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ABSTRACT. We derive the asymptotic properties of the quasi maximum likelihood estimator of smooth

transition regressions when time is the transition variable. The consistency of the estimator and its as-

ymptotic distribution are examined. It is shown that the estimator convergesat the usual
√

T -rate and

has an asymptotically normal distribution. The finite sample properties of theestimator are explored in

simulations.
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1. INTRODUCTION

In this paper, we derive the asymptotic properties of the quasi maximum likelihood estimator (QMLE)

of smooth transition regressions (STR) when time is the transition variable and the regressors are sta-

tionary. The consistency of the estimator and its asymptotic distribution are examined.

Nonlinear regression models have been widely used in practice for a variety of time series applica-

tions; see Granger and Teräsvirta (1993) for some examples in economics. In particular, STR models,

initially proposed in its univariate form by Chan and Tong (1986), and further developed in Luukkonen,

Saikkonen, and Teräsvirta (1988) and Teräsvirta (1994,1998), have been shown to be very useful for

representing asymmetric behavior.1 A comprehensive review of time series STR models is presented in

van Dijk, Ter̈asvirta, and Franses (2002).

In most applications, stationarity, weak exogeneity,2 and homoskedasticity have been imposed. In

these cases, the standard method of estimation is nonlinear least squares (NLS), which is equivalent

to quasi-maximum likelihood or, when the errors are Gaussian, to conditionalmaximum likelihood.

The asymptotic properties of the NLS are discussed in Mira and Escribano (2000), Suarez-Fariñas,

Pedreira, and Medeiros (2004), and Medeiros and Veiga (2005). Lundbergh and Teräsvirta (1998) and

Li, Ling, and McAleer (2002) consider STR models with heteroskedastic errors. Chan, McAleer, and

Medeiros (2005) study the properties of the QMLE when the errors followa GARCH (Generalized

Autoregressive Conditional Heteroskedasticity) model. Saikkonen and Choi (2004) consider the case

of STR models with cointegrated variables when the transition variable is integrated of order one, and

Date: February 11, 2010.
1The term “smooth transition” in its present meaning first appeared in Bacon and Watts (1971). They presented their smooth
transition model as a generalization of models of two intersecting lines with an abrupt change from one linear regression to
another at some unknown change point. Goldfeld and Quandt (1972, pp. 263–264) generalized the so-called two-regime
switching regression model using the same idea.
2With respect to the parameters of interest.
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Medeiros, Mendes, and Oxley (2009) analyze a similar model but with stationary transition variables.

The case with endogenous regressors is considered in Areosa, McAleer, and Medeiros (in press).

An important case to consider is time as transition variable in STR models. Lin and Ter̈asvirta (1994)

and Medeiros and Veiga (2003) consider this type of specification to construct models with parameters

that change smoothly over time. Strikholm (2006) use this transition variable to determine the number

of breaks in regression models. However, the asymptotic properties of theQMLE in this case have

not been fully understood. If time is the transition variable, asymptotic theory of the QML estimator

cannot be achieved in the standard way, because as the sample sizeT goes to infinity, the proportion of

finite sub-samples goes to zero. Our solution to this problem is to scale the transition variablet so that

the location of the transition is a certain fraction of the total sample rather than a fixed sample point.

This modification allows asymptotic theory of the QML estimator. Andrews and McDermott (1995)

and Saikkonen and Choi (2004) use similar transformations.

The outline of this paper is as follows. Section 2 describes the model and asymptotic properties of

the QMLE. Monte Carlo simulations are presented in Section 3. Section 4 concludes the paper. All

proofs are presented in the Appendix.

2. MODEL DEFINITION AND ESTIMATION

2.1. The Model. We consider the following time series regression with time-varying parameters

yt = x′
tβ0 +

M∑

m=1

x′
tβmf [γm(t − cm)] + εt, t = 1, 2, . . . , T, (1)

whereεt is a martingale difference sequence with varianceσ2
ε . xt is a vector of pre-determined regres-

sors. The functionf is the logistic transition function which has the form

f [γ(t − c)] =
1

1 + e−γ(t−c)
, t = 1, 2, . . . , T. (2)

whereγ > 0 controls the smoothness of the transition andc ∈ {1, 2, . . . , T} is a location parameter.

The loci cm ∈ {1, 2, . . . , T} in (1) are change-points. Note that whenγm −→ ∞, m = 1, . . . , M ,

model (1) becomes a linear regression withM structural breaks occurring at thecm.

2.2. Embedding the Model in a Triangular Array. Asymptotic theory for the QML estimator of

the model defined above cannot be achieved the standard way. Consider model (1) withM = 1. As

T → ∞, the proportion of observations in the first regime goes to zero. Since forT large,

f [γ(t − c)] = f
[
Tγ(T−1t − T−1c)

]
≈ 1{T−1t>0},

the parameter vectorβ0 that governs the first regime as well as the transition parametersγ andc vanish

from the model and become unidentified. Figure 1 illustrates this. In the simulation, γ is set to be

0.2, c is equal to 50. In the upper plot of the figure,c is in the middle of the sample; in the lower

plot (T = 1000), the second regime dominates. QML estimation of model (1) will be dominated by

the second regime as the sample size increases. As the sample size goes to infinity, the first regime
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vanishes and its parameters become unidentified in the estimation. In order to obtain asymptotic theory

for the estimator, the proportion of sub-samples in two regimes (before and after the transition) should

remain constant asT goes to infinity. In other words, the shape of the plot of the time series should

remain qualitatively the same asT grows. For this purpose, we scale the logistic transition function as

f

[
γ

(
T0

T
t − c

)]
= f

[
T−1γ (T0t − Tc)

]
; t = 1, . . . , T ; c ∈

[
T0

T
, T0

]
. (3)

whereT0 is the actual sample size in any given data situation. Accordingly,

yt = x′
tβ0 +

M∑

m=1

x′
tβmf

[
γm

(
T0

T
t − cm

)]
+ εt. (4)

Note that a given small-sample situation is embedded in this sequence of models atT = T0. As can

be seen in (3), with this scaling the slope of the logistic function is decreasing with T while the locus

of the transition is increasing withT . The scaling of the time counter,T0, remains constant. Therefore,

the proportions of observations in the first regime, during the transition, and in the last regime remain

the same asT grows, and the parameters in these groups of observations remain identified.

2.3. Assumptions. We denote the data-generating parameter vector as

θ0 = (β′
0,0, β

′
1,0, . . . ,β

′
M,0, γ1,0, . . . , γM,0, c1,0, . . . , cM,0, σ

2
ε,0)

′,

where the (second) 0-subscript indicates the data-generating character.

We writeεt(θ) such that the notation can be used for both the residuals from the estimation and the

data-generating errors:

εt (θ) = yt − g(xt; β, γ, c)

whereβ = (β0, . . . ,βM )′; γ = (γ1, . . . , γM )′; c = (c1, . . . , cM )′ and

g(xt; β, γ, c) = x′
tβ0 +

M∑

m=1

x′
tβmf

[
γm

(
T0

T
t − cm

)]
.

We use the shorthand notationεt,0 := εt(θ0), for the data-generating errors andεt = εt(θ) for the

residual evaluated at anyθ.

We consider the following assumptions.

ASSUMPTION1 (Parameter Space).The parameter vectorθ0 is an interior point ofΘ, a compact real

parameter space.

ASSUMPTION2 (Errors).

(1) εt,0 is a martingale difference sequence with constant varianceσ2
ε > c > 0.

(2) E|εt,0|q < ∞ for q ≤ 4.

(3) xt andεt,0 are independent.

ASSUMPTION3 (Stationarity and Moments).
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(1) xt = (xA,t, xB,t)
′, wherexA,t consists of stationary and ergodic exogenous variables and

xB,t is a set of lagged values ofyt. The autoregressive polynomial in each regime associated

to xB,t has all roots outside the unit circle.

(2) E ‖xA,t‖q < ∞ for q ≤ 4, where‖·‖ is the Euclidean vector norm.

(3) 1
T

∑T
t=1 (xtx

′
t) converges in probability toΩ = E (xtx

′
t), which is symmetric positive definite.

ASSUMPTION 4 (Transition Function).g(xt; β, γ, c) is parameterized such that the parameters are

well defined.

Assumption 1 is standard in the literature and is not too restrictive in the present case as we expect

β0 to be finite,γ0 is positive and finite, andc0 ∈ [0, 1]. Assumption 2 is also standard.

2.4. Quasi Maximum Likelihood Estimator. The quasi log-likelihood function is given by

LT (θ) =
1

T

T∑

t=1

ℓt(θ),

where

ℓt(θ) = −1

2

(
log 2π + log σ2

ε + ε2
t σ

−2
ε

)
.

The parameter vector is estimated by quasi maximum likelihood as

θ̂T = argmax
θ∈Θ

LT (θ), (5)

whereΘ is the parameter space.

THEOREM 1 (Consistency).Under Assumptions 1 through 4, the quasi maximum likelihood estimator

θ̂T is consistent:

θ̂T
p→ θ0.

The proof is provided in the Appendix.

THEOREM 2 (Asymptotic Normality).Under Assumptions 1 through 4, the quasi maximum likelihood

estimator̂θT is asymptotically normally distributed:
√

T
(
θ̂T − θ0

)
d→ N

[
0, A(θ0)

−1B(θ0)A(θ0)
−1
]
, (6)

where

A(θ0) = −E

(
∂2ℓt

∂θ∂θ′

∣∣∣∣∣
θ0

)
,

B(θ0) = E

(
∂ℓt

∂θ

∣∣∣∣∣
θ0

∂ℓt

∂θ′

∣∣∣∣∣
θ0

)
.

PROPOSITION1 (Covariance Matrix Estimation).Under Assumptions 1 through 4,

AT
p→ A, BT

p→ B,
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where

AT (θ) = − 1

T

T∑

t=1

∂2ℓt

∂θ∂θ′ ,

and

BT (θ) =
1

T

T∑

t=1

∂ℓt

∂θ

∂ℓt

∂θ′ ,

andA, B as defined in Theorem 2.

3. SMALL SAMPLE SIMULATIONS

We conduct a set of Monte Carlo simulations in order to evaluate both the small-sample properties

and the asymptotic behavior of the QMLE. In particular, we consider the following models with three

limiting regimes:

Model A – Independent and identically distributed (IID) regressors:

yt = x′
tβ0 +

2∑

m=1

x′
tβmf

[
γm

(
t

T
− cm

)]
+ εt,

yt = 1 + x + (−1 − 2x)f

[
30

(
t

T
− 1

3

)]
+ (1 + 3x)f

[
30

(
t

T
− 2

3

)]
+ εt,

where{xt} is a sequence of independent and normally distributed random variables with

zero mean and unit variance,xt ∼ NID(0, 1), and{εt} is either a sequence ofNID(0, 1) or

Uniform(−2, 2) random variables.

Model B – Dependent regressors:

yt = x′
tβ0 +

2∑

m=1

x′
tβmf

[
γm

(
t

T
− cm

)]
+ εt,

yt = 0.5 + 0.4yt−1 + (−0.5 + 0.5yt−1)f

[
30

(
t

T
− 1

3

)]

+ (0.5 − 1.7yt−1)f

[
30

(
t

T
− 2

3

)]
+ εt,

where{εt} is either a sequence ofNID(0, 1) or Uniform(−2, 2) random variables.

Different values ofT are used, ranging from100 to 5000 observations. For each value ofT , 1000

Monte Carlo simulations are repeated. When the errors are normally distributed, the estimators are

maximum likelihood estimators. On the other hand, when the errors are uniformlydistributed, the error

distribution is misspecified and we have a quasi maximum likelihood estimation setup.For sample sizes

up to300 observations, the estimation procedure did not converge in less than5% of the replications.

These cases were discarded. The parametersγ are chosen in order to keep the transitions neither too

smooth nor too sharp; see Figure 2.
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The results are presented in Figures 3–14. Figures 3–6 show the average bias and the mean squared

error (MSE) as a function of the sample size. Apart from the slope parameter, the average biases are

rather small for all sample sizes, models, and error distributions. Furthermore, the MSE, as expected,

converges to zero as the sample size increases. With respect to the slope parameter, the MSE is quite

high for very small samples (100–300 observations) but also goes to zero as the sample size increases.

The bias is also large in small sample, but turns to be negligible for larger samplesizes. The large biases

and MSE are mainly caused by few very large estimates (less than1% of the cases). For example,

for Model A with Gaussian errors and 100 observations, the average bias and MSE for the first slope

parameter (̂γ1) are, respectively908.82 and106, 447, 280.55. On the other hand, the median bias is just

13.00. For 500 observations and the same model, the average bias and MSE are19.28 and155, 859.76,

respectively. The median bias is just0.66 whenT = 500. This pattern is somehow expected, as it is

quite difficult to estimate the slope parameters in small samples. On the other hand,the location (c)

and the linear parameters (β) are estimated quite precisely.

Figures 7–10 present the distribution the standardized QMLE of the linear parameters of the model

(β). Some interesting facts emerge from the graphs. First, even in very small samples, the estimatêβ0

has a distribution close to normal for all models and error distributions. Second, the distributions of̂β1

andβ̂2 have some outliers in small samples, but, as expected, they are close to normalfor very large

samples (T = 5, 000).

Turning to the location parameter, Figures 11–14 show the distribution of the standardized QMLE

for c. It is quite remarkable that even forT = 100, the empirical distributions are close to normal.

4. CONCLUSION

In this paper, we propose asymptotic theory for the QML estimator of a logistic smooth transition

regression model with time as the transition variable. Although asymptotic theory cannot be achieved

in the standard way as the transition variable is not stationary, after properscaling, we show that the

QML estimator is consistent and asymptotically normal. The estimator is shown to converge to the true

value of the parameter at the speed of
√

T . We explore the small sample behavior in simulations.
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APPENDIX A. PROOF OFCONSISTENCY

Proof of Theorem 1.We establish the conditions for consistency according to Theorem 4.1.1 of Amemiya

(1985). We havêθT
p→ θ0 if the following conditions hold:

(1) Θ is a compact parameter set.

(2) LT (θ, εt) is continuous inθ and measurable inεt.

(3) LT (θ) converges to a deterministic functionL(θ) in probability uniformly onΘ asT → ∞.

(4) L(θ) attains a unique global maximum atθ0.

Item (1) is given by Assumption 1. Item (2) holds by definition of the quasi-maximum likelihood

estimator (5) from the definition of the normal density. For item (3) we refer toTheorem 4.2.1 of

Amemiya (1985): This holds for i.i.d. data ifE supθ∈Θ |ℓt(θ)| < ∞ and ℓt(θ) is continuous in

θ for eachεt. The extension to stationary and ergodic data using the same set of assumptions is

achieved in Ling and McAleer (2003, Theorem 3.1). We haveE supθ∈Θ |ℓt(θ)| < ∞ by Jensen’s

inequality andE sup |φ(εt, θ)| < ∞, whereφ denotes the normal density function. The finiteness of

the last expression follows from the assumption thatσ2
ε > c > 0 for some constantc. The log density

log φ(εt, θ) is continuous inθ for everyεt.

Consider Item (4). By the Ergodic Theorem,Eℓt(θ) = L(θ). Rewrite the maximization problem as

max
θ∈Θ

E [ℓt (θ) − ℓt(θ0)] .

Now, for a given numberσ2
ε ,

E [ℓt (θ) − ℓt (θ0)] = E log

[
φ(εt, θ)

φ(εt, θ0)

]
,

= E

[
−1

2
log

σ2
ε

σ2
ε,0

− 1

2

(
ε2
t

σ2
ε

−
ε2
t,0

σ2
ε,0

)]
,

= −1

2
log

σ2
ε

σ2
ε,0

− 1

2

[
E(ε2

t σ
−2
ε ) − 1

]
. (7)

We show thatEε2
t (θ) ≥ Eε2

t,0 = σ2
ε,0 and that (7) attains an upper bound atθ = θ0 uniquely.

Consider

Eε2
t (θ) = E [yt − g(xt; β, γ, c)]2 .

Substituting foryt = g(xt; β0, γ0, c0) + εt,0 and rearranging, we obtain

Eε2
t (θ) = E [g(xt; β0, γ0, c0) + εt,0 − g(xt; β, γ, c)]2 ,

≥ Eε2
t,0 = σ2

ε,0.

The inequality holds from Assumption 2 (3). We have established that for any givenσ2
ε , the objective

function (7) attains its maximum of

−1

2

(
log

σ2
ε

σ2
ε,0

+
σ2

ε,0

σ2
ε

− 1

)
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atβ = β0, γ = γ0, c = c0. Definex = σ2
ε/σ2

ε,0, then

f(x) = −1

2

(
log x +

1

x
− 1

)

attains its maximum of 0 atx = 1, therefore the maximizer isσ2
ε = σ2

ε,0. This shows thatE(ℓt(θ) −
ℓt(θ0)) is uniquely maximized atθ = θ0. �

APPENDIX B. PROOF OFASYMPTOTIC NORMALITY

REMARK 1.

(1) In this proof, terms will sometimes involve expectations of cross-products of the typeE(XY ),

whereX andY are correlated random variables. Note that by the Cauchy-Schwarz inequality,

we have

EXY ≤
(
EX2

) 1

2

(
EY 2

) 1

2 ,

and thus in order to show that the cross-product has finite expectation, itsuffices to show that

both random variables have finite second moments.

(2) By the same token, if bothX andY have finite second moments,

E(X + Y )2 ≤ EX2 + EY 2 + 2
(
EX2

) 1

2

(
EY 2

) 1

2 ,

≤ K(EX2 + EY 2),

for someK < ∞.

In the outline of the proof we follow Theorem 4.1.3 of Amemiya (1985). Therefore we have to

establish the conditions

(1) ∂2ℓt

∂θ∂θ′ exists and is continuous in an open neighborhood ofθ0.

(2) AT (θ∗
T )

p→ A(θ0) for all sequencesθ∗
T

p→ θ0.

(3)

B(θ0)
− 1

2

1√
T

[rT ]∑

t=1

∂ℓt

∂θ

∣∣∣∣∣∣
θ0

d→ W (s), s ∈ [0, 1],

whereW is standard Brownian motion on the unit interval.

Item (1) is shown in Lemma 3. Item (2) needs consistency ofθ̂T for θ0, which we established in

Theorem 1. It further needs uniform convergence ofAT to A, i.e.

sup
θ∈Θ

|AT (θ) − A(θ)| p→ 0.

We use Ling and McAleer (2003, Theorem 3.1) to establish this, which achieved invocation of the

Ergodic Theorem without having to show finiteness of third order derivative information. We show the

uniform convergence in Lemma 4.
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Item (3) uses Billingsley (1999, Theorem 18.3) and needs (a) that{∂ℓt/∂θ|θ0,Ft} is a stationary

martingale difference sequence and (b) thatB(θ0) exists. Both with be proved in Lemma 3. The first

two lemmas show a few technical properties ofg(xt; β, γ, c) that are needed in the following.

LEMMA 1. The transition function given by Equation(3) is bounded, and so are its first and second

derivatives with respect toγm andcm, ∀m = 1, 2, . . .M .

Proof. We will use shorthand notationf for f
[
γm

(
T0

T
t − cm

)]
below unless otherwise stated. Defin-

ing am(t) := T0

T
t− cm, t = 1, 2 . . . , T , it is easy to verify that−∞ < −cm < am(t) ≤ T0 − cm < ∞.

Since the transition function has the range(0, 1), it is clearly bounded. For the first derivative off with

respect toγm, ∀m = 1, 2, . . .M ,
∣∣∣∣

∂f

∂γm

∣∣∣∣ =

∣∣∣∣∣
am(t)e−γmam(t)

(1 + e−γmam(t))2

∣∣∣∣∣ ≤ |am(t)f | < ∞.

The first inequality follows from the fact that1 + e−γmam(t) > e−γmam(t) > 0. The second inequality

holds because botham(t) and f are bounded. For the second derivative off with respect tocm,

∀m = 1, 2, . . .M ,
∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣ =

∣∣∣∣∣
2am(t)2e−2γmam(t)

(
1 + e−γmam(t)

)3 +
am(t)2e−γmam(t)

(
1 + e−γmam(t)

)2

∣∣∣∣∣ ,

≤
∣∣∣∣∣
2am(t)2e−2γmam(t)

(
1 + e−γmam(t)

)3

∣∣∣∣∣+

∣∣∣∣∣
am(t)2e−γmam(t)

(
1 + e−γmam(t)

)2

∣∣∣∣∣ ,

≤
∣∣∣∣

2am(t)2

1 + e−γmam(t)

∣∣∣∣+
∣∣∣∣

am(t)2

1 + e−γmam(t)

∣∣∣∣ ,

=
∣∣3am(t)2f

∣∣ < ∞.

The second inequality follows from the fact that1 + e−γmam(t) > e−γmam(t) > 0, the last inequality

holds because botham(t) andf are bounded. The proof of the boundedness of the first and second

derivatives off with respect tocm is almost identical to the one above and is omitted for brevity.�

LEMMA 2.

Letξ := (β, γ, c), then

(1) E

∥∥∥ ∂
∂ξ

g(xt; β, γ, c)
∥∥∥

2
< ∞.

(2) E

∥∥∥ ∂2

∂ξ∂ξ′ g(xt; β, γ, c)
∥∥∥

2
< ∞, where‖·‖ denotes the standard vector and matrix norms.

Proof. We will prove the statements element by element. For statement (1),

E

∥∥∥∥
∂

∂β0

g(xt; β, γ, c)

∥∥∥∥
2

= E ‖xt‖2 < ∞

by Assumption 3 (2).

E

∥∥∥∥
∂

∂βm

g (xt; β, γ, c)

∥∥∥∥
2

= E ‖xtf‖2 ≤ E ‖xt‖2 < ∞,
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by the fact that|f | < 1.

E

∥∥∥∥
∂

∂γm
g(xt; β, γ, c)

∥∥∥∥
2

= E

∥∥∥∥x
′
tβm

∂f

∂γm

∥∥∥∥
2

,

≤ E ‖xt‖2 ‖βm‖2

∣∣∣∣
∂f

∂γm

∣∣∣∣
2

< ∞

by Lemma 1, Assumption 1, and Assumption 3 (2). Similarly,

E

∥∥∥∥
∂

∂cm
g(xt; β, γ, c)

∥∥∥∥
2

= E

∥∥∥∥x
′
tβm

∂f

∂cm

∥∥∥∥
2

,

≤ E ‖xt‖2 ‖βm‖2

∣∣∣∣
∂f

∂cm

∣∣∣∣
2

< ∞.

For statement (2),

E

∥∥∥∥
∂2

∂β0∂β′
0

g(xt; β, γ, c)

∥∥∥∥
2

= 0,

E

∥∥∥∥
∂2

∂βm∂β′
m

g(xt; β, γ, c)

∥∥∥∥
2

= 0,

E

∥∥∥∥
∂2

∂γ2
m

g(xt; β, γ, c)

∥∥∥∥
2

= E

∥∥∥∥x
′
tβm

∂2f

∂2γ2
m

∥∥∥∥
2

,

≤ E ‖xt‖2 ‖βm‖2

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣
2

< ∞.

For the second inequality, we use the fact that
∣∣∣ ∂2f
∂γ2

m

∣∣∣ is bounded from Lemma 1.

Similarly,

E

∥∥∥∥
∂2

∂c2
m

g(xt; β, γ, c)

∥∥∥∥
2

= E

∥∥∥∥x
′
tβm

∂f

∂2c2
m

∥∥∥∥
2

,

≤ E ‖xt‖2 ‖βm‖2

∣∣∣∣
∂2f

∂c2
m

∣∣∣∣
2

< ∞.

�

LEMMA 3.

(1) The sequence
{

∂ℓt

∂θ

∣∣
θ0

,Ft

}

t=1,...,T
is a stationary martingale difference sequence.Ft is the

sigma-algebra given by all information up to timet.

(2)

sup
θ∈Θ

E

∥∥∥∥
∂ℓt

∂θ

∥∥∥∥ < ∞,

(3)

sup
θ∈Θ

E

∥∥∥∥
∂ℓt

∂θ

∂ℓt

∂θ′

∥∥∥∥ < ∞.
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Proof. For part (1) of the proof, all derivatives are evaluated atθ = θ0. The nought-subscript is

suppressed to reduce notational clutter. Letξ = (β, γ, c), as before.

E

(
∂ℓt

∂ξ

∣∣∣∣Ft−1

)
= E

(
− εt

σ2
ε

∂εt

∂ξ

∣∣∣∣Ft−1

)
= E

(
εt

σ2
ε

∂

∂ξ
g(xt; β, γ, c)

∣∣∣∣Ft−1

)
= 0,

sinceg(xt; β, γ, c) is independent ofεt and its derivatives are bounded (Lemma 2).

E

(
∂ℓt

∂σ2
ε

∣∣∣∣Ft−1

)
= E

(
− 1

2σ2
ε

+
1

2

ε2
t

σ4
ε

∣∣∣∣Ft−1

)
= 0,

sinceεt has mean zero and varianceσ2
ε .

For part (2) and (3) of the proof, the expressions are evaluated at any θ ∈ Θ if not otherwise stated.

The data-generating parameters will be explicitly denoted by a nought-subscript. The processyt is data

and thus evaluated atθ0 throughout.

We first consider the gradient vectors ofξ,

E

∥∥∥∥
∂ℓt

∂ξ

∥∥∥∥ = E

∥∥∥∥
εt

σ2
ε

∂

∂ξ
g(xt; β, γ, c)

∥∥∥∥ ,

≤
(
E

∣∣∣∣
εt

σ2
ε

∣∣∣∣
2
) 1

2

(
E

∥∥∥∥
∂

∂ξ
g(xt; β, γ, c)

∥∥∥∥
2
) 1

2

,

≤
(
Eε2

t

c

) 1

2

(
E

∥∥∥∥
∂

∂ξ
g(xt; β, γ, c)

∥∥∥∥
2
) 1

2

< ∞.

The finiteness of the second factor follows from Lemma 2 (1). For the firstfactor, note that

ε2
t =

(
yt − x′

tβ0 −
M∑

m=1

x′
tβmf [γm(t − cm)]

)2

,

=

(
x′

t(β0,0 − β0) +
M∑

m=1

x′
t

[
βm,0f (γm,0(t − cm,0)) − βmf (γm(t − cm))

]
)2

.

Therefore, there existsK ∈ N such that

ε2
t ≤ K

∣∣x′
t(β0,0 − β0)

∣∣2 + K
M∑

m=1

∣∣x′
t

(
βm,0f [γm,0(t − cm,0)] − βmf [γm(t − cm)]

)∣∣2 ,

≤ KL ‖xt‖2 + KL
M∑

m=1

‖xt‖2 ,

= KL(M + 1) ‖xt‖2 ,

whereL is some positive constant. The existence of suchL is guaranteed by the compactness of the

parameter space and the fact thatf is bounded. Using Assumption 3 (2), it is clear thatEε2
t is bounded.
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Forσ2
ε ,

E

∣∣∣∣
∂ℓt

∂σ2
ε

∣∣∣∣ = E

∣∣∣∣
1

2σ2
ε

− 1

2

ε2
t

σ4
ε

∣∣∣∣ ,

≤ 1

2σ2
ε

+
1

2
E

∣∣∣∣
ε2
t

σ4
ε

∣∣∣∣ ,

=
1

σ2
ε

< ∞.

This shows statement (2) of Lemma 3. Statement (3) use similar techniques in the proof. We will

only show the case ofγm, which requires most work. The rest of the proof will be omitted for brevity.

E

∣∣∣∣
∂ℓt

∂γm

∂ℓt

∂γ′
m

∣∣∣∣ = E

∣∣∣∣∣
ε2
t

σ4
ε

(
∂f

∂γm

)2

x′
tβmβ′

mxt

∣∣∣∣∣ ,

≤
(
E

∣∣∣∣
ε2
t

σ4
ε

∣∣∣∣
2
) 1

2 (
E
∣∣x′

tβmβ′
mxt

∣∣2
) 1

2

∣∣∣∣
∂f

∂γm

∣∣∣∣
2

,

≤
(
Eε4

t

c3

) 1

2 (
E ‖xt‖4 ‖βm‖4

) 1

2

∣∣∣∣
∂f

∂γm

∣∣∣∣
2

< ∞.

The finiteness ofE ‖xt‖4 follows from Assumption 3 (2).‖βm‖4 is finite due to Assumption 1.

Lemma 1 ensures that the last factor is bounded. To see the finiteness of thefirst factor, recall in part

(2) we have shown that

ε2
t ≤ KL(M + 1) ‖xt‖2 .

It follows that

ε4
t ≤ (KL)2(M + 1)2 ‖xt‖4 .

Therefore,

Eε4
t ≤ (KL)2(M + 1)2E ‖xt‖4 < ∞

by Assumption 3 �

LEMMA 4. The function

gt(θ) := − ∂2ℓt

∂θ∂θ′ − A(θ)

where

A(θ) = −E
∂2ℓt

∂θ∂θ′

is absolutely uniformly integrable:

E sup
θ∈Θ

‖gt(θ)‖ < ∞;

it is continuous inθ and has zero mean:Egt(θ) = 0.

Proof. ¿From the triangular inequality,

E sup
θ∈Θ

‖gt(θ)‖ ≤ E sup
θ∈Θ

∥∥∥∥
∂2ℓt

∂θ∂θ′

∥∥∥∥+ E sup
θ∈Θ

‖A(θ)‖ .
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If E supθ∈Θ

∥∥∂2ℓt/∂θ∂θ′
∥∥ < ∞, A(θ) exists and by the Ergodic Theorem, there is pointwise con-

vergence. Thus showing absolute uniform integrability reduces to showing that

E sup
θ∈Θ

∥∥∥∥
∂2ℓt

∂θ∂θ′

∥∥∥∥ < ∞.

Proving finiteness of the expected value of the supremum consists of repeated application of the

Lebesgue Dominated Convergence Theorem (Shiryaev (1996, p. 187), Ling and McAleer (2003),

Lemmas 5.3 and 5.4). We will show the statement for second derivatives element by element, starting

with β0,
∂2ℓt

∂β0∂β′
0

= −xtx
′
t

σ2
ε

.

According to Assumption 2 (1) there exists a constantc such thatσ2
ε > c > 0, therefore

sup
θ∈Θ

∥∥∥∥
∂2ℓt

∂β0∂β′
0

∥∥∥∥ ≤
∥∥∥∥
xtx

′
t

c

∥∥∥∥ .

By Assumption 3 (3),

E sup
θ∈Θ

∥∥∥∥
∂2ℓt

∂β0∂β′
0

∥∥∥∥ ≤ E

∥∥∥∥
xtx

′
t

c

∥∥∥∥ < ∞.

Forβm, m = 1, 2, . . . , M ,

sup
θ∈Θ

∥∥∥∥
∂2ℓt

∂βm∂β′
m

∥∥∥∥ = sup
θ∈Θ

∥∥∥∥
xtx

′
tf

2

σ2
ε

∥∥∥∥ ≤ sup
θ∈Θ

∥∥∥∥
xtx

′
tf

2

c

∥∥∥∥ ≤
∥∥∥∥
xtx

′
t

c

∥∥∥∥ .

The last inequality follows from the fact that|f | ≤ 1. Therefore,

E sup
θ∈Θ

∥∥∥∥
∂2ℓt

∂βm∂β′
m

∥∥∥∥ ≤ E ‖xtx
′
t‖

c
< ∞.

We next examine the second derivatives of the log likelihood with respect toσ2
ε ,

∣∣∣∣
∂2ℓt

∂(σ2
ε)

2

∣∣∣∣ =
∣∣∣∣

1

2σ4
ε

− ε2
t

σ6
ε

∣∣∣∣ ≤
∣∣∣∣

1

2σ4
ε

∣∣∣∣+
∣∣∣∣
ε2
t

σ6
ε

∣∣∣∣ ,

sup
θ∈Θ

∣∣∣∣
∂2ℓt

∂(σ2
ε)

2

∣∣∣∣ ≤
1

2c2
+

1

c3
sup
θ∈Θ

ε2
t .

In order to showE supθ∈Θ

∣∣∣ ∂2ℓt

∂(σ2
ε)2

∣∣∣ < ∞, it is sufficient to show thatE supθ∈Θ(ε2
t ) < ∞. Recall we

have already proved in Lemma 3 (2) that

ε2
t ≤ KL(M + 1) ‖xt‖2 .

It follows that

E sup
θ∈Θ

(ε2
t ) ≤ KL(M + 1)E ‖xt‖2 < ∞.
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To show thatE supθ∈Θ

∣∣∣∂
2ℓt

∂γ2

i

∣∣∣ < ∞, consider

∣∣∣∣
∂2ℓt

∂γ2
m

∣∣∣∣ =

∣∣∣∣∣∣∣

−
(
x′

tβm
∂f

∂γm

)2
+ εt

(
x′

tβm
∂2f
∂γ2

m

)

σ2
ε

∣∣∣∣∣∣∣
,

≤ 1

c

(
∂f

∂γm

)2 ∣∣x′
tβm

∣∣2 +
1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣ |εt|
∣∣x′

tβm

∣∣ ,

≤ L

c

(
∂f

∂γm

)2

‖xt‖2 +
1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣ |εt|
∣∣x′

tβm

∣∣ ,

whereL is some positive constant. The second term on the right side can be written as

1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣ |εt|
∣∣(x′

tβm)
∣∣ = 1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣

∣∣∣∣∣x
′
t(β0,0 − β0) +

M∑

m=1

x′
t(βm,0fm,0 − βmfm)

∣∣∣∣∣
∣∣x′

tβm

∣∣ ,

=
1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣
∣∣x′

t(β0,0 − β0)
∣∣ ∣∣x′

tβm

∣∣+

∣∣∣∣∣

M∑

m=1

x′
t(βm,0fm,0 − βmfm)

∣∣∣∣∣
∣∣x′

tβm

∣∣ ,

≤ 1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣K ‖xt‖2 ,

whereK is some positive constant. Again, the compactness of the parameter space, boundedness off ,

and stationarity ofxt ensures the existence ofK andL. It follows that
∣∣∣∣
∂2ℓt

∂γ2
i

∣∣∣∣ ≤
(

L

c

(
∂f

∂γi

)2

+
1

c

∣∣∣∣
∂2f

∂γ2
i

∣∣∣∣K
)
‖xt‖2 .

The finiteness of the derivatives off was shown in Lemma 1. Thus,

E sup
θ∈Θ

∣∣∣∣
∂2ℓt

∂γ2
i

∣∣∣∣ ≤
(

L

c

(
∂f

∂γi

)2

+
1

c

∣∣∣∣
∂2f

∂γ2
i

∣∣∣∣K
)
E ‖xt‖2 < ∞.

The proof thatE supθ∈Θ

∣∣∣∂
2ℓt

∂c2
i

∣∣∣ < ∞ closely resembles the proof above and is omitted for brevity.

�

Proof of Theorem 2.The proof establishes the conditions of Theorem 4.1.3 of Amemiya (1985) with

a generalization due to Ling and McAleer (2003, Theorem 3.1). We need consistency of̂θT for θ0,

which was shown in Theorem 1. Then we show

B(θ0)
− 1

2

1√
T

[rT ]∑

t=1

∂ℓt

∂θ

∣∣∣∣∣∣
θ0

d→ W (s), s ∈ [0, 1],

whereW (r) is N -dimensional standard Brownian motion on the unit interval. This is condition (C) in

Theorem 4.1.3 of Amemiya (1985). The convergence follows from Theorem 18.3 in Billingsley (1999)

if (a)
{

∂ℓt

∂θ

∣∣
θ0

,Ft

}
is a stationary martingale difference, and (b)B(θ0) exists. Both conditions were

shown in Lemma 3.



ASYMPTOTICS FOR SMOOTH TRANSITION REGRESSIONS 15

To satisfy condition (B) of Theorem 4.1.3 of Amemiya (1985), we have to establish

AT (θ∗
T )

p→ A(θ0)

for any sequenceθ∗
T

p→ θ0,

AT (θ∗
T ) = − 1

T

T∑

t=1

∂2ℓt

∂θ∂θ′

∣∣∣∣∣
θ∗

T

,

and

A(θ0) = −E
∂2ℓt

∂θ∂θ′

∣∣∣∣
θ0

is non-singular. Conditions for the double stochastic convergence can be found in Theorem 21.6 of

Davidson (1994). We need to show

(1) consistency of̂θT for θ0 (Theorem 1), and

(2) uniform convergence ofAT to A in probability, i.e.

sup
θ∈Θ

|AT (θ) − A(θ)| p→ 0.

We prove uniform convergence ofAT using Theorem 3.1 of Ling and McAleer (2003), who generalize

Theorem 4.2.1 of Amemiya (1985) from i.i.d. data to stationary and ergodic data. This allows the

immediate invocation of the Ergodic Theorem without having to check finitenessof third derivatives of

ℓt as in Andrews (1992, Theorem 2). To apply Theorem 3.1 of Ling and McAleer (2003) we need that

gt(θ) = − ∂2ℓt

∂θ∂θ′ − A(θ)

is continuous inθ (this also establishes condition (A) of Theorem 4.1.3. of Amemiya (1985) along the

way), has expected valueEgt(θ) = 0 and is absolutely uniformly integrable:

E sup
θ∈Θ

|gt(θ)| < ∞.

This was shown in Lemma 4. Thus, we have established all conditions for asymptotic normality ac-

cording to Theorem 4.1.3 of Amemiya (1985). �

Proof of Proposition 1.The proof of uniform convergence in probability ofAT toA is given in Lemma

4 and Theorem 2. We need to show uniform convergence ofBT to B. We employ Theorem 3.1 of

Ling and McAleer (2003) again and show that

ht(θ) :=
∂ℓt

∂θ

∂ℓt

∂θ′ − B(θ),

is absolutely uniformly integrable, continuous inθ, and has expected valueEht(θ) = 0. The detailed

proof is in complete analogy to Lemma 4 and is omitted for brevity. �
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FIGURE 4. Bias and mean squared error (MSE) of the quasi-maximum likelihood
estimator of the parameters of Model A with uniform errors.
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FIGURE 5. Bias and mean squared error (MSE) of the quasi-maximum likelihood
estimator of the parameters of Model B with gaussian errors.



22 E. HILLEBRAND, M. C. MEDEIROS, AND J. XU

1000 2000 3000 4000 5000

0.1

0.2

0.3

sample size

β
01

 

 
bias
mse

1000 2000 3000 4000 5000

0

0.2

0.4

sample size

β
02

 

 
bias
mse

1000 2000 3000 4000 5000
0

5

10

15

sample size

β
11

 

 
bias
mse

1000 2000 3000 4000 5000
0

5

10

sample size

β
12

 

 
bias
mse

1000 2000 3000 4000 5000
0

5

10

15

sample size

β
21

 

 
bias
mse

1000 2000 3000 4000 5000
0

5

10

sample size

β
22

 

 
bias
mse

1000 2000 3000 4000 5000

1

2

3
x 10

10

sample size

γ
1

 

 
bias
mse

1000 2000 3000 4000 5000

2
4
6
8

10
12

x 10
6

sample size

γ
2

 

 
bias
mse

1000 2000 3000 4000 5000
0

0.01

0.02

0.03

sample size

c
1

 

 
bias
mse

1000 2000 3000 4000 5000

−5

0

5

x 10
−3

sample size

c
2

 

 
bias
mse

FIGURE 6. Bias and mean squared error (MSE) of the quasi-maximum likelihood
estimator of the parameters of Model B with uniform errors.
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FIGURE 7. Distribution of the standardized QMLE of the linear parameters of Model
A with gaussian errors.
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A with uniform errors.
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FIGURE 9. Distribution of the standardized QMLE of the linear parameters of Model
B with gaussian errors.
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FIGURE 10. Distribution of the standardized QMLE of the linear parameters of Model
B with uniform errors.



ASYMPTOTICS FOR SMOOTH TRANSITION REGRESSIONS 27

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
1

T = 100

 

 

std. qmle
N(0,1)

−15 −10 −5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
2

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T = 250

c
1

−15 −10 −5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
2

−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
T = 5000

c
1

−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c
2

FIGURE 11. Distribution of the standardized QMLE of the location parameters for
Model A with gaussian errors.



28 E. HILLEBRAND, M. C. MEDEIROS, AND J. XU

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
1

T = 100

 

 

std. qmle
N(0,1)

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
2

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T = 250

c
1

−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

c
2

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
T = 5000

c
1

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

c
2

FIGURE 12. Distribution of the standardized QMLE of the location parameters for
Model A with uniform errors.
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FIGURE 13. Distribution of the standardized QMLE of the location parameters for
Model B with gaussian errors.
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FIGURE 14. Distribution of the standardized QMLE of the location parameters for
Model B with uniform errors.
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