285 0.998 1.028 1.039 1.028 0.999 0.995 0.978 0.970 – – – –

AR-NN+STAR 1.001 1.006 1.008 1.020 0.987 0.906 0.962 0.942 1.000 0.979 0.955 0.985 1.168 1.208 1.253 1.272 1.003 1.009 1.021 1.025 1.009 0.993 0.992 0.991 – – – –

Japan AR+NN 1.000 1.000 1.001 1.000 0.997 0.981 0.997 1.003 0.979 0.930 0.894 0.888 0.987 0.982 0.964 0.918 1.001 0.996 0.994 1.006 1.000 1.000 1.000 1.000 1.041 1.162 1.165 1.090

AR+AR-NN 0.983 1.003 1.022 1.093 1.080 1.103 1.113 1.033 1.020 1.035 1.061 1.188 0.952 0.995 1.000 1.010 1.015 1.039 1.059 1.084 0.993 1.011 1.023 1.054 0.982 1.056 1.096 1.107

AR+STAR 0.994 0.984 0.984 0.941 0.984 1.011 1.084 1.139 1.004 1.010 1.018 1.043 0.954 1.014 1.049 1.027 1.004 0.991 0.982 0.966 0.998 0.993 0.980 0.924 0.996 0.986 0.987 0.982

NN+STAR 0.994 0.984 0.985 0.941 0.982 0.995 1.081 1.139 0.983 0.938 0.910 0.926 0.943 1.000 1.021 0.953 1.005 0.987 0.976 0.973 0.998 0.993 0.980 0.924 1.037 1.148 1.152 1.075

AR-NN+STAR 0.983 1.003 1.023 1.093 1.085 1.095 1.105 1.035 0.997 0.962 0.953 1.069 0.940 0.979 0.966 0.928 1.018 1.040 1.059 1.093 0.993 1.011 1.023 1.054 1.020 1.206 1.245 1.192

UK AR+NN 1.000 1.000 1.000 1.000 1.022 0.995 0.999 1.006 0.953 0.890 0.787 0.727 1.009 1.020 1.038 1.045 0.999 1.001 0.997 0.984 0.999 1.000 1.005 1.007 1.000 1.000 1.000 1.000

AR+AR-NN 1.002 1.001 0.998 1.006 1.085 1.344 1.418 1.274 1.025 1.132 1.094 1.096 0.994 0.983 0.997 1.005 1.005 1.021 0.998 1.007 1.009 1.004 1.003 0.999 0.959 0.986 1.054 1.276

AR+STAR 1.007 0.997 0.997 0.989 1.071 1.021 1.148 1.137 0.992 1.009 1.000 1.004 0.993 1.013 1.062 1.093 1.001 1.011 1.002 0.998 0.998 1.001 0.996 0.972 0.938 0.932 0.954 1.037

NN+STAR 1.007 0.997 0.997 0.989 1.095 1.024 1.152 1.141 0.953 0.904 0.797 0.746 1.003 1.035 1.102 1.139 1.002 1.013 0.999 0.982 0.997 1.001 1.001 0.979 0.938 0.932 0.954 1.037

AR-NN+STAR 1.002 1.001 0.998 1.006 1.113 1.360 1.421 1.274 0.983 1.029 0.892 0.842 1.001 1.001 1.033 1.049 1.005 1.023 0.996 0.992 1.011 1.006 1.009 1.006 0.959 0.986 1.054 1.276

USA AR+NN 0.969 0.962 0.952 0.945 1.000 1.000 1.000 1.000 0.992 0.977 0.956 0.922 1.026 0.970 0.910 0.919 1.013 1.008 1.046 1.066 1.011 1.021 1.032 1.044 0.972 0.938 0.934 0.951

AR+AR-NN 0.995 0.995 1.005 1.038 0.978 0.992 1.041 1.022 1.005 1.032 1.064 1.098 0.960 0.979 0.956 0.922 0.997 1.022 1.078 1.128 0.988 0.988 0.988 0.984 0.983 0.952 0.951 0.984

AR+STAR 0.995 0.999 0.999 0.994 0.943 0.947 0.969 0.942 0.992 0.998 1.000 0.986 0.983 0.965 0.942 0.908 1.017 1.019 1.085 1.132 0.997 0.971 0.965 0.941 0.999 0.997 0.998 1.004

NN+STAR 0.964 0.961 0.951 0.939 0.943 0.947 0.969 0.942 0.986 0.978 0.962 0.917 1.016 0.950 0.868 0.836 1.036 1.036 1.143 1.201 1.011 0.989 0.993 0.984 0.973 0.936 0.932 0.956

AR-NN+STAR 0.967 0.960 0.959 0.985 0.978 0.992 1.041 1.022 1.001 1.016 1.032 1.028 0.993 0.963 0.886 0.844 1.015 1.040 1.133 1.196 1.000 1.010 1.021 1.029 0.963 0.900 0.895 0.942

Table entries are ratios of root-mean-squared forecast errors of the models by variable, country, and forecast horizon, where the linear AR model is the baseline model.
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Canadian CPI. Combining forecasts from the NN and

LSTAR model leads to remarkably good forecasts for

longer horizons, even though the forecasts from the

NN model are not particularly accurate; see Table 2.

Combinations in which the linear AR model is one of

the components are conservative, in the sense that

they further emphasize the linear model. For example,

combining the linear and the LSTAR model often lead

to forecasts that are slightly more accurate than the

forecasts from the linear model. This is due to the fact

that some of the STAR forecasts may be blinearQ in the
sense that they arise from a linear model. This hap-

pens when linearity is not rejected against STAR, so

that the model actually used for forecasting is the

linear AR model.
8. Conclusions

In this paper, we consider the forecast accuracy of a

linear AR model and three different nonlinear models,

the LSTAR model and two neural network models. A

general result that emerges is that in order to obtain

acceptable results with nonlinear models, modelling

has to be carried out with care. When it comes to

neural network models, there seems to be a risk of

explosive models, and thus for implausible forecasts

at long forecasting horizons. Controls have to be

applied to detect them and to replace them by simple

rule-of-thumb forecasts.

The first question posed in the introduction was

whether nonlinear models produce real-time forecasts

that improve upon linear models. The answer seems to

be mixed. It appears that LSTAR models generate

forecasts that are to some extent more accurate than

forecasts from linear models. The same holds for NN

models specified with Bayesian regularization, but not

for the AR-NN models. The answer to the second

question thus appears to be that tightly parameterized

models, here represented by the LSTAR family, have

an edge over more nonparametric approaches such as

neural network models.

Furthermore, combining forecasts improves the

accuracy of point forecasts. This answer to the third

question in the introduction is not without reserva-

tions, but by and large our results seem favourable to

the idea. It should be noticed, however, that gains

from pooling forecasts may be more substantial if
the number of forecasts is large, which is not the

case here. Finally, there is no unique answer to the

final question concerning the amount of gain in fore-

cast accuracy from nonlinear models. Whether or not

these gains are worthwhile depends on how large the

costs of careful nonlinear model specification are

estimated to be compared to the improvement in

forecast accuracy achieved by these models.

Our results are not fully comparable with the

results in SW and Marcellino (2005). As already

mentioned, these authors built a separate model for

each forecast horizon, whereas in this study, the same

model has been used for generating forecasts for all

horizons. Whether or not this is an important differ-

ence is worthy of investigation, but this is left for

future research. At any rate, our results indicate that

building nonlinear models with care has a positive

effect on forecast accuracy. This is true for LSTAR

models and it should also be true for neural network

models. It appears, however, that the possibility of

obtaining explosive models when applying the mod-

elling technique presented in Medeiros et al. (2005)

for AR-NN models has to be accounted for. For

example, in estimating the final AR-NN model, the

coefficients of the linear unit may be shrunk towards

zero, which has not been attempted in this paper. It is

obvious that building these models requires more

individual care than it has been possible to exercise

in our simulated forecasting experiment.

The results in this paper are based on the implicit

assumption that all models have constant parameters

during the estimation period. Evaluation of models

should include testing parameter constancy. This

requirement is difficult to satisfy in a study with a

large number of time series and models, and therefore,

no evaluation tests have been carried out here, although

such tests do exist. It may therefore be possible to build

better models than the ones used for forecasting in this

study. Applying a rolling window in modelling may

also mitigate the effects of parameter change should

this be a problem. But then, if the number of series to be

predicted is large, it may be that the forecaster cannot

devote sufficient resources to building the required

forecasting models. The results of this study at least

indicate that when one considers choosing a forecasting

model from a large family of models, careful specifica-

tion (selecting a member of this family) may substan-

tially improve the precision of forecasts.
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