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ABSTRACT. We derive the asymptotic properties of the quasi maximum likelihood estirmsmooth
transition regressions when time is the transition variable. The consistétioy estimator and its as-
ymptotic distribution are examined. It is shown that the estimator convertgiee usuah/T-rate and
has an asymptotically normal distribution. The finite sample properties @dtimator are explored in
simulations.
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1. INTRODUCTION

In this paper, we derive the asymptotic properties of the quasi maximum likeliéstimator (QMLE)
of smooth transition regressions (STR) when time is the transition variable amdgtessors are sta-
tionary. The consistency of the estimator and its asymptotic distribution are eeéimin

Nonlinear regression models have been widely used in practice for anvafigme series applica-
tions; see Granger and Bamwvirta (1993) for some examples in economics. In particular, STR models,
initially proposed in its univariate form by Chan and Tong (1986), antth&rrdeveloped in Luukkonen,
Saikkonen, and Tasvirta (1988) and Tasvirta (1994,1998), have been shown to be very useful for
representing asymmetric behavigk. comprehensive review of time series STR models is presented in
van Dijk, Tersvirta, and Franses (2002).

In most applications, stationarity, weak exogerﬂahmd homoskedasticity have been imposed. In
these cases, the standard method of estimation is nonlinear least squa®gsvwiNich is equivalent
to quasi-maximum likelihood or, when the errors are Gaussian, to conditiogeélmum likelihood.
The asymptotic properties of the NLS are discussed in Mira and Escril2@@®), Suarez-Fdias,
Pedreira, and Medeiros (2004), and Medeiros and Veiga (2005ddargh and Tésvirta (1998) and
Li, Ling, and McAleer (2002) consider STR models with heteroskedasticserChan, McAleer, and
Medeiros (2005) study the properties of the QMLE when the errors faHd@ARCH (Generalized
Autoregressive Conditional Heteroskedasticity) model. Saikkonen &od(€004) consider the case
of STR models with cointegrated variables when the transition variable is iteéegvhorder one, and
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The term “smooth transition” in its present meaning first appeared infBand Watts (1971). They presented their smooth
transition model as a generalization of models of two intersecting lines witbraiptachange from one linear regression to
another at some unknown change point. Goldfeld and Quandt (1972268-264) generalized the so-called two-regime
switching regression model using the same idea.
2With respect to the parameters of interest.
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Medeiros, Mendes, and Oxley (2009) analyze a similar model but with séayidransition variables.
The case with endogenous regressors is considered in Areosa, &icée Medeiros (in press).

An important case to consider is time as transition variable in STR models. Linesd@sVirta (1994)
and Medeiros and Veiga (2003) consider this type of specification tdroahsnodels with parameters
that change smoothly over time. Strikholm (2006) use this transition variabktéondine the number
of breaks in regression models. However, the asymptotic properties INHeE in this case have
not been fully understood. If time is the transition variable, asymptotic thefoityeoQML estimator
cannot be achieved in the standard way, because as the sampleggies to infinity, the proportion of
finite sub-samples goes to zero. Our solution to this problem is to scale théidramariablet so that
the location of the transition is a certain fraction of the total sample rather thaadagample point.
This modification allows asymptotic theory of the QML estimator. Andrews and éfcidtt (1995)
and Saikkonen and Choi (2004) use similar transformations.

The outline of this paper is as follows. Sectldn 2 describes the model antpastic properties of
the QMLE. Monte Carlo simulations are presented in Secfion 3. Sddtion 4 dascthe paper. All
proofs are presented in the Appendix.

2. MODEL DEFINITION AND ESTIMATION

2.1. TheMode. We consider the following time series regression with time-varying parameters
M
v =B+ > B flim(t —cm) e, t=1,2,..., T, @)
m=1

wheres, is a martingale difference sequence with variamgez; is a vector of pre-determined regres-
sors. The functiory is the logistic transition function which has the form

folt =l = gt = L2, T, @)
wherey > 0 controls the smoothness of the transition and {1, 2, ..., T} is a location parameter.
The locic,, € {1, 2, ..., T} in (1) are change-points. Note that whep — oo, m = 1,..., M,
model [1) becomes a linear regression withstructural breaks occurring at thg .

2.2. Embedding the Model in a Triangular Array. Asymptotic theory for the QML estimator of
the model defined above cannot be achieved the standard way. Gamsidel [1) withA/ = 1. As
T — oo, the proportion of observations in the first regime goes to zero. Since lange,

ft=o] = f[TyT 't =T "¢)] = Lyp-1450),

the parameter vectgs,, that governs the first regime as well as the transition parametandc vanish

from the model and become unidentified. Figure 1 illustrates this. In the simylatisnset to be

0.2, c is equal to 50. In the upper plot of the figukejs in the middle of the sample; in the lower
plot (T" = 1000), the second regime dominates. QML estimation of mddel (1) will be dominated by
the second regime as the sample size increases. As the sample size goegyothifirst regime
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vanishes and its parameters become unidentified in the estimation. In ordéaitoagymptotic theory

for the estimator, the proportion of sub-samples in two regimes (beforeftamdtree transition) should
remain constant & goes to infinity. In other words, the shape of the plot of the time series should
remain qualitatively the same d@sgrows. For this purpose, we scale the logistic transition function as

TO -1 TQ
/ [7 (Tt—c>] :f[T fy(Tot—Tc)]; t=1,...,T;ce [T’TO} . (3)
whereTy is the actual sample size in any given data situation. Accordingly,
U T
0

Note that a given small-sample situation is embedded in this sequence of mdflelsBf. As can
be seen in[(3), with this scaling the slope of the logistic function is decreasthdgliwvhile the locus
of the transition is increasing with. The scaling of the time countéfy, remains constant. Therefore,
the proportions of observations in the first regime, during the transitiahiratie last regime remain
the same a%' grows, and the parameters in these groups of observations remain identifie

2.3. Assumptions. We denote the data-generating parameter vector as

2
90 = (186707:8/170a e aﬂ;\/[,Oa Y1,05---57YM,0,C1,05---,CM,0, 0_670)1’

where the (second) 0-subscript indicates the data-generating tgrarac
We writee;(€) such that the notation can be used for both the residuals from the estimaditimean
data-generating errors:

et (0) =yt — g(x; 8,7, ¢)
whereB = (Bg,.--,8m) ;7= (1., 7m)5¢ = (c1,...,car) @and

M T
9(@i: B,y,¢) = @By + Y @B, f [’ym (TOt - Cm>:| :
m=1

We use the shorthand notatien, := (), for the data-generating errors and= ¢,(8) for the
residual evaluated at ary
We consider the following assumptions.

AssumMPTION1 (Parameter Space).he parameter vectd, is an interior point of®, a compact real
parameter space.

ASSUMPTIONZ (Errors).

(1) &:0 is a martingale difference sequence with constant variarice ¢ > 0.
(2) Eleto]? < oo forg < 4.
(3) x; ande, o are independent.

ASSUMPTION3 (Stationarity and Moments).
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Q) = = (a:A,t,mB,t)’, wherex 4, consists of stationary and ergodic exogenous variables and
xp, is a set of lagged values gf. The autoregressive polynomial in each regime associated
to xz; has all roots outside the unit circle.

(2) E|lxa.||? < oo for g < 4, where||-|| is the Euclidean vector norm.

3) % Zthl (x¢x}) converges in probability t& = IE (x,}), which is symmetric positive definite.

AssUMPTION4 (Transition Function).g(x¢; 3,7, ¢) is parameterized such that the parameters are
well defined.

Assumptiori 1 is standard in the literature and is not too restrictive in the pressemas we expect
B, to be finite,y, is positive and finite, and, € [0, 1]. Assumptior R is also standard.

2.4. Quasi Maximum Likelihood Estimator. The quasi log-likelihood function is given by

T
1
Lr(9) =~ RA!
t=1
where )
0,(0) = ~3 (log 27 +log o2 + €70 7).

The parameter vector is estimated by quasi maximum likelihood as

67 = argmaxCr(6), )
0c®

where® is the parameter space.

THEOREM 1 (Consistency).Under Assumptiorid 1 throu@h 4, the quasi maximum likelihood estimator

O is consistent:
0r 2 0,.

The proof is provided in the Appendix.

THEOREM 2 (Asymptotic Normality). Under Assumptiorig 1 throu@h 4, the quasi maximum likelihood
estimator@T is asymptotically normally distributed:

VT (éT - 90) 2 N[0, A(80)" B(60)A(60) "], (6)

00>
o0ty

ao-e(2) 2] ).
6o

ProPOSITIONL (Covariance Matrix Estimation)under Assumptiorid 1 through 4,

where
024,
0000’

A(6) = —E (

ot
00’
6o

Ar % A, BrL B,
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where .
1 9%,
Ap(6) = ——
r(9) T;aeae”
and
1 <A 8¢, 0L,
Bro) == tt
7(6) T £ 00 06"

and A, B as defined in Theorehi 2.

3. SMALL SAMPLE SIMULATIONS

We conduct a set of Monte Carlo simulations in order to evaluate both the sanatlles properties
and the asymptotic behavior of the QMLE. In particular, we consider theWipmodels with three
limiting regimes:

Model A — Independent and identically distributed (IID) regressors

2
ye =B+ Y xiBf I:'Ym (; - cm>] + &,
m=1
=142+ (—1—22)f [30 <; - ;)} 4 (14 32)f [30 <; - 2)] be,

where {z;} is a sequence of independent and normally distributed random variafites w
zero mean and unit variance; ~ NID(0, 1), and{e;} is either a sequence &fiD(0,1) or
Uniform(—2, 2) random variables.

Model B — Dependent regressors

2
t
Yt = m;ﬁo + § $;Bmf |:’7m (T - Cm>:| + &,
m=1

t 1
yi = 0.5+ 0.4y, 1 + (0.5 4 0.5y, 1) f [30 (T - 3)}

+ (0.5 — 1.7y,_1) f [30 <; - g)] + e,

where{e; } is either a sequence 8fiD(0, 1) or Uniform(—2, 2) random variables.

Different values ofl" are used, ranging frorh00 to 5000 observations. For each value Bf 1000
Monte Carlo simulations are repeated. When the errors are normally distkilibteestimators are
maximum likelihood estimators. On the other hand, when the errors are unifdistiputed, the error
distribution is misspecified and we have a quasi maximum likelihood estimation s&ugample sizes
up to 300 observations, the estimation procedure did not converge in les$%har the replications.
These cases were discarded. The parametare chosen in order to keep the transitions neither too
smooth nor too sharp; see Figlie 2.
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The results are presented in Figurés 3—14. Fidurels 3—6 show thgaweaa and the mean squared
error (MSE) as a function of the sample size. Apart from the slope paeantiee average biases are
rather small for all sample sizes, models, and error distributions. Furtheythe MSE, as expected,
converges to zero as the sample size increases. With respect to the aslapeter, the MSE is quite
high for very small samples (100-300 observations) but also goesd@gehe sample size increases.
The bias is also large in small sample, but turns to be negligible for larger saingée The large biases
and MSE are mainly caused by few very large estimates (lessitfiaof the cases). For example,
for Model A with Gaussian errors and 100 observations, the aveliageahd MSE for the first slope
parameterd;) are, respectivel908.82 and106, 447, 280.55. On the other hand, the median bias is just
13.00. For 500 observations and the same model, the average bias and MSE&rand155, 859.76,
respectively. The median bias is jus66 whenT = 500. This pattern is somehow expected, as it is
quite difficult to estimate the slope parameters in small samples. On the otherthehoGation ¢)
and the linear parameterg)are estimated quite precisely.

Figured YEID present the distribution the standardized QMLE of the limeameters of the model
(B). Some interesting facts emerge from the graphs. First, even in very smglles, the estima@0
has a distribution close to normal for all models and error distributions.r8letioe distributions o;@l
andB2 have some outliers in small samples, but, as expected, they are close to foyraeal large
samples = 5, 000).

Turning to the location parameter, Figufes[11-14 show the distribution ofahdardized QMLE
for c. Itis quite remarkable that even fér= 100, the empirical distributions are close to normal.

4, CONCLUSION

In this paper, we propose asymptotic theory for the QML estimator of a logismo#h transition
regression model with time as the transition variable. Although asymptotic thaonotbe achieved
in the standard way as the transition variable is not stationary, after psopkng, we show that the
QML estimator is consistent and asymptotically normal. The estimator is shownvergerto the true
value of the parameter at the speed/@F. We explore the small sample behavior in simulations.
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APPENDIXA. PROOF OFCONSISTENCY

Proof of Theorerh]1We establish the conditions for consistency according to Theorem 4.1 heifmya
(1985). We hav@T 2, 9, if the following conditions hold:

(1) © is a compact parameter set.

(2) L7(0,¢€;) is continuous irf and measurable ig.

(3) L1(0) converges to a deterministic functid@l{@) in probability uniformly on® as7 — oc.
(4) L(0) attains a unique global maximume.

Item (1) is given by Assumptiopnl 1. Item (2) holds by definition of the quasiimam likelihood
estimator [(b) from the definition of the normal density. For item (3) we refeFiteorem 4.2.1 of
Amemiya (1985): This holds for i.i.d. data If supgcg |[¢:(6)] < oo and¢,(0) is continuous in
6 for eache;. The extension to stationary and ergodic data using the same set of assismptio
achieved in Ling and McAleer (2003, Theorem 3.1). We hBM@ipg.g |4:(0)] < oo by Jensen’s
inequality andE sup |¢(e, 0)| < oo, whereg denotes the normal density function. The finiteness of
the last expression follows from the assumption ttat> ¢ > 0 for some constant. The log density
log ¢(e¢, @) is continuous irg for everye;.

Consider Item (4). By the Ergodic Theoreli¥;(8) = £(8). Rewrite the maximization problem as

I&%{E [0 (8) — £:(60)] .

Now, for a given numbes?2,

E [¢; (8) — ¢ (60)] ]Elog{ ?90]
ty
k| -Log 7 _1fe o
B 2 2\o2 %, )|’
1 1 _
2log 5 —2[E(E?U %) —1]. (7)
aO

We show thatlie7(0) > Ee?, = o2, and that[(V) attains an upper boundéat= 6, uniquely.

Consider
Ee?(0) = E [y — g(z; 8,7, ¢))* .
Substituting fory: = g(x+; By, ¢, co) + €¢,0 and rearranging, we obtain
EE?(O) = E [g(z+; By, Yo, o) + €10 — 9(xt5 8,7, C)]2 )
> Eefy = 02,

The inequality holds from Assumptidn 2 (3). We have established that fogi@an o2, the objective
function (1) attains its maximum of
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atB = By, ¥ = Vo ¢ = ¢o. Definex = 02 /02, then

f(z) = —% <log1’—|— % - 1)

attains its maximum of 0 at = 1, therefore the maximizer is? = o2 ,. This shows thal(/;(0) —
2,(00)) is uniquely maximized &l = 6. O

APPENDIXB. PROOF OFASYMPTOTIC NORMALITY
REMARK 1.

(1) In this proof, terms will sometimes involve expectations of cross-ptediiche typdt(XY'),
whereX andY are correlated random variables. Note that by the Cauchy-Schwatality,
we have

EXY < (]EXQ)% (EY2)%,
and thus in order to show that the cross-product has finite expectatisuffites to show that
both random variables have finite second moments.

(2) By the same token, if botki andY” have finite second moments,

1 1
E(X +Y)? <EX?+EY? +2(EX?)? (EY?)?,
< K(EX? + EY?),

for someK < oo.

In the outline of the proof we follow Theorem 4.1.3 of Amemiya (1985). Tfwreewe have to
establish the conditions

Q) a%gefé’ exists and is continuous in an open neighborhoo@yof

(2) Ar(0%) 2 A(6) for all sequenced. 2 6.
3)

l\)

11 4
B(60) fzat LW (s), 5 € [0,1],

whereW is standard Brownian motion on the unit interval.

Item (1) is shown in Lemmg] 3. Item (2) needs consistenc%oﬂ‘or 6y, which we established in
Theorent 1. It further needs uniform convergencedgfto A, i.e.

sup |Ar(0) — A(0)] 2 0.

0co
We use Ling and McAleer (2003, Theorem 3.1) to establish this, which \ahimvocation of the
Ergodic Theorem without having to show finiteness of third order dievanformation. We show the
uniform convergence in Lemn& 4.
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Item (3) uses Billingsley (1999, Theorem 18.3) and needs (a){thay00|0,, F;} is a stationary
martingale difference sequence and (b) tBd8,) exists. Both with be proved in Lemr& 3. The first
two lemmas show a few technical propertieg)6t;; 3, ~, c) that are needed in the following.

LEMMA 1. The transition function given by Equati@8) is bounded, and so are its first and second
derivatives with respect tg,, andc,,, vm =1,2,... M.

Proof. We will use shorthand notatiofifor f [y, (42t — c,)] below unless otherwise stated. Defin-
iNg ap, (t) := 2t —cp,t = 1,2..., T, itis easy to verify that-co < —c, < am(t) < Ty — cm < oo
Since the transition function has the rarigel ), it is clearly bounded. For the first derivative pivith
respect toy,,, Yvm =1,2,... M,

of |
0Ym -

am(t)e*“fm“m(t)

(1 + e~ Ymam (t))

< lam(t)f| < oo.

The first inequality follows from the fact that+ e~ 1mam(t) > ¢=¥mam(®) > (. The second inequality
holds because both,,(¢t) and f are bounded. For the second derivativefofvith respect toc,,,
Ym=1,2,... M,

2am(t)26_2’7mam(t) am(t)2€_’7mam(t)

(1+ e—wmama))?’ (1+ e—wmamu))?

)

2 f
o2,

2y, (t)2e™2rmam(t) ()2~ rmam ()
= 3 7|
(1 + e—"/mam(t)) (1 —+ e~ Ymam (t))
< 2a,,(t)?

)

(1)
1+ e~Ymam ()

1 + e~ ymam(t)
= ‘Sam(t)2f‘ < 0.
The second inequality follows from the fact that- e~ mam(®) > ¢=rmam(t) > (), the last inequality

holds because botf,, () and f are bounded. The proof of the boundedness of the first and second
derivatives off with respect ta:,,, is almost identical to the one above and is omitted for brevity]

LEMMA 2.
Letg := (3,4, ¢), then

2
W) E|| &g 8,7.¢)| <.
2
2 E H%sg,g(mt; B3,7, c)H < oo, where||-|| denotes the standard vector and matrix norms.

Proof. We will prove the statements element by element. For statement (1),

2
= |z <

0
I HaI@Og(wtha’% C)

by Assumptio B (2).
2
= Bllz.f|* < E|z* < o0,

0
IE Haﬂmg (wtaﬂavﬂc)
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by the fact thatf| < 1.

2

0
E H(%g(%;ﬁy’)’ﬂ) 5%3 f
Om|
by Lemmd_l, Assumptidn 1, and Assumptidn 3 (2). Similarly,
9 2
E Hacg(xt;ﬁ,%c) wt/@
<Ellai|* 18] | 5| < oo
For statement (2),
2
Haﬂgaﬂl g(wta/6 v, C ) :07
2
2 2 52
EHWg(wtuB?’Y?c) wtﬁmag Lé ’
< E e |18, W < oo.

For the second inequality, we use the fact 4@;@’ is bounded from Lemmd 1.
Similarly,

2 2

0
IE ”8629(331:;5,’77 c)

m

of
mtﬁrn 82 2

)

< Ellze| 181" < 0.

2
8cm

LEMMA 3.
(1) The sequenc«% 9% \9 , } L is a stationary martingale difference sequendg.is the
t=1,...,
sigma-algebra given by all information up to time

(2)
sup E || == < 00,
|5
© oty O
p I t Oty
s
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Proof. For part (1) of the proof, all derivatives are evaluateddat 6,. The nought-subscript is
suppressed to reduce notational clutter. § et (3,+, c), as before.

8&5 Et 85t Et 0
E (35 -7:t1> =E <_0§3€ -7:t1> =E <O_§a£g(mt;ﬁ7’77 c) -7:t1> =0,
sinceg(xy; 3,7, ¢) is independent of; and its derivatives are bounded (Lemima 2).
8&5 1 1 Eg
E(=—=|F_ | =E| —— -t
(6‘752 Fe 1) < 202 ey

sinces; has mean zero and variancé

ft—l) = 07

For part (2) and (3) of the proof, the expressions are evaluatety# a © if not otherwise stated.
The data-generating parameters will be explicitly denoted by a nought+§utbd he processg; is data
and thus evaluated & throughout.

We first consider the gradient vectors&f
0ty
96

Et 0 .
Uigaigg(wtuga’% C)

Ny N
) <EH6£Q($1§7167770) ) )

1 1
Ee? 2 0 _ 2\ ?
S <C) <E Hagg(mtwgu’)/vc) ) < Q.

The finiteness of the second factor follows from Lenitha 2 (1). For theféicsor, note that

M 2
5? = (yt - 93:&50 - Z wé/gmfhm(t - Cm)]) )

m=1

E

)

M 2
= (m;(/@0,0 — By) + Z m; [/Bm,()f ('Vm,O(t - Cm,O)) = B f (ym(t — Cm))}) .

m=1

Therefore, there exist& ¢ IN such that

2

)

M
5% <K ’wé(ﬁo,o - Bo)}Q + K Z ‘37:5 (/Bm,of['Ym,O(t —cm,0)] = B f[ym(t — Cm)])

m=1

M
< KL e + KLY [z,

m=1

= KL(M +1) |22,

whereL is some positive constant. The existence of siidh guaranteed by the compactness of the
parameter space and the fact tifias bounded. Using Assumptigh 3 (2), it is clear thaf is bounded.
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Foro?,
g|2] _ gl ! 1ef
do? 202 20|
1 1 |é
<5 +E|IG
20z 2 2
L <
= — o
o2

This shows statement (2) of Lemina 3. Statement (3) use similar techniques irodie \We will
only show the case of,,, which requires most work. The rest of the proof will be omitted for brevity

oty ol 2 afrN\* ,
1
2 2\ 2 1 2
€t / / 2\ 2 8f
< — )
> (E 0_21 ) <E|wt5m/3mxt‘ ) 8'}’m' )
Ee/ : 4 Ng|of |
< [ =t —J
<(F) (Eledloal?)’ |71 ] <o

The finiteness oft ||a||* follows from Assumptioi3 (2).||3,,||* is finite due to Assumptiof 1.
Lemmall ensures that the last factor is bounded. To see the finitenesdiddttfactor, recall in part
(2) we have shown that

e2 < KL(M +1) ||z
It follows that
4 2 2 4
ep < (KL)"(M +1)° [|aee]” .

Therefore,
Ee? < (KL)2(M +1)°E |jz||* < o0
by Assumption B O
LEMMA 4. The function
)= 2 ap)
I = " 50007
where 52
4
A0) = —
(9) 0000’

is absolutely uniformly integrable:
IE sup |[g:(8)]] < oo;
6cO

it is continuous ird and has zero mearizg,(0) = 0.

Proof. ¢ From the triangular inequality,

+ Esup [|A(O)].

024,
IE sup [|g¢(0)] < E sup
0cO 0co 0cO

9606’
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If Esupgee \\326,5/8080’\\ < o0, A(0) exists and by the Ergodic Theorem, there is pointwise con-
vergence. Thus showing absolute uniform integrability reduces to shdhét
024,

0006’
Proving finiteness of the expected value of the supremum consists aiteelpapplication of the
Lebesgue Dominated Convergence Theorem (Shiryaev (1996, p., i8¢ and McAleer (2003),
Lemmas 5.3 and 5.4). We will show the statement for second derivativesrglbsnelement, starting
with So,

< 0

IE sup H
0cO

04, _ Ty
9By9B0 o
According to Assumptioh]2 (1) there exists a constasiich thatr2 > ¢ > 0, therefore
H 82€t mtm; ’
SUp o5 |l <
oco || 980080 c
By Assumption B (3),
82£t wta:’
IE sup H < ‘ T < 0.
oco || 98,980 ¢
Forg,,,m=1,2,..., M,
0cO aﬁmaﬁm 0cO o¢ 0cO c c
The last inequality follows from the fact thgt| < 1. Therefore,
62&5 ‘ E ||:]3tiBQH
IE sup ’ < < 0
oco || 08,08, c
We next examine the second derivatives of the log likelihood with respect to
Pul_|1 g |1]|,|2
o(c2)2| |20 o8| = |20% abl’
%0, 1 N 1 2
su ~ 55 —s — Su .
oco | 0(02)2| ~ 2 T Fpee !

In order to ShowE supgeg ‘% < oo, it is sufficient to show thak supgeg (¢7) < oo. Recall we

have already proved in Lemrha 3 (2) that

e2 < KL(M +1) || .

It follows that

E sup(e2) < KL(M + 1)E |Ja;||* < oc.
0cO
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924,

To show thafE supgc o ’ 57

‘ < oo, consider

2
0, 9?
- (miﬂm aﬂ/]:n) + &t (m;ﬂm 3%{1)
2 J
g

0 0?
() letoul+ 2[5

of 02 f
(2L teae+ 2|21

whereL is some positive constant. The second term on the right side can be written as

02|
0l

g

IA

’€t| ’wéﬁm} )

IN

1
&
L
E |5t| ‘m;ﬁm‘a

62
82

°f
02

m

M
2} (Boo — Bo) + > _ @ (Brmofmo — Bmfm)

m=1

|18,

)

1
|5t| ‘ $tﬂm } = E

M

> @i (Brofmo — Bunfm)

m=1

1]0%f
o2
0 f
M2,
whereK is some positive constant. Again, the compactness of the parameter spatdediness of,
and stationarity ofc; ensures the existence Afand.L. It follows that

020 L [(0f\* 1|2
c \ i

o} c |0y}
The finiteness of the derivatives gfwas shown in Lemmia 1. Thus,

| _ (L (9FN\" 1|0
8% ¢ \ 0 ¢ | O}

",'B;(/BO,O - BO)} ‘m;ﬂm‘ + ’mgﬁm} ’

o

<

QR

K |2,

IE sup
0cO

K) E ||z |* < .

The proof thatlE supgcg ‘

O

Proof of Theorerh]2The proof establishes the conditions of Theorem 4.1.3 of Amemiya (1985) with
a generalization due to Ling and McAleer (2003, Theorem 3.1). We neesistency o@T for @y,
which was shown in Theoren 1. Then we show

O
w\»—‘

\1F Z i LA Wi(s), s €[0,1],

wherelV (r) is N-dimensional standard Brownian motion on the unit interval. This is conditipim(C
Theorem 4.1.3 of Amemiya (1985). The convergence follows from Téradr8.3 in Billingsley (1999)

if (@) { ]9 , } is a stationary martingale difference, and #}6,) exists. Both conditions were
shown in Lemmal3.
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To satisfy condition (B) of Theorem 4.1.3 of Amemiya (1985), we have tdésta
Ar(67) = A(60)

for any sequencé’ = 6,
1 < 0%
o7) T £ 9606’ .

9

T
and

024,
06080’ |,
is non-singular. Conditions for the double stochastic convergenceedoubnd in Theorem 21.6 of

Davidson (1994). We need to show

(1) consistency b for 6, (Theorenil), and
(2) uniform convergence oA to A in probability, i.e.

A(6) = —

sup | A7 (6) — A(0)] 5 0.
6cO

We prove uniform convergence df; using Theorem 3.1 of Ling and McAleer (2003), who generalize
Theorem 4.2.1 of Amemiya (1985) from i.i.d. data to stationary and ergodic ddts allows the
immediate invocation of the Ergodic Theorem without having to check finitesfedbgd derivatives of
4y as in Andrews (1992, Theorem 2). To apply Theorem 3.1 of Ling andlbtr (2003) we need that
2

9(6) = L~ A(B)
is continuous ird (this also establishes condition (A) of Theorem 4.1.3. of Amemiya (1985pdtun
way), has expected valuligy;(0) = 0 and is absolutely uniformly integrable:

IE sup g:(6)] < oo.
0c®

This was shown in Lemmd 4. Thus, we have established all conditions forpastic normality ac-
cording to Theorem 4.1.3 of Amemiya (1985). O

Proof of Propositio L. The proof of uniform convergence in probability 4f; to A is given in Lemma
4 and Theorerhl2. We need to show uniform convergencBpfto B. We employ Theorem 3.1 of
Ling and McAleer (2003) again and show that

0l Oty
is absolutely uniformly integrable, continuous@nand has expected valli&h,(68) = 0. The detailed
proof is in complete analogy to Lemrnh 4 and is omitted for brevity. O
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FIGURE 2. Transition function for Models A and B with 1000 observations.
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FIGURE 3. Bias and mean squared error (MSE) of the quasi-maximum likelihood
estimator of the parameters of Model A with gaussian errors.
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FIGURE 4. Bias and mean squared error (MSE) of the quasi-maximum likelihood
estimator of the parameters of Model A with uniform errors.
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FIGURE 6. Bias and mean squared error (MSE) of the quasi-maximum likelihood
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