
João Pedro Ferreira Arbache

Additionality in Carbon Projects: Evidence
from the Brazilian Amazon

Dissertação de Mestrado

Thesis presented to the Programa de Pós–graduação em Econo-
mia, do Departamento de Economia da PUC-Rio in partial fulfill-
ment of the requirements for the degree of Mestre em Economia.

Advisor : Prof. Juliano Assunção
Co-advisor: Prof. Leonardo Rezende

Rio de Janeiro
April 2024



João Pedro Ferreira Arbache

Additionality in Carbon Projects: Evidence
from the Brazilian Amazon

Thesis presented to the Programa de Pós–graduação em Econo-
mia da PUC-Rio in partial fulfillment of the requirements for the
degree of Mestre em Economia. Approved by the Examination
Committee:

Prof. Juliano Assunção
Advisor

Departamento de Economia – PUC-Rio

Prof. Leonardo Rezende
Co-advisor

Departamento de Economia – PUC-Rio

Prof. Lucas Lima
PUC-Rio

Prof. Rafael Araújo
EESP

Rio de Janeiro, April 4th, 2024



All rights reserved.

João Pedro Ferreira Arbache

Graduated in economics by the University of Brasília (UnB).

Bibliographic data
Ferreira Arbache,João Pedro

Additionality in Carbon Projects: Evidence from the
Brazilian Amazon / João Pedro Ferreira Arbache; advisor:
Juliano Assunção; co-advisor: Leonardo Rezende. – 2024.

63 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Economia, 2024.

Inclui bibliografia

1. Economia – Teses. 2. Mercados de Carbono. 3. Adi-
cionalidade. 4. Amazônia. 5. Modelo Dinâmico de Escolha
Discreta. I. Assunção, Juliano. II. Rezende, Leonardo. III.
Pontifícia Universidade Católica do Rio de Janeiro. Departa-
mento de Economia. IV. Título.

CDD: 004



To the Brazilian biodiversity,
for inspiring me and fueling my passion

for life, knowledge, and exploration.



Acknowledgments

To my advisors, for their guidance and collaboration throughout this project.

To Lucas Lima and Rafael Araujo, whose invaluable assistance in formulating
and estimating the model greatly contributed to this work.

To my parents, for their unwavering support and encouragement.

To my friends, especially Mateus Della, Gabriel Mesquita, and Rafael Lincoln,
whose partnership and collaboration were indispensable during this research.

To CNPq and PUC-Rio, for their generous support and funding, without which
this work would not have been possible.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.



Abstract

Ferreira Arbache,João Pedro; Assunção, Juliano (Advisor); Rezende,
Leonardo (Co-Advisor). Additionality in Carbon Projects: Evi-
dence from the Brazilian Amazon. Rio de Janeiro, 2024. 63p. Disser-
tação de Mestrado – Departamento de Economia, Pontifícia Universidade
Católica do Rio de Janeiro.

Carbon markets offer a promising avenue for tackling climate change,
yet their advancement encounters challenges, notably in accurately measuring
emissions avoidance from forest-related activities. This paper introduces a
dynamic discrete choice model tailored for assessing such emissions, using a
novel database of panel data on private property land use, characteristics,
and carbon project participation. Our analysis reveals that approximately
23% of carbon stocks within forestry carbon projects on private properties
in the Brazilian Amazon lack exposure to deforestation risks and should
therefore not be tradable as carbon credits. Through simulated scenarios,
we demonstrate that elevated carbon prices or reduced participation costs
in these projects could substantially augment the supply of avoided carbon
emissions. Interventions such as cost reductions, price subsidies or regulatory
improvements could bolster supply and contribute to climate change mitigation
efforts. Lastly, we identify suitable properties for future project participation,
aiming to mitigate investment risks and optimize expected returns.

Keywords
Carbon Markets; Additionality; Amazon; Dynamic Discrete Choice

Model.



Resumo

Ferreira Arbache,João Pedro; Assunção, Juliano; Rezende, Leonardo.
Adicionalidade em Projetos de Carbono: Evidência da Amazô-
nia Brasileira. Rio de Janeiro, 2024. 63p. Dissertação de Mestrado –
Departamento de Economia, Pontifícia Universidade Católica do Rio de
Janeiro.

Os mercados de carbono oferecem uma promissora abordagem para en-
frentar as mudanças climáticas. No entanto, seu avanço encontra desafios, es-
pecialmente na medição precisa da redução de emissões provenientes de ati-
vidades relacionadas à floresta. Este artigo apresenta um modelo dinâmico
de escolha discreta adaptado para avaliar tais emissões, utilizando uma nova
base de dados de dados em painel sobre o uso da terra em propriedades pri-
vadas, contendo suas características e participação em projetos de carbono.
Nossa análise revela que aproximadamente 23% dos estoques de carbono den-
tro de projetos de carbono florestal em propriedades privadas na Amazônia
brasileira não têm exposição a riscos de desmatamento e, portanto, não devem
ser negociados como créditos de carbono. Através de cenários simulados, de-
monstramos que maiores preços de carbono ou menores custos de participação
nesses projetos poderiam aumentar substancialmente a oferta de emissões de
carbono evitadas. Intervenções como redução de custos, subsídios de preço ou
melhoras regulatorias poderiam recrudescer a oferta e contribuir para os esfor-
ços de mitigação das mudanças climáticas. Por fim, identificamos propriedades
adequadas para participação futura em projetos, com o objetivo de mitigar os
riscos de investimento e otimizar os retornos esperados.

Palavras-chave
Mercados de Carbono; Adicionalidade; Amazônia; Modelo Dinâmico

de Escolha Discreta.
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1
Introduction

Climate change poses one of the most significant challenges of the 21st
century. The scale and reach of its associated consequences require all types of
solutions. One of them comes from carbon markets, which price CO2 emissions
and create market mechanisms to reach optimal levels of emissions. Notably,
voluntary carbon markets (VCM) have gained prominence in recent years, with
over 2.3 billion credits traded by 2022. Firms purchase carbon credits to offset
their emissions, financing projects that have so far removed or avoided the
emissions of 2.3 Gt of CO21, equivalent to Brazil’s total emissions in 2022. The
practice of purchasing carbon credits is becoming increasingly prevalent among
firms, driven by consumer/investor pressures and the desire to contribute to
mitigation efforts. Transactions in this market reached nearly US$2 billion
in 2022, with forecasts projecting a surge to US$100 billion by 2030. The
significance of the VCM is evident, yet uncertainties and risks persist in its
operation.

In the development of carbon projects, stakeholders must quantify the
amount of CO2 removed from the atmosphere or the emissions avoided. While
measuring removals is relatively straightforward, assessing avoidance requires
projections and counterfactuals in the absence of the project. A carbon credit
is deemed additional if its associated avoidance/removals are feasible only
through carbon credit revenues. In other words, without carbon projects,
maintaining such mitigation activities would be economically unviable for
project stakeholders.

A pressing concern in the VCM is the predominance of credits originating
from avoidance projects, which are subject to questionable methodologies for
measuring avoided emissions. This uncertainty has led to a decrease in the is-
suance of new credits, as buyers shy away from the market to avoid accusations
of greenwashing2. Buyers are reluctant to purchase non-additional credits, as
they would make no tangible contributions to mitigating climate change. The
primary issue lies in project developers utilizing methodologies and measure-
ments that inflate the amount of avoided CO2 emissions. Consequently, the
integrity of these markets is jeopardized, prompting efforts from industry play-
ers to enhance the quality of supply and facilitate the identification of credible
products on the demand side.

1One carbon credit corresponds to the avoidance/removal of one ton of CO2.
2See e.g. <https://www.ecosystemmarketplace.com/publications/

state-of-the-voluntary-carbon-market-report-2023/>

https://www.ecosystemmarketplace.com/publications/state-of-the-voluntary-carbon-market-report-2023/
https://www.ecosystemmarketplace.com/publications/state-of-the-voluntary-carbon-market-report-2023/
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The Brazilian Amazon stands as one of the world’s largest carbon sinks,
storing huge amounts of carbon in its biomass. This region also hosts nu-
merous carbon projects, which generate credits under the pretext of avoided
deforestation. Landowners sell carbon credits because they perceive this activ-
ity to be more profitable than potential agricultural revenues, which require
clearing these areas. However, this possibility of land use has been exclusive to
large landowners, exacerbating income inequalities related to land ownership,
bringing with it significant distributive consequences.

Forecasting deforestation in this context is challenging, involving nu-
merous determinants such as transport infrastructure, agricultural prices,
rural credit, soil quality, climate, and economic growth (e.g. (CHOMITZ;
THOMAS, 2003), (FOSTER; ROSENZWEIG, 2003), (ASSUNçãO; GAN-
DOUR; ROCHA, 2015), (ASSUNçãO et al., 2019), (ARAUJO; ASSUNÇÃO;
BRAGANÇA, 2023)). Historical trends or land use models are typically em-
ployed for such projections. However, recent evidence (e.g. (WEST et al., 2020)
and (WEST et al., 2023)) suggests that these estimates may overstate defor-
estation, thereby maximizing credit generation.

In this paper, we develop a model to assess additionality in REDD
projects (Reduce Emissions from Deforestation and Degradation) scattered
throughout the Brazilian Amazon. We also examine the distributive conse-
quences that such projects have in this region. Additionally, we investigate how
various carbon prices, taxes and participation costs - including those linked to
the regulatory environment - could impact the supply of additional forest car-
bon in the VCM. To this end, we propose a dynamic discrete choice model
where profit-maximizing farmers choose the land use based on the flow returns
from alternative land uses, which vary across properties. A unit of carbon is
considered additional if it would have been deforested in the absence of carbon
projects.

Our model is inspired in the works of (ARAUJO; COSTA; SANTANNA,
2022) and (SCOTT, 2018), which develop dynamic models that generate land
use transition probabilities that depend on observed and unobserved state
variables and parameters. We derive a structural regression equation in which
the land use transition probabilities form the dependent variable. Utilizing the
observed land use choices of 13,224 private properties, we estimate the model’s
structural parameters. We select properties that are suitable to participate in
REDD projects, combining multiple datasets to model agriculture, forest and
REDD returns at the property level. Specifically, we obtain property land use
across time, together with agricultural productivity, carbon stock, area, and
transportation costs. Our analysis spans the period from 2010 to 2022, a period
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marked by the increasing significance and prevalence of REDD projects in the
Amazon.

Our findings reveal that nearly one-quarter of the carbon stored in
current REDD properties faces no risk of deforestation. That is, around
0.16 Gt of carbon stored in private properties is not additional. This is an
expressive share, which highlights the need of adopting better methods to
measure avoided emissions. Improving additionality measures is essential for
reducing the financial risks associated with investing in carbon markets.

We then move to investigate the effects of carbon prices on the supply
of additional carbon in REDD projects. We find that higher prices have the
potential to substantially reduce emissions linked to deforestation, leading
landowners to shift from agriculture to REDD. Consequently, higher prices
augment the supply of additional carbon, increasing its share to as high as
90%. We also find that the most likely entrants across various carbon price
scenarios are large properties with above-average carbon stocks and below-
average agricultural productivity, located predominantly in the states of Acre,
Amazonas, and Mato Grosso. While this is good for preservation efforts, the
distributional consequences of REDD projects entail the exclusion of small
landowners, likely due to prohibitive participation costs. As a result, such
properties are inclined to deforest and engage in agricultural activities, with
carbon revenues flowing exclusively to large landowners and perpetuating
existing disparities.

We further explore the impact of a carbon tax on reducing emissions
and expanding CO2 supply. We find that a carbon tax has a low effect in
reducing emissions and agricultural area. Carbon supply is almost inelastic to
such policy, as most of the areas that decide to forfeit agricultural activities
due to tax costs end up remaining idle. These results underscore the efficacy
of market mechanisms such as REDD projects in promoting preservation and
emissions avoidance compared to taxes.

In our final counterfactual analysis, we explore the impact of reducing
participation costs on carbon supply. We highlight that such costs may be
capturing regulatory complexities that increase transaction and development
costs. We find that lowering participation costs has a similar effect to increasing
carbon prices, resulting in a substantial increase in carbon supply. Reducing
costs associated with REDD projects emerges as the most efficient approach for
expanding participation in carbon projects, as the associated cost of increasing
supply is lower compared to subsidizing prices.

Considering our findings, several policy interventions could enhance par-
ticipation in carbon markets. A primary focus should be on reducing costs,
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which can be achieved through the creation of stable regulatory frameworks
that reduce uncertainty and transaction costs. Alternatively, governments
could directly subsidize entry and participation costs for landowners. Sub-
sidizing carbon prices through additional payments for each carbon credit is
another option, albeit with higher associated costs. Measures that stimulate
demand for carbon credits, such as regulations on emissions and the implemen-
tation of cap-and-trade systems, could also bolster the market. On the private
market side, adopting technologies to reduce certification, transaction, and
operational expenses could increase supply. Additionally, using assessments to
identify investment opportunities in suitable properties could further reduce
project costs.

Related Literature. This paper belongs to a recent literature that
evaluates the effectiveness of Payment for Ecosystem Services (PES) pro-
grams. Prior studies in this field have employed reduced form techniques, such
as Differences-In-Differences and Synthetic Controls, to assess program out-
comes, yielding mixed results. For instance, (ALIX-GARCIA; WOLFF, 2014),
(JAYACHANDRAN et al., 2017), (SIMONET et al., 2019) and (GUIZAR-
COUTIñO et al., 2022) find small but positive impacts in terms of avoiding
emissions. Conversely, (WEST et al., 2020) and (WEST et al., 2023) find that
the ex ante deforestation baselines of REDD projects are substantially higher
than their counterfactuals, suggesting minimal additionality in such projects.

Our paper advances in this literature by introducing an economic model
of land use, enabling us to explain deforestation and conservation choices
beyond statistical means. Our main contribution is to measure additionality in
current REDD projects and to assess various price and cost scenarios that may
materialize in the future. We also identify private areas that are most suitable
for developing additional REDD projects. Besides, we show the distributive
consequences of such projects, which may exacerbate income inequalities
related to land ownership. We also find mechanisms that could enhance the
effectiveness of these activities, such as reducing costs and establishing a more
stable regulatory framework.

Moreover, we relate to a literature that employs discrete choice mod-
els to study land use (e.g (SCOTT, 2018); (SOUZA-RODRIGUES, 2019);
(ARAUJO; COSTA; SANTANNA, 2022); (HSIAO, 2022); (ARAUJO, 2023);
(ASSUNçãO et al., 2023); (DOMíNGUEZ-IINO, 2023)). Our paper is closest to
(ARAUJO; COSTA; SANTANNA, 2022) which estimates the carbon-efficient
level of forestation in the Brazilian Amazon using a dynamic model. We depart
from this model and innovate by explicitly incorporating the option of joining
carbon projects. This inclusion enables us to investigate the impact of carbon
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payments on farmers’ decisions and aggregate land use in the Brazilian Amazon
in a more explicit manner compared to implicit model derivations commonly
found in the literature. We also contribute to this literature by proposing a
model wherein the unit of decision-making is the property, as opposed to pixels
or municipalities.

The paper proceeds as follows. Chapter 2 provides an overview of
carbon markets and carbon projects. Chapter 3 describes our model and the
strucutural regression equation used to recover the parameters. Chapter 4
describes the data. Chapter 5 presents our estimation strategy and results.
Counterfactual exercises and analyses are discussed in Chapter 6. Chapter 7
concludes.



2
Background

We begin with a brief overview of carbon markets and projects to con-
textualize our empirical setting. Carbon markets can be categorized into two
main types: regulated and voluntary markets. Regulated markets, also known
as compliance markets, operate within a legal framework where participants
must adhere to local regulations through mechanisms such as cap-and-trade
or carbon taxes. These markets are highly regulated with clear rules govern-
ing their operation. In contrast, we focus on voluntary markets, where firms
voluntarily offset their emissions by purchasing carbon credits. Each carbon
credit corresponds to one ton of avoided or removed CO2. Voluntary markets
have seen significant growth in recent years, with the market value exceed-
ing US$2 billion in 2022, and forecasts indicating it may reach US$100 billion
by 2030. Unlike compliance markets, voluntary markets are unregulated, with
credibility and standards set by market participants. Recently, concerns about
the credibility of these markets have arisen, supported by academic evidence
(e.g. (WEST et al., 2020), (WEST et al., 2023)) and journalistic investiga-
tions, leading to a decline in carbon credit demand and, consequently, in fewer
projects being released1.

Given the absence of a central regulator in voluntary markets, it is crucial
that the supply meets specific requirements for carbon credits to be valid.
These requirements include measurability, additionality, permanence, and
leakage. Measurability ensures that carbon credits are quantifiable, allowing
for verification against accredited methodologies. Additionality is a key aspect
of carbon credits, referring to the notion that a carbon project is only
financially viable due to revenues from selling carbon credits. In other words,
without carbon revenues, the associated emission reduction or avoidance
activities would not be feasible. Permanence requires that emission reductions
or removals from mitigation activities endure or are fully compensated in the
event of reversal risks. Finally, leakage pertains to the idea that emission
reductions from carbon credits should not be offset by increased emissions
elsewhere.

In theory, these requirements are assessed in the carbon credit creation
process, which involves several lengthy and costly steps. Initially, a carbon
project developer plans and organizes the project, submitting documents and

1See e.g. <https://www.ecosystemmarketplace.com/publications/
state-of-the-voluntary-carbon-market-report-2023/>

https://www.ecosystemmarketplace.com/publications/state-of-the-voluntary-carbon-market-report-2023/
https://www.ecosystemmarketplace.com/publications/state-of-the-voluntary-carbon-market-report-2023/
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calculating the amount of removed or avoided carbon emissions. Projects un-
dergo evaluation against quality criteria defined in project-specific methodolo-
gies and are validated and reviewed by independent auditors to ensure com-
pliance with selected standards. Once registered with a registry operator (e.g.,
Verra or Gold Standard), projects begin operation and credit issuance. Reg-
istry operators establish standards for credit quality, certify and issue credits,
and maintain a registry to track certified projects and credit issuance and
retirement. Throughout the project’s operational phase, emission savings are
monitored and re-verified at regular intervals.

A significant issue concerning recent criticisms of voluntary carbon mar-
kets relates to their business model. Registry operators, which function as
market centralizers and regulators, earn revenue through registered credits, in-
centivizing them to accept inflated estimates of carbon removals or avoidance.
Similarly, project developers earn per credit, preferring projects that generate
millions rather than thousands of credits. Validators, as third-party auditors,
face the risk of not being engaged in future projects if they dispute project esti-
mates, potentially leading to leniency in their assessments to maintain business
relationships.

The Brazilian Amazon hosts over 70 carbon projects, primarily focusing
on land use and deforestation. The most prevalent projects in the region
are known as REDD projects (Reducing Emissions from Deforestation and
Degradation), all registered under the Verra registry with the VCS (Verified
Carbon Standard) stamp. These projects commonly use methodologies focused
on avoided deforestation. The process of creating REDD credits involves an
initial partnership between landowners and project developers. Properties must
comply with local regulations, and are required to have high forest cover and
substantial carbon stocks to produce a profitable number of credits. Ideally,
these properties should also be located in regions facing deforestation pressures.
Given the complexity and high fixed implementation costs of developing
projects, REDD projects often involve multiple properties.

Project developers employ Verra methodologies to project deforestation
in both the project area and adjacent regions, utilizing tools such as historical
changes and land use models. Verra determines that projections must be con-
servative and realistic. However, recent research suggests that these methodolo-
gies tend to overestimate deforested areas (e.g. (WEST et al., 2020), (WEST
et al., 2023)).

Once projections are completed, and all methodology steps are fulfilled,
a validator confirms compliance before the project can be registered with
Verra and carbon credits can be sold. Each year, a project can sell credits
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equivalent to the amount of avoided carbon emissions related to projected
deforestation levels. Any unsold credits can be carried over to subsequent years.
Implicit in this process is the assumption that landowners choose to sign REDD
contracts because they anticipate carbon credit revenues to exceed profits from
deforestation and associated activities, such as cattle grazing or cash crops.
Typically, project developers retain a portion of each carbon credit sold, with
landowners’ REDD profit tied to the amount of carbon stock preserved in
a given year. To address permanence requirements, REDD projects typically
span 30 years or more, with severe financial penalties for early termination,
making REDD contracts a binding commitment that discourages landowners
from deforesting their lands.

This overview highlights the intricacies of the carbon credit creation pro-
cess, its associated challenges, and the decision-making context of landowners
in the Brazilian Amazon concerning the possibility of selling carbon credits.
This decision, coupled with multiple land use choices, motivates our model,
which we detail in the following Section.



3
Model

We depart from the work of (ARAUJO; COSTA; SANTANNA, 2022)
to formulate a dynamic discrete choice model where every year a profit-
maximizing landowner chooses how to allocate the land inside its property.
In this section, we describe the model, the choice revenues, and derive the
structural regression equation that serves as the basis of our estimation
approach.

3.1
Setup

The basic unit of decision in the model is a property, denoted by m.
Each property m is run by a rational agent that chooses the profit-maximizing
land use. In our setup, we only consider formally registered properties in
the SIGEF database1, implying that agents hold property rights over the
land and receive the cash flow from any economic activity performed inside
the property. Agents can choose among two possible land uses: agriculture2

or forest. Forested properties have the possibility to participate in REDD
contracts. Hence, the choice set of economic uses for a property m consists of
j ∈ J = {agriculture, forest, REDD}. That is, landowners can either deforest
they property for agricultural purposes, maintain it as forested land with native
vegetation, or sign a REDD contract and earn carbon credit revenues. This
choice is repeated every year t = 1, 2, ..., ∞.

We differentiate from (ARAUJO; COSTA; SANTANNA, 2022) by con-
sidering that both agriculture and REDD are absorbing states. That is, once
an agent chooses one of the above options, this decision is permanent and
the property remains locked in that state indefinitely. Hence, the only possi-
ble transitions in this model are forest to agriculture and forest to REDD.
We motivate this hypothesis based on the nature of REDD contracts, which
typically involve long-term commitments lasting at least 30 years. While it is
true that we observe regeneration in a fraction of deforested areas in the Ama-
zon, a specific requirement in REDD contracts - that the area must have been

1REDD projects require strong property rights within land parcels, and the SIGEF
database serves as a proxy for evaluating this requirement.

2Given that approximately 90% of the deforested land in the Amazon Biome is presently
utilized for pasture, in this paper, we equate agriculture with cattle farming and use the two
terms interchangeably (see e.g. (ASSUNçãO et al., 2023)).
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forested for at least 10 years - motivates us to discard a possible agriculture

to forest to REDD transition.
The transition to REDD is directly observed in the data, so it is

straightforward to model when this decision has been taken. Typically, the
share of a property inside a REDD project is close to 100%. We need, though,
to formulate a definition for the transition to agriculture, since deforestation
decisions within properties are lumpy. We define the transition to agriculture

to happen in the year when more than 5% of the property area has been
deforested3.

Each land use choice generates a profit flow πm
j (wmt, εmtj) in year t that

depends on a vector of property-specific state variables wmt ∈ RL encompassing
both observable (e.g., prices, land characteristics, transportation costs) and
unobservable (to the econometrician) variables – as well as εmtj ∈ R, which
represent property, choice and time specific shocks that are unobservable to
the econometrician. We assume a separable structure for the profit function:

πm
j (wmt, εmtj) = rm

j (wmt; α) + εmtj, (3-1)

where r(·; α) is a known function up to parameters α.
Assumption 1 The evolution of property-specific state variables fol-

lows a Markov process and it is conditionally independent from property-level
information (decisions and characteristics) - i.e., F (wm,t+1|wm,t, εmtj, j) =
F (wm,t+1|wm,t).

Assumption 1 implies that property-level decisions and characteristics do
not influence the dynamics of market-level variables. This is consistent with
the idea that landowners are price takers in competitive final product markets

Assumption 2 Property level shocks εmtj are independent over time and
choices conditional on property characteristics and market-level state variables,
with type-I extreme value distribution.

Assumption 2 is standard in the dynamic discrete choice literature.
Assumptions 1 and 2 enable us, under usual regularity conditions, to write
the agent’s dynamic land use choice problem with Bellman equations. The
problem of an agent in period t, with land use k = forest in period t − 1 is:

V (k, wmt, εmt) = max
j∈J

{
rj (wmt; α) + εmjt + ρE

[
V̄ (j, wm,t+1) | wmt

]}
, (3-2)

where V̄ (j, wmt) =

Eε [V (j, wmt, εmt)] , if j = forest
rj(wmt;α)

1−ρ
, otherwise

, εmt ∈ R3 is the

vector of shocks εmjt for each choice j ∈ J , and ρ is the discount rate.
3For robustness, we apply 10% and 15% thresholds and find similar results across all

scenarios.
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Assumption 3 Future carbon and cattle prices are assumed to be
constant and equal to those of 2022.

Assumption 3 is necessary for computing the present values for both
REDD and agriculture revenues. Though strong, this assumption could be
perceived as a conservative estimate of expectations, considering that forecasts
and reputable sources typically anticipate upward trends in both REDD and
agriculture prices over time. Nonetheless, given the nature of discounting future
revenues, this hypothesis carries more weight for revenues closer to the present
rather than those further into the future. Given the relatively stable nature of
prices in the short term, as illustrated in Figure 4.4, it is reasonable to argue
that this assumption is valid.

We denote the non-random component of equation 3-2 as

v (j, forest, wmt) = rj (wmt; α) + ρE
[
V̄ (j, wm,t+1) | wmt

]
. (3-3)

We can then re-write the agent’s problem as

V (forest, wmt, εmt) = max
j∈J

{v (j, forest, wmt) + εmjt} . (3-4)

The distributional assumption on property level shocks (Assumption 2)
implies the logit conditional choice probability:

p(j|forest, wmt) = exp v(j, forest, wmt)∑
j′∈J exp v(j′, forest, wmt)

, for j, j′ ∈ J. (3-5)

This is the probability a property transitions from land use k = forest

to land use j conditional on wmt. The formulation above yields the (HOTZ;
MILLER, 1993) inversion:

log( p(j|forest, wmt)
p(j′|forest, wmt)

) = v(j, forest, wmt) − v(j′, forest, wmt), for j, j′ ∈ J .

(3-6)
That is, the ratio of conditional choice probabilities of different alterna-

tives is directly related to the difference between the non-random components
of returns from these alternatives.

We can decompose the property-specific wmt into its observable and
unobservable components. That is, wmt = (xmt, ξmt), where xmt ∈ RL−3

represents a vector of observed variables and ξmt ∈ R3 represents a vector
of choice specific unobserved state variables. We require rj(·; α) to be linear in
α with an additive property and choice specific unobservable:

rj (wmt; α) = ᾱj + α′
jRj (xmt) + ξjmt, for j ∈ J, (3-7)

where Rj (xmt) is a choice specific known function of observables, and ᾱj is
an intercept. The specific formulation for Rj(·) will be determined by data
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availability and discussed in detail in the next Subsection.
We let the ᾱj absorb choice-specific components which are constant

across properties and time - it captures present value costs related to land
use j. This implies ξjmt is mean zero across properties and time.

Structural regression equation. We select j = REDD and j′ =
agriculture in (3-6) to obtain our structural regression equation. The difference
between the returns of REDD and agriculture yields a specification in which
all αj can be estimated:

log(p(REDD|forest, wmt)
p(agri|forest, wmt)

) = v(REDD, forest, wmt) − v(agri, forest, wmt)

(3-8)
Substituting (3-3) in the equation above, we obtain:

log(p(REDD|forest, wmt)
p(agri|forest, wmt)

) =rREDD − ragri

1 − ρ

= ᾱREDD − ᾱagri + αforestRforest(xmt)
1 − ρ

+

αREDDRREDD(xmt) − αagriRagri(xmt) + ξREDD,m,t − ξagri,m,t

1 − ρ

(3-9)

The left-hand side depends only on conditional choice probabilities that
can be estimated directly from the data. On the right hand side, we have
regressors Rforest(xmt), RREDD(xmt) and Ragri(xmt) and aggregate shocks
ξREDD,m,t and ξagri,m,t. With this formulation, we estimate the coefficients that
minimize the difference between the ratio of conditional choice probabilities
and the difference between the returns of the two selected choices.

3.2
Flow of Profits

We will now delve into our formulation of flow profits rj(·; α) for each
land use option. These formulations primarily stem from contextual and data-
driven considerations. In this discussion, we will introduce several covariates
that inform our analysis. Further details regarding the data are provided in
Chapter 4.

Agriculture. As previously mentioned, agriculture activity in this paper
is represented by cattle farming. Hence, the choice for agriculture is equivalent
to converting the property to pasture. The cattle produced on each property
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could be transported to destination markets and sold at market prices. The
net revenue from this operation is equal to:

ragri(wmt; α) = αagri(ppt − zpm)ym,paream + ᾱagri + ξagri,m,t (3-10)

where ymp is a productivity measure of beef in kg/ha on property
m, ppt is the cattle price in destination markets, zpm is the transportation
cost from property m to destination markets, aream is property m’s size
in hectares, and ᾱagri + ξagri,m,t is a fixed cost associated with agricultural
land use, encompassing costs related to inputs, wages and other unobserved
factors that may vary across properties and time. Specifically, we allow ξagri,m,t

to be correlated with potential yields ypm and transportation costs. This
consideration is particularly relevant in contexts where transportation costs
significantly influence land use decisions. In our context, the placement of roads
may be correlated with unobserved factors affecting agricultural returns.

Forest. We adopt a forest return specification similar to that of
(ARAUJO; COSTA; SANTANNA, 2022), in which the return of leaving a
property m unused will depend on the carbon stock of native vegetation per
hectare hm in that property:

rforest (wmt; α) = αforesthmaream + ξforest,m,t, (3-11)

The coefficient αforest encapsulates a combination of two elements.
Firstly, it reflects the influence of environmental protection policies aimed at
conserving forests, often correlated with forest density. This coefficient quan-
tifies the extent to which such policies assist farmers in internalizing the value
of maintaining standing forests. Secondly, it accounts for the private costs and
benefits associated with forest density. Higher carbon stocks may entail costs
to landowners, as areas of dense forest tend to be more susceptible to en-
croachment. Conversely, they may also yield benefits, such as the safeguarding
of water springs.

We have normalized the intercept αforest to zero. Consequently, any
additional costs and benefits associated with forest conservation that are
not directly tied to forest density will be accounted for by the intercept of
agriculture returns and by the structural error ξforest,m,t.

REDD. Finally, we model the return of keeping property m’s forest cover
and signing a REDD contract. We can specify the REDD revenue as a sum of
the forest revenue and the pecuniary value received in REDD contracts:
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rREDD(wmt; α) = αforesthmaream+αREDDpREDD,thmaream+ᾱREDD+ξREDD,m,t

(3-12)
With this specification, we assume annual deforestation for the entire

property, in contrast to REDD contracts that project deforestation within a
property over time. REDD projects generate credits for each year’s projected
deforestation, which are subsequently sold in the VCM. We anticipate that
the coefficient αREDD will adjust for this disparity between (3-12) and actual
carbon revenues.



4
Data

We have assembled a novel property-year panel dataset that integrates in-
formation on carbon projects, property characteristics, and commodity prices.
To the best of our knowledge, this is the first dataset to encompass all REDD
projects in Brazil, incorporating data at the property level. Our analysis fo-
cuses on the time frame spanning from 2010 to 2022, the period when such
projects began to gain significance.

4.1
Project Data

The project data comes from the Verra Registry. Verra is one of the
world’s main carbon offset programs. Together with Gold Standard, American
Carbon Registry (ACR), and Climate Action Reserve (CAR), they account
for nearly 90% of the credits in the voluntary markets. None of these three
standards had REDD projects located in Brazil.

As of December 2022, there were 77 REDD projects in the Brazilian
Amazon. The main data retrieved from the Verra Registry is the KML file for
the polygon of the projects, which enables us to know their exact locations.
We also obtain the date when projects started issuing credits.

4.2
Property Data

We obtain property polygons from the IMAFLORA’s Atlas of Brazilian
Agriculture, restricting our sample for units located in the Amazon biome and
registered in the Land Management System (SIGEF). We make this selection
because this database is a proxy for properties that comply with national land
regulations and property rights requirements, as required for participation in
REDD projects. Subsequently, we subset this sample to find properties that
were suitable to join REDD projects in 2010, setting a minimum threshold
of 80% of forest cover1 2. Using the property polygons, we compute property
area. We further remove properties with less than 5 hectares, and properties

1The average forest cover of REDD properties upon entry is 99%.
2Properties in the Amazon are required to maintain a minimum of 80% forest cover

(Reserva Legal). Thus, those exceeding 80% are opting to retain forests in regions susceptible
to change. However, there is a lack of compliance and enforcement with this regulation, with
99% of deforestation in the Amazon exhibiting some degree of irregularity.
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with zero carbon stock, leaving us with 20,375 observations. In our estimation,
we also remove properties in the 1st and 100th percentiles of area.

Cross-referencing project and property polygons allows us to identify
units that entered into REDD contracts. We classify properties with more than
20% overlap with project areas as REDD properties, totaling 433 entrants up
to 2022. As described in Section ??, we classify agriculture properties as those
that have deforested more than 5% of their area, resulting in a total of 4,527
properties until 2022. Since our analysis starts in 2010, we eliminate properties
that transitioned to one of the absorbing states prior to this year. This leaves
us with a total of 13,224 properties for analysis.

4.3
Land Use

We collect land use information for suitable properties from MapBiomas3.
This dataset uses Landsat images to annually categorize the use of each
30-meter resolution pixel in Brazil into various land use classifications. We
aggregate land use into three categories: agriculture, forest, and other (i.e.,
non-classified pixels, urban areas, and water). For our purposes, we consider
agriculture pixels as deforested pixels.

To build the dependent variable in our regression equation (3-9), we
need to obtain the conditional choice probability p(j|forest, wmt) - that is,
the probability of transitioning from forest to j conditional on property and
time. Differently from (ARAUJO; COSTA; SANTANNA, 2022), we estimate
this conditional probability using a multinomial logit with pooled data. If
a property chooses j ∈ J = {agriculture, REDD} in t, we only keep its
observations up to year t. Our preferred specification consists of:

transitionm,r,t = αj + βj
1latm + βj

2lonm + βj
3latm ∗ lonm

+ βj
4transportCostm + βj

5roadDistancem

+ βj
6carbonmt + βj

7soymt + βj
8pasturemt

+ θj
r + ϕj

t + εj
mr,

for transition, j ∈ J = {agriculture, REDD, forest}. (4-1)

Where θr is an immediate region (IR) fixed effect, and ϕt represents
year fixed effects. carbon, soy and pasture represent measures of property
productivity, in which:

3Project MapBiomas - Collection 8.0 of Brazilian Land Cover & Use Map Series, accessed
on 20/12/2023 through the link: <http://mapbiomas.org>.

http://mapbiomas.org
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carbonmt = log(carbonStockm) ∗ carbonPricet ∗ log(aream),

soymt = log(soyYm) ∗ soyPricet ∗ log(aream),

pasturemt = log(pastureYm) ∗ cattlePricet ∗ log(aream).

latm and lonm denote the latitude and longitude of property m’s centroid.
The remaining variables are described in the following subsections. Results are
described in Table 9.1. The distribution of the estimated conditional choice
probabilities are depicted in Figures 9.1 and 9.2.

4.4
Carbon Stock and Potential Agriculture Returns

Carbon stock. Carbon stock data is key for our paper, since it dictates
both forest and REDD revenues. We obtain this data from the Woodwell
Climate Research Center, which provides values for above-ground live woody
biomass at a 30-meter resolution. We then convert these values to the potential
CO2 release ((ZARIN et al., 2016)4).

Figure 4.1 shows the amount of carbon stored in the suitable properties
in 2000. As mentioned before, we remove properties with 0 carbon stock from
our sample. Similar to (ARAUJO; COSTA; SANTANNA, 2022), we treat the
measure of carbon stock in each property as the maximum attainable carbon
density that piece of forest may accumulate. Carbon stock per property is
obtained by selecting a random point5 inside each property, for which we
extract the Woodwell carbon data. We then multiply this value by the property
area. We follow this procedure for the agriculture productivity variable.

Potential agriculture returns. As mentioned before, we represent
agriculture with cattle farming in this paper. Agriculture returns are specified
in equation (3-10). The agriculture return in property m in year t is represented
by the expected revenue of cattle, net of transportation costs to the nearest
port.

ymp is a modified version of the Pasture Suitability Index, provided from
the Food and Agriculture Organization’s (FAO) project Global-Agroecological

4This dataset follows the methodology outlined in (BACCINI et al., 2012). The unit
in the original data is megagram of Biomass per hectare. To convert biomass to CO2
per hectare, this value must be divided by 2 – providing a measure of carbon (C) –
and then multiplied by 44/12 – yielding a measure of carbon dioxide (CO2). Accessed
through Global Forest Watch Climate on 31/10/2023. <https://data.globalforestwatch.org/
datasets/aboveground-live-woody-biomass-density> .

5Carbon stock and potential yield variables present a smooth variation in space, so this
approach is a reasonable one.

https://data.globalforestwatch.org/ datasets/aboveground-live-woody-biomass-density
https://data.globalforestwatch.org/ datasets/aboveground-live-woody-biomass-density
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Figure 4.1: Carbon Stock (t/ha)

This map plots carbon stock density (tons of CO2 per hectare) at 30 meter
resolution. The values vary from blue (less carbon) to yellow (more carbon).

Figure 4.2: Agriculture Productivity (kg/ha)

This map plots agriculture productivity (kg/ha). The values vary from blue (lower)
to yellow (higher).
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Figure 4.3: Transportation Costs (R$/t)

This map plots minimum transportation costs of cattle from every property to the
international market in Brazilian reais (R$) per ton. The values vary from blue
(lower) to yellow (higher).

Zones. This data is not a cardinal measure, i.e., it is not measured directly
in units of output per hectare. Hence, we follow a procedure similar to
(DOMíNGUEZ-IINO, 2023) and (ASSUNçãO et al., 2023) to transform it in
a measure in kg/ha.

For such purposes, we cross all pasture pixels in 2017 with the FAO data.
That is, we obtain the pasture suitability index for each pasture pixel in the
Brazilian Amazon. Further, we group this data by municipality, obtaining a
mean index for each municipalities’ pasture area. We then get data from the
2017 Agricultural Census, specifically the cattle weight per hectare and cattle
farm gate price variables (which are in the municipality level) to estimate the
following model by OLS, wheighted by municipality pasture area:

log(cattle_kgPerHai) = log(mean_pastureIndexi) + lati + lat2
i +

loni + lati ∗ loni + distancei + distance2
i +

historicalTempi + log(historicalPrecipi)+

log(farmGatePricei) + ϵi

Where distancei is the distance from municipality i to its state capital,
and historicalTempi and historicalPrecipi are respectively municipality i’s
historical mean temperature and precipitation (for the 1970-2000 period).
Results are reported in Table 9.2. The R2 of this regression is 0.44. With the
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estimated parameters, we transform the index for each property into a measure
of kg/ha. Results are plotted in Figure 4.2. It is clear that areas deeper in the
forest have lower agriculture productivity, while those in the forest fringe have
a higher potential for agriculture.

4.5
Transportation Costs

We estimate the cost zmp of transporting cattle from each property to the
nearest export port following the procedure adopted in (ARAUJO; COSTA;
SANTANNA, 2022) and (ARAUJO; ASSUNÇÃO; BRAGANÇA, 2023). For
our purposes, we only consider transport by roads, and obtain cattle freight
cost data from the Group of Research and Extension in Agroindustrial Logistics
at ESALQ to perform the procedure. Estimated costs are depicted in Figure
4.3. We see that properties located deep inside the forest face the highest costs,
while those closer to the coast, or located in consolidated areas - such as the
Southern Amazon -, display lower costs.

4.6
Prices

We obtain cattle price data from College of Agriculture Luiz de Queiroz
(ESALQ). Carbon credit prices are obtained from the Ecosystem Marketplace
reports. As each carbon project sells its credits for a different price, reflecting
the monopolistic competition nature of this market, the price data we obtain
represents the mean of REDD projects located in South America. To deflate
prices, we get inflation data from IBGE, using 2020 as the base year in our
analysis. Figure 4.4 displays carbon and cattle prices in the period of study.

4.7
Summary Statistics

We conclude this section by providing summary statistics for the main
cross-sectional variables used in the model estimation. Table 4.1 illustrates
substantial cross-section variation in area, carbon stock, agricultural produc-
tivity and transportation costs. This variability is significant as we aim to
explore counterfactual scenarios involving long-term shifts in REDD and agri-
cultural returns. In our model, a sustained increase in REDD prices, for in-
stance, corresponds to an increase in carbon stocks. Therefore, the variation
in cross-sectional net returns from agriculture and REDD plays a crucial role
in computing price elasticities based on the model.
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Figure 4.4: Carbon and Cattle Prices

This figure plots carbon and cattle prices over time.

Table 4.1: Descriptive Statistics

Variable: Area Carbon Stock Agriculture Productivity Transport Cost
Model analog: aream hm ym,p zpm

Unit: (ha) (t/ha) (kg/ha) (R$/t)
Mean 996.15 447.91 65.95 80.16
Std 1925.63 156.36 28.56 30.33

Min. 5.83 1.83 3.25 12.35
1st Qu. 53.26 368.50 45.73 66.91
Median 252.98 473.00 66.22 80.06
3rd Qu. 1116.30 564.67 85.62 101.11
Max. 19938.40 788.33 207.46 180.85

This table shows descriptive statistics for the property characteristics used in the
model’s estimation. Transportation costs are in Brazilian reais (R$) as of 2008, the
first year we have data on transportation costs.
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Estimation

We estimate the structural equation (3-9), which relates the conditional
choice probabilities and the potential returns of REDD and agriculture in two
steps. We use a non-linear least squares approach to first estimate the revenue
coefficients αj, and then obtain the ᾱj. By substituting regressors Rj(xmt) in
(3-9)1, we obtain the final specification for our structural regression equation:

log(p(REDD|forest, wmt)
p(agri|forest, wmt)

) = ᾱREDD − ᾱagri

1 − ρ
+ αforest

hmaream

1 − ρ
+ αREDDhmareamPVREDD−

αagriym,paream[PVagri − zpm

1 − ρ
] + ξmt, (5-1)

5.1
First Step: OLS Estimation

Our first step is to estimate equation (5-1) by pooled OLS. We leverage
two distinct sources of variation to identify our parameters. While prices rep-
resent the sole observed state variables that exhibit temporal variation, this
variation is amplified by considerable variability in the cross-sectional distri-
bution of potential agriculture returns and carbon stocks across properties.

Table 5.1 presents the results of estimating the structural regression
equation (5-1). As expected, we obtain positive estimates for all coefficients.
A positive αagri means that an increase in agricultural returns increases the
likelihood of land being converted to pasture. A positive αREDD means that an
increase in the returns associated to REDD contracts increases the likelihood
of a forested property joining this kind of projects.

Finally, a positive αforest indicates that a higher stock of carbon in a
given property decreases the likelihood of this area being deforested2. We can
monetize the carbon stock coefficient by dividing it by α̂agri to obtain the
landowner’s perceived value of preserving carbon in the forest. Our estimates
fall in the range of R$0.94, or US$0.18 per ton of CO23. This perceived
value reflects the impact of environmental regulation, whereby agents partially

1The derivation of the final regression equation is available in Appendix 9.1.
2Note that αforest is part of both REDD and forest revenues, which are related to

maintaining the land unused.
3We use the exchange rate of USD $ 0.19 per R$ from December 2022. Note that this

benefit is already at the present value, as our coefficients are estimated discounting REDD
and agriculture revenues.
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internalize the social value of carbon stored in the forest, in addition to net
preservation private benefits and costs unrelated to REDD activities.

These estimates are lower than those reported in (ARAUJO; COSTA;
SANTANNA, 2022) or (ASSUNçãO et al., 2023), which find a shadow value
of around US$5.6 - US$7.6. This difference may be partly attributed to the
estimation window. While the former calculates this value for a period ending
in 2017 and the latter extends up to 2008, we investigate such prices until
2022. The gap period between our study and theirs was marked by an increase
in deforestation rates, resulting in reduced carbon stocks and, consequently,
a lower perceived value. Nonetheless, all of these estimates are considerably
lower than most estimates of the social value of carbon, which are centered
around US$50/t ((EPA, 2016)). These figures suggest that farmers do not
fully account for the social cost of deforestation.

Table 5.1: Estimation Results

Model Parameter Estimate
(1) (2)
αREDD 0.013∗∗∗

(0.001)

αforest 0.153∗∗∗

(0.058)

αagri 0.162∗∗∗

(0.011)

Constant −31.106∗∗∗

(0.139)

Observations 171,899
R2 0.007
Adjusted R2 0.007
Residual Std. Error 51.918 (df = 171895)
F Statistic 379.543∗∗∗ (df = 3; 171895)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
This table shows the OLS estimates of αj obtained in the first step of the estimation
(equation 5-1). Column 1 reports model parameters, while Column 2 displays
the corresponding estimates. Revenues are divided by 106 to improve parameter
visualization.
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5.2
Second Step: Non-Linear Least Squares

We use the estimated α̂j to estimate the remaining parameters in
equation (5-1) using a non-linear least squares procedure. Specifically, we
estimate ᾱagri by choosing the parameter that minimizes the distance:

e =
∑
m

[log( p(agri|forest, wmt)
p(forest|forest, wmt)

) − (V (agri, wmt; α̂j, ᾱagri) − V (forest, wmt; α̂j, ᾱagri))]2,

for t = 2010, ..., 2022. (5-2)

Where V (forest, wmt; α̂j) is computed by iteration. Table 5.2 shows the results.

Table 5.2: Alpha Bar Estimates

Model Parameter Estimate /αagri

(1) (2) (3)

ᾱREDD −29.74 −183.08

ᾱagri 1.36 8.37

This table presents the estimates of ᾱj , using α̂j estimated in equation (5-1)
using OLS. Column 1 reports model parameters, while Column 2 displays the
corresponding estimates, and Column 3 monetizes the coefficients. We report the
estimates divided by (1 − ρ) to be consistent with the other parameters, which are
displayed in present value terms.

The second and third rows monetize the cost coefficients. We can see that
REDD properties have an associated average present value cost of US$35.61
million4. This figure includes entry costs (e.g. certification costs), maintenance
expenses (such as surveillance and continuous verification), transaction costs,
and the proportion of credits allocated to project developers. Besides that,
ᾱREDD may be capturing information and regulatory costs that increase the
costs of implementing REDD projects. This may be one of the reasons why the
adoption to such projects is still low. Despite the positive perspective regarding
carbon prices and markets, high participation costs5 and complex regulatory
environments may deter landowners from engaging in these initiatives. This
highlights that changes in the regulatory environment may be a powerful tool
to increase REDD participation.

4Recall that we divided revenues by 106 in the first step of the estimation.
5(United Nations Environment Programme, 2023) and the references therein report a

cost range of US$30-US$50/t. Our estimates are around US$80/t.
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On the other hand, we get a positive estimate for ᾱagri, meaning that,
relative to forest (remember that we set ᾱforest = 0), this land use option
provides landowners with an additional present value of US$1.59 million. That
is, among the three possible options, agriculture has a negative cost, which can
be translated as a surplus that this activity offers to those who pursue it. This
surplus is capturing benefits related to agriculture that are not explicit in our
specification (3-10).



6
Counterfactuals

In this chapter, we use our estimated model to assess additionality in
carbon projects and project different scenarios considering a range of carbon
prices, taxes and participation costs. The value function for each alternative
scenario is the key ingredient that needs to be computed to obtain the
counterfactual conditional choice probabilities using equation (3-5). Just as
in the model, we remove all uncertainty about prices by assuming they
remain constant from 2022 onwards. Regarding the property-specific state
variables wmt, we assume they remain constant over time1 (i.e., carbon stock,
productivity and transportation costs are constant over time, and hence
wm = 1

T

∑
t wmt). The logit errors assumption implies that the integrated

Bellman equation for forest returns has a convenient expression:

V̄ (forest, wm) = log(
∑
j∈J

exp(rj(wm; α) + ρV̄ (j, wm))) + γ, (6-1)

where γ is the Euler constant.
After computing V̄ (forest, wm) by iteration2, we use expression (3-5) to

recover the associated CCPs pt
j,m for each option and year. We then compute

the expected probability of property m being in a specific state between 2010
and T = 20503: Am(j, wm). That is, we obtain the expected probability of
property m being in state j by the period T . Aggregating for all properties
(weighting by property area), we obtain the total 2050 land use, which we call
A(j, w), where w = {wm}m. These objects are the basis for our counterfactual
exercises, and are, respectively, given by:

Am(agri, wm) = p2010
agri,m +

T∑
t=2011

(
t−1∏

s=2010
ps

forest,m

)
× pt

agri,m (6-2)

1We believe this assumption is reasonable in our context since these variables change
very slowly with time, and we are interested in investigating a time horizon of around 40
years, during which they would likely change little.

2Note that, since there is no uncertainty in the REDD and agriculture revenues, we can
compute them by simply bringing their associated revenues to present value.

3We select 2050 as our reference year because it marks the conclusion of the last project
in our dataset. The most recent project started in 2020 and is scheduled to conclude in
2050, with the potential for renewal. Consequently, our analysis focuses on examining the
probability of project areas being deforested or remaining intact throughout their existence
period. This approach allows us to scrutinize project additionality.
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Am(REDD, wm) = p2010
REDD,m +

T∑
t=2011

(
t−1∏

s=2010
ps

forest,m

)
× pt

REDD,m (6-3)

Specifically, equation (6-2) provides the expected probability that prop-
erty m will transition to agriculture between 2010 and 2050, while equation
(6-3) outlines the expected probability of property m participating in carbon
projects during the same period.

6.1
Additionality in Carbon Projects

We analyze 13,224 properties in the Amazon, totaling 13.1 million
hectares—an area equivalent to Greece—and storing approximately 6.4 Gt of
carbon, equivalent to the US’ total CO2 emissions in 2022. Out of this total,
an area of around 3.2 million hectares has already been deforested, releasing
1.45 Gt of CO2 to the atmosphere. Despite these negative figures, this shows
that there’s still room to preserve the remaining 77% of the carbon stock inside
private properties. However, it is necessary to investigate to what extent this
stock would be eligible to participate in REDD projects, and which properties
would keep their land idle in any scenario.

In a business-as-usual (BAU) scenario, where carbon prices remain
constant at US$10.70 per ton from 2022 onwards, the model forecasts that
0.66 Gt of carbon would be preserved in REDD projects, covering an area
of 1.1 million hectares, as depicted in Figure 6.1. That is, by 2050, the model
forecasts that 8% of the total private land area in the Brazilian Amazon Biome
(registered in the SIGEF database) would engage in such activities. Out of
this total, the additionality share would be 83.7%. This implies that most of
the carbon stock protected in these projects would be facing deforestation
risks in a scenario without REDD contracts. However, a 16.3% share is
still high, indicating that a significant proportion of REDD projects are not
effectively contributing to their goals of mitigating climate change through
market mechanisms. Besides that, the model forecasts that around 80% of
the property areas, totaling of 10.4 million hectares, would be deforested for
agriculture purposes. This would result in emissions totaling 5 Gt of CO2, a
significant and concerning amount that could be avoided through higher carbon
prices or taxes - or lower costs -, as demonstrated in the following Subsections.

We can use our model to investigate the ongoing REDD projects, and
check whether their participating properties are actually facing deforestation
risks in the 2010-2050 horizon. We find that, out of the 0.65 Gt of CO2
inside REDD properties, 77.4% could be considered additional. This means
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Figure 6.1: 2050 Land Use Forecast - BAU Scenario

This map plots the expected 2050 land use for each property in the BAU scenario. We
plot the land use with the highest expected probability in 2050. Property polygons
were buffered to improve visualization. REDD properties with more than 80% of
additional carbon are coloured in blue.

that nearly a quarter4 of the carbon stock protected in REDD projects are
actually not facing any risk of deforestation and, therefore, should neither be
considered additional nor be sold in the market.

Figure 6.2 depicts the 2050 land use scenario without REDD projects,
outlining properties that already participate in such contracts in blue. It
is evident from this map that a significant portion of the supply of non-
additional CO2 comes from projects in the Northeast of Para, particularly
in the Portel municipality region. The dissemination of questionable products
undermines confidence in carbon markets, posing a potential obstacle to
market development. These findings highlight the need of employing more
robust and suitable techniques for forecasting deforestation and other land
use decisions in carbon markets. This approach is crucial for fostering better

4(WEST et al., 2020), for instance, finds that around 40% of credits in Brazilian projects
are not genuinely additional.
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Figure 6.2: 2050 Land Use Forecast - No REDD Scenario

This map plots the expected 2050 land use for each property in the No REDD
scenario. We plot the land use with the highest expected probability in 2050.
Property polygons were buffered to improve visualization. Properties inside REDD
projects are contoured by a blue line.

practices and inspiring confidence in this growing market.
We can have a dimension of the dynamics of the model by analyzing

the evolution of the land use and carbon emissions over time. Figure 6.3
illustrates the total agriculture area in scenarios with a BAU carbon price,
without REDD contracts, and with a US$50 carbon price. The difference
between the no REDD line and the BAU and US$50 lines is the additional
area that is joining carbon projects in these scenarios. We also plot in Figure
6.4 the evolution of carbon emissions in these three scenarios. Note again that
the additional carbon supply in each scenario is given by the difference between
the no REDD line and the two others. These areas represent the avoided CO2
emissions that were due to the existence of REDD contracts, which incentivize
landowners shift from deforestation decisions to preserving forests and earning
carbon credit revenues. Figure 6.5 depicts carbon supply over time. Obviously,
there is no carbon supply in a scenario without REDD contracts. In the BAU
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Figure 6.3: Agriculture Area Dynamics

This figure plots the agriculture area dynamics in the BAU, No REDD, and US$50
scenarios.

scenario, we observe a smooth growth in supply over time, while in the US$50
scenario, most agents wait for prices to reach the US$50 level to make their
decisions. A great share of properties opt for REDD after prices reach this
level.

Finally, we analyze certain property characteristics of the most likely
entrants in REDD projects under both the BAU and the US$50 price scenarios,
comparing them with the entire sample of properties. Table 6.1 highlights
that, in the BAU scenario, REDD properties tend to be the largest in terms
of area. These properties benefit from their extensive size, which harbors
a considerable amount of above-average carbon stocks, thereby rendering
the commercialization of carbon credits more valuable. Participation in such
contracts entails fixed costs; hence, the scale effects offered by large areas can
facilitate participation. In contrast, we observe that such properties exhibit
below-average agricultural productivity.

When examining the most probable entrants in the US$50 price scenario,
we still observe a prevalence of large properties with rich carbon stocks, albeit
smaller in size and stocks compared to those in the BAU scenario. However,
the potential agricultural productivity of such properties is higher than that
of the BAU scenario but still below the average of the entire sample. This
suggests that higher prices introduce greater heterogeneity in the profile of



Chapter 6. Counterfactuals 42

Figure 6.4: Carbon Emission Dynamics

This figure plots the carbon emission dynamics in the BAU, No REDD, and US$50
scenarios.

Figure 6.5: Carbon Supply Dynamics

This figure plots the carbon supply dynamics in the BAU, No REDD, and US$50
scenarios.



Chapter 6. Counterfactuals 43

REDD properties. Higher prices can translate into increased REDD profits,
which may offset high fixed costs, leading to the participation of properties with
higher agricultural productivity and lower carbon stocks. As we will explore in
the subsequent subsections, prices serve as a mechanism to enhance the quality
of carbon supply (in terms of additionality).

It’s essential to acknowledge the distributional effects resulting from the
opportunity to preserve forests through REDD projects. The likely entrants are
predominantly large properties, leaving little room for small participants, who
may not be able to bear REDD participation costs. Consequently, the influx
of predominantly international capital into Brazil to fund such activities will
benefit large landowners, while excluding smaller ones from this opportunity.
Carbon markets risk exacerbating distributive inequalities in forested coun-
tries, as large property owners stand to gain wealth while smaller ones are left
behind. This widening income disparity related to land ownership could lead
to the deforestation of small properties or their acquisition by larger landown-
ers. Therefore, it is imperative to reconsider the structure of such projects to
promote greater inclusion and maximize the social benefits derived from these
activities.

Table 6.1: REDD Property Characteristics

Variable: Area Carbon Stock Agriculture Productivity
Sample: All BAU US$ 50 All BAU US$ 50 All BAU US$ 50
Mean 996.15 13576.06 4589.61 447.91 599.96 569.34 65.95 46.75 63.52
Std 1925.63 3245.19 3432.33 156.36 61.21 90.90 28.56 15.15 24.75

Min. 5.83 8167.74 1512.37 1.83 452.83 139.33 3.25 19.99 3.25
1st Qu. 53.26 11148.62 2513.69 368.50 557.33 518.38 45.73 34.94 47.78
Median 252.98 13573.30 3084.35 473.00 599.50 586.67 66.22 50.16 63.06
3rd Qu. 1116.30 16075.72 4869.65 564.67 646.25 638.00 85.62 55.94 75.96
Max. 19938.40 19938.40 19938.40 788.33 740.67 748.00 207.46 81.94 152.80

This table presents area, carbon stock, and agriculture productivity statistics for
properties that would join REDD projects in the BAU and US$50 scenarios. We
also display these statistics for the whole sample for comparison reasons.

6.2
Carbon Supply with Different REDD Prices

Carbon prices are one of the main determinants for landowners to choose
whether to join REDD projects. If prices are high enough, they may choose to
preserve their forests and earn carbon credit revenues, instead of clearing their
properties for cattle ranching. In this subsection, we investigate how different
carbon prices could change the CO2 supply in the VCM. As of 2022, REDD
prices for Brazilian projects were set at around US$10.70/t. In our model, we
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project future revenues assuming that this price remains constant indefinitely
(referred to as the BAU scenario). In our counterfactual analyzes, we examine
scenarios where this price undergoes permanent changes for future periods
(starting from 2023 onwards).

We inspect a price range of US$0 to US$200 per ton of CO2. As we
can see in Figure 6.7, the CO2 supply grows monotonically with prices. For
lower prices, carbon supply is modest, but it grows fast with marginal price
increments. At current prices, supply is projected to be around 0.66 Gt. A
US$50 price scenario, anticipated to be achieved in the next 10 to 20 years
by specialized sources5, and considered to be the social cost of carbon ((EPA,
2016)), could increase the supply sixfold to 4 Gt. We plot the forecasted land
use for this price scenario in Figure 6.6. We see that a significant portion of
private areas opt for REDD projects, with minimal choice for forest.

The shape of the supply curve is intuitive: low price increments (between
the US$10 - US$50 range) would make REDD more profitable than agriculture
for 54% of private areas, encompassing 67% of the carbon stock stored in such
regions. This indicates that these price increases would attract landowners with
high carbon density and moderate agriculture productivity. Hence, farmers are
responsive to carbon prices in the steeper part of the curve.

For a US$200 price, 86% of private areas and 91% of the carbon stored in
such areas would opt to sign REDD contracts. However, even at such elevated
levels of carbon prices, some properties would still remain in agriculture, driven
by their relatively high potential returns and low carbon stocks. So the flat
portion of the curve, to the right, is attributed to capacity constraints: with
higher prices, farmers would be inclined to maintain almost all private land
forested (under REDD projects).

While values may differ due to modeling assumptions, methodologies,
regions, and time periods covered, the shape of this curve mirrors findings
from other studies (see, e.g., (NEPSTAD et al., 2007), (KINDERMANN et
al., 2008), (LUBOWSKI; ROSE, 2013), and (SOUZA-RODRIGUES, 2019)),
underscoring the significant potential for emissions reduction through avoided
deforestation.

We can see the price effect shifting the landowners’ choices in Figure
6.8, where we depict the agriculture area as a function of carbon prices.
This convexity is intuitive: small price changes would be sufficient to turn
REDD more attractive than cattle farming for many agents. The effect on
CO2 emissions is substantial: a US$50 carbon price, instead of the current

5See, for example, <https://about.bnef.com/blog/carbon-credits-face-biggest-test-yet-could-reach-238-ton-in-2050-according-to-bloombergnef-report/
> , <https://www.statista.com/statistics/1284060/forecast-carbon-offset-prices-by-scenario/
>

https://about.bnef.com/blog/carbon-credits-face-biggest-test-yet-could-reach-238-ton-in-2050-according-to-bloombergnef-report/
https://about.bnef.com/blog/carbon-credits-face-biggest-test-yet-could-reach-238-ton-in-2050-according-to-bloombergnef-report/
https://www.statista.com/statistics/1284060/forecast-carbon-offset-prices-by-scenario/
https://www.statista.com/statistics/1284060/forecast-carbon-offset-prices-by-scenario/
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Figure 6.6: 2050 Land Use Forecast - US$50 Scenario

This map plots the expected 2050 land use for each property in the US$50 scenario.
We plot the land use with the highest expected probability in 2050. Property
polygons were buffered to improve visualization. REDD properties with more than
80% of additional carbon are coloured in blue.

US$10.70, could avoid the release of 3 Gt into the atmosphere6 as a consequence
of deforestation.

In terms of additionality, Figure 6.9 illustrates that the additional CO2
supply share initially increases with prices, reaching a maximum at the US$50
scenario, where 90.3% of the carbon stock in REDD properties would be
additional. Subsequently, it begins to decline, reaching an 88.3% share for a
US$200 price scenario. This trend is explained by the fact that, up to US$50,
REDD becomes attractive to landowners who would opt for agriculture in a
no REDD scenario. However, as prices rise above this threshold, REDD starts
to attract properties that would remain forested in a scenario without REDD.
These higher prices make REDD viable for properties with lower carbon stocks,
which would otherwise be unable to participate in scenarios with lower prices

6These results are consistent with recent studies, e.g. (GRISCOM et al., 2017) which find
that "natural climate solutions" could potentially capture/avoid about 11.3 Gt of CO2 per
year globally with costs no greater than US$100/t.
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Figure 6.7: Carbon Supply for Different REDD Prices

This figure plots the 2050 carbon supply considering different future carbon prices
(prices are assumed to be constant from 2023 onwards).

Figure 6.8: Carbon Emissions and Agriculture Area for Different REDD Prices

This figure plots the 2050 agriculture area and carbon emissions considering different
future carbon prices (prices are assumed to be constant from 2023 onwards).
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and higher costs.
Figure 6.9 also underscores the importance of considering average results

when evaluating REDD projects. Rather than focusing solely on additionality
forecasts at the individual project level, it is crucial to examine aggregate
outcomes across different scenarios. Estimating additionality measures at a
granular level may be challenging or even impractical, making an aggregate
approach more appropriate. While some projects may have to accommodate
others lacking in additionality, the aggregate benefits are likely to outweigh
the associated costs. For instance, a scenario with a US$200 price and 6Gt of
carbon supply with 88% additionality may be preferable to a US$50 scenario
with higher additionality shares but lower supply levels. Despite potential
supply issues, the overall outcomes are superior in the former case.

Considering these findings, there is an opportunity for policy interven-
tions aimed at influencing the pricing dynamics of carbon markets to enhance
participation. Potential policies include subsidizing carbon prices through ad-
ditional payments for each carbon credit. Alternatively, measures that stim-
ulate demand could also be effective. Implementing regulations on emissions
and introducing carbon pricing mechanisms such as carbon taxes or cap-and-
trade systems could directly raise the cost of emitting CO2, thus incentivizing
emission reductions and potentially boosting demand for carbon credits.

6.3
Carbon Supply with Different Carbon Taxes on Agriculture

We now investigate the effects of a carbon tax on agriculture into the
entrance in REDD projects and agriculture. Carbon taxes have a low impact
in REDD supply. Even for high carbon tax values, landowners still choose to
deforest and engage in agriculture, with a low adoption to REDD. We see this
clearly in Figure 6.10, which illustrates that the CO2 supply in REDD is almost
perfectly inelastic to a carbon tax - supply varies from 0.662Gt to 0.669Gt in
the considered tax range. This phenomenon can be attributed to the limited
impact of taxes on the present value revenues of agriculture7. Essentially,
the tax only affects landowners once, during the transition from forest to
agriculture, when carbon is released through deforestation. In subsequent
periods, there is no further tax incidence. Thus, the tax can be viewed as a
fixed conversion cost. Higher tax values may potentially have a more significant

7In this paper, our focus is primarily on present value revenues. Therefore, a tax that
impacts only a single stream of profits may not have the ability to alter the overall present
value associated with agriculture for a particular property, thereby failing to influence its
decision.
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Figure 6.9: CO2 Supply Additionality Share

This figure plots the 2050 CO2 supply additionality share considering different future
carbon prices (prices are assumed to be constant from 2023 onwards).

impact on reducing deforestation by incentivizing the preservation of densely
forested properties.

Although, as depicted in Figure 6.11, a carbon tax has an effect on
reducing carbon emissions and the agriculture area in the Brazilian Amazon.
Implementing a carbon tax at a rate of $200/ton can lead to a total reduction
of 0.67 Gt of CO2 emissions, resulting in a decrease in agriculture area by 1.2
million hectares. Still, this is a modest figure for a high tax8. In this scenario,
small properties with high carbon stocks are the ones that are most deterred
from engaging in agriculture due to the higher costs associated with the carbon
tax. However, despite having carbon stocks above the average, these properties
do not transition to REDD projects. This is because the costs associated with
participating in REDD are too high for them to bear.

These findings underscore the limited effectiveness of a carbon tax
compared to a market mechanism that incentivizes landowners to conserve
their forests. They emphasize the importance of establishing a more conducive

8Our results are different and lower than those of other studies, e.g. (SOUZA-
RODRIGUES, 2019) and (ARAUJO; COSTA; SANTANNA, 2022), because here we consider
that the tax is charged only once, while they consider a tax that is charged every year when
a plot of land is not forested.
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Figure 6.10: Carbon Supply for Different Carbon Taxes

This figure plots the 2050 carbon supply considering different carbon taxes on
agriculture.

Figure 6.11: Carbon Emissions and Agriculture Area for Different Carbon
Taxes

This figure plots the 2050 agriculture area and carbon emissions considering different
carbon taxes on agriculture.
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Figure 6.12: Carbon Supply with Different Participation Costs

This figure plots the 2050 carbon supply considering different participation costs in
REDD projects (we change the value of the ᾱREDD).

environment for carbon markets, characterized by credible methodologies and
robust governance, which could significantly enhance efforts to combat climate
change. By implementing improved techniques, carbon markets could attract
more investments and bolster the prices of carbon credits. Consequently, this
would further incentivize landowners to participate in initiatives aimed at
preserving carbon stocks, thereby increasing the overall supply of protected
carbon and avoided emissions.

6.4
Carbon Supply with Different REDD Costs

Participation costs play a crucial role in landowners’ decisions regard-
ing REDD project participation. Here, we investigate how different costs
could change carbon supply. Our estimate for ¯αREDD stands at US$35.61 mil-
lion/property. Therefore, we examine how lowering this cost down to US$0
could change the supply of avoided emissions under the BAU price scenario.
Figure 6.12 illustrates the carbon supply curve under different participation
costs. It is clear that reducing costs could significantly increase carbon sup-
ply. In a scenario with no participation costs (US$0), the supply would match
that of a US$80/t scenario, totaling 5 Gt. Figure 6.12 also depicts that the
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Figure 6.13: Carbon Emissions and Agriculture Area with Different Participa-
tion Costs

This figure plots the 2050 agriculture area and carbon emissions considering different
participation costs in REDD projects (we change the value of the ᾱREDD).

additionality share in a lower cost scenario would be approximately 88%.
As Figure 6.13 shows, bringing costs to zero would result in a reduction

of agricultural area by 7 million hectares, avoiding the emission of 3.7Gt
of CO2. These numbers align with results found in previous research (e.g.
(SOUZA-RODRIGUES, 2019), (ARAUJO; COSTA; SANTANNA, 2022) and
(ASSUNçãO et al., 2023)), highlighting the significant emission reduction
potential of modest carbon payments under a zero-cost structure. Moreover,
reducing costs could enable the entry of smaller properties compared to other
scenarios. In the zero-cost scenario, there would be no choice for forest land use;
landowners would opt for either REDD or agriculture, as depicted in Figure
6.14.

Subsidizing entry through higher prices would result in a cost of 80 −
10.7 =US$69.3/ton per year, or US$693/ton (using a 10% discount rate and
targeting a supply of 5 Gt), while subsidizing entry through participation costs
would entail a fixed cost of US$80/ton. This highlights the effectiveness of re-
ducing costs as a strategy to incentivize participation in carbon markets. This
can be achieved by reducing intermediaries in carbon credit trading to mini-
mize transaction costs or by lowering certification, verification, and monitoring
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Figure 6.14: 2050 Land Use Forecast - Zero Participation Cost Scenario

This map plots the expected 2050 land use for each property in the zero participation
cost scenario. We plot the land use with the highest expected probability in 2050.
Property polygons were buffered to improve visualization. REDD properties with
more than 80% of additional carbon are coloured in blue.

expenses—e.g., through technology adoption that streamlines these processes.
Additionally, establishing stable regulatory frameworks can reduce bureau-
cracy, uncertainty and transaction costs for project developers. Examples in-
clude aligning REDD-related policies at both state and federal levels, as well
as establishing the Regulatory Framework for the Brazilian Carbon Market.
Such measures offer a cost-effective approach for both governments and private
entities to promote participation in carbon projects.

6.5
Long-run Effects of Higher Carbon and Cattle Prices

In our last counterfactual exercise, we assess how variations in cattle and
carbon prices affect land use and carbon release. Here, we compare the 2050
land use with (w̃) and without (w) a 100 × ∆% price change and compute a
long-run elasticity of land use with respect to agricultural and carbon prices:
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Table 6.2: Long-run Land Use Elasticities with Respect to Carbon and Cattle
Prices

Forest Cover Agriculture Area REDD Area Carbon Released REDD Carbon
(1) (2) (3) (4) (5)

Panel A. Carbon price elasticities

-0.03 -0.11 1.15 -0.14 1.19

Panel B. Cattle price elasticities

-1.10 0.17 -0.10 0.19 -0.10

This table presents the long-run elasticity of forest cover, agriculture area, REDD
area, carbon released, and REDD carbon with respect to carbon price (Panel A)
and with respect to cattle price (Panel B). Elasticities calculated with ∆ = 10% (eq.
6-4) price increase.

∂j,∆ = A(j, w̃) − A(j, w)
A(j, w)

1
∆ (6-4)

Table 6.2 Panel A reports elasticities with respect to carbon prices. We
estimate an own land-use price elasticity of 1.15, while the estimated elasticity
for the carbon supply is of 1.19. This means that, when there is an increase in
carbon prices, the area dedicated to carbon projects increases, but less than
the carbon stock entering such projects. This suggests that increases in carbon
prices attract properties with relatively high carbon stocks to participate
in REDD contracts. Notably, the shift in decisions primarily arises from
agriculture areas (-0.11), with a smaller contribution from properties that were
previously idle (-0.03). Consequently, the new carbon supply predominantly
originates from areas that would have been deforested otherwise, which bodes
well for the additionality of carbon projects. When splitting the supply between
additional and non-additional CO2, we observe own-price supply elasticities of
1.39 and 0.12, respectively. This provides further evidence that an increase in
prices attracts a relatively larger amount of additional carbon to the market.

Following (ARAUJO; COSTA; SANTANNA, 2022), we also examine the
effects of price increases on the quantity of carbon released, assuming that
all carbon stock in aboveground biomass is released through deforestation.
This involves aggregating the carbon stock of all properties weighted by the
probability that each property will transition from forest to agriculture in
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the counterfactual scenario. We estimate that the elasticity of carbon released
with respect to carbon prices is -0.14, showing how carbon markets can have
an impact in reducing carbon emissions. Specifically, a 10% increase in prices
would result in the avoidance of emissions equivalent to 0.07 Gt.

Table 6.2 Panel B reports elasticities with respect to cattle prices. We
estimate a positive, but inelastic own price elasticity (0.17). This is also valid
for the elasticity of carbon released (0.19). These low values may reflect
capacity constraints, as most of the area in the BAU scenario is already
allocated to agricultural use. We see that most of the change in land use comes
from the conversion of forests (-1.10), but there is still a share of new agriculture
areas coming from carbon projects (-0.10). The effects of higher cattle prices
are more novice than the benefits coming from an increase of carbon prices (in
terms of carbon released), meaning that increases in agricultural prices could
be an obstacle for the development of new carbon projects.
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Conclusion

This paper addresses the issue of additionality in carbon projects in the
Brazilian Amazon, particularly those related to forest conservation through
avoided deforestation. Using a novel database, we employ a dynamic discrete
choice model to estimate land-use decisions made by farmers. Our analysis
reveals that approximately 77% of the carbon stock within private proper-
ties participating in REDD projects is additional. However, nearly one quarter
of the total supply does not face actual deforestation risks. This substantial
proportion highlights the necessity for improved assessments in project devel-
opment to enhance the supply of genuine emission reductions and bolster the
integrity of the voluntary carbon market.

Our model reveals that elevated carbon prices have the potential to
improve the CO2 supply quality, resulting in decreased carbon emissions
and expanded forest areas within REDD projects. In contrast, carbon taxes
in agriculture demonstrate minimal impact on these outcomes. Ultimately,
reducing costs emerges as the most cost-effective approach for increasing the
supply of additional carbon within the VCM.

To achieve these objectives, policymakers may consider implementing
policies such as subsidizing entry costs or carbon prices, along with initiatives
to reduce market uncertainty through stable regulatory frameworks. Stimulat-
ing demand can be achieved through emissions regulation and the adoption of
cap-and-trade mechanisms, which could elevate prices.

Market-based strategies involve embracing technologies and practices
that lower certification, transaction, and operational expenses. Furthermore,
identifying suitable properties could mitigate investment risks and decrease
project costs. Our model highlights that the most promising areas for REDD
project development are in Acre, Amazonas, and Mato Grosso, particularly on
large properties. This finding poses a warning on REDD projects, which could
benefit exclusively large landowners, generating distributive consequences that
exacerbate land-related disparities.

The findings presented in this paper offer insights into enhancing the
resilience and effectiveness of carbon markets, fostering reduced risk and im-
proved quality and supply. Equipped with this knowledge, market participants
and policymakers can make more informed evaluations of carbon projects, at-
tracting increased investment to such activities. This, in turn, aids in climate
change mitigation and accelerates decarbonization efforts, all while minimizing



Chapter 7. Conclusion 56

associated social and economic costs.
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9
Appendix

9.1
Regression Equation Derivation Details

Here we provide more details on the derivation of the regression equation.
We substitute regressors Rj(xmt) in (3-9), obtaining the following:

log(p(REDD|forest, wmt)
p(agri|forest, wmt)

) = ᾱREDD − ᾱagri + αforesthmaream

1 − ρ
+

αREDDpREDD,thmaream − αagri(ppt − zpm)ympaream

1 − ρ
+

ξREDD,m,t − ξagri,m,t

1 − ρ
(9-1)

Since prices vary with time, and we assume them to become constant from
τ = 2022 onwards, note that:

PVREDD,t ≡ pREDD,t

1 − ρ
=

τ−1∑
s=t

ρs−tpREDD,s + ρτ−tpREDD,τ

1 − ρ
,

(9-2)

PVagri,t ≡ pagri,t

1 − ρ
=

τ−1∑
s=t

ρs−tpp,s + ρτ−tpp,τ

1 − ρ
(9-3)

Substituting the above in (9-1), we finally obtain:

log(p(REDD|forest, wmt)
p(agri|forest, wmt)

) = ᾱREDD − ᾱagri

1 − ρ
+ αforest

hmaream

1 − ρ
+ αREDDhmareamPVREDD−

αagriym,paream[PVagri − zpm

1 − ρ
] + ξmt, (9-4)

where ξmt = ξREDD,m,t−ξagri,m,t

1−ρ
.

9.2
Figures and Tables
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Table 9.1: CCP Results

REDD Agriculture
log(carbon)*$*log(area) 0.001 −0.002∗∗∗

(0.001) (0.0002)
log(soy)*$*log(area) −0.002 0.00001

(0.001) (0.0003)
log(pasture)*$*log(area) 0.0002∗∗∗ 0.00004∗∗∗

(0.00001) (0.00000)
transportCost −0.019∗∗∗ −0.016∗∗∗

(0.002) (0.001)
roadDistance 0.002∗∗∗ 0.00004

(0.0001) (0.00003)
lat −1.898∗∗∗ −0.909∗∗∗

(0.0001) (0.00002)
lon −0.049∗∗∗ −0.118∗∗∗

(0.003) (0.001)
lat*lon −0.023∗∗∗ −0.016∗∗∗

(0.0004) (0.0001)
Constant −24.627∗∗∗ −6.222∗∗∗

(0.0001) (0.00002)
Year FE Yes Yes
IR FE Yes Yes
AIC 42,047.000 42,047.000

This table presents the results for the CCP estimates using a multinomial logit
with pooled data.

Figure 9.1: CCP Distribution - REDD
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Figure 9.2: CCP Distribution - Agriculture
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Table 9.2: Cattle Productivity - Index to kg/ha

Variable Estimate
log(mean_pasture_y) 0.197∗∗

(0.081)
lat 0.211∗∗

(0.094)
lon 0.024∗

(0.012)
lat2 −0.006∗∗∗

(0.001)
distance 0.00000∗∗∗

(0.00000)
distance2 −0.000∗∗∗

(0.000)
historical_temp −0.150∗∗∗

(0.045)
log(historical_precip) −0.138∗∗∗

(0.026)
log(cattleSlaughter_farmGatePrice_2017) 1.702∗∗∗

(0.167)
lat*lon 0.005∗∗∗

(0.002)
Constant 1.929

(1.578)
Observations 435
R2 0.449
Adjusted R2 0.436
Residual Std. Error 161.050 (df = 424)
F Statistic 34.523∗∗∗ (df = 10; 424)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results for the regression that transforms the Pasture
Suitability Index into a productivity measure in kg/ha.
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