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Abstract

Flores, Cláudio Cardoso; Medeiros, Marcelo Cunha (Advisor).
Essays in Econometrics: Online Learning in High-
Dimensional Contexts and Treatment Effects with Com-
plex and Unknown Assignment Rules. Rio de Janeiro, 2021.
106p. Tese de Doutorado – Departamento de Economia, Pontifícia
Universidade Católica do Rio de Janeiro.

Sequential learning problems are common in several fields of research
and practical applications. Examples include dynamic pricing and assortment,
design of auctions and incentives and permeate a large number of sequen-
tial treatment experiments. In this essay, we extend one of the most popular
learning solutions, the εt-greedy heuristics, to high-dimensional contexts con-
sidering a conservative directive. We do this by allocating part of the time the
original rule uses to adopt completely new actions to a more focused search
in a restrictive set of promising actions. The resulting rule might be useful for
practical applications that still values surprises, although at a decreasing rate,
while also has restrictions on the adoption of unusual actions. With high pro-
bability, we find reasonable bounds for the cumulative regret of a conservative
high-dimensional decaying εt-greedy rule. Also, we provide a lower bound for
the cardinality of the set of viable actions that implies in an improved regret
bound for the conservative version when compared to its non-conservative
counterpart. Additionally, we show that end-users have sufficient flexibility
when establishing how much safety they want, since it can be tuned without
impacting theoretical properties. We illustrate our proposal both in a simula-
tion exercise and using a real dataset. The second essay studies deterministic
treatment effects when the assignment rule is both more complex than tradi-
tional ones and unknown to the public perhaps, among many possible causes,
due to ethical reasons, to avoid data manipulation or unnecessary competi-
tion. More specifically, sticking to the well-known sharp RDD methodology,
we circumvent the lack of knowledge of true cutoffs by employing a forest of
classification trees which also uses sequential learning, as in the last essay, to
guarantee that, asymptotically, the true unknown assignment rule is correctly
identified. The tree structure also turns out to be suitable if the program’s rule
is more sophisticated than traditional univariate ones. Motivated by real world
examples, we show in this essay that, with high probability and based on re-
asonable assumptions, it is possible to consistently estimate treatment effects
under this setup. For practical implementation we propose an algorithm that
not only sheds light on the previously unknown assignment rule but also is ca-
pable to robustly estimate treatment effects regarding different specifications
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imputed by end-users. Moreover, we exemplify the benefits of our methodology
by employing it on part of the Chilean P900 school assistance program, which
proves to be suitable for our framework.

Keywords
Online Learning; Bandit; Lasso; Machine Learning; Regression Disconti-

nuity Design; Assignment Rules; Classification Trees; Random Forest.
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Resumo

Flores, Cláudio Cardoso; Medeiros, Marcelo Cunha. Estudos em
Econometria: Aprendizado Online em Ambientes de Alta
Dimensão e Efeitos de Tratamento com Regras de Aloca-
ção Complexas e Desconhecidas. Rio de Janeiro, 2021. 106p.
Tese de Doutorado – Departamento de Economia, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Essa tese é composta por dois capítulos. O primeiro deles refere-se ao
problema de aprendizado sequencial, útil em diversos campos de pesquisa e
aplicações práticas. Exemplos incluem problemas de apreçamento dinâmico,
desenhos de leilões e de incentivos, além de programas e tratamentos sequen-
ciais. Neste capítulo, propomos a extensão de uma das mais populares regras
de aprendizado, εt-greedy, para contextos de alta-dimensão, levando em consi-
deração uma diretriz conservadora. Em particular, nossa proposta consiste em
alocar parte do tempo que a regra original utiliza na adoção de ações completa-
mente novas em uma busca focada em um conjunto restrito de ações promisso-
ras. A regra resultante pode ser útil para aplicações práticas nas quais existem
restrições suaves à adoção de ações não-usuais, mas que eventualmente, valorize
surpresas positivas, ainda que a uma taxa decrescente. Como parte dos resul-
tados, encontramos limites plausíveis, com alta probabilidade, para o remorso
cumulativo para a regra εt-greedy conservadora em alta-dimensão. Também,
mostramos a existência de um limite inferior para a cardinalidade do conjunto
de ações viáveis que implica em um limite superior menor para o remorso da
regra conservadora, comparativamente a sua versão não-conservadora. Adicio-
nalmente, usuários finais possuem suficiente flexibilidade em estabelecer o nível
de segurança que desejam, uma vez que tal nível não impacta as propriedades
teóricas da regra de aprendizado proposta. Ilustramos nossa proposta tanto
por meio de simulação, quanto por meio de um exercício utilizando base de
dados de um problema real de sistemas de classificação. Por sua vez, no se-
gundo capítulo, investigamos efeitos de tratamento determinísticos quando a
regra de aloção é complexa e desconhecida, talvez por razões éticas, ou para
evitar manipulação ou competição desnecessária. Mais especificamente, com
foco na metodologia de regressão discontínua sharp, superamos a falta de co-
nhecimento de pontos de corte na alocação de unidades, pela implementação
de uma floresta de árvores de classificação, que também utiliza aprendizado
sequencial na sua construção, para garantir que, assintoticamente, as regras de
alocação desconhecidas sejam identificadas corretamente. A estrutura de ár-
vore também é útil nos casos em que a regra de alocação desconhecida é mais
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complexa que as tradicionais univariadas. Motivado por exemplos da vida prá-
tica, nós mostramos nesse capítulo que, com alta probabilidade e baseado em
premissas razoáveis, é possível estimar consistentemente os efeitos de trata-
mento sob esse cenário. Propomos ainda um algoritmo útil para usuários finais
que se mostrou robusto para diferentes especificações e que revela com relativa
confiança a regra de alocação anteriormente desconhecida. Ainda, exemplifi-
camos os benefícios da metodologia proposta pela sua aplicação em parte do
P900, um programa governamental Chileno de suporte para escolas, que se
mostrou adequado ao cenário aqui estudado.

Palavras-chave
Aprendizado Online; Bandit; Lasso; Aprendizado por Máquina; Regres-

são Discontínua; Efeitos de Tratamento; Regras de Alocação Desconhecidas;
Árvores de Classificação; Florestas Aleatórias.
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1
Online Action Learning in High Dimensions: A Conservative
Perspective

1.1
Introduction

In this chapter we propose modifications to the original εt-greedy heuris-
tics to work with high-dimensional contexts considering a more conservative
perspective. Our framework can be especially useful for practical applications
where an agent uses the experience and the repeated observation of a large
pool of covariates to conservatively learn the best course of action relatively
to some reward.

More specifically, consider a simple example in consumer behavior where
few accidental discoveries may have a positive impact on users experience but,
as time passes, they tend to increasingly remain loyal to a set of similar vendors.
An intuitive example relates to the case where a consumer may be impressed
after visiting a completely new restaurant but, after some disappointments,
she becomes more and more reluctant to accept suggestions outside her set
of preferred restaurants. Other examples from different markets could be
provided as well. Now consider a recommendation system that wants to
employ a learning rule looking to explore profitable opportunities in this
example. One feature that stands out from the above-mentioned pattern is
the fact that a proper learning rule should not stop to suggest completely new
restaurants (maybe at random) since, eventually, a pleasant discovery can be
made. However, it should progressively discourage randomness and stimulate
exploitation of not the best action but in a set of preferred similar vendors.
We understand such rule under the conservative philosophy introduced in Wu
et al. (2016) since, for the algorithm to be useful, exploration of new actions
should be done with caution.

The original εt-greedy, described in Auer et al. (2002), seems to be a valid
substrate to be used in setups similar to the example above, since the selection
of actions fully at random is already performed at a decreasing rate (εt).
However, it exploits only the best empirical action, which has some drawbacks,
such as to be time consuming in contexts when the difference in payoff between
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the best and second bests strategies is small (Wu et al. (2016)). In our example,
it would also be meaningless to suggest only the best vendor. Therefore, while
remaining loyal to the εt-greedy philosophy, in this chapter we augment it with
a new exploitation option that brings more safety to its decision-making.

1.1.1
Motivation and Comparison with the Literature

A multiarmed bandit problem can be interpreted as a sequential problem,
where a limited set of resources must be allocated between alternative choices
to maximize utility. The properties of the choices are not fully known at the
time of allocation and may become better understood as time passes, provided
a learning rule with theoretical guarantees is available. A particularly useful
extension of the bandit problem is called the contextual multiarmed bandit
problem, where observed covariates yield important information to the learning
process in the sense that the supposed best policy may be predicted; see, for
instance, Auer (2003), Li et al. (2010) and Langford and Zhang (2008).

Contextual multiarmed bandit problems have applications in various
areas. For instance, large online retailers must decide on real-time prices for
products and differentiate among distinct areas without complete demand
information; see, for example, den Boer (2015). Arriving customers may take
purchase decisions among offered products based on maximizing their utility. If
information on consumers’ utility is not available, the seller could learn which
subset of products to offer (Saure and Zeevi, 2013). Further, the reserve price
of auctions could be better designed to maximize revenue (Cesa-Bianchi et
al., 2013). Mechanisms design in the case where agents may not know their
true value functions but the mechanism is repeated for multiple rounds can
take advantage of accumulated experience (Kandasamy et al., 2020). Also,
sequential experiments or programs, including public policies (Tran-Thanh,
2010, devises an algorithm that consider costly policies), may be assigned under
the scope of learning problems. In this regard, excellent works can be found in
Kock and Thyrsgaard (2017), Kock et al. (2018) and Kock et al. (2020).

Designing a sequence of actions to minimize error is a difficult task
and, for a considerable period in the past, was also a computationally in-
tractable goal. In this respect, several heuristics with well-behaved properties
have emerged in the literature, such as Thompson sampling (Agrawal and
Goyal, 2012; Russo and van Roy, 2016), upper confidence bounds (Abbasi-
Yadkori et al., 2011) and greedy algorithms (Auer, 2003; Bastani et al., 2020;
Goldenshluger and Zeevi, 2013).

It is very well documented the recent growing availability of large datasets
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and their usage for different sectors of society. One of the drivers of this recent
popularity can be assigned to shrinkage estimators applied to sparse setups,
relative to their potential to catalyze the benefits of huge information sets
into strong predictive power. This superior performance is certainly useful for
learning problems based on the observation of large pools of covariates, but
there is not an extensive list of papers providing theoretical properties of such
bandits. Among few others, we cite Carpentier and Munos (2012), Abbasi-
Yadkori et al. (2012), Deshpande and Montanari (2012), Bouneffouf et al.
(2017), Bastani and Bayati (2020), Kim and Paik (2019) and Krishnamurthy
and Athey (2020).

Our work is mostly related to Bastani and Bayati (2020) and to Kim and
Paik (2019). Both papers provide theoretical properties for algorithms that are
similar to the high-dimensional εt-greedy we provide in this chapter. Minor
differences appear as, for example, the fact that exploration at random in the
algorithm studied in Bastani and Bayati (2020) is performed at pre-determined
specific instants of time and its frequency does not decrease as time passes. The
later is also present in Kim and Paik (2019). However, our work completely
distinguishes from these papers by adapting the high-dimensional εt-greedy to
work in a more conservative fashion. In this regard, one can understand our
work as an extension of Bastani and Bayati (2020) and Kim and Paik (2019)
in directions that respect, in a flexible way, restrictions and particularities
imposed by practical applications.

1.1.2
Main Takeaways

We add to the high-dimensional bandit literature, by showing that
distinct levels of restrictions in the exploration of new actions can be settled by
using variations of the original multiarmed εt-greedy heuristic. We first expand
the εt-greedy rule to high-dimensional contexts leading to an algorithm that is
similar to the ones used in Kim and Paik (2019) and Bastani and Bayati (2020).
Then, we combine it with a competing exploitation mechanism that comprises,
at each time step, a number of actions that lead to the best predicted rewards.
We call it as the order statistics searching set.

From the empirical perspective, we provide an algorithm that can be
used to implement the main rule proposed in this chapter. In general terms, it
is equipped with an initialization phase where information about parameters
is gathered by attempting distinct actions and, after that, the rule properly
said starts with the main exloration-exploitation phase. In a simulation study,
we show its robustness with respect to a reasonable range for the variables
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imputed by end-users.
From the theoretical point of view, we show that the cumulative regret of

the conservative high-dimensional εt-greedy algorithm is reasonably bounded.
Aside the benefit that an order statistics searching set can be less time
consuming when rewards are very close to each other (Wu et al., 2016), we also
show in this chapter that even with separable payoffs (in probability), there
are conditions related to the amount of viable actions that being conservative
leads to a stricter bound on regret.

We prove that the cumulative regret of the proposed algorithm is
sub-linearly bounded, respecting an upper bound growing at no more than
O{s0

√
T log(2p)}, and seems to be an improvement on the bound found in Kim

and Paik (2019) on a similar non-conservative algorithm (O{s0log(pT )
√
T}).

The work in Bastani and Bayati (2020) found an upper bound ofO{s2
0(log(T )+

log(p))2} which seems to have a worse dependence on s0 than ours. When the
order statistics searching set is considered as an alternative exploration mecha-
nism, in addition to the benefits already mentioned regarding harmful actions,
we show that the

√
T -growing rate above mentioned can be reduced by a factor

of O{log(T )}.
In addition, we show that it is viable to pick any cardinality for the order

statistics searching set and still respect the theoretical limits established in this
chapter. Recall an important trade-off: under the conservative approach one
should be caution to explore new actions but, a learning rule should explore
to be accurate in the long run. In this sense, allowing end-users to choose any
cardinality for the order statistics searching set is the same as letting them
to choose the “size” of safety, tuning the algorithm to the specifics of the
environment/market they are inserted.

The algorithm proposed in this chapter outperforms simple and adapted
(to the high-dimensional context) counterparts in a simulation exercise, while
seems to be effective, presenting good learning properties, when applied to a
a real recommendation system dataset.

1.1.3
Organization of this chapter

The rest of this chapter is structured as follows. Section 1.2 establishes
the framework and the main assumptions for the regret analysis, while Section
1.3 depicts the main algorithm. In section 1.4 we derive the theoretical results
of the methodology proposed and in section 1.5 we provide a sensitivity analysis
of the algorithm with relation to parameters set by the user and a comparison
among simple and adapted algorithms. Section 1.6 exhibits the performance of
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our proposed learning rule when applied on a real recommendation system data
set. Section 1.7 concludes this work. All proofs are relegated to the Appendix.

1.1.4
Notation

Regarding the notation used in this chapter, we provide in this subsection
general guidelines. Definitions and particularities are presented throughout
the chapter. Bold capital letters X represent matrices, small bold letters
x represent vectors and small standard letters x represent scalars. Matrices
or vectors followed by subscript or superscript parentheses denote specific
elements. For example, X(j) is the j-th column of matrix X, X(i,j) is the
(i, j) element of X, while x(j) is the j-th scalar element of vector x. Let
M be an arbitrary vector space. The symbol ‖·‖ is the usual vector norm
on M , while B(x0, τ) is the ball defined in M around a point x0, the set
{x ∈ M |d(x,x0) ≤ τ}. Let Y be an arbitrary set. Then, #Y is used to
represent its cardinality, while b·c and 1{y ∈ Y } are the traditional floor and
indicator function, respectively, the later taking the value of 1 when y ∈ Y .

1.2
Setup and Assumptions

Consider an institution, a central planner or a firm, in this chapter simply
called the planner, that wants to maximize some variable (reward). In order
to do that, it has to choose at each instant of time t ∈ T ≡ {1, 2, . . . , T} an
action (arm) among some alternatives inside a finite setW ≡ {ω0, . . . ,ωw−1}.
We consider each ωk ∈ Rg, k ∈ {0, w − 1}, g > 0 arbitrary.

Define the action function I : T → W , such that for each t ∈ T ,
I(t) = ωk informs that at time t the action selected by the planner was ωk.
Let ϑ ∈ T and define Akϑ ≡ {t ∈ T |I(t) = ωk, t < ϑ} to be the set that stores
all values of t < ϑ when the action ωk was adopted and let nkϑ ≡ #Akϑ to be
its cardinality.

Let (Ω,F ,P) to be a probability space. When choosing actions, the plan-
ner also observes covariates xt at each time step, e.g., individual characteristics
of its target sample, as well as the sequence of its past realizations which we
consider to be identically and independently distributed (iid) draws from P.
It also knows the past rewards1 {ykt}t∈Akt , only when ωk was implemented
before t. The range2 of ykt is a subset of Y ⊂ R, while that of xt is a subset

1At time t, the planner observes xt but does not yet know ykt.
2For ease of notation, in our setup, yt is a scalar random variable, but the reader will

recognize throughout this chapter that this choice is not restrictive. Multivariate versions
are allowed.
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of X ⊂ Rp, where p may grow with the sample size. To simplify notation, in
the rest of this chapter we do not exhibit this dependence (between p and t)
explicitly.

The connection between covariates and rewards is stated as follows:

Assumption 1 (Contextual Linear Bandit) There is a linear relation-
ship between rewards and covariates of the form:

ykt = β′kxt + εkt, (1-1)

where εkt is an idiosyncratic shock and ∀k, βk belongs to the parametric space
C ⊂ Rp. Furthermore:

i. ∀t ∈ T , |xt,(j)| ≤ θx, j ∈ {1, ..., p}.

ii. ∀k ∈ {0, ..., w − 1}, t ∈ T , the sequence {εkt} is composed of independent
centered random variables with variance E(ε2kt) < σ2.

Remark 1 Assumption 1 restrains our setup to linear bandit problems. Re-
wards are action/time-dependent, in the sense that not only the dynamics of xt
impacts the level of rewards but, depending on the chosen policy ωk, the mech-
anism (βk) that “links” covariates to rewards is different. Moreover, we require
covariates to be bounded in absolute terms and a sequence of errors, with finite
variance. Both assumptions are easier to be satisfied in most practical applica-
tions and are necessary to guarantee that instantaneous regrets (defined below)
do not have explosive behavior.

Two pieces of nomenclature have been used: actions chosen by the
planner and “mechanisms” (parameters) through which these actions operate
impacting rewards. Assumption 2 connects them.

Assumption 2 (Metric Spaces) There is an h-Lipschitz continuous func-
tion f :W → C, such that ∀k ∈ {0, ..., w − 1}, f(ωk) = βk.

Remark 2 Assumption 2 is a restriction on the joint behavior of the two rel-
evant metric spaces we are working with, the set of actions and the parametric
space. Its main purpose is to avoid the possibility that small changes in actions
could result in too different mechanisms, which would not be reasonable in sev-
eral practical situations. In the case considered by Assumption 2 we have that
for two actions ωk1, ωk2, both belonging toW, dC(βk1−βk2) ≤ hdW(ωk1−ωk2),
for h ∈ R+ the Lipschitz constant and dC and dB, relevant metrics for the two
spaces.
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One of the most useful instruments to assess the effectiveness of online
learning algorithms is the regret function, which, in general, may be studied in
its instantaneous or cumulative version. In general, a regret function represents
the difference (in expected value) between the reward obtained by choosing an
arbitrary action ωj ∈ W and the one that would be obtained if the best action
were adopted. Clearly, the term best action does not have an absolute meaning,
but relative to alternatives that belong to the same set of actions. A sequential
rule is not learning at all to choose actions if its cumulative regret grows linearly
or at a more convex rate (Rt ≥ O{T}). Good algorithms achieve, for example,
Rt ≤ O{

√
T} (Wu et al., 2016). Definition 1 formalizes these concepts.

Definition 1 (Regret Functions) The instantaneous (rt) regret function of
implementing any policy ωj ∈ W at time t ∈ T , leading to the reward yjt,
and the respective cumulative (RT ) regret until time T are defined as:

rt = E
[

max
k∈{0,...,w−1}

(ykt − yjt)
]

and RT =
T−1∑
t=1

rt

Motivated by the high-dimensional context, we perform Lasso estimation
in the following sections. This estimator operates on the well-known sparsity
assumption, i.e., that in the true model, not all covariates are relevant
to explain a given dependent variable. Regarding this aspect, we define
the sparsity index in Definition 2 and impose the compatibility condition
for random matrices in the Assumption 3, which is standard in the high-
dimensional literature.

Definition 2 (Sparsity Index) For any p > 0 and k ∈ {1, . . . , p}, define
S0 ≡ {k|βk 6= 0} and the sparsity index as s0 = #S0.

Assumption 3 (Compatibility Condition) Define βk[S0] ≡ βk1{k∈S0} and
βk[Sc0] ≡ βk1{k/∈S0}. For an arbitrary (n × p)-matrix X and ∀β ∈ Rp,
such that ‖β[Sc0]‖1 ≤ 3 ‖β[S0]‖1, for some S0, ∃φ0 >

√
32bs0 > 0, with

b ≥ max
j,k
|(Σ̂)j,k − (Σ)j,k| such that:

‖β[S0]‖2
1 ≤

s0β
′Σβ
φ2

0
,

where Σ̂ and Σ are the empirical and population covariance matrices of X,
respectively.
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Finally, we impose a bounding condition for the density of covariates near
a decision boundary, as in Tsybakov (2004), Goldenshluger and Zeevi (2013)
and Bastani and Bayati (2020), among others.

Assumption 4 (Margin Condition) Consider the Lasso penalty parameter
chosen at t, λt ∈ [λmin, λmax]. For δ ∈ R+, ∃Cm ∈ R+, Cm ≤ φ2

0
8θxs0λmin

,
such that for any k1, k2 ∈ {0, . . . , w − 1}:

P
[
x′t(βk1 − βk2) ≤ δ

]
≤ Cmδ

Remark 3 Assumption 4 is related to the behavior of the distribution of xt
“near” a decision boundary. In these cases, there is a possibility for rewards
to be so similar that small deviations in estimation procedures could lead to
suboptimal policies being selected by the algorithms. With this assumption, we
impose some separability (in probability) for the rewards, in the sense that
there is a strictly positive probability that the reward (x′tβk1) for a given policy
ωk1 ∈ W is strictly greater than that of any other policy ωk2 ∈ W. In contrast
to other papers, we establish an upper bound for the constant Cm as a function
of the intrinsic parameters of the problem.

1.3
Algorithms and Estimation Procedures

One of the most important feature of every learning rule relates to the
way it sequentially selects actions. In general, at each time step, an algorithm
should decide between: exploit and adopt the action that leads to the most
profitable reward, in a predicted sense in the case of contextual learning, or
explore and implement a different one, according to some criteria. The expected
outcome of exploitation is to reduce regret by adopting actions that empirically
have been outperforming the available alternatives. However, besides the fact
that the future may eventually not reflect the past, eroding the intrinsic value
of past good actions, if an algorithm does not explore it simply does not
discover good actions that have not been sufficiently tested in the past. As
a consequence the learning rule could remain stuck, for long periods of time,
on suboptimal actions (best only in the past). This exploitation-exploration
trade-off is well-known in the learning literature and dictates the properties
of the regret function. See, for example, Auer (2003) and Langford and Zhang
(2008).

The vast majority of learning algorithms take the above mentioned
problem into consideration while pursuing the main goal of a “well-behaved”
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bound for their regret functions. The εt-greedy heuristic is no different. In
the way it is presented in Auer et al. (2002), first one should define a
decaying exploration weight εt, for example the one suggested by the authors,
εt ≡ min

{
1, cw

d2t

}
, c > 0 and 0 < d < 1. Then, at each time step, the rule

should explore with probability εt and choose a random action inside the set
of possible actions, I(t) = ωat , at drawn from U(0, w). With probability 1− εt
it exploits choosing the action that leads to the best empirical average reward,
I(t) = ωet , et = arg max

j∈{0,...,w−1}

1
t−1

∑t−1
i=1 yji.

The above-defined rule is appropriate for multiarmed bandits (without
context). To extend it to cases where covariates play an important role,
one should simply change the criterion for exploitation and replace the best
empirical average reward for the best predicted reward, that is, I(t) = ωet ,
but now, et = arg max

k∈{0,...,w−1}
ŷkt where, considering Assumption 1, ŷkt = β̂kxt.

We compute each β̂k considering a high-dimensional context and we call the
resulting learning rule as the HD εt-Greedy.

The algorithm updates β̂k considering available information when ωk was
implemented in the past. Specifically, at an arbitrary instant of time ϑ ∈ T ,
let Xkϑ to be an nkϑ × p matrix containing observed covariates at instants of
time t, provided that t ∈ Akϑ. Likewise ykϑ and εkϑ are the nkϑ × 1 observed
rewards and error terms, respectively. Then, we update β̂k by Lasso:

β̂k = arg min
β∈C

1
nkϑ
‖ykϑ −Xkϑβ‖2

2 + λ ‖β‖1 , (1-2)

where λ is the lasso penalty parameter. Following the suggestions in Kim
and Paik (2019) and in Bastani and Bayati (2020), as already introduced
in Assumption 4, we consider λ to be time-dependent (λt) and bounded by
λmin ≤ λt ≤ λmax (see Corolary 1 for further details).

Without previous knowledge, in order to have initial estimates of each
β̂k at the beginning of the learning problem, we impose an initialization phase
to the HD εt-Greedy, which consists to try every action, observe the respective
outcomes and estimate parameters according to equation (1-2). We require
it to last vw, which implies that every action in W is implemented v times,
v ∈ N+. The initialization phase is also present in the conservative version of
the HD εt-Greedy.

The properties of similar versions of the HD εt-Greedy were investigated
in Bastani and Bayati (2020) and Kim and Paik (2019). In the former,
the authors employ the forced-sampling exploration, which prescribes, in
a deterministic way, a set of times when each action must be adopted.
Although it may be similar to our initialization phase, the HD εt-Greedy
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does not explore actions at fixed instants of time, but in a ex-ante unknown
frequency, remaining literal to the learning rule defined in Auer et al. (2002).
Consequently, comparing the post-initialization (most important) phase of
the HD εt-Greedy with the algorithm in Bastani and Bayati (2020) we see
that, differently from the forced-sampling, exploration in our algorithm may
occur at a low (high) rate, depending on a future unknown sequence of trials.
Theoretical properties of HD εt-Greedy are, in some sense, a generalization of
those provided in Bastani and Bayati (2020), regarding different exploration
regimes. Also, the HD εt-Greedy adopts a decreasing weight for exploration,
which seems to be not used both in Bastani and Bayati (2020) and in Kim
and Paik (2019). We do not deeply investigate the possible impacts that both
these differences may have on the performance of algorithms, because the HD
εt-Greedy is treated in this chapter as a benchmark for its conservative variant
(our main contribution). However, we infer that they may not exert great
influence, since the theoretical properties of the HD εt-Greedy are comparable
and, in some cases, better than the results obtained by the cited authors (See
Section 1.4 for further details).

The conservative version of the above described algorithm, called in this
chapter as CHD εt-Greedy, inserts a competing exploitation mechanism in
the HD εt-Greedy learning rule that comprises, at each time step, a number of
actions that lead to the best predicted rewards. We call it as the order statistics
searching set.

Recall the standard definition of order statistics, which for the case
of predicted rewards computed at each time step considering all w possible
actions, takes the form:

ŷ(0:w−1)t ≡ min
k∈{0,...,w−1}

ŷkt ≤ ŷ(2:w−1)t ≤ · · · ≤ ŷ(w−1:w−1)t ≡ max
k∈{0,...,w−1}

ŷkt

For k ∈ {0, ..., w − 1}, let H(κt)
t ≡ {ŷkt|ŷkt ≥ ŷ(w−1−κt:w−1)t} be the

set of the κt best predictions at time t which we consider as new option
for exploitation, such that ∀t > vw, κt ≡ #H(κt)

t . κt ∈ (1, bw/2c] to avoid
extremes. In fact, if for some t, κt = 1, the overall effect would be to increase
the weight to exploit the action with the best estimated reward, and we would
be under the scope of the (non-conservative) HD εt-Greedy algorithm. On the
other hand, when κt is higher, possibly close to w, the learning rule would be
encouraging random exploration and, again the non-conservative version would
be dictating the learning properties. In this sense, the bounds on κt serve the
purpose to guarantee that the resulting learning rule is more conservative than
its precursor. Definition 3 presents the CHD εt-Greedy algorithm.
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Definition 3 (CHD εt-Greedy Algorithm) Let c > 0, 0 < d < 1, w > 1
and εt be defined as in Auer et al. (2002), εt ≡ min

{
1, cw

d2t

}
. Let v ∈ N+,

1 < κt ≤ bw/2c and st ∈ (0, 1) be the weight for the conservative exploitation.
Then, the CHD εt-Greedy algorithm is:

Algorithm 1: CLG-κHOS algorithm
input parameters: c, d, w, v, κt, st
Initialization;
for i ∈ {1, 2, ..., v} do

for j ∈ {1, 2, ..., w} do
I(t)←− ωj;
Update β̂j;

end
end
Exploration-Exploitation;
for t > vw do

εt ←− min
{

1, cwd2t

}
; qt ←− U(0, 1); rt ←− U(0, 1);

if qt ≤ εt then
if rt ≤ st then

Build H(κt)
t ;

ut ←− U(0, κt); I(t)←− ωut in H(κt)
t ;

Update β̂ut
;

else
at ←− U(0, w); I(t)←− ωat

;
Update β̂at

;
end

else
bt ←− arg max

j∈{0,...,w−1}
ŷjt; I(t)←− ωbt ;

Update β̂bt
;

end
end

1.4
Finite Sample Properties of Regret Functions

In this section we present the main contributions of this work in the
form of two theorems. Both proofs are developed in the Appendix, as well as
the proofs of related Auxiliary Lemmas. More specifically, the proof strategy
is as follows: Lemmas 3 and 4 establish the finite-sample properties of the
parameters estimated by Lasso in equation (1-2), taking into consideration the
framework proposed, while Lemmas 5, 6 and 7 provide theoretical properties
for the cumulative regret in the initialization phase and for the instantaneous
regret of both HD and CHD εt-Greedy algorithms, respectively. Theorem 1 is
a compilation of the above results and is the main contribution of the chapter,
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as it provides the bound for the cumulative regret functions of the CHD εt-
Greedy algorithm. Theorem 2 extends the main result and provides conditions
that guarantees the conservative version to be the best course of action.

Theorem 1 (Cumulative Regret of CHD εt-Greedy algorithms)
Provided that the conditions required by Lemmas 5, 6, 7 in the Appendix
are satisfied, at least with probability 1 − Pβmax, Pβmax ≡ max

vw<ϑ<T
Pβϑ, for

sϑ ≡ s imputed by end-user, the cumulative regret until time T of the CHD
εt-Greedy learning rule can be bounded as:

RCHD
T−1 ≤ RHD

T−1 + wθxhτW

[
vs log

(
T − 1
vw

)(
w exp

{
− 2
w

[ [
w
(
1− Pβϑ

)
−Xϑ

]2}
− 1

)]
= O{s0

√
T log(2p)}.

where Pβϑ, Xϑ and Cm are provided in Lemmas 4, 7 and Assumption 4,
respectively.

Notice in the proof of Theorem 1 that the cumulative regret of the HD εt-
Greedy algorithm is the most important term in the bound of its conservative
version. This fact is a recognition that the second term of RCHD

T−1 does not grow
at a faster rate than the first one. As already mentioned, the suggested upper
bound growing at no more than O{s0

√
T log(2p)} seems to be an improvement

on the bound found of a non-conservative similar algorithm in Kim and Paik
(2019) (O{s0log(pT )

√
T}). The work in Bastani and Bayati (2020) found an

upper bound of O{s2
0(log(T ) + log(p))2} which has a worse dependence on s0

than ours.

Theorem 2 (Flexibility and Dominance of CHD εt-Greedy algorithm)
Provided that the conditions required by Lemmas 6 and 7 are satisfied, the
upper bound for the CHD εt-Greedy algorithm does not depend on κϑ and,
at least with probability 1 − Pβmax, for an increasing sequence {λϑ}ϑ>vw, if
w ≥ (12 + 2

√
2)Xmax:

sup
ϑ∈T ∩{ϑ|ϑ>vw}

rCHDϑ < sup
ϑ∈T ∩{ϑ|ϑ>vw}

rHDϑ ,

where Pβϑ is defined in Lemma 4, rCHDϑ is provided in Lemma 6, while rHDϑ
and Xmax are defined in Lemma 7, where Xmax is the usual Xϑ plugged with
λmax.

Theorem 2 represents our additional contribution to the high-dimensional
online learning literature by providing supplemental guarantees for practition-
ers with mild restrictions in exploration of new actions. In these cases, limi-
tations imposed by practical applications naturally bound exploration to be
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confined in a restrictive, possibly time-varying, set of actions. In these cases,
it would be preferable to have some flexibility in the action screening process
without impacting the algorithm’s properties. Theorem 2 can be helpful in this
regard since it provides the flexibility to explore groups of different sizes ac-
cording to the users’ needs. Additionally, it suggests that this approach (being
conservative) would not only be advisable (by operational limitations in real
applications), but also the best course of action in terms of stricter bounds,
provided that the set of viable actions is sufficiently large. In these cases the
bound of the HD εt-Greedy can be reduced by a factor that grows at no more
than O{log(T )} (See Theorem 1 for negative second term on RCHD

T−1 ).

1.5
Simulations and Sensitivity Analysis

Choosing any policy at each instant of time generates the well-known
problem of bandit feedback, which in general terms, relates to the fact that a
planner following an arbitrary algorithm obtains feedback for only the chosen
action. Rewards from the adoption of other actions are not observable and
the best possible one, at each time t, remains unknown to the planner, which
impairs the online evaluation of regrets. Also, this characteristic can lead to
incorrect premature conclusions, for example, in cases when a action had not
been frequently tested in the past. In this case, it may be labeled as suboptimal,
while in fact, it simply did not have sufficient opportunity to prove itself. In
general, bandit feedback poses serious problems for the evaluation of different
learning rules and comparison of algorithms using real data sets. If a target
action, different than the implemented one, is to be evaluated, difficulties
arise, leading, for example, to alternatives such as counterfactual estimation
(Agarwal et al., 2017). In this section we circumvent this problem by analyzing
the properties of the CHD εt-Greedy algorithm in a simulated exercise.

First we evaluate the sensitivity of the algorithm with respect to changes
in: (1) the number of available actions, w; (2) the weight attributed for
the exploitation in the higher-order statistics searching set, s; and (3) the
cardinality of the higher-order statistics searching set, κ. Notice that, since
the CHD εt-Greedy algorithm inherits most of its characteristics from the
non-conservative version, it would be expected for the HD version to present
similar behavior, at least for changes in w.3 Second, we also compare both
CHD and the HD algorithms with a few related alternatives.

General Setup: We set T = 2000; covariates xt are generated from
a truncated Gaussian distribution such that Assumption 1.i translates to

3Recall that the HD εt-Greedy algorithm does not count with s or κ.
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|xt(j)| ≤ 1, ∀t. The dimension of xt is p = 200, and the sparsity index is
s0 = 5. εkt ∼ N(0, 0.05), ∀k ∈ {0, . . . , w−1} and ∀t. We consider v = 30 as the
number of times that each action is implemented in the initialization phase.4

Each action ωk has its own parameter βk drawn independently from a U(0, 1)
probability distribution. The simulation is repeated nsim = 50 times, and the
results are presented as the average regret. That is, the instantaneous regret
at a specific time t is the average of 50 simulated instantaneous regrets at this
same time.

Sensitivity to w: We set w ∈ {5, 10, 15}, κt ≡ κ = 2 and st ≡ s = 0.2.
From the proof of Theorem 1, one can verify that the cumulative regret

function is increasing in w. This can be attributed to the specifics of our
framework, since the higher the value of w, the longer the initialization phase,
implying that the sub-linear growth of the exploration vs. exploitation phase
bound would take longer to operate. Consequently, the levels of cumulative
regret increase with w. Recall, however, that low values of w may not guarantee
that the CHD εt-Greedy algorithm respects a stricter bound than its non-
conservative alternative. These arguments are illustrated in Figure 2.7.

Figure 1.1: Comparison of Cumulative Regrets of the CHD εt-Greedy algorithm for values
of w ∈ {5, 10, 15}, st ≡ s = 0.2 and κt ≡ κ = 2.

Sensitivity to st: Figure 2.8 illustrates that the performance of CHD
εt-Greedy algorithm is highly robust to small variations in s and Figure 2.9 is
just an amplification of Figure 2.8 for t > vw. Simulations are conducted for
w = 10, κt ≡ κ = 2 and st ≡ s ∈ {0.05, 0.1, 0.015}.

Sensitivity to κt: Figures 1.4 and 1.5 present the sensitivity of the
algorithm to values of κt ≡ κ ∈ {2, 3, 5}, w = 10 and st ≡ s = 0.2. The first
panel comprises all time steps, and the second is for t > vw. The results can

4We do not explicitly test the sensitivity of the algorithm to v since, given our specifica-
tion, this variable affects only the duration of the initialization phase and the precision of
the parameters estimates right after this stage. For the first, we use w, since the duration of
the initialization phase is set to vw.
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Figure 1.2: Comparison of Cumulative Re-
grets of the CHD εt-Greedy algorithm for
values of w = 10, st ≡ s ∈ {0.05, 0.01, 0.015}
and κt ≡ κ = 2.

Figure 1.3: Comparison of Cumulative Re-
grets of the CHD εt-Greedy algorithm, from
t = vw + 1 to t = T , for values of w = 10,
st ≡ s ∈ {0.05, 0.01, 0.015} and κt ≡ κ = 2.

be associated to the first part of Theorem 2 that implies that bounds are not
κt-dependent. In fact, these figures present the simulated performance of the
CHD εt-Greedy algorithm and not its bounds for different values of κt but, in
a similar fashion, observe in Figure 1.5 that cumulative regrets intersect each
other and none of the curves dominate the others for the entire period tested.

Figure 1.4: Comparison of Cumulative Re-
grets of the CHD εt-Greedy algorithm for
values of w = 10, st ≡ s = 0.2 and κt ≡ κ ∈
{2, 3, 5}.

Figure 1.5: Comparison of Cumulative Re-
grets of the CHD εt-Greedy algorithm, from
t = vw + 1 to t = T , for values of w = 10,
st ≡ s = 0.2 and κt ≡ κ ∈ {2, 3, 5}.

Figures 1.6 and 1.7 explore different ways of visualizing the performance
of the CHD εt-Greedy algorithm. The first presents the difference in the action
selected by our learning rule at each time step and the respective best one,
exemplified by a simulation with w = 10, κt ≡ κ = 2 and st ≡ s = 0.2. In this
figure, a point with a difference at zero means that the algorithm selected the
best action, while any other value for difference implies a sub-optimal action
adopted. Compared to the initialization period, the exploration-exploitation
phase makes fewer mistakes, qualitatively attesting the learning process.

Figure 1.7 exhibits the average (across simulations and across the time
horizon) frequency of hits, restricted to the post-initialization period, of
the CHD algorithm for varying parameters: w ∈ {5, 10, 15}, st ≡ s ∈
{0.05, 0.1, 0.15} and κt ≡ κ ∈ {2, 3, 5}. Performance seems to be fairly robust
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Figure 1.6: Differences between the selected
policy and the best policy for the CHD εt-
Greedy algorithm for values of w = 10,
κt ≡ κ = 2 and st ≡ s = 0.2.

Figure 1.7: Comparison of frequency of hits
for the CHD εt-Greedy algorithm, computed
from t = vw + 1 to t = T , for different
specifications of st, κt and w.

and, considering 50 simulations and 2000 time steps for each one of them, the
worst specification adopts the best action approximately 90% of the time on
average, while the best one reaches 95%.

1.5.1
Comparison to Related and Adapted Algorithms

As far as we know, the CHD εt-Greedy algorithm is the first conservative
high-dimensional learning rule, which impairs a proper comparison exercise.
Therefore, in a simulation exercise, we contrast it with its non-conservative
version (HD εt-Greedy) and three additional adapted algorithms, named in
this work as: HDO εt-Greedy, CHDO εt-Greedy and Expfirst. The general
setup assumed in the beginning of this section is expanded to consider w = 10,
st ≡ s = 0.1 and κt ≡ κ = 5 and the same initialization phase is implemented
for all algorithms. We briefly discuss each algorithm in the sequence.

HDO and CHDO εt-Greedy algorithms: These are the counterparts
of HD and CHD εt-Greedy algorithms, but using OLS as the estimation
methodology to update estimated parameters β̂k when ωk is selected. In a
high-dimensional sparse context, we would expect lasso to outperform a poorly
defined OLS estimator. Inclusion of these algorithms in the comparison set
serves to corroborate one of the motivations of this work, by contrasting the
differences in performance in a online learning problem, resulting from distinct
estimation procedures in a high-dimensional context.

ExpFirst: This is a kind of exploitation-only algorithm. The initializa-
tion phase is the same as in the other algorithms and estimation of βk for
selected actions in this stage is carried out as in the high-dimensional case,
employing lasso. However, after initialization, the algorithm does not explore
anymore. That is, it always selects the policy that presented the minimum
regret in the initialization. In a different setting, provided that some new as-
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sumptions are in place, Bastani et al. (2020) have shown that exploitation-only
algorithms can achieve logarithmic growth in the OLS-estimation context.

Figure 2.20 compares the average cumulative regrets (across 50 simula-
tions) of the CHD εt-Greedy with those of its peers, above discussed. Notice
that the CHD algorithm largely outperforms, except when compared to its
non-conservative version, in which case the improvement in the average cumu-
lative regret is modest. Figure 2.21 amplifies Figure 2.20 and focus only on
these two algorithms, considering the post-initialization phase (t > vw).

Figure 1.8: Comparison of average cumula-
tive regrets of the CHD εt-Greedy with HD,
HDO, CHDO εt-Greedy and ExpFirst algo-
rithms for values of κt ≡ κ = 2, w = 10 and
st ≡ s = 0.1.

Figure 1.9: Comparison of average cumula-
tive regrets between the CHD and HD εt-
Greedy algorithm, in the post-initialization
period: t > vw, for values of κt ≡ κ = 2,
w = 10 and st ≡ s = 0.1.

1.6
Application: Recommendation System

1.6.1
Data and Exploratory Analysis

The dataset is obtained from Kaggle Database Repository5 and we use
it to build a recommendation engine to predict which restaurants customers
are most likely to order from, given their characteristics. Information on this
data set was initially gathered by Akeed6, an app-based food delivery service
in Oman.

5Restaurant Recommendation Challenge, Version 2, from
https://www.kaggle.com/mrmorj/restaurant-recommendation-challenge. The dataset
is provided public under the license CC BY-NC-SA 4.0, which provides users the right to
share, copy, redistribute the material in any medium or format and adapt, remix, transform,
and build upon the material for noncommercial purposes.

6Akeed is a mobile application that customers can download to their smart phones. It
will allow customers in Oman to order food from their favorite vendors and have it delivered
to their addresses.
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We work with a share of the original dataset considering 15 features7 and
16, 043 observations comprising customers and their respective transactions
with 8 vendors. The training sample has 1, 605 observations for 927 different
customers, used for the initialization stage of our algorithm. The testing sample
has 14, 438 observations containing 3, 095 customers which can be new ones or
repeated when compared to the training sample.

Table 2.1 provides descriptive statistics for each of the 15 variables
we consider. Notice that in the column labeled as “type” only two cat-
egories appear: “original” if the variable came from the original data
set or “new” if it were created under the scope of this work. Regard-
ing the former type, we find labels created quite self-explanatory but
any question about the meaning of any variable can be settled by vis-
iting https://www.kaggle.com/mrmorj/restaurant-recommendation-challenge.
We define the new variables as: Age of Customer Register – number of days
since the customer has first registered; Age of Vendor Register – number of
days since the vendor has first registered; Frequent Vendor – total number
of transactions made by a specific vendor with any customer; Frequent Cus-
tomer – total number of transactions made by a specific customer with any
vendor; and Distance from Customer to Vendor – euclidean distance between
a customer and a vendor based on latitude and longitude values.

Table 1.1: Descriptive Statistics for features used in the training sample with 1100 observa-
tions and 8 vendors.

Variables Mean Std Maximum Minimum type
Amount of items purchased 2.23 1.99 38 1 Original
Total Cost 12.09 9.45 131 0 Original
Payment Mode 1.35 0.76 5 1 Original
Driver Rating 0.56 1.51 5 0 Original
Delivery Distance 3.70 4.02 14.97 0 Original
Gender 0.90 0.30 1 0 Original
Delivery Charge 0.40 0.35 0.7 0 Original
Serving Distance 14.13 2.82 15 5 Original
Preparation Time 14.04 2.25 20 10 Original
Vendor Rating 4.36 0.21 4.8 4 Original
Frequent Vendor 4.36 0.21 4.8 4 New
Frequent Customer 4.36 0.21 4.8 4 New
Age of Vendor Register 642.46 125.91 805 429 New
Age of Customer Register 616.71 160.69 952 255 New
Distance from Customer to Vendor 0.54 0.34 1.75 0 New

7Several features of the original data set were discarded since they have the vast majority
of their entries as missing values or they are categorical variables with only one category.
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1.6.2
Framework and Results

The framework proposed in previous sections is suitable for sequential
problems of decision making. In order to comply with this, we interpret the
dataset as being sequential, in the sense that at each time step only a customer
arises, chooses a vendor and purchases items. We allow the same customer to
arise multiple times both in the training and in the testing samples. Also, as
defined in Section 1.2, the cardinality of the set of possible actions (w) is,
in this context, the number of selected vendors we would like to recommend,
indexed by k = {1, ..., w}. At every instant of time a customer appears and
our algorithm should recommend a vendor, based on observed covariates.

To gather information about customers preferences we run a initialization
stage by offering every vendor to every customer in the training sample. Since
we know every customers’ choices, we compute a unit reward if we are right
in our recommendation or a zero reward otherwise. Therefore, after this phase
we have sufficient information to estimate the sequence {β̂k}wk=1 in equation
(1-2). In the long run, each customer in the test sample also arises at each
time step when we are supposed to recommend a vendor following the online
learning rule proposed in this chapter. Recall that each β̂k is updated once the
action ωk is adopted.

Figures 1.10 and 1.11 exhibit two related measures for the variable
selection of the Lasso estimation, equation (1-2). Fix an arbitrary variable
x(j). Define the relevance (rj) and strength (sj) of the j-th variable as:
rj = ∑w

k=1 1β̂k(j) 6=0 and sj = ∑w
k=1 |β̂k(j)|, where β̂k(j) is the j-th entry of

estimated beta for vendor k. Intuitively, rj is about how frequent across vendors
a variable is selected as relevant to explain the customers’s preferences, and sj
relates to the potential to impact rewards.

Figure 1.10: Relevance of each variable
in Lasso estimation after the initialization
phase for a training sample containing 1100
observations and 8 vendors.

Figure 1.11: Centered (demeaned) strength
of each variable in Lasso estimation after
the initialization phase for a training sample
containing 1100 observations and 8 vendors.
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Figure 1.10 exhibits the relevance of each variable, while the right panel
is about the demeaned strength in the Lasso estimation. From both panels, it is
possible to infer that preferences are strongly influenced by how frequent is the
vendor in performing transactions, preparation time and if it is an experienced
vendor regarding the time elapsed since it first registered in the app. To see
this, take age of vendor register as example. It is selected by Lasso as a relevant
variable for all 8 vendors and the absolute sum of its estimated entries across
all these 8 vendors is the second largest.

Main results are presented from Figures 1.12 to 1.14. The objective here
is to explore the benefits of being conservative in a framework where users
might be loyal to a set of specific vendors. For this, we compare the CHD
εt-Greedy with its non-conservative version, using as a benchmark a naive rule
that always guess. The later can be understood as a HD algorithm restricted
to its exploration only. Figure 1.12 compares the algorithms, while the right
panel focus on the post-initialization stage. Notice that the naive benchmark
regret grows at an apparently linear rate, while both CHD and HD algorithms
learns to choose actions in the long run.

Figure 1.12: Comparison among CHD, HD
εt-Greedy and a Pure Exploitation algo-
rithm.

Figure 1.13: Comparison among CHD, HD
εt-Greedy and a Pure Exploitation algo-
rithm after initialization.

Figure 1.14 focus on the comparison between CHD and HD algorithms
in the post-initialization phase. Results indicate that the rules provided in
this chapter effectively learn through experience with mild differences between
them. Moreover, it is interesting to highlight that the comparative performance
between both algorithms is very similar to what was observed in Figure 2.21,
when the learning rules were tested in a controlled environment. Another way
to qualitatively attest the learning process of the CHD algorithm is looking
at Figures 1.15 and 1.16. Jointly, both figures provide a comparison between
the frequency of hits of the naive (which never learns) and that of the CHD.
A customer would agree with a recommendation made by the naive algorithm
20.01% of the exploration versus exploitation stage, while for the CHD rule,
matching achieves 96.38%.
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Figure 1.14: Comparison between CHD and HD εt-Greedy,
considering only the exploration x exploitation stage.

Figure 1.15: Differences between the selected
policy and the best policy for the naive
algorithm considering only the exploration
x exploitation stage.

Figure 1.16: Differences between the selected
policy and the best policy for the CHD εt-
Greedy algorithm considering only the ex-
ploration x exploitation stage.

Since the results so far are conditional on the 8 pre-selected vendors,
we perform a simple robustness check that consists of running 30 simulations,
where in each of them we select randomly a different set of 8 vendors and,
consequently, a different set of customers and their respective transactions.
This exercise may be understood as a robustness to different sets of customers’s
preferences and to different sets of vendors features (which may impact
preferences). Figure 1.17 compares the frequency of hits in the exploration
versus exploitation phase for the CHD and HD εt-greedy algorithms. One can
see that previous conclusions do not change, regarding the learning capacity
and the potential benefits the algorithms would generate to a recommendation
system. Actually, the observed frequencies of hits are not too much dispersed
and the two respective coefficients of variation are very similar (0.4082 and
0.4080, respectively), indicating that both learning rules operate similar to
different sets of inputs.
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Figure 1.17: Comparison of frequency of hits between among CHD and HD εt-
Greedy algorithms, across 30 simulations.

1.7
Concluding Remarks

In this work, we contribute to augment the basket of online learning so-
lutions related to contextual bandits in high-dimensional scenarios. We extend
a popular multiarmed bandit heuristic, the decaying εt-greedy heuristic, to
high-dimensional contexts and we augment it with a conservative exploitation
solution. The resulting learning rule can be useful for practical applications
where an agent uses the experience and the repeated observation of a large
pool of covariates to conservatively learn the best course of action relatively
to some reward.

For a decreasing εt-greedy multiarmed bandit, we find that adding a high-
dimensional context to the original setting does not substantially jeopardize the
original results, except that in our case, regret not only grows reasonably with
time but also depends on the covariate dimensions, as the latter grows with
the former in high-dimensional problems. We find an upper bound growing
less that O{s0

√
T log(2p)} which seems to be comparable and, in some cases,

even better than similar alternatives in the literature.
Moreover, we show that the consideration of a higher-order statistics

searching set as an alternative to random exploration introduces safety to
the decision-making process, without deteriorating the regret properties. More
specifically, we show that the regret bound when the order statistics searching
set is considered is at most equal to but mostly better than the case when
random searching is the sole exploration mechanism, provided that the cardi-
nality of the set of actions is sufficient large. Furthermore, we show that the
upper bound on the cumulative regret function of the CHD εt-Greedy algo-
rithm is not affected by the cardinality of the higher-order statistics searching
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set, which, per se, provides flexibility for end-users facing constraints on the
number of viable actions.

In a simulation exercise, we show that the algorithms proposed in this
chapter outperform adapted competitors. Also, by employing both algorithms
at a recommendation system data base, we confirm their learning trough
experience, attesting their potential usefulness for companies that want to
leverage their profits with an accurate recommendation engine.
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2
Deterministic Treatment Effects Estimation with Unknown
Complex Assignment Rules: A Learning Forest Approach

2.1
Introduction

According to Cattaneo et al. (2020):

“The first step to employ the Regression Discontinuity (RD) design in
practice is to learn how to recognize it. There are three fundamental

components in the RD design - a score, a cutoff, and a treatment. Without
these three basic defining features, RD methodology cannot be employed.”

In this chapter, we explore situations where the above sentence can be
softened. In particular, we present a procedure that can be useful for programs
with deterministic rules that are unknown to the researcher and maybe more
complex (as defined by Imbens and Zajonc, 2009) than the usual ones in the
Regression Discontinuity Designs (RDD) literature.

More specifically, suppose there is a program with a deterministic assign-
ment rule where one of the two occurs: either the researcher, for some reason,
does not know the cutoff or she knows a previous version that is not entirely
used to assign units to treated and non-treated groups. In the first case, the
researcher is prevented to estimate treatment effects using standard sharp or
fuzzy procedures since the words of Cattaneo et al. (2020) above-mentioned
are binding. One does even not know which unit is eligible or not to the treat-
ment. In the last case, if the researcher tries to estimate effects based on the
obsolete cutoff, she may observe some misassignment of units to the treatment
groups, compatible to what is observed in fuzzy procedures. At first glance,
the respective fuzzy toolkit might appear to be the most suitable econometric
procedure to be used, but our work is for cases when one can still discover
a sharp rule based on observables, maybe more complex than the previous
one. The source of the observed misassignment would be different from the
traditional compliance problems characteristic of the fuzzy setup. Example 3
in Section 2.2 explores a real program that, in a first sight, presents some
fuzziness, which is overruled since one discovers a sharp hidden complex rule.
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The method proposed in this chapter can be useful to both cutoff anomalies
described here.

2.1.1
Motivation and Comparison with the Literature

The problem of how to infer about causal relations from observations has
challenged social scientists for decades and has led to a huge literature on the
theme. In practice there is a multitude of distinct programs being offered to
targeted units, each one of them with its own particularities. For instance, it
is well-known that for a random assignment of individuals to treatment and
non-treatment groups, resulting effects can be easily identified and estimated.
However, in the absence of randomness, RDD appears as one of the most
credible non-experimental strategies for the analysis of causal effects (Cattaneo
et al., 2020).

The idea of using discontinuities in assignment rules to identify local
causal effects is not new and can be traced back to works such as Thistlethwaite
and Campbell (1960). However, the usage of RDD in economic applications
exponentially expanded only after the seminal work in Hahn et al. (2001), that
formalized the methodology in a language common to program evaluation.
Subsequent works have deepen the understanding of every feature of RDD
(Lee and Card, 2008 and Lee and Lemieux, 2010), developed the theory
behind estimation (Porter, 2003 and Sun, 2005), provided practical guidance on
bandwidth selection for local polynomial regressions (Ludwig and Miller, 2007
and Imbens and Kalyanaraman, 2012), among many others. For comprehensive
reviews of RDD please refer to Imbens and Lemieux (2008), Lee and Lemieux
(2010) and Cattaneo et al. (2020).

In this work we expand the RDD literature in the following directions:
Unknown Assignment Rules: Real world programs may have intrinsic

features that impose some level of non-disclosure of assignment rules. In these
cases, the lack of knowledge can be total, when the cutoff has not been
published, or partial if a previously announced rule has evolved to a different
one at the time of the program’s implementation. In both cases, we implicitly
consider in this chapter that there is a deterministic (unknown) assignment
working behind the scenes and we show in this chapter that a tree-based
methodology can be useful to provide consistent estimatives in contexts like
these.

For example, in Chay et al. (2005) the authors investigate a Chilean
government-based program (P900) designed to assist schools with low fourth-
grade test scores. However, at execution, it is possible to recognize that the
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government decision was not only based on grades, but other features may have
played an important role. This conclusion is not only stated by the authors
but also is clearly recognized in some administrative regions of Chile where
there exists no possible cutoff based solely on students grades that can exactly
segregate units in treated and non-treated groups. Example 3 in Section 2.2
illustrates our point for the Chilean first administrative region, showing that
one can still discover a deterministic assignment, but more complex than the
previous one based solely in grades.

Other cases could be considered in this context. For example, the work
in Van Der Klaauw (2002) evaluates the effect of colleges and universities
financial aid offers on student enrollment decisions. The specific financial aid
allocation mechanism chosen is linked with college’s objectives, such as, for
example, those related with total enrollment, quality of accepted students
and an appropriate level of diversity. The forcing variable in this case is
an underlying index of various individual characteristics and, as commented
in Porter and Yu (2015), the respective threshold could not be disclosed to
mitigate manipulation by individuals or competition from other schools.

Another example with an unknown discontinuity point is discussed in
Card et al. (2008) who analyze the tipping effect in the dynamics of segregation.
Specifically, when the minority share in a neighborhood exceeds a “tipping
point”, all the whites leave. Such a tipping point depends on the strength of
white distaste for minority neighbors which is generally unknown.

To the best of our knowledge, the most important paper dealing with
unknown assignment rules is the work in Porter and Yu (2015). The authors
propose tests to check about selection and the existence of a quantifiable
effect from treatment, as well as the theory underlying estimation procedures
both in the sharp and in the fuzzy contexts. The main idea is to recover the
unknown cutoff, estimating it by the Difference Kernel Estimator proposed in
Qiu et al. (1991) and, then, to estimate treatment effects as if the cutoff were
known (plugging the estimated one). In our work, we propose a completely
different methodology that does not need to uncover the hidden assignment
rule. Instead, based on classification trees, it gradually learns treatment effects
as the respective forest grows. However, since we know that in some cases the
researcher may want to know the assignment rule, we also provide a suggestion
of how one could shed light on this.

Complex Assignment Rules: In the classic RDD setup, the proba-
bility of treatment changes discontinuously if a scalar characteristic, only one
forcing variable, falls above or below a cutoff point. In reality, things can be
more complex than that and, in some cases, researchers can be compelled to
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build new construct variables to remain in the univariate setup to estimate
treatment effects.

For example, as commented in Papay et al. (2011), in public education
students often take tests with clear cutoffs in several different subject areas
and frequently must pass externally defined multiple criteria to, for example,
avoid summer school, to be promoted to the next grade, or to graduate from
high school.

Also, the work in Leuven et al. (2007) is about effects in schools that
receive two kinds of subsidies. The first scheme gives primary schools with
at least 70% disadvantaged minority pupils extra funding for personnel. The
second scheme gives primary schools with at least 70% pupils from any
disadvantaged group extra funding for computers and software. Eligibility for
different types of insurance or entitlement program eligibility may also be
driven by several criteria, such as family size or family income.

An important by-product generated in this work is related to the fact
that the tree-based approach we engineered in this chapter works properly in
a multivariate setup with more intricate assignment rules. This fact allowed us
to generalize the traditional univariate cutoff to situations more adherent to
practical situations. In this sense we inspired ourselves in Imbens and Zajonc
(2009) to characterize what would be a treatment effect in a multivariate cutoff
context.

2.1.2
Main Takeaways

Our contributions are twofold:
Primary - Theoretical: The main contribution of this work is to extend

the work in Porter and Yu (2015) in directions when one can still discover a
hidden deterministic assignment rule, based on observables, but more complex
than the usual ones. A central product of this work relates to the theoretical
investigation we provide for a tree-based methodology that does not estimate
an unknown cutoff, but is capable to learn treatment effects from every
piece of border between cells with distinct classification, as better clarified in
Section 2.3. Basically, the procedure translates itself to a forest of classification
trees, where a sequential learning procedure, similar to a bandit problem, is
used to guarantee that, with high probability, the proposed empirical trees
asymptotically approach those that correctly identify treatment effects. At the
end, it estimates an implicit, from some assignment rule that remains mostly
unknown, learned treatment effects that we prove to be consistent.

Subsidiary - Practical: We provide an algorithm for estimation of
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treatment effects, in a sharp RDD sense, that takes into account specific forms
of complex unknown assignment rules. In general terms, at each tree, several
RDDs are evaluated and a tree-average treatment effect is computed. As the
forest grows, this procedure is repeated in the other base learners and a forest-
average treatment effect is computed (better explained in Section 2.3). Also,
although not theoretically required, we provide an exploratory analysis that
may be useful in cases that the knowledge of the assignment rule is valued.
We also provide a robustness check on some properties of the algorithm with
respect to parameters imputed by end-users.

We employ the algorithm proposed to revisit part of the P900 program
investigated in Chay et al. (2005). We find the P900 suitable for our work,
since the true assignment rule used by the government is not known in
all Chilean administrative regions in the sample. There is, however, some
documented evidence of discretion based, for example, on somewhat counter-
intuitive allocations of units to the treatment groups. Despite of this, we find
that our procedure delivers higher classification rates than those obtained in
Chay et al. (2005). Moreover, focusing on a specific administrative region, we
recover a complex assignment rule that probably has been overlooked by the
literature so far, which not only provides a better classification for the units
(schools) but also provides insights on a possible heterogeneous results among
regions, a topic that, as far as we know, has not been touched in any academic
work on the P900.

2.1.3
Organization of this chapter

The rest of this chapter is structured as follows. Section 2.2 gives more
details and provides few examples of the problem we are investigating in this
chapter, as it establishes the main notation and framework for the classification
trees in our forest. Section 2.3 presents considerations about treatment effects
identification and estimation, and provides an algorithm for practical use.
Section 2.4 exhibits the theoretical and main results of this chapter, while
Section 2.5 works on a simulation of the algorithm presented in Section 2.3
and some robustness checks. Section 2.6 employs the proposed methodology in
this chapter to revisit part of the Chilean P900 program. Finally, Section 2.7
concludes this work. All proofs are relegated to the Appendix.
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2.1.4
Notation

Regarding the notation used in this chapter, we provide in this subsection
general guidelines. Definitions and particularities are presented throughout
this chapter. Bold capital letters X represent matrices, small bold letters
x represent vectors and small standard letters x represent scalars. Matrices
or vectors followed by subscript or superscript parentheses denote specific
elements. For example, X(j) is the j-th line or column of the matrix X
depending on the context, while x(j) is the j-th scalar element of the vector
x. Id is the identity matrix. Let M be an arbitrary vector space. The symbol
‖·‖ is the usual vector norm on M , while B(x0, τ) is the ball defined in M

around a point x0, the set {x ∈ M |d(x,x0) ≤ τ}. Let Y be an arbitrary set.
Then, #Y is used to represent the cardinality of Y , while 1{y ∈ Y } is the
traditional indicator function that takes a value of 1 when y ∈ Y . Finally, ĥ
indicates that it is a quantity generated based on a training sample. Depending
on the context, it may refer to an estimative of h, a parameter of interest,
or, for example, to some variable associated to an empirical tree, that relates
asymptotically to some quantity h in a theoretical tree. For a concrete example,
τ̂ is used in this chapter for the estimative of treatment effect, while ĥ is used
for a split generated by an empirical tree.

2.2
General Setup and Problem Formulation

Consider a sample composed by n individual units, all of them candi-
dates for a generic treatment. For each i ∈ {1, ..., n} we observe individual
characteristics xi taking values on [0, 1]p, p > 0, that are i.i.d realizations from
the same distribution P. We also observe a scalar response variable yi taking
values on R and a binary variable di ∈ {0, 1} representing treatment status,
that is, di = 0 indicates that the unit i have not been treated and di = 1 rep-
resents the opposite. The well-known fundamental problem in causality refers
to the impossibility to simultaneously observe an arbitrary unit’s outcomes in
treatment and non-treatment groups. To identify treatment effects and infer
about causal effects, one can rely upon a variety of different approaches, condi-
tional on assumptions made and the environment surrounding the experiment.
In this paper, we study local treatment effects in a similar fashion (but with
important additions) of the classical sharp RDD.

The vast majority of papers that use RDD to estimate treatment effects
deals with one single forcing variable and a simple assignment rule. That is,
considering that there is a direct effect of xi on yi, as well as an effect on
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di, units are automatically (abstracting from compliance problems) assigned
to a treatment once their relevant observable characteristic exceeds a fixed
threshold c. Formally, di = 1{x(j)

i ≥ c}, where x(j) is the forcing variable
associated to the treatment.

As better exposed in Section 2.1 we study cases where the cutoff is
unknown to the researcher. These cases comprise situations that can vary
from the total lack of knowledge of the cutoff value, perhaps driven by ethical
reasons or to avoid manipulation, to situations where a threshold is previously
published by the entity who runs the program but, when assigning units to
treatment, different forces come into play leading to divergences between the
expected constitution of treatment groups, based on the known cutoff, and
what is observed. This last situation is exemplified later in this section through
the lens of the P900 program that ended up generating confusing (based on
what was mainly understood about the cutoff) treatment groups.

It happens that, in some cases, unknown cutoffs may be more complex
than those that rely on a single forcing variable. The work in Imbens and
Zajonc (2009) points out that, conceptually, RDD setups derived from mul-
tivariate cutoffs are similar to the scalar case, except that the cutoff at the
discontinuity becomes a boundary. According to their definition, any point x
is defined to belong to a boundary A, labeled by xA, if and only if every neigh-
borhood around xA contains points both in the treatment and in control group.
It is a generalization of the usual cutoff to the multivariate case. In these cases,
local treatment effects can be associated to the limits of conditional expecta-
tion functions, taken by shrinking a ball centered in any point xA, B(xA, ε),
towards its center (ε → 0). On the limit, units belonging to treated and un-
treated groups would be so similar to each other that assignment to any group
could be considered as random.

Example 1 To set ideas, consider a bivariate case, assuming a somewhat
more complex assignment rule di = 1{min{x(1)

i ,x
(2)
i } ≥ c}, that is, an unit is

treated provided that at least one of its features assumes a value greater than or
equal c. In this case, a point is on the boundary if xA = (c, r) or xA = (r, c),
with r ≥ c. This reveals that a boundary might be formed by “heterogeneous”
units, since a unit i with features (c, c+ k), k > 0 and a unit i′ with (c+ k, c)
are both treated and may present different responses to the program due to their
intrinsic differences. Figure 2.1 illustrates the above-mentioned boundary.

In practice, the choice of a boundary point xA in Example 1, leads to a
conditional (to this choice) estimated treatment effect. In this paper we follow
the suggestion in Imbens and Zajonc (2009) and we summarize treatment
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(c, c) A

A

x1

x
2

Figure 2.1: Illustration of an heterogeneous boundary in R2.

effects along the boundary, in line with what they called the sharp integrated
treatment effect:

τ ≡ E[yi(1)− yi(0)|xi ∈ A]

where the expectation is taken over the boundary. Assumption 5, though,
restricts our problem to specifics forms of boundaries that tuns out to be very
general to most practical situations. In the sequence, Example 2 provides an
hypothetical program that fits to our case and introduces our approach in this
paper to deal with the lack of knowledge of the true boundary.

Assumption 5 (Identification of Treatment Boundary) Consider a
program that assigns units to treatment according to a deterministic complex
rule a : [0, 1]p → {0, 1}, in the sense that ∀i, a(xi) = di. Then, there is at least
one classification tree T in a set Da ≡ {Tm}m=1,...,Ma that correctly identifies
the associated boundary Aa.

Example 2 As a simple example of a set D, consider a hypothetical program,
maybe a job relocation program designed for poor, but reasonably-educated
people that are currently underemployed. In this case, let x(1)

i and x(2)
i be the

wealth and the level of education of the person i, and let c1, c2 be the respective
thresholds. This program fits in assumption 5: it has a complex assignment
rule, with an associated boundary A = {xi|x(1)

i = c1;x(2)
i ≥ c2} ∪ {xi|x(1)

i ≤
c1;x(2)

i = c2} that can be described by a “tree structure”. Figures 2.2 and 2.3
depict two simple trees T1 and T2 that correctly identify A, being the only
difference between them, the order of splitting: while T1 uses x(1) as its first
direction to split, T2 uses x(2).

Firstly, notice how general is the hypothetical program described in Ex-
ample 2. We could have easily replaced this example for other programs de-
signed to subjects such as: education (students must pass two tests), inequality
(fixed criteria on wealth and neighborhood, for example), gender, race, among
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x(1)

x(2)

Figure 2.2: T1

R′1

R2 R′3c1

c2

x(1)

x(2)

Figure 2.3: T2

many others. It turns out that the “rectangular shape” formed by the bound-
aries considered in this paper are not only suitable for a tree-based methodol-
ogy, but also intuitively associated to most treatments of interest.

Also, building on Example 2, as we work in this paper with unknown
assignment rules, consider that for some reason, one does not know {c1, c2}.
According to the assignment rule considered, we would expect region R2 in
Figure 2.2 to be the only one containing treated units. Label the edge between
R2 and R3 as E2−3 and the one between R2 and R1 as E1−2 (red ellipses in
Figure 2.2). Notice that both E1−2 and E2−3 could be considered as cutoffs to
a regression discontinuity design where, in each one of them, only one variable
plays the role as the forcing one. In fact, as discussed before, units sufficiently
close to these borders are so similar among each other with respect to the
driving variable, that allocation or not to the treatment could be considered
random. Therefore, to estimate integrated treatment effects over this boundary,
we consider τ as a composition of two treatment effects, τ1 and τ2, whether
x(1) or x(2) is the relevant forcing variable. Our problem, then, is to build
a procedure that guarantees, with high probability, that our empirical trees
approach any theoretical one in D. In Section 2.3 we present our suggestion.

Example 3 uses the P900 treatment as a real example of a program that
could be analyzed under the tree-based scope proposed in this paper. In very
general terms, the P900 was implemented by the Chilean government to assist
schools with poor performance. Back in 1990, the program identified approx-
imately 900 schools presenting low mean fourth-grade test scores that, once
treated, should be supported with infrastructure improvements, instructional
materials, teacher training, and tutoring for low-achieving students. We pro-
vide more details on this program in Section 2.6 and for a thorough exposition
please refer to Chay et al. (2005).

Example 3 Based on what was mainly known about the P900 assignment rule,
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a Chilean school would get assistance from the government based on the grades
of its students. Figure 2.4 presents what is observed in terms of the of treated
and non-treated schools for the first (out of thirteen) administrative region in
Chile. In this figure, the average grade is the mean between the mathematics
and language scores obtained by students in the 1988 test in a given school
and di is the treatment indicator, zero for untreated units and one for treated
schools. A simple observation of Figure 2.4 shows that any cutoff based solely
on grades that one could possibly consider induces treated schools that should
not be treated and non-treated schools that should be. There is a clear and strong
overlap that could be associated to a level of misassignment usually observed
in a fuzzy setup with possible problems of compliance.

However, a deeper investigation into the data set reveals the hidden
threshold: for urban schools, an average grade less than or equal to 51.85 and
frequency of students greater than or equal to 14 is sufficient to exactly split both
treatment groups without overlapping. That is, a hidden complex rule that lead
us back to the sharp setup and that precisely fits to the tree-based methodology
of Example 2.

Figure 2.4: Treated and untreated schools in Chilean Admin-
istrative Region 1, where we present the average score of each
school in mathematics and language in 1988 and di is the treat-
ment indicator, zero for untreated units and one for treated
schools.

In order to explore the treatment discontinuity to identify the corre-
spondent effects, we impose Assumption 6, which is standard in the regression
discontinuity literature (e.g. Imbens and Zajonc, 2009, Hahn et al., 1999, Hahn
et al., 2001, Imbens and Lemieux, 2008).

Assumption 6 (Continuity of Conditional Expectation Functions)
E[yi(0)|xi ∈ [0, 1]p] and E[yi(1)|xi ∈ [0, 1]p] are both continuous functions.
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Remark 4 Theoretical concepts underlying the RDD methodology require con-
ditional expectation function to be continuous only at the cutoff (boundary). In
this paper we extend it to the range of x, following the comment in chapter
21 of Wooldridge (2001) that says that: “Technically, they are continuous at
x = c, but it is hard to imagine how we could ensure that they are without
assuming continuity over the range of x”. Actually, there is another reason
we need Assumption 6. In our procedure, at every tree in the forest different
variables may play the role of a forcing variable and different cutoff values can
be used as well. Therefore, the conditional expectation function should be re-
quired to be continuous at a larger set of different points of the random vector
x. Extending this premise to the entire support of the covariates is sufficient
for our purposes.

Finally, for the sake of completeness, it is important to highlight that,
implicitly in this framework, we are considering the SUTVA (Rubin, 1986)
assumption. So, units are not affected by the treatment of their peers. As
already mentioned, compliance to the treatment is also required.

2.2.1
The Forest Setup

In the last subsection we introduced the idea that a classification tree
could be a suitable methodology to be considered when cutoffs are unknown.
However, in many real applications, decision trees such as that depicted in
Example 2 present high variance (James et al. (2013)). That is, if the training
sample is randomly divided into two parts, the results of decision trees fitted
to both halves can be quite different. This fact is one of the main drivers that
led the evolution of single trees to procedures such as bagged trees and random
forests. All of them reduce the variance of a estimative, when compared to the
single-tree case and, because of this, have become more and more popular in
the last decade. In this paper, we work with what we call learning forests, a
modification from the original random forest concept introduced in Breiman
(2001), better described in Section 2.3.

Extending definitions already made in this section, we work with a
training sample Sn = {(xi, di)}i=1,...,n of [0, 1]p × {0, 1}-valued independent
random variables and we build a forest comprising a sequence {Tb}b=1,...,B of
B classification trees in the forest. Each node of a generic tree represents a set
(cell) in the space [0, 1]p × {0, 1}. The first cell at the top of a tree Tb is its
root and comprises all available units. We represent it by Ab,0, while Ab,k is
reserved for other cells as Tb grows. We work with the case that each cell has
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exactly two children, resulting from a splitting rule, or none at all. In the first
case we have an internal node and, in the latter, a terminal node or leaf.

Inspired by one of the most famous splitting rule, the Classification and
Regression Trees (CART) in Breiman et al. (1984), we impose that, at each
node of each tree, the best cut is selected as the one that maximizes the
variation in the impurity Gini index. Define n(Ab,k) ≡ #{xi ∈ Ab,k} as the
number of units in the k-th cell of the b-th tree and nd(Ab,k) ≡ #{xi ∈
Ab,k|di = d}, d ∈ {0, 1}, as the amount of treated and non-treated units in cell
Ab,k. Then, the impurity Gini (G(Ab,k)) is defined as:

G(Ab,k) = φ0(Ab,k)(1− φ0(Ab,k)) + φ1(Ab,k)(1− φ1(Ab,k))

where φd(Ab,k) ≡ nd(Ab,k)
n(Ab,k) is the frequency of units belonging to class d ∈ {0, 1}

in cell Ab,k. The purest case occurs when φ0(·) = 1 or φ0(·) = 0 leading, in
both situations, to G(·) = 0.

Let Wb be an uniformly draw subset from {1, ..., p} with cardinality
w,∀b ∈ {1, ..., B}. The nodes of a tree Tb choose the best split based on the
variation of the Gini index, but restricted to the fact that the chosen direction
belongs to Wb. Also, only a random portion of the sample points, with size
s ∈ {1, ..., n}, is allowed to be used as an input into the root of any tree Tb.

In our notation, a split hb,k ≡ (jb,k, ζb,k) is a pair that divides the parent
cell Ab,k−1 in its two children, where jb,k ∈ Wb is the best direction selected
for splitting and ζb,k is its respective value, that is, a particular realization
of x(jb,k) used to divide the cell based on the purity gain. Formally, the left
child of Ab,k−1 is Ab,k−1,− ≡ {(xi, di, yi) ∈ Ab,k−1|x

(jb,k)
i ≤ ζb,k} and the right

child is Ab,k−1,+ ≡ {(xi, di, yi) ∈ Ab,k−1|x
(jb,k)
i > ζb,k}. In addition, define

Hb,k−1 = {hb,1, hb,2, ..., hb,k−1} as the set of all previous splits, from the root,
used to generate Ab,k−1, C = {(j, ζ)|j ∈ {1, ..., p}, ζ ∈ {x(1)

1 , ...,x(p)
n }} as the

set of all possible splits derived from Sn, and Cb,k ⊂ C as the set of all viable
splits hb,k given Hb,k−1.

We halt the growing of Tb based on a stopping criteria ∆, which is
compared to the variation of the impurity index after a split. That is, a cell
Ab,k−1 is not further split if:

∆ > Γ(Ab,k−1, hb,k) ≡ G(Ab,k−1)− Ω(Ab,k−1, hb,k)

where:
Ω(Ab,k−1, hb,k) ≡φ−(Ab,k−1, hb,k)G(Ab,k−1,−, hb,k)−

φ+(Ab,k−1, hb,k)G(Ab,k−1,+, hb,k)

is the weighted impurity index for both children of Ab,k−1, while the weight
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φ−(Ab,k−1, hb,k) ≡ n(Ab,k−1,−)/n(Ab,k−1) is the proportion of units in the parent
cell assigned to the left child after a split. The same definition is extended to
φ+(Ab,k−1, hb,k) regarding the cell Ab,k−1,+.

Define Lb = {Ab,k|Ab,k,− = Ab,k,+ = ∅} as the set of Kb leaves in tree Tb.
We associate a class for each leaf following the well-known majority vote rule
for classification trees. That is, provided that Ab,k ∈ Lb:

g(Ab,k) =

1, if ∑nAb,k
i=1 di,b,k >

∑nAb,k
i=1 (1− di,b,k)

0, otherwise
(2-1)

where g(·) is the majority vote classifier.
Also, let Fb = {(Ab,ki , Ab,kj) ∈ Lb|∃h ∈ Hb,ki ∩ Hb,kj and g(Ab,ki) 6=

g(Ab,kj)} to be the set of pairs of adjacent leaves with different classifications,
with cardinality fb. This set comprises pairs of leaves that, not only disagree
about the classification they assign to their units, but also share a split
(h ∈ Hb,ki ∩ Hb,kj) in some step of the tree growing process. For instance,
using the tree T1 depicted in Figure 2.2, we observe that L1 = {R1, R2, R3}
and F1 = {(R1, R2), (R2, R3)}.

2.3
Considerations About the Identification of Treatment Effects and Esti-
mation Procedure

Recall from Section 2.2 that our main objective is to estimate the sharp
integrated treatment effects τ , based on a true boundary that we do not know
in advance. Assumption 5, however, suggests that the boundaries considered in
this work are associated with “rectangular regions” of treated groups and, as
a consequence, τ could be understood as a composition of what we call border
treatment effects (see the discussion in Example 2). We aggregate treatment
effects estimatives as: the average of all border treatment effects estimatives
after a tree is fully-grown is called the tree treatment effect estimative; and the
average of all tree treatment effects estimatives is called the forest treatment
effect estimative, which we use to estimate τ . Formally:

Definition 4 (Aggregation of Treatment Effects) A forest treatment ef-
fect estimative τ̂ is:

τ̂ = 1
B − µψQ

B∑
b=µψQ

τ̂
(t)
b

where µ, Q are defined in this section under the context of the learning method-
ology proposed, ψ is defined in Lemma 14 and the elements of the sequence
{τ̂ (t)

1 , τ̂
(t)
2 , ..., τ̂

(t)
B } are estimatives of the tree treatment effects, calculated by:

τ̂
(t)
b = 1

fb

fb∑
l=1

τ̂
(f)
b,l
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where, for a tree Tb, the elements of the sequence {τ̂ (f)
b,1 , τ̂

(f)
b,2 , ..., τ̂

(f)
b,fb
} are

estimatives of the border treatment effect evaluated on the fb pairs of leaves
(Ab,ki , Ab,kj) ∈ Fb.

The next section investigates convergence properties of empirical splits
and the respective border treatment effects estimatives to their theoretical
(population) counterpart. However, as indicated in Assumption 5, maybe more
than one theoretical tree correctly identifies the boundary induced by the
assignment rule (the one relevant for causal effects) and, on the other hand,
certainly there are trees (those that do not belong to D) that identify wrong
borders. In this paper we use a sequential learning procedure to guarantee
that, with high probability, the borders generated in our operational procedure
converge to the right one.

In very general terms, a sequential learning rule with good theoretical
properties is capable to effective learn how to take actions, from some alterna-
tives, in order to maximize a reward or some variable of interest. It is not our
intention to review these kind of problems in details, since we already work
with sequential learning in Chapter 1. For the purposes of this chapter, good
references are: Auer et al. (2002), Slivkins (2019) and Charpentier et al. (2021).

Consider the set Q to contain all possible combinations of w variables,
from the p originally considered. That is, a set of sets, with cardinality
Q ≡ p!

p!(p−w)! , in the sense that an element of Q, Qq, q ∈ {1, ..., Q}, is a set
containing a random draw from {1, ..., p} with cardinality w. Recall from the
framework described in Section 2.2, that set Q contains all possibilities for sets
Wb, splitting direction to be used by the nodes of the b-th tree. In addition
to this, we know that any tree in D correctly recognizes the true boundary
and, as so, its leaves attain maximum purity (G(·) = 0, leading to correct
classification of units in treatment groups). Our problem, then, is to learn how
to give our empirical trees the best substrate to work, in order for them to
resemble their counterparts in D. In other words, we want empirical trees to
attain the maximum purity possible, before a fixed stopping criteria is applied
to all of them. In this setting, we consider Q as the set of possible actions that
can be chosen by a learning rule in order to maximize the reward, the sum of
the negative Gini index (purity) in the leaves of our empirical trees.

Definition 5 (εb-Greedy Heuristic) Let µ > 0 and define the sequence
εb ∈ (0, 1], b ∈ {1, ..., B}, by εb ≡ min

{
1, µQ

b

}
. Define the action function

I : N+ → Q, such that for each tree Tb, I(b) = Qq represents that action q was
selected by the learning rule. Then, the εb-greedy algorithm is
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Algorithm 2: εb-Greedy Heuristic
input parameters: µ, B, Q
for b ∈ {1, ..., B} do

εb ←− min
{

1, µQb
}
;

qb ←− U(0, 1);
if qb ≤ εb then

ab ←− U(0, Q);
I(b)←− Qab

;
else

cb ←− arg max
q∈{1,...,Q}

1
B

∑B
b=1 Gbq(·);

I(b)←− Qcb
;

end
end

We use one of the most simple and popular learning rule: the decaying
εb-greedy, described in Auer et al. (2002) and repeated in Definition 5 for the
reader’s convenience. The rule works as: with probability 1− εb, it selects the
action the leads to the best empirical average reward until b; with probability
εb it adopts a random action in trying to find good ones that have not been
tested so far.

Given a tree Tb and a pair of cells in Fb sharing the l-th border, l ∈
{1, ..., fb}, we estimate the border treatment effect τ̂ (f)

b,l using local polynomial
regression, a topic that has been around in the literature for a long time.
Comprehensive studies on this can be found in Fan (1992), Fan (1993), Fan and
Gijbels (1992) and Ruppert and Wand (1994), among many others. Consider
the knowledge of the true cutoff (ζ0

b,l) at the particular border considered.
Since each border counts with a single forcing variable (see Section 2.2),
other covariates are used as control in the estimation procedure. We follow
the suggestion in Calonico et al. and estimate τ̂ (f)

b,l (ζ0
b,l) (considering the true

cutoff) by:

yi,b,l = αb,l + τ
(f)
b,l di,b,l + βb,l−(xi,b,l− ζ0

b,l) + βb,l+di,b,l(xi,b,l− ζ0
b,l) + γ ′b,lzi,b,l + ei,b,l

(2-2)
where the subscripts {i, b, l} refers to the i-th unit that lies near the l-th
border of the b-th tree, considering a bandwidth choice. Moreover, x is the
forcing variable at the l-th border and z is the rest of elements in x used as
control, considering the partition x = [x z]′. Following the notation in Section
2.2, subscripts “-” and “+” refer to cells at each side of the border, regions
with treated and non-treated units, since they belong to Fb. We also restrict
our problem to cases covered by Assumption 7.
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Assumption 7 (Problem Setup) For each tree Tb and each pair of cells
(Ab,ki , Ab,kj) ∈ Fb sharing the l-th border, l ∈ {1, ..., fb}:

i. ∃δα, δβ > 0, such that |αb,l| ≤ δα and ∀j ∈ {1, ..., p}, |β(j)
b,l−| < δβ and

|β(j)
b,l+| < δβ.

ii. The sequence {ei,b,l} is formed by independent centered random variables
with E[e2

i,b,l] ≤ σ2, E[zi,b,lei,b,l] = 0 and E[ei,b,lxi,b,l] = 0.

In practice, researchers often use a weighting scheme according to a
kernel function, in order to give relative importance to units whose scores
lie within a preselected bandwidth around the cutoff1. The most popular
choices in the RDD literature are the uniform kernel, that applies an equal
weight to observations, and the triangular kernel, that linearly downweights
observations far from the threshold (Lee and Lemieux, 2010). In this work, we
avoid exploring subjects such as optimal bandwidth choices or different types
of kernel. Although important in practical applications, they are not central to
the main results of this paper and considerably complicate notation. For more
details on these subjects, please refer to the above-mentioned works besides
those presented in Fan and Gijbels (1996) and Imbens and Kalyanaraman
(2012).

In cases where the true cutoff is known, the authors in Calonico et al.
(2014) have proven that τ̂ (f)

b,l (ζ0
b,l) is consistent to the true effect τb,l, plus an

additional term that depends on the RD treatment effect on the covariates. A
sufficient condition to get rid of this term is described in Assumption 8, imposed
in this paper only to reduce the mathematical burden on the proofs. As also
described in Calonico et al. (2014), this assumption is weaker than requiring
that the marginal distributions of z for treated units are equal those for non-
treated units near the cutoff, which is the usual definition of predetermined
covariates in randomized experiments. Under Assumption 8, τ is also identified
as the difference between intercepts in regressions performed at each side of
the discontinuity.

Assumption 8 (Treatment and Additional Covariates) For each tree
Tb and for each pair of adjacent cells (Ab,ki , Ab,kj) ∈ Fb sharing the l-th border:

E[zi,b,l|x = ζ0
b,l, di,b,l = 1] = E[zi,b,l|x = ζ0

b,l, di,b,l = 0]

1Since local linear inference relies on regression fits using only a portion of covariates
near a threshold.
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In equation (2-2), the estimative of interest is τ̂ (f)
b,l and, for the rest of

this paper, we emphasize its dependence on the type of the cutoff considered.
That is, τ̂ (f)

b,l (ζ0
b,l) refers to the case that the researcher knows the value of

the true cutoff. Since in this paper we consider cases that the assignment
rule is unknown, we investigate the properties of τ̂ (f)

b,l (ζ̂b,l), where ζ̂b,l is a split
empirically determined by the b-th tree in our learning forest.

For practical implementation, Definition 6 presents the RDF algorithm,
that comprises the steps discussed in this section. In summary, for the
algorithm to be started, one should provide the number of trees in the forest
(B), the quantity of pre-selected splitting variables (w), the amount of sample
points to be considered as input for the root of each tree (s), a stopping criteria
(∆) and the parameter µ for the learning rule (See Definition 5). Then, at the
first tree (T1), run the εb-Greedy algorithm to select the set of variables to
be considered as splitting directions (W1), with cardinality w. After that, the
feature space is partitioned by selecting best splits according to the procedure
in Section 2.2. Once the growing procedure has come to an end, according
to the stopping criteria (∆), identify the set of leaves (L1) and classify units
inside them following the majority vote rule (equation (2-1)). Form the set F1

by all pairs of adjacent leaves with divergent classifications. Compute all border
treatment effects estimatives ({τ̂ (f)

1,1 , ...τ̂
(f)
1,f1}) and average them to the first tree

treatment effect estimative (τ̂ (t)
1 ). Storage this value and repeat this procedure

for all trees in the forest. In the end, τ̂ is computed following Definition 4.
In the resumed way that Definition 6 describes the algorithm, it does not

provide a way to uncover the unknown treatment assignment rule. However,
in Section 2.5 we propose an exploratory analysis that we call as the first stage
of the RDF algorithm that can be useful to shed light on hidden important
variables (and their respective cutoffs) that might have been used in some
extent to assign units to the treatment groups.

Definition 6 (RDF Algorithm) Consider a training sample Sn and specify
the total number of trees B ∈ N+, the number of pre-selected splitting variables
w ∈ {1, ..., p}, the amount of sample points s ∈ {1, ..., n} to be randomly
selected, the stopping criteria ∆ ∈ (0, 0.5) and µ > 0. Then, the RDF algorithm
is:
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Algorithm 3: RDF Algorithm
input parameters: B, w, s, ∆, µ
for b ∈ {1, ..., B} do

Select s units uniformly in Sn;
Select w splitting variables according to the εb-Greedy rule in Definition 5;
Γ← 0;
while Γ < ∆ do

Select best splits according to the methodology described in Section 2.2
end
Compute Lb, Fb and {τ̂ (f)

b,l }, l ∈ {1, ..., fb};
Compute and storage τ̂ (t)

b ;
end

Compute τ̂

2.4
Theoretical Properties of the Estimators

In this section we establish the main theoretical properties for the class
of estimators proposed in this chapter. As a first step, Lemma 1 exhibits the
relationship between the stopping criteria (∆) and the number of data points
inside an arbitrary cell. This is a well-known link in the decision tree literature
and very intuitive as well, since an early-stopped tree would have larger leaves,
probably leading to a higher bias, considering some tree-based statistics. Since
RDD estimation can be severely impacted when there are few points to be
used, our procedure is especially useful when a large sample is available. In
this case, Lemma 1 implies that, when n→∞, the number of units inside an
arbitrary cell is guaranteed to also grow indefinitely, although at a lower rate.

Lemma 1 (Stopping Criteria and the Number of Units in a Cell)
For any tree Tb, b = 1, ..., B, provided that an arbitrary cell Ab,k−1 has
n(Ab,k−1) > 2 then, any cell Ab,k, child of Ab,k−1 and formed by a sequence of
splits Hb,k has the property:

n(Ab,k) ≥
∆n(Ab,k−1)2

2(n(Ab,k−1)− 2) ≥ n
(∆

2

)k

The rest of this section is devoted to establish the asymptotic properties
of the estimators in Definition 4. There are not many available papers investi-
gating theoretical properties of forests of classification trees, as recognized by
Scornet et al. (2015), but, in our opinion, good references on the theme are the
works in Biau et al. (2008), Scornet et al. (2015) and Wager and Athey (2018),
among few others. Linking our theoretical effort to what have already been
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done in this field, it is possible to identify similarities between our approach
and that on Ishwaram (2015), but differences arise from a distinct framework.
The proof strategy we follow is: Theorem 3 uses the results of theM -estimation
theory to prove consistency of an arbitrary empirical split, while Theorem 4,
the main result, extends the results in Calonico et al. (2018) to cases where the
true assignment rule is unknown, providing an alternative to the methodology
in Porter and Yu (2015).

Recall from Section 2.2 that, for any tree, node splits are found by
the maximization of the gain in purity comparing the parent cell with their
children, Γ(·). This is equivalent to minimize Ω(·), the weighted impurity of
both children. Assumption 9 is a necessary restriction for our proof to work
and states that for any cell of any theoretical tree, the function Ω(·) achieves
a unique minimum over the set of viable splits candidates.

Assumption 9 (Unique Global Minimum) Consider a deterministic
complex assignment rule a and the associated set Da, comprising trees that
correctly identify the boundary Aa. Take arbitrarily the (k − 1)-th cell of the
m-th tree in Da, where m ∈ {1, ...,Ma} and consider the set Cm,k of viable
splits given the previous sequence Hm,k. Then:

h0
m,k = argmin

hm,k∈Cm,k
Ω(Am,k−1, hm,k)

Our proofs also use the fact that, in the RDF algorithm, once a direction
(j) is chosen to split a node, its associated value lies on a discrete set of options,
those that belong to the sample accepted by the root. That is, for a split hm,k
that divides the (k−1)-th cell of tree Tm, ζm,k ∈ {x

(jm,k)
1 , ...,x

(jm,k)
s }. Formally,

we employ the definition of a discrete in itself bounded down set provided in
Burgin (2010) and reproduced in Definition 7 for the reader’s convenience.

Definition 7 (Discrete Sets - Burgin (2010)) An arbitrary set O is dis-
crete in itself if there is no sequence lO = {oi ∈ O; i = 1, 2, 3...} such that
ω = lim lO for some ω ∈ O. Moreover, in a bounded down discrete set, all
distances between any two adjacent points in O are larger than some number
kO > 0.

Example 4 A simple example of a discrete set in itself is O = {1/(2i); i =
0, 1, 2...}. Notice that this set is not discrete in R since lim

i→∞
1/(2i) = 0 ∈ R.

Lemma 2 shows that Ω̂(·), the weighted impurity for child cells in a
empirical tree, converges uniformly in probability to Ω(·) over the set of viable
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splits. We use this result in the proof of convergence of empirical splits in
Theorem 3.

Lemma 2 (Uniform Convergence in Probability of Ω̂(·)) For any tree
Tb, b = 1, ..., B and any cell Ab,k−1 it is true that for any hb,k ∈ Cb,k, uniformly:

lim
n→∞

P sup
hb,k∈Cb,k

∣∣∣∣Ω̂(Ab,k−1, hb,k)− Ω(Ab,k−1, hb,k)
∣∣∣∣ p−→ 0

Theorem 3 (Consistency of empirical splits) For any tree Tb, b =
1, ..., B and any cell Ab,k−1, provided that Assumption 9 holds, an empirical
split ĥb,k ∈ Cb,k is consistent in the sense that ĥb,k − h0

b,k is op(1).

Theorem 4 is the main result of this paper. It states that with high prob-
ability (for large B), the forest treatment effect estimative is consistent to the
one induced by assignment rules of the type considered in Assumption 5. This
claim is based on the following arguments, formalized in the proof of Theorem
4: from Theorem 3, empirical splits (those that minimize Ω̂(·))) are consistent
to their population counterparts (those that minimize Ω(·))); for large B the
εb-Greedy rule learns which set of observables is the best, among viable alter-
natives, in order to maximize the reward considered (minimization of impurity
Ω̂(·)); Assumption 5 assures that there is an unknown complex assignment
rule based on observables that yields boundaries perfectly identifiable by trees
(in which cases, the impurity is minimum, Ω(·) = 0). In conclusion, with high
probability, splits generated from the εb rule are the best, conditional to ob-
servables available, in order to attain maximum purity. From Theorem 3 and
Assumption 5 these splits are consistent to those that correctly identify the
true boundary induced by the unknown assignment rule. The forest consistency
follows because it is an average learner derived from consistent base learners.

Assumption 10 builds on the general continuity properties of projections
and requires that the estimative of τ in equation (2-2) to also be a smooth
application for different hb,k ∈ Cb,k. In the proof of Theorem 4 we relax a bit
this assumption. For any tree Tb, b = 1, ..., B and for any pair of adjacent
cells (Ab,ki , Ab,kj) ∈ Fb sharing the l-th border, take the regression in the
left side of the cutoff (referring to units inside Ab,ki) as example and define
Ab,ki|κl ≡ {xi ∈ Ab,ki |ζb,l − κb,l ≤ x

jb,l
i ≤ ζb,l} to be a subset of the cell Ab,ki

comprising units to the left of an arbitrary threshold value ζb,l, but within a
distance κb,l. Let Zb,ki|κl be a n(Ab,ki|κl)×p matrix and βb,ki ∈ Rp, both defined
as:
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Zb,ki|κl =


x1,b,l − ζb,l z(1)

1,b,l · · · z(p−1)
1,b,l

x2,b,l − ζb,l z(1)
2,b,l · · · z(p−1)

2,b,l
... ... ... ...

xn(Ab,ki|κl ),b,l
− ζb,l z(1)

n(Ab,ki|κl ),b,l
· · · z(p−1)

n(Ab,ki|κl ),b,l

 βb,ki =


βb,l−

γ
(1)
b,l
...

γ
(p−1)
b,l


where the covariates [x z] in Zb,ki|κl refer to units in Ab,ki|κl .

Assumption 10 (Smoothness of β̂(ζ)) For each b ∈ {1, ..., B}, l ∈
{1, ..., fb}, defineMn(Ab,ki|κl ),p

([0, 1]) as vector spaces of (n(Ab,ki|κl), p)-matrices
with entries in the interval [0, 1]. For any realization of the random vec-
tor [x z]′, the functions tb,ki|κl : Eb,ki|κl → Gb,ki|κl, Eb,ki|κl ⊂ [0, 1], Gb,ki|κl ⊂
Mn(Ab,ki|κl ),p

([0, 1]), given by tb,ki|κl(ζ) = (Z′b,ki|κl(ζ)(Id − Pι)Zb,ki|κl(ζ))−1 are
continuous, where Pι = ι(ι′ι)−1ι′, ι =

[
1 1 · · · 1

]′
, n(Ab,ki|κb,l) dimensional.

An identical assumption is made for the regression to the right side of the
generic cutoff ζb,l, regarding units inside Ab,kj |κl.

Theorem 4 (Consistency of forest treatment effect τ̂) Provided that
Assumptions 5 to 10 hold, with probability at least 1 − Pε, for b ≥ µψQ, the
sequence of trees {Tb}, trained on random subsamples of Sn, asymptotically
identifies the boundary Aa induced by a deterministic complex assignment rule
a and, for p > 0 finite and fixed (not growing with sample size), τ̂ − τ is op(1),
where Pε and ψ are defined in Lemma 14.

2.5
Simulations

In this section we assess the RDF algorithm in Definition 6, considering
a treatment with an unknown complex assignment rule. As a first stage, we
suggest an exploratory analysis that can be useful to shed light on the hidden
cutoff. Thereafter, we estimate treatment effects (second stage) and investigate
the sensitivity of the algorithm with respect to the parameters imputed by end-
users.

General Setup: We work with a random sample of n = 5000 individual
units and corresponding features uniformly draw from [0, 1]p, p = 10. The forest
comprises B = 10000 trees. Each one of them receives the following inputs: a
set Wb with w = 5 (50% of p) features determined by the εb-Greedy rule and
a set with s = 3750 (75% of n) randomly draw units. Regarding the model
in equation 2-2, ∀b and ∀l ∈ {1, ..., fb}, we assume that ei,b,l ∼ N(0, 0.05).
Also, both βb,l− and βb,l+ are uniformly draw from [−1, 1]p leading to δβ = 1
in Assumption 7. Also ∀b, l, αb,l+ = δα = 4 and αb,l = 0.5, which implies a
treatment effect of τ = τ

(f)
b,l = αb,l+ − αb,l = 3.5.
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Regarding the local linear regression estimation, each border bandwidth
is selected to be MSE-optimum following the procedure established in Calonico
et al. (2014) and we use an Epanechnikov kernel local to the cutoff. We halt
the growing process of every tree if any cell has less than 0.02n points, which
is related to a stopping criteria ∆ by Lemma 1. That is, for n = 5000 and a
tree Tb, a leaf Ab,k having at least 100 data points is associated to an implicit
∆ ≤ 2 ∗ 0.021/k.

The εb-Greedy rule in Definition 5 chooses actions (sets with w = 5
candidates to be used as splitting variables) in the set Q with cardinality
Q =

(
p
w

)
= 252, using µ = 1.

Example 5 (Revisiting Example 2) Adding to the general setup we sup-
pose that there is a treatment employing a complex unknown assignment rule
a, identical to Example 2, with c1 = 0.4 and c2 = 0.6. That is, the true hidden
boundary is A = {xi|x(1)

i = 0.4;x(2)
i ≥ 0.6} ∪ {xi|x(1)

i ≤ 0.4;x(2)
i = 0.6}.

Figure 2.5: Cumulative Average Difference
Reward (CADR) computed from the ap-
plication of εb-Greedy rule using: µ = 1,
Q = 252 and a forest with B = 10000 trees.

Figure 2.6: Frequency of selected actions by
εb-Greedy rule using: µ = 1, Q = 252 and a
forest with B = 10000 trees.

First Stage of RDF Algorithm: Figure 2.5 presents the Cumulative
Average Difference Reward (CADR), computed as the cumulative sum of
improvements (differences) in the average reward of selected actions by the
εb rule2. Notice that the CADR is strictly increasing at a decreasing rate.
The increasing part is a confirmation that the εb rule selects actions in a way
that, for every two sequential trees, the difference between average rewards
observed are positive and constitute to real improvements from the learning.
The decreasing rate part indicates that the learning process is near to its
end and has already elected a temporary best action among the alternatives

2For example: when b = 1000, the selected action is W1000 and we compute its average
(among every time W1000 was selected before) reward. Then we take the difference between
this average reward and the previous one, calculated when b = 999 and the selected action
was W999, possibly different from W1000. Then, we cumulatively sum all these differences.
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considered. Figure 2.6 emphasizes this point by presenting the frequency that
each action is selected in the forest.

Figure 2.7 presents the sum of all Gini improvements (Γ(·)) when a
particular variable is used to split a parent cell, considering all splits in the
forest. Notice that in these cases that we do not know the assignment rule, we
should suspect that it comprises variables 1 and 2 in some way. In fact, the
sum of the cumulative Gini improvement generated by the first and the second
variables together (5095.07) is more than 193 times the sum of the cumulative
Gini improvement generated by the other eight variables (26.38). This is what
the εb-Greedy rule tries to learn, that whenever the first and/or the second
variables are selected as candidates for splitting, there is more purity gain
compared to cases when the other variables are used.

Figure 2.7: Cumulative Gini improvement per variable consid-
ering every split in the forest with n = 5000 units, B = 10000
trees, w = 0.5p candidates for splitting variable and s = 0.75n
units randomly selected for each tree.

Each of the ten panels from Figure 2.8 to 2.17 presents the distributions
of the cutoff value for each of the ten variables, considering all splits in the
forest where that particular variable was selected by the algorithm to split a
parent cell. Recall the assignment rule used in this example and, notice in Panel
2.8, that the first variable is selected around a cutoff value of 0.4 with a much
more pronounced frequency than it is selected at every other possible value.
The same happens with the second variable in Panel 2.9, but at the cutoff value
of 0.6. However, a different behavior is observed in the other eight variables.
Take the third variable as an example in Panel 2.10 and notice that its selection
frequency is not concentrated around any possible cutoff value, indicating that
the algorithm is unable to decide which value is the best to split cells among
the possible alternatives. Combining this result with the relatively small Gini
improvements when the third variable is used, in Figure 2.7, the conclusion
points to a variable that is not important to locate the true hidden boundary.
And the same happens from the fourth to the tenth variable.
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Figure 2.8: Distribution of the cutoff selected
by the first variable.

Figure 2.9: Distribution of the cutoff selected
by the second variable.

Figure 2.10: Distribution of the cutoff se-
lected by the third variable.

Figure 2.11: Distribution of the cutoff se-
lected by the fourth variable.

Figure 2.12: Distribution of the cutoff se-
lected by the fifth variable.

Figure 2.13: Distribution of the cutoff se-
lected by the sixth variable.

Figure 2.18 presents the misclassification rate observed in trees when
different types of combination of pre-selected variables occur, considering the
same setup as before. More specifically, the type 1× 1 in Figure 2.18 denotes
that in a particular tree, both the first and the second variables belong to the
set of selected variables by the εb-Greedy rule to be considered as splitting
candidates. The combination 1×0 means that the first variable is pre-selected
but the second is not and the other types follow the same rationale. The
misclassification rate of the type 1 × 1 is at maximum 0.19% while the type
0× 0 accounts for a maximum misclassification of 16.08%.

To sum up, even in a unknown cutoff scenario, an exploratory analysis
like the proposed first stage, from Figure 2.5 to Figure 2.18 (which clearly can
be expanded), can be helpful to shed light on the rules used in the program.
For instance, in our example, we would be pretty confident to state that the
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Figure 2.14: Distribution of the cutoff se-
lected by the seventh variable.

Figure 2.15: Distribution of the cutoff se-
lected by the eighth variable.

Figure 2.16: Distribution of the cutoff se-
lected by the ninth variable.

Figure 2.17: Distribution of the cutoff se-
lected by the tenth variable.

first and the second variable both play important roles as assignment features
and the values of 0.4 and 0.6, respectively, seem to be important cutoffs to be
considered.

Second Stage of RDF Algorithm: Estimation of treatment effects
could be carried out jointly with the learning process in the first stage, or in
a separate shorter step, that considers information gathered in the first one.
We pursue the second option3 and perform a single simulation considering the
same setup described in this section, but with B = 5000 trees. The reduced
forest is possible in this case since we take into consideration the important
role played by the first and second variables, by forcing then to always be
provided to the roots of the trees, that are still trained on random subsamples.
Figure 2.19 presents the distribution of tree treatment effect estimatives.

Figures 2.20 and 2.21 provide a preliminary sensitivity analysis of the
RDF estimatives of tree treatment effects estimatives with respect to parame-
ters imputed by end-users: the size of the forest B (left panel) and the size of
the subsample provided to each tree s (right panel). We use the same general
setup used in Figure 2.19 and consider B ∈ {100, 500, ..., 10000} for Figure

3In a separate exercise we estimate treatment effects using the first option and we get
very similar results: Estimatives of tree treatment effects reasonably surrounds the true one
(3.5). We observe that 94.26% of the estimated τ̂ (t) are inside the interval [3, 4]. Outliers
are frequent in the initial stage of the learning process or when the εb-Greedy rule decides
to randomly explore a new action.
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Figure 2.18: Misclassification rate for different types of com-
bination of pre-selected variables occur. Simulations consider
n = 5000 units, B = 10000 trees, w = 0.5p candidates for
splitting variable and s = 0.75n units randomly selected for
each tree.

Figure 2.19: Distribution of tree-average treatment effect es-
timatives for a forest with n = 5000 units, B = 5000 trees,
w = 0.5p candidates for splitting variable conditional to the
fact that the first and the second are always selected and
s = 0.75n units randomly selected for each tree.

2.20 and s ∈ {0.5n, 0.6n, ..., n} for Figure 2.21. We observe that there is a very
mild dependency between tree-average treatment effects and the size of the
forest, which seems to be an issue restricted to relatively small forests. After
some point, both average and dispersion of estimatives do not vary consider-
ably with B. Also, Figure 2.21 depicts a very intuitive result that the smaller
the subsample provided the larger the dispersion in results, but with virtually
no effect on the average estimative.

2.6
Revisiting the P900 - A Chilean Government Assistance to Low Perform-
ing Schools

In this section we apply the methods described in this paper in part of a
real public program, the P900. First, we provide a brief overview of its main
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Figure 2.20: Sensitivity of tree-average treat-
ment effect estimatives with respect to the
size of forest. Simulations use n = 5000
units, w = 0.5p candidates for splitting vari-
able conditional to the fact that the first and
the second are always selected,sb = 0.75n
units randomly selected for each tree and
B ∈ {100, 500, ..., 10000}.

Figure 2.21: Sensitivity of tree-average treat-
ment effect estimatives with respect to the
size of the subsample admitted to each tree
in the forest. Simulations use n = 5000
units, w = 0.5p candidates for splitting vari-
able conditional to the fact that the first
and the second are always selected, s ∈
{0.5n, 0.6n, ..., n} units randomly selected
for each tree and B = 5000.

characteristics and the reader can get a richer set of details in several other
papers that have been studying the P900, such as in Chay et al. (2005) and
references therein. In the sequence, we implement the first and second stages
of the RDF algorithm described in Section 2.5 to a selected subset of the
program just to underline how our procedure could be useful in real contexts
with unknown and possibly complex assignment rules.

2.6.1
Brief Overview of P900

Back in 1990, the Chilean government implemented a program to assist
low fourth-grade performing, publicly funded schools, the so called P900, since
it initially identified approximately 900 schools to be treated. After proper
selecting schools in thirteen administrative regions in Chile, the program basi-
cally consisted of four waves of support, where in each of them, schools received
improvements in their infrastructure, a variety of instructional materials, train-
ing workshops for related teachers and after school tutoring for low-performing
students. The first two years of the program (1990 and 1991) focused on the
two first waves, providing the basic means for schools and only in 1992 the
third and fourth waves started.

Even though the P900 main objective was to enhance educational learn-
ing and overall results in the Chilean administrative regions, the program’s
assignment rule not always selected schools based solely on their students’
grades. Actually, according to Chay et al. (2005) selection occurred essentially
in two stages where only the first one relied on the results of tests applied to
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fourth-graders in 1988, basically the average between language and mathemat-
ics scores. Later in a second stage, regional teams of officials reviewed each list
of preselected schools and changed them according to other criteria.

Our data set is similar to that used in Chay et al. (2005) and is composed
of the following variables: A unique identifier for each school, its administrative
region, a dummy variable indicating if the school is located inside an urban
or in a rural area, the average grades per school both in language and in
mathematics in 1988, 1990 and in 1992, the number of students that took the
test per school in 1988, 1990 and in 1992 and a socioeconomic index per school
in 1990 and in 1992, where the higher the index the high the vulnerability
(poverty). Moreover, we create the following variables: the average between
the language and mathematics grades per school in 1988 (Avg), the difference
between grades in language and in mathematics from 1988 to 1992 (Glan8892
and Gmat8892), the difference in the socioeconomic index from 1990 to 1992
(Gsei9092) and the square and cubic of the average between the language and
mathematics grades per school in 1988 (Savg and Cavg). Although we find
both the original and created variables self-instructive, since we use exactly
the same variables as in Chay et al. (2005), any question about them can
be settled by visiting their work. Table 2.1 provides descriptive statistics for
selected variables per administrative region.

Notice that both the average grades in 1988 and their variabilities are
relatively similar among regions, as they are the differences in average grades
from 1988 to 1992. Also, there is a weak negative relation between average
grade (Avg (88)) and percentage of participation in the program (%P900),
indicating that grades are, indeed, important to assign units to treatment.
However, there are some inconsistencies, as commented in Chay et al. (2005)
and further elaborated later in this section. To briefly illustrate the point,
compare the thirteenth region with the first one. In a very simple analysis, we
should expect, on average, a higher rate of participation in the former since
it presented a lower average grade than the latter. However, the participation
rate in the first region was more than twice that on the thirteenth region.

The deterministic nature of the program suggests that an RDD should be
employed to recover potential impacts of the government aid in treated schools.
However, Example 3 in Section 2.2 highlights two intrinsic characteristics of
the P900 that pose themselves as difficulties to the standard application of
the sharp RDD. Firstly, the Chilean government did not make public the
specific grade values that should be used in assigning units to treatment groups.
Secondly, even if a researcher tries to uncover the implicit cutoff used by the
government, she will conclude that there is no simple cutoff based solely in
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Table 2.1: Descriptive statistics of selected observables per region. Avg.(88) is the average
grade in language and in mathematics in 1988. Math (88-92) and Lang (88-92) are the
differences between grades in language and in mathematics from 1988 to 1992, SEI (90) is
the socioeconomic index in 1990, %P900 is the percentage of schools that received the benefits
of P900 and Size is the number of schools per region. All quantities except Size are expressed
as average per region. The left parenthesis is the minimum value per region, the centered
parenthesis is the standard deviation and the right is the maximum value.

Region Avg. (88) Math (88-92) Lang (88-92) SEI (90) %P900 Size
1 56.8 14.6 10.1 30.3 25.4 59(34.5),(8.6),(75.6) (-5.7),(8.2),(43.9) (-5.7),(7.1),(31.9) (2.0),(20.7),(82.8)
2 55.2 14.6 10.6 39.1 12.2 74(39.4),(8.4),(77.7) (-8.9),(8.3),(50.4) (-9.6),(8.0),(47.4) (8.5),(15.4),(90.1)
3 56.7 14.6 10.3 33.1 18.2 55(32.7),(9.4),(74.6) (-2.9),(7.5),(33.2) (-6.6),(7.2),(25.5) (1.4),(19.0),(84.4)
4 51.3 13.3 10.8 51.8 32.3 192(24.8),(10.8),(82.5) (-29.7),(10.6),(51.9) (-30.0),(9.6),(40.6) (0.8),(24.6),(94.7)
5 53.9 12.7 9.8 35.4 15.2 433(32.3),(8.9),(79.5) (-21.8),(8.7),(44.0) (-33.7),(8.9),(39.2) (0.2),(22.7),(87.1)
6 49.5 14.5 13.3 56.3 18.1 288(29.6),(10.2),(86.8) (-34.0),(11.5),(46.3) (-30.2),(10.6),(40.2) (0.5),(24.5),(97.7)
7 47.5 13.8 12.8 60.2 21.5 382(18.7),(10.4),(81.6) (-31.7),(10.7),(47.3) (-29.5),(10.2),(46.6) (0.0),(26.0),(100.0)
8 48.5 13.3 11.3 49.9 26.4 629(23.1),(11.0),(80.9) (-37.2),(10.5),(54.1) (-29.0),(9.4),(46.9) (0.7),(26.0),(100.0)
9 47.2 10.9 10.8 46.8 44.3 282(21.3),(10.2),(81.3) (-37.3),(9.8),(40.8) (-14.7),(8.7),(34.9) (2.4),(24.9),(99.2)
10 48.7 14.3 12.3 56.6 41.3 346(24.3),(9.7),(83.5) (-22.7),(10.4),(45.3) (-33.6),(9.9),(49.1) (0.5),(25.3),(100.0)
11 55.3 16.1 12.0 44.0 35.0 20(40.8),(8.8),(75.5) (-0.8),(8.8),(39.6) (-6.8),(9.2),(32.8) (4.4),(23.6),(88.4)
12 60.9 16.1 11.4 26.0 9.7 31(46.5),(7.8),(82.7) (0.8),(8.4),(37.8) (-4.1),(7.0),(27.6) (6.5),(16.1),(69.6)
13 53.1 13.2 11.3 30.3 11.2 1087(29.0),(9.4),(83.4) (-16.4),(7.9),(44.5) (-15.9),(7.5),(40.1) (0.1),(19.5),(88.4)

grades that can possibly be adopted in order to segregate units. Actually,
although Example 3 refers to the first administrative region in Chile, the
absence of a solely grade-based cutoff can also be verified in all other twelve
administrative regions. The first problem can be adressed by the methodology
proposed in this paper, but the second one is a little bit more intricate. While
in some administrative regions (such as region 1) we are able to find a hidden
complex rule that justifies the sharp methodology, there are other regions where
it is impossible to recover an exact assignment rule, considering the whole set
of observed covariates. This is the case where unobservables and/or discretion
may have played some role in the assignment rule, conflicting with Assumption
5, since no tree-based methodology can be completely accurate, based on the
sample collected and the available set of covariates. In this respect, we follow
Chay et al. (2005) and accept a minimum level of misclassification by efficiently
choosing the cutoff.

To illustrate, consider the example of administrative region 2 restricted to
urban schools. As an exploratory exercise, consider fitting the highest possible
tree to the data, in the sense that we allow it to grow to its most extent until,
perhaps, one single unit remains in a given leaf. Although it is not a feasible
tree for our purposes of estimating treatment effects, it provides insights of
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what may be going on behind the scenes. In this exercise, we find that the most
important variables, in terms of purity gain in the splitting process, seem to be
the average grade and enrollment in the 1988 test. Actually, 66.7% of treated
units present average grade less than 47.62 and attendance to the test grater
than 58 students, which is consistent with described in Chay et al. (2005) that
small schools did not actually participate in the program in order to reduce
costs. However, there is a treated school with average grade equal to 47.54,
enrollment equal to 48 and a non-treated school with 44.92 for the average
grade and where 57 students took the test. Since both schools presented very
similar socioeconomic indicators (48.55 and 41.15), we cannot find a plausible
justification based on available observables, for a relatively larger (enrollment)
and worse (grades) school to not be treated. As a consequence, the highest
tree above-mentioned still misclassify one school.

First Stage of RDF Algorithm:
To illustrate the potential of the first stage of the RDF algorithm,

we apply it to the ninth administrative region (south of Chile), which was
also used in Figure 3 of Chay et al. (2005) as an example to highlight the
difficulties intrinsic to the P900 assignment rule. Since a cutoff based on grades
is unknown, the authors estimate it based on two different definitions. The first
one places the cutoff at the rounded-up value of the highest (average) score
observed among all treated schools in the region and the result is that only
55.1% and 69.3% of units are correctly classified, considering either all schools
in the sample or its restriction to the urban larger schools (more than 15
students enrolled in the test), respectively. The second one defines the cutoff
as the score that maximizes the percentage of schools correctly classified across
all thirteen regions. In this case the authors achieve 75.5% and 98.0% of correct
classification considering all schools or only the urban larger units.

We use the same specification as in Section 2.5 but with 5000 trees, where
each one of them receives a random subsample of the ninth region comprising
75% of the total number of units in this region. We consider five observables for
cell splitting, resulting in a εb-Greedy rule running on a set of actions Q with
cardinality Q =

(
5
3

)
= 10. They are: the grade in language, the attendance

to the test, the grade in mathematics, the socioeconomic index and the mean
grade in 1988. The other variables collected refer to years after 1988, unknown
at the time of the program implementation and, because of this were not
used in this analysis. To better understand which variables are important
to assignment, we let trees to grow to their most extent, until at most one
school remains at final leaves. Figures 2.22 and 2.23 present information from
the application of the εb-Greedy learning rule, while Figure 2.24 presents the
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cumulative Gini improvement per variable, considering every split in the forest.
Figures 2.22 and 2.23 present similar results to what was observed

through simulation in Figures 2.5 and 2.6. In the left panel, the CADR
(defined in Section 2.5) increases at a decreasing rate denoting the benefits from
learning, while in the right panel the algorithm selects the best action to be
the set {Fre, Sei, Avg}. Figure 2.27 exhibits the cumulative Gini improvement
per variable considering every split in the forest, in which we confirm that
average grade is the most powerful variable to increase purity, followed by the
enrollment in the test. In fact, the cumulative Gini improvement generated by
the average grade is more than 30 times the one resulted from the participation
in the test, which is not so different from the other variables.

Figure 2.22: Cumulative Average Difference
Reward (CADR) computed from the ap-
plication of εb-Greedy rule using: µ = 1,
Q = 20 and a forest with B = 5000 trees.

Figure 2.23: Frequency of selected actions by
εb-Greedy rule using: µ = 1, Q = 20 and a
forest with B = 5000 trees.

Figure 2.24: Cumulative Gini improvement per variable con-
sidering every split in the forest with B = 5000 trees, s = 75%
of units of the ninth region randomly selected for each tree,
W = {Lan, Fre,Mat, Sei, Avg} is the set of candidates for
splitting variable and w = d0.5#W e is the amount of variables
inW selected by the εb-Greedy rule, where each variable’s label
in W follows the above-defined explanation.

Moreover, Figure 2.25 exhibits the frequency of selected cutoff values
when the average grade is the splitting variable. Notice that the frequency
at which the value of 47.45 is selected is about four times the second largest
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frequency, associated to the value of 47.44 (both very close numbers). Figure
2.26 presents the same analysis but based on the frequency of selected cutoff
values when the attendance to the test is the splitting variable. In this case it
appears that a probable cutoff value would be 69.

To sum up, recall our discussion about the important role that unob-
servables may play in the assignment rule of P900. Following Assumption 5 it
is difficult for a tree-based methodology based on a limited set of observables
to recover the exact boundary induced by the program. However, if precision
is not mandatory, one should recognize that a once completely unknown as-
signment rule is, in fact, something in the neighborhood of a complex rule
composed by an average grade of 47.45 and, marginally, by frequency to the
test close to 69.

Figure 2.27 depicts the percentage of correct classification considering
administrative region 9. On average, our procedure achieves 99.5% of schools
correctly classified, which is better than the results already commented in this
subsection obtained by Chay et al. (2005). The worst result refers to 91.8%
of correct classification that occurs in a sole event when the learning rule
explores a bad action. On the other hand, in 25.9% of the trees the εb-Greedy
rule chooses actions that generates 100% of correct classified schools.

Figure 2.25: Distribution of the cutoff se-
lected by the test grade average in 1988.

Figure 2.26: Distribution of the cutoff se-
lected by the test attendance in 1988.

The RDF first stage procedure to explore unknown boundaries is not
directly comparable to the two cutoffs definitions in Chay et al. (2005).
Different from their paper, our procedure considers that cutoffs might be
multivariate. Also, the authors use cutoffs that are globally best, for all thirteen
regions as a whole. Nevertheless, we extend the analysis made in Figure 2.27
to the other twelve regions in Chile and Table 2.2 compares the percentage
of correctly classified units between our procedure and those based on the
two cutoff definitions cited in Chay et al. (2005). We consider urban larger
schools, but its extension to the whole sample yields similar results. Since
for each administrative region we have a forest composed of different trees,
the percentage of correct classification per region reported in Table 2.2 (Tree-
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Figure 2.27: Percentage of correct classification considering
administrative region 9. We use B = 5000 trees, s = 75%
of units of the ninth region randomly selected for each tree,
W = {Lan, Fre,Mat, Sei, Avg} is the set of candidates for
splitting variable and w = d0.5#W e is the amount of variables
inW selected by the εb-Greedy rule, where each variable’s label
in W follows the above-defined explanation.

Cutoff) is the respective forest average. Also, for each region, we present the
stopping criteria adopted as the average minimum number of schools in any
treated leaf (Leaf Size). In all regions, we achieve higher rates of classification.

Second Stage of RDF Algorithm:
In this part we apply the second stage of RDF Algorithm to the

ninth administrative region, concluding the analysis started in the previous
paragraphs. One of the reasons that led us to investigate this region is the fact
that several regions in our data set do not possess enough data points for a
reliable estimation. For instance, Table 2.2 shows that regions 1, 2, 3, 6, 7, 11
and 12 present, each one of them, on average, less than thirteen treated units
in a given leaf.

In the case of the ninth region, there are 196 urban larger schools in
the sample, from which 84 received the benefits of the program. We use the
same set of covariates employed to build Table 3 in Chay et al. (2005), that
is: the participation in the program indicator, the average grade per school in
1988, the socioeconomic index in 1990 as well as its evolution from 1990 to
1992, and the cubic average grade in 1988. The set with viable actions for the
εb-Greedy has cardinality Q =

(
4
2

)
= 6 and we use the same specification as

before: B = 5000, w = 2 and s = 147 (75% of 196). Figure 2.28 illustrates
that the learning procedure quickly focus on the best perceived action: the set
{Sei, Avg}.

Figures 2.29 to 2.32 present information of estimated Border Treatment
Effects (BTE) for grades in mathematics. At each identified border (see Section
2.3), we estimate BTE using equation (2-2) and Figure 2.29 exhibits their
values, per border, while Figure 2.30 presents their frequencies. Figures 2.31
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Table 2.2: Comparison between the percentage of cor-
rectly classified schools resulting from the stage 1 of RDF
algorithm and those generated under the scope of the cut-
offs definition 1 and 2 described in Chay et al. (2005)
for the thirteen administrative regions in Chile. We con-
sider urban larger schools in the sample and leaf size is
the minimum number of schools in any treated leaf.

Region Definition 1 Definition 2 Tree-Cutoff Leaf Size
1 100.0 98.0 100.0 9
2 91.4 91.4 97.2 4
3 95.7 95.7 97.9 7
4 87.4 94.7 95.8 17
5 74.5 89.8 93.2 33
6 75.8 97.6 98.4 6
7 79.6 97.5 97.6 8
8 69.5 97.1 97.7 29
9 69.3 98.0 99.5 19
10 57.2 91.3 91.7 34
11 87.5 87.5 89.0 5
12 92.9 89.3 93.1 5
13 32.0 86.4 95.4 49

and 2.32 show a more focused information than in both previous figures, after
eliminating some extreme values and inserting a 95% confidence bound for
each estimative. Figures 2.33 to 2.36 follow the same rationale but investigate
possible effects in language grades, also from 1988 to 1992.

Firstly, notice from Figures 2.29 and 2.33 that extreme values of BTE
estimatives occur when the εb-Greedy is in its early stage or when it randomly
explores a new action. Since the set of actions is not large, the learning
methodology quickly decides which action is the best, leading to 96.3% of
BTE estimatives concentrated inside the interval [−0.2, 0.2] when considering
possible effects in mathematics grades, for example. A similar pattern occurs
in the case of language grades and we avoid dealing with this small portion of
extreme values.

Also, Figures 2.31 and 2.35 indicate that P900 did not produce benefits
to the ninth region. Actually, considering the possible effects in mathemat-
ics grades (Figure 2.31), after removing extreme values, 71.5% of all 95%-
confidence intervals would comprise true negative treatment effects for the re-
spective borders. In this case, the average of BTE estimatives is −0.064. When
it comes to language grades (Figure 2.35), 76.6% of all confidence intervals are
composed of strictly negative values, while the average of BTE estimatives
is −0.047. Only 10.8% and 8.6% of confidence intervals in mathematics and
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Figure 2.28: Selected actions by εb-Greedy rule using: µ = 1,
Q = 6 and a forest with B = 5000 trees, considering the sample
of urban larger schools of the ninth administrative region. We
allow s = 75% of units to be randomly selected and imputed
to each tree and W = {Sei,Avg,Gsei9092, Cavg} is the set of
candidates for splitting variable, with w = 2.

Figure 2.29: BTE estimatives per border,
considering the observed change in math-
ematics grades, from 1988 to 1992, in
the ninth administrative region. We use
B = 5000, w = 2, s = 147 and
W = {Sei,Avg,Gsei9092, Cavg}. For the
εb-Greedy, we adopt µ = 1 and Q = 6.

Figure 2.30: Histogram of BTE estima-
tives, considering the observed change in
mathematics grades, from 1988 to 1992,
in the ninth administrative region. We use
B = 5000, w = 2, s = 147 and
W = {Sei,Avg,Gsei9092, Cavg}. For the
εb-Greedy, we adopt µ = 1 and Q = 6.

language, respectively, are in the positive region, with respective averages of
0.044 and 0.031.

We relate this finding with a possible heterogeneity across regions. In
fact, in table 3 of Chay et al. (2005) the authors found a positive statistically
significant overall effect, considering all regions and urban larger schools in the
sample. That is, after determining the best cutoff for each region, the authors
computed the difference from the average grade in each urban larger school to
the respective region’s cutoff. And they used all units in all regions to find a
positive effect of the program both in mathematics and in language from 1988
to 1992. Once more, we highlight that the procedure proposed in this paper is
not directly comparable to the one in Chay et al. (2005), given the possibility
for complex assignment rules. Nevertheless, there are not enough evidences in
the results presented from Figure 2.29 to 2.36 to support a positive effect of
the program in the ninth region, whether in mathematics or in language.
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Figure 2.31: BTE estimatives per border
and 95% confidence bounds after eliminat-
ing extreme values, considering the observed
change in mathematics grades, from 1988
to 1992, in the ninth administrative region.
We use B = 5000, w = 2, s = 147 and
W = {Sei,Avg,Gsei9092, Cavg}. For the
εb-Greedy, we adopt µ = 1 and Q = 6.

Figure 2.32: Histogram of BTE estimatives
after eliminating extreme values, considering
the observed change in mathematics grades,
from 1988 to 1992, in the ninth administra-
tive region. We use B = 5000, w = 2, s =
147 and W = {Sei,Avg,Gsei9092, Cavg}.
For the εb-Greedy, we adopt µ = 1 and
Q = 6.

Figure 2.33: BTE estimatives per bor-
der, considering the observed change in
Language grades, from 1988 to 1992, in
the ninth administrative region. We use
B = 5000, w = 2, s = 147 and
W = {Sei,Avg,Gsei9092, Cavg}. For the
εb-Greedy, we adopt µ = 1 and Q = 6.

Figure 2.34: Histogram of BTE estima-
tives, considering the observed change in
Language grades, from 1988 to 1992, in
the ninth administrative region. We use
B = 5000, w = 2, s = 147 and
W = {Sei,Avg,Gsei9092, Cavg}. For the
εb-Greedy, we adopt µ = 1 and Q = 6.

Figure 2.35: BTE estimatives per border
and 95% confidence bounds after eliminat-
ing extreme values, considering the observed
change in Language grades, from 1988 to
1992, in the ninth administrative region.
We use B = 5000, w = 2, s = 147 and
W = {Sei,Avg,Gsei9092, Cavg}. For the
εb-Greedy, we adopt µ = 1 and Q = 6.

Figure 2.36: Histogram of BTE estimatives
after eliminating extreme values, consider-
ing the observed change in Language grades,
from 1988 to 1992, in the ninth administra-
tive region. We use B = 5000, w = 2, s =
147 and W = {Sei,Avg,Gsei9092, Cavg}.
For the εb-Greedy, we adopt µ = 1 and
Q = 6.
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2.7
Concluding Remarks

In this paper we propose a new class of estimators that combine tree-
based methodologies with sequential leaning, that can be especially useful
in situations where a complex unknown deterministic assignment rule is in
place. We contextualize the motivation of this particular setup with real word
examples stemming from explicit non-disclosure of treatment’s rule, perhaps
to avoid competition, manipulation or due to ethical reasons, to innocuous
disclosed rules that are not followed.

Theoretically speaking, we aid to the treatment effect literature, more
specifically to the sharp regression discontinuity design, by providing a consis-
tent way to estimate a program’s impact without having to care about the real
cutoff. On the other hand, when the knowledge of the real assignment rule is
valued in practical applications, we provide an example of an exploratory anal-
ysis that can be fruitful in this regard. We also show, in a simple robustness
check that parameter imputed by end-users do not greatly impact treatment
effects estimatives.

Also, we employ our procedure on part of the P900, a real Chilean
program created to assist low-performing schools. Recognizing that cutoffs
are not disclosed and may be complex, as exemplified, the procedure proposed
in this paper sheds light on the unknown assignment rule. It also reveals a
possible level of heterogeneity among regions covered by the program, a topic
that, as far as we know, was never discussed by the literature on P900.
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3
Conclusions

In this thesis we use sequential learning in two different setups. In the first
chapter, we extend one of the most popular learning solutions, the εt-greedy
heuristics, to high-dimensional contexts considering a conservative directive.
We do this by allocating part of the time the original rule uses to adopt
completely new actions to a more focused search in a restrictive set of promising
actions. The resulting rule might be useful for practical applications that still
values surprises, although at a decreasing rate, while also has restrictions on the
adoption of unusual actions. We find that, with high probability, cumulative
regret of a conservative high-dimensional decaying εt-greedy rule is reasonably
bounded. We also provide a lower bound for the cardinality of the set of viable
actions that implies in an improved regret bound for the conservative version
when compared to its non-conservative counterpart. Additionally, we show
that end-users have sufficient flexibility when establishing how much safety
they want, since it can be tuned without impacting theoretical properties. We
illustrate our proposal both in a simulation exercise and using a real dataset.

In the second chapter we study deterministic treatment effects when the
assignment rule is both more complex than traditional ones and unknown
to the public perhaps, among many possible causes, due to ethical reasons,
to avoid data manipulation or unnecessary competition. We circumvent the
lack of knowledge of true cutoffs by employing a forest of classification
trees, which also uses the sequential learning rule ε-greedy, as in the first
chapter, to guarantee that, asymptotically, the true unknown assignment rule
is correctly identified. The tree structure also turns out to be suitable if the
program’s rule is more sophisticated than traditional univariate ones. We
show that, with high probability and based on reasonable assumptions, it
is possible to consistently estimate treatment effects under this setup. For
practical implementation we propose an algorithm that not only sheds light
on the previously unknown assignment rule but also is capable to robustly
estimate treatment effects regarding different specifications imputed by end-
users. Moreover, we exemplify the benefits of our methodology by employing
it on part of the Chilean P900 school assistance program, which proves to be
suitable for our framework.
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A
Appendix to Chapter 1

In this appendix, we provide the proofs of the Theorems proposed in
Chapter 1, and respective Auxiliary Lemmas.

A.1
Auxiliary Lemmas

Lemmas 3 and 4 establish the properties for the Lasso estimation.

Lemma 3 (Finite-Sample Properties of β̂k) For any ϑ ∈ T , define:

Gkϑ :=
{ 2
nkϑ

max
1≤j≤p

∣∣∣ε′kϑX(j)
kϑ

∣∣∣ ≤ a
}

Provided that λϑ ≥ 2a and that 32bs0
φ2

0
≤ 1, where b ≥ max

i,j
|Σ̂kϑ(i,j) − Σkϑ(i,j)|

and s0, φ0 are established in Definition 2 and Assumption 3 respectively, if β̂k
is the solution of (1-2), on Gkϑ, it is true that:

∥∥∥β̂k − βk∥∥∥1
≤

∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

λϑ
+ 4λϑs0

φ2
0
,

where
∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

≡ (β̂k − βk)′Σ̂kϑ(β̂k − βk) and Σ̂kϑ ≡ 1
nkϑ
X ′kϑXkϑ.

Prova. This proof has been already provided in other papers, such as Carvalho
et al. (2018). For the sake of completeness, we provide its main steps, even
though it is a well-known result.

In equation (1-2), if β̂k is the minimum of the optimization problem,
then, for ϑ ∈ T , it is true that

1
nkϑ

∥∥∥ykϑ −Xkϑβ̂k
∥∥∥2

2
+ λϑ

∥∥∥β̂k∥∥∥1
≤ 1
nkϑ
‖ykϑ −Xkϑβk‖

2
2 + λϑ ‖βk‖1 .

Using Assumption 1, we can replace ykϑ in the above expression to obtain
the basic inequality (see Buhlmann and van de Geer, 2011, page 103):

1
nkϑ

∥∥∥Xkϑ(βk − β̂k) + εkϑ
∥∥∥2

2
+ λϑ

∥∥∥β̂k∥∥∥1
≤ 1
nkϑ
‖εkϑ‖2

2 + λϑ ‖βk‖1 ⇐⇒

1
nkϑ

∥∥∥Xkϑ(β̂k − βk)
∥∥∥2

2
+ λϑ

∥∥∥β̂k∥∥∥1
≤ 2
nkϑ

ε′kϑXkϑ(β̂k − βk) + λϑ ‖βk‖1

(A-1)
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Define
∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

≡ (β̂k − βk)′Σ̂kϑ(β̂k − βk), and the same for∥∥∥β̂k − βk∥∥∥2

Σkϑ

replacing Σ̂kϑ for Σkϑ, where Σkϑ := E[X ′kϑXkϑ] and Σ̂kϑ :=
1
nkϑ
X ′kϑXkϑ.

The first term on the right side of (A-1) can be bounded in absolute
terms as:

2
nkϑ
|ε′kϑXkϑ(β̂k − βk)| ≤

( 2
nkϑ

max
1≤j≤p

|ε′kϑX
(j)
kϑ |
) ∥∥∥β̂k − βk∥∥∥1

.

On Gkϑ, we have that∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

+ λϑ
∥∥∥β̂k∥∥∥1

≤ a
∥∥∥β̂k − βk∥∥∥1

+ λϑ ‖βk‖1 (A-2)

Using our previous definitions (see Section 1.2) for βk[S0] and βk[Sc0] and
the respective counterparts for the estimators, by the triangle inequality of the
left-hand side of equation (A-2), we have that:
∥∥∥β̂k∥∥∥1

=
∥∥∥β̂k[S0]

∥∥∥
1

+
∥∥∥β̂k[Sc0]

∥∥∥
1
≥ ‖βk[S0]‖1−

∥∥∥(β̂k[S0]− βk[S0])
∥∥∥

1
+
∥∥∥β̂k[Sc0]

∥∥∥
1

Using this result in (A-2) and the fact that
∥∥∥β̂k − βk∥∥∥1

=∥∥∥β̂k[S0]− βk[S0]
∥∥∥

1
+
∥∥∥β̂k[Sc0]

∥∥∥
1
:

∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

+ λϑ

(
‖βk[S0]‖1 −

∥∥∥(β̂k[S0]− βk[S0])
∥∥∥

1
+
∥∥∥β̂k[Sc0]

∥∥∥
1

)
≤

a
( ∥∥∥β̂k[S0]− βk[S0]

∥∥∥
1

+
∥∥∥β̂k[Sc0]

∥∥∥
1

)
+ λϑ ‖βk‖1 ⇐⇒∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

+ (λϑ − a)
∥∥∥β̂k − βk∥∥∥1

≤ 2λϑ
∥∥∥β̂k[S0]− βk[S0]

∥∥∥
1
.

By Assumption 3, we have that:∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

+ (λϑ − a)
∥∥∥β̂k − βk∥∥∥1

≤
2λϑ
√
s0

φ0

∥∥∥β̂k − βk∥∥∥Σkϑ

(A-3)

Recall that Assumption 3 also requires that max
i,j
|Σ̂kϑ(i,j) −Σkϑ(i,j)| ≤ b.

Then, using Lemma 8, provided that 32bs0
φ2

0
≤ 1, we have that

∥∥∥β̂k − βk∥∥∥Σkϑ

≤
√

2
∥∥∥β̂k − βk∥∥∥Σ̂kϑ

. Substituting in (A-3):

∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

+ (λϑ − a)
∥∥∥β̂k − βk∥∥∥1

≤
2
√

2λϑ
√
s0

φ0

∥∥∥β̂k − βk∥∥∥Σ̂kϑ

Since for any ϑ ∈ T , λϑ ≥ 2a, a > 0, multiplying the last expression by
2 and using the fact that 4vu ≤ u2 + 4v2, we have:

∥∥∥β̂k − βk∥∥∥1
≤

∥∥∥β̂k − βk∥∥∥2

Σ̂kϑ

λϑ
+ 4λϑs0

φ2
0

(A-4)
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�

Lemma 4 (Finite-Sample Properties of β̂k - Continuation) Given
that Assumptions 1 and 3 and the conditions of Lemma 3 are satisfied,
then, for any ϑ ∈ T :

P
(∥∥∥β̂k − βk∥∥∥1

>
4s0λϑ
φ2

0

)
≤ log(2p)

nkϑ

C1

λ2
ϑ

+ C2 + C3

[
log(2p)
nkϑ

]−1/2
 =: Pβϑ , where

C1 := C1(σ, θx) = 128σ2θ2
x, C2 := C2(b, θx) = θ2

x

b
, andC3 := C3(b, θx) =

√
2C2.

Prova. Provided that λϑ ≥ 2a, on Gkϑ, that 32bs0
φ2

0
≤ 1, where b ≥ max

i,j
|Σ̂kϑ(i,j)−

Σkϑ(i,j)|, Lemma 3 indicates that
∥∥∥β̂k − βk∥∥∥1

≤ 4s0λϑ
φ2

0
. Then,

P
(∥∥∥β̂k − βk∥∥∥1

>
4s0λϑ
φ2

0

)
= P

[(
Gkϑ ∩max

i,j
|Σ̂kϑ(i,j) −Σkϑ(i,j)| ≤ b

)c]
= P(Gckϑ ∪max

i,j
|Σ̂kϑ(i,j) −Σkϑ(i,j)| > b)

≤ P(Gckϑ) + P(max
i,j
|Σ̂kϑ(i,j) −Σkϑ(i,j)| > b)

= P
(

2
nkϑ

max
1≤j≤p

|ε′kϑX
(j)
kϑ | >

λϑ
2

)
+ P(max

i,j
|Σ̂kϑ(i,j) −Σkϑ(i,j)| > b)

(A-5)

where the second equality is De Morgan’s law and the first inequality is an
application of the union bound.

For the first term of (A-5), given that max
1≤j≤p

|ε′kϑX
(j)
kϑ |, j = 1, . . . , p is a

positive random variable, for l > 0, we employ the Markov inequality to obtain:

P
(

2
nkϑ

max
1≤j≤p

∣∣∣ε′kϑX(j)
kϑ

∣∣∣ > λϑ
2

)
≤ 4l

E
(

max
1≤j≤p

|ε′kϑX
(j)
kϑ |l

)
(nkϑλϑ)l

= 4l
E
(

max
1≤j≤p

∣∣∣∑nkϑ
i=1 εkϑ(i)Xkϑ(i,j)/nkϑ

∣∣∣l)
λlϑ

.

(A-6)

Since (A-6) holds for any value of l > 0, take l = 2. Therefore, by Lemma
9:
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16
E
(

max
1≤j≤p

∣∣∣∑nkϑ
i=1 εkϑ(i)Xkϑ(i,j)/nkϑ

∣∣∣2)
λ2
ϑ

≤ 128
n2
kϑλ

2
ϑ

σ2 log(2p)
nkϑ∑
i=1

(
max
1≤j≤p

|Xkϑ(i,j)|
)2

≤ 128
nkϑλ2

ϑ

σ2 log(2p)θ2
x

(A-7)

For the second term in (A-5), we also have that max
i,j
|Σ̂kϑ(i,j) − Σkϑ(i,j)|

is a positive random variable. Then, by the Markov inequality, for l = 1:

P
(

max
i,j

∣∣∣Σ̂kϑ(i,j) −Σkϑ(i,j)

∣∣∣ > b
)
≤ 1
b
E
(

max
i,j

∣∣∣Σ̂kϑ(i,j) −Σkϑ(i,j)

∣∣∣) (A-8)

Recall that Σ̂kϑ := 1
nkϑ
X ′kϑXkϑ and, therefore, its elements are given by

Σ̂kϑ(i,j) = 1
nkϑ

∑nkϑ
m=1Xkϑ(m,i)Xkϑ(m,j)

Define the function γ(·), such that for bounded random variables
Xkϑ(m,i),Xkϑ(m,j) taking values in a subset of R, m ∈ {1, ..., nkϑ}, i, j ∈
{1, ..., p}:

γ(Xkϑ(m,i),Xkϑ(m,j)) = Xkϑ(m,i)Xkϑ(m,j) − E(Xkϑ(m,i)Xkϑ(m,j))
θ2
x

where θx is defined in Assumption 1.i.
Then, equation (A-8) can be rewritten as:

1
b
E
(

max
i,j

∣∣∣Σ̂kϑ(i,j) −Σkϑ(i,j)

∣∣∣) = 1
b
E
[
max
i,j

∣∣∣∣∣ 1
nkϑ

nkϑ∑
m=1

θ2
xγ(Xkϑ(m,i),Xkϑ(m,j))

∣∣∣∣∣
]
.

(A-9)
Now, notice that E

[
γ
(
Xkϑ(m,i),Xkϑ(m,j)

)]
= 0 and that for µ =

2, 3, 4, . . ., such that µ ≤ 1 + log(p):

1
nkϑ

nkϑ∑
m=1

E
[∣∣∣γ (Xkϑ(m,i),Xkϑ(m,j)

)∣∣∣µ] =

1
nkϑθ

2µ
x

nkϑ∑
m=1

E
[∣∣∣Xkϑ(m,i)Xkϑ(m,j) − E(Xkϑ(m,i)Xkϑ(m,j))

∣∣∣µ] ≤ θ2µ
x

θ2µ
x

= 1.

Then, the conditions of Lemma 10 are satisfied, and we can apply it to
(A-9) to find that:

1
b
E
(

max
i,j

∣∣∣∣∣ 1
nkϑ

nkϑ∑
m=1

θ2
xγ(Xkϑ(m,i),Xkϑ(m,j))

∣∣∣∣∣
)
≤ θ2

x

b

 log(2p)
nkϑ

+
√

2 log(2p)
nkϑ

 .
(A-10)
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Merging (A-7) and (A-10), we have:

P
(∥∥∥β̂k − βk∥∥∥1

>
4s0λϑ
φ2

0

)
≤ 128
nkϑλ2

ϑ

σ2 log(2p)θ2
x + θ2

x

b

 log(2p)
nkϑ

+
√

2 log(2p)
nkϑ


= log(2p)

nkϑ

C1

λ2
ϑ

+ C2 + C3

[
log(2p)
nkϑ

]−1/2
 =: Pβϑ ,

where C1 = 128σ2θ2
x, C2 = θ2

x

b
and C3 =

√
2C2. �

Lemma 5 presents the cumulative regret for the initialization phase
(0 ≤ t ≤ vw), which is common to both HD εt-Greedy and CHD εt-Greedy
algorithms. On the other hand, Lemmas 6 and 7 exhibit results for their
instantaneous regret for t > vw.

Lemma 5 (Initialization Regret) Given the duration vw for the initializa-
tion phase and provided that Assumptions 1 and 2 are satisfied, the cumulative
regret for both HD εt-Greedy and CHD εt-Greedy algorithms in the initialization
phase (RI) is bounded as:

RI ≤ vwθxhτW .

where τW ≡ max
k1,k2∈{0,...,w−1}

‖ωk1 − ωk2‖1.

Prova. Let the sequence {ψt}0≤t≤vw comprises the indexes for the actions in
W that lead to best rewards for each t ≤ vw, that is, each ψt ∈ {0, . . . , w−1},
such that ψt ≡ arg max

j∈{0,...,w−1}
yjt. Considering Definition 1, the regret for the

initialization phase is RI = ∑vw
t=1 E(yψtt − ykt) for an arbitrary action ωk

adopted at t. We can bound RI by considering the worst case possible: to
adopt wrong actions for all t ≤ vw, in which case, k 6= ψt. By Assumption 1:

RI =
vw∑
t=1

E
[
x′t(βψt − βk)

]
. (A-11)

The right-hand side of equation (A-11) can be bounded in absolute terms as:

|x′t(βψt − βk)| ≤ max
1≤j≤p

|xt(j)|
∥∥∥βψt − βk∥∥∥1

.

For a finite set of actions W , define τW ≡ max
k1,k2∈{0,...,w−1}

‖ωk1 − ωk2‖1.

Then, by Assumptions 1.i and 2, we find that RI ≤ ∑vw
t=1 θxhτW ≤ vwθxhτW .

�

Lemma 6 (Instantaneous Regret of the HD εt-Greedy Algorithm)
For every ϑ > vw, provided that each λϑ ≥ 2a on Gkϑ defined in Lemma 3,
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that 32bs0
φ2

0
≤ 1, where b ≥ max

i,j
|Σ̂kϑ(i,j)−Σkϑ(i,j)| and given that Assumptions 1

to 4 hold, with probability 1−Pβϑ the instantaneous regret of the HD εt-Greedy
algorithm (rHDϑ ) is bounded as:

rHDϑ ≤ wθxhτP
HD
kϑ

where
PHD
kϑ ≤

v

ϑ
+
(

1− vw

ϑ

) 8Cmθxs0λϑ
φ2

0

Pβϑ and Cm are established in Lemma 4 and Assumption 4, respectively.

Prova. For ϑ > vw, define ψt in the same way as in the proof of Lemma 5 and
consider the definition of the action function I(·) in Section 1.2. Then, by the
law of total expectation, the instantaneous regret rHDϑ of the HD εt-Greedy
algorithm is:

rHDϑ =
w−1∑
k=0

E
[
x′ϑ(βψϑ − βk)|I(ϑ) = ωk

]
P [I(ϑ) = ωk] . (A-12)

By the learning rule of the HD εt-Greedy algorithm (see Section 1.3), we
have that:

P [I(ϑ) = ωk] = εϑ
w

+(1−εϑ)P
(
x′ϑβ̂k ≥ x′ϑβ̂j

)
, ∀j ∈ {0, . . . , w−1}. (A-13)

From the properties of the maximum of a sequence of random variables,
we have the following fact applied to the last term of (A-13):

P
(

max
j∈{0,...,w−1}

x′ϑβ̂j ≤ x′ϑβ̂k
)

= P

w−1⋂
j=0
x′ϑβ̂j ≤ x′ϑβ̂k


≤ P

(
x′ϑβ̂j ≤ x′ϑβ̂k

)
for some j ∈ {0, . . . , w − 1},

since for any sequence of sets Ai, i = 1, . . . , n, the event {⋂ni=1Ai} is a subset
of every Ai.

Note that

P
(
x′ϑβ̂j ≤ x′ϑβ̂k

)
= P

(
x′ϑβ̂j − x′ϑβj + x′ϑβj − x′ϑβ̂k + x′ϑβk − x′ϑβk ≤ 0

)
= P

[
x′ϑ(βj − βk) ≤ x′ϑ(βj − β̂j) + x′ϑ(β̂k − βk)

]
(A-14)

Bounding the term x′ϑ(β̂k − βk) − x′ϑ(β̂j − βj) in absolute value and
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using the triangle inequality, we find that:

|x′ϑ(β̂k − βk − β̂j + βj)| ≤
(

max
1≤j≤p

|xϑ(j)|
) ∥∥∥β̂k − βk − β̂j + βj

∥∥∥
1

≤
(

max
1≤j≤p

|xϑ(j)|
)( ∥∥∥β̂k − βk∥∥∥1

+
∥∥∥βj − β̂j∥∥∥1

)
≤ θx

( ∥∥∥β̂k − βk∥∥∥1
+
∥∥∥βj − β̂j∥∥∥1

)

Therefore,

P
(
x′ϑβ̂j ≤ x′ϑβ̂k

)
≤ P

[
x′ϑ(βj − βk) ≤ θx

(∥∥∥β̂k − βk∥∥∥1
+
∥∥∥βj − β̂j∥∥∥1

)]
(A-15)

Now consider the set Gkϑ defined in Lemma 3. Provided that for every
ϑ > vw, λϑ ≥ 2a and that 32bs0

φ2
0
≤ 1, where b ≥ max

i,j
|Σ̂kϑ(i,j) − Σkϑ(i,j)|,

results of Lemmas 3 and 4 indicates that with probability 1 − Pβϑ , for every
k ∈ {0, . . . , w−1},

∥∥∥β̂k − βk∥∥∥1
≤ 4s0λϑ

φ2
0

. Using this fact in equation (A-15) and
Assumption 4, we find that:

P
(
x′ϑβ̂j ≤ x′ϑβ̂k

)
≤ P

[
x′ϑ(βj − βk) ≤

8θxs0λϑ
φ2

0

]
≤ 8Cmθxs0λϑ

φ2
0

(A-16)

Inserting the result obtained in equation (A-16) into equation (A-13), we
find that:

P [I(ϑ) = ωk] ≤
εϑ
w

+ (1− εϑ)8Cmθxs0λϑ
φ2

0
(A-17)

As described in Section 1.3, the authors in Auer et al. (2002) suggest
εϑ = cw

d2ϑ
, for c > 0, 0 < d < 1 and ϑ ≥ cw

d2 . Since equation (A-17) is valid for
ϑ > vw it suffices to take c, d, such that c/d2 = v. In this case:

P [I(ϑ) = ωk] ≤
v

ϑ
+
(

1− vw

ϑ

) 8Cmθxs0λϑ
φ2

0
=: PHD

kϑ

Finally, recall the definition of τW made in Lemma 5. Then, with
probability 1 − Pβϑ , the instantaneous regret of the HD εt-Greedy algorithm
after the initialization phase can be bounded as:

rHDϑ ≤ θxhτW
w−1∑
k=0

P [I(ϑ) = ωk] ≤ wθxhτWP
HD
kϑ .

�

Corollary 1 Suppose that for each ϑ > vw, λϑ ≡ Cλσ
√

2log(2p)
ϑ

, Cλ ∈ R.
Then:

rHDϑ ≤ wθxhτ
(
v

ϑ
+
(

1− vw

ϑ

) 8Cmθxs0Cλσ
√

2log(2p)
φ2

0
√
ϑ

)
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Prova.
This is a straightforward proof, since one plugs the proposed λϑ into PHD

kϑ

defined in Lemma 6. �

The suggested time dependency for λϑ in Corollary 1 is adapted from
Buhlmann and van de Geer (2011) and very similar to the versions used in
other papers in this literature such as: Wang et al. (2018), Bastani and Bayati
(2020), Kim and Paik (2019) and Li et al. (2021).

Remark 5 Recall that in some parts of the paper, as in Assumption 4, we
assume the existence of λmin and λmax, such that for each ϑ ∈ T , λmin ≤
λϑ ≤ λmax. The path established for λϑ in Corollary 1 restricts the range of
its possible values and sheds light on its respective bounds. For example, from
the results of Lemma 4, an increasing sequence {λϑ}ϑ∈T guarantees that Gkϑ
occurs at higher probabilities as time passes. This is the most interesting case
in our high-dimensional setup and, for this to occur, it is sufficient that, at
each incremental time step ϑ2 = ϑ1 + 1, the growth in the problem dimension
pϑ2/pϑ1 is less than elog(2pϑ1 )/ϑ1. In this case, {λϑ}ϑ∈T is a increasing sequence
and its lower bound would be λmin = Cλσ

√
2log(2p0), for p0 the dimension

at the beginning of the problem. The upper bound can be easily established
considering that we study learning problems with finite horizon.

Lemma 7 (Instantaneous Regret of the CHD εt-Greedy Algorithm)
For every ϑ > vw, provided that each λϑ ≥ 2a on Gkϑ defined in Lemma 3, that
32bs0
φ2

0
≤ 1, where b ≥ max

i,j
|Σ̂kϑ(i,j) −Σkϑ(i,j)|. Provided that Dϑ ≤ w(1 − Pβϑ),

where
Dϑ := 4θxs0λϑ

φ2
0

+ θxhτW .

and given that Assumptions 1 to 4 hold, with probability 1− Pβϑ the instanta-
neous regret of the CHD εt-Greedy algorithm (rCHDϑ ) is bounded as:

rCHDϑ ≤ wθxhτW

(
PCHD
kϑ − εϑsϑ

w
+ PHD

kϑ

)

where
PCHD
kϑ := εϑsϑ exp

{
− 2
w

[(
w
(
1− Pβϑ

)
−Xϑ

)2
]}
. (A-18)

Pβϑ is the result of Lemma 4, τW is defined in Lemma 5 and PHD
kϑ is provided

in Lemma 6.

Prova. For any ϑ > vw, define ψt in the same way as in the proof of Lemma
5 and consider the definition of the action function I(·) in Section 1.2. Then,
by the law of total expectation, the instantaneous regret rCHDϑ of the CHD
εt-Greedy algorithm is:
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rCHDϑ =
w−1∑
k=0

E
[
x′ϑ(βψϑ − βk)|I(ϑ) = ωk

]
P [I(ϑ) = ωk] (A-19)

By the learning rule of the CHD εt-Greedy algorithm (see Section 1.3),
we have that ∀k ∈ {0, . . . , w − 1}:

P [I(ϑ) = ωk] = εϑsϑ
κϑ

P(x′ϑβ̂k ∈ H
(κϑ)
ϑ )+ 1

w
[εϑ(1− sϑ)]+(1−εϑ)P(x′ϑβ̂k ≥ x′ϑβ̂j).

(A-20)
The last term of the right side of equation (A-20) is the same as the last term
of P [I(ϑ) = ωk] in the HD εt-Greedy algorithm. Regarding the first term of
equation (A-20), by the definition of H(κϑ)

ϑ (Section 1.3):

P(x′ϑβ̂k ∈ H
(κϑ)
ϑ ) = P

 w⋃
j=w−κϑ

{ŷkϑ ≥ ŷ(j:w)ϑ}

 (A-21)

Now notice that restricted to the set of κϑ higher-order statistics, the
event {ŷkϑ ≥ ŷ(j:w)ϑ} ⊂ {ŷkϑ ≥ ŷ(w−κϑ:w)ϑ}, for j ∈ {w − κϑ, . . . , w}. This
implies that {ŷ(w−κϑ:w)ϑ} is is the most probable to occur since it is the lowest
possible order statistic. Then, employing the union bound, we have that:

P

 w⋃
j=w−κϑ

{ŷkϑ ≥ ŷ(j:w)ϑ}

 ≤ κϑP
(
ŷkϑ ≥ ŷ(w−κϑ:w)ϑ

)
. (A-22)

Using Assumption 1, it is clear from the developments made in Lemmas
5 and 6 that |x′ϑβ̂k| ≤ θx

∥∥∥β̂k − βk∥∥∥1
+ θx ‖βk‖1. Moreover, using Assumption

2, provided that 0 ∈ C, the parametric space, Lemmas 3 and 4 indicates that,
on Gkϑ ∩max

i,j
|Σ̂kϑ(i,j) −Σkϑ(i,j)| ≤ b, with probability 1− Pβϑ :

|x′ϑβ̂k| ≤
4θxs0λϑ
φ2

0
+ θxhτW =: Xϑ

where τW is defined in Lemma 5.
Then, equation (A-22) leads to:

κϑP(ŷkϑ ≥ ŷ(w−κϑ:w)ϑ) ≤ κϑP
(
ŷ(w−κϑ:w)ϑ ≤ Xϑ

)
≤ κϑ

w∑
j=w−κϑ

(
w

j

)
[P(ŷkϑ ≤ Xϑ)]j [1− P(ŷkϑ ≤ Xϑ)]w−j ,

(A-23)

since, as an intermediate-order statistic, ŷ(w−κϑ:w)ϑ ∼ Bin[w, pkϑ(y)], for
pkϑ(y) ≡ P(ŷkϑ ≤ y), which in this case, we can take y = Xϑ.

If Xϑ ≤ wpkϑ(Xϑ), we can use Lemma 11 to bound equation (A-23) as:

κϑP
(
ŷ(w−κϑ:w)ϑ ≤ Xϑ

)
≤ κϑ exp

[
−2(wpkϑ(Xϑ)−Xϑ)2

w

]
.
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However, notice that

pkϑ(Xϑ) := P(x′ϑβ̂k ≤ Xϑ) ≥ P
(∥∥∥β̂k − βk∥∥∥1

≤ 4s0λϑ
φ2

0
+ hτW

)

≥ P
(∥∥∥β̂k − βk∥∥∥1

≤ 4s0λϑ
φ2

0

)
= 1− Pβϑ ,

Then,

κϑ exp
[
−2(wpkϑ (Xϑ)−Xϑ)2

w

]
≤ κϑ exp

−2

(
w(1− Pβϑ)−Xϑ

)2

w

 (A-24)

Therefore, for ϑ > vw, Xϑ ≤ w(1−Pβϑ) is sufficient to replace the above
requisite of Lemma 11 and we restate it as:

P(x′ϑβ̂k ∈ H
(κϑ)
ϑ ) ≤ κϑ exp

{
− 2
w

[
w
(
1− Pβϑ

)
−Xϑ

]2}
Define PCHD

kϑ := εϑsϑ
κϑ

P(x′ϑβ̂k ∈ H
(κϑ)
ϑ ) and, with probability 1− Pβϑ , the

instantaneous regret of the CHD εt-Greedy algorithm, equation (A-19), can be
bounded as:

rCHDϑ ≤ wθxhτW

(
PCHD
kϑ − εϑsϑ

w
+ PHD

kϑ

)
�

Note from Lemmas 5, 6 and 7 that all bounds are increasing with θx, τW
and w, this last one as a function of the initialization period. The intuition
behind this fact is clear since the larger the level of dissimilarity among policies
or the larger the number of policies to be tested is, the greater the difficulty
for the algorithm to select the right policy. In particular, the initialization
phase should also be longer, in order to gather information over a large set of
alternatives.

Lemma 8 Suppose that the Σ0-compatibility condition holds for the set S with
cardinality s with compatibility constant φΣ0(S) and that ‖Σ1 −Σ0‖∞ ≤ λ̃,
where

32λ̃s
φ2

Σ0(S) ≤ 1.

Then, for the set S, the Σ1-compatibility condition holds as well, with φ2
Σ1(S) ≥

φ2
Σ0(S)/2.

Prova. See Corollary 6.8 in Buhlmann and van de Geer (2011) �

Lemma 9 For arbitrary n and p, consider independent centered random
variables ε1, . . . , εn, such that ∀ i, there is a σ2 that bounds the variance as
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E (ε2i ) ≤ σ2. Moreover, let {xi,j : i = 1, . . . , n, j = 1, . . . , p} be such that for
i = 1, . . . , n, there is a Ki := max

1≤j≤p
|xi,j| such that

E

max
1≤j≤p

∣∣∣∣∣
n∑
i=1

εixi,j
n

∣∣∣∣∣
2
 ≤ σ2

[
8 log(2p)

n

](∑n
i=1K

2
i

n

)

Prova. See Lemma 14.24 in Buhlmann and van de Geer (2011) �

Lemma 10 Let Z1, . . . , Zn be independent random variables and γ1, . . . , γp be
real-valued functions satisfied for j = 1, . . . , p,

E[γj(Zi)] = 0
1
n

n∑
i=1

E[|γj(Zi)|m] ≤ m!
2 Km−2

for K > 0 and m ≤ 1 + log(p) (easily satisfied for large p). Then,

E
[

max
1≤j≤p

∣∣∣∣∣ 1n
n∑
i=1

γj(Zi)
∣∣∣∣∣
m]
≤

K log(2p)
n

+
√

2 log(2p)
n

m .
Prova. See Lemma 14.12 in Buhlmann and van de Geer (2011) �

Lemma 11 Let X ∼ Bin(n, p). For k ≤ np:

P(X ≤ k) ≤ exp
[
−2(np− k)2

n

]

Prova. This is an application of Höeffding’s inequality to random variables that
follow a binomial distribution. For more details, see Lemma 7.3 of Lin and Bai
(2011) �

Lemma 12 If f is a monotone decreasing function and g is a monotone
increasing function, both integrable on the range [r − 1, s], then:

s∑
t=r

f(t) ≤
∫ s

r−1
f(t)dt and

s∑
t=r

g(t) ≤
∫ s

r
g(t)dt

Prova. This is a well-known fact for monotone functions linked to left and right
Riemann sums. �
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A.2
Theorems

Theorem 1 (Cumulative Regret of CHD εt-Greedy algorithms) Pro-
vided that the conditions required by Lemmas 5, 6, 7 in this Appendix are
satisfied, at least with probability 1 − Pβmax, Pβmax ≡ max

vw<ϑ<T
Pβϑ, for sϑ ≡ s

imputed by end-user, the cumulative regret until time T of the CHD εt-Greedy
learning rule can be bounded as:

RCHD
T−1 ≤ RHD

T−1 + wθxhτW

[
vs log

(
T − 1
vw

)(
w exp

{
− 2
w

[ [
w
(
1− Pβϑ

)
−Xϑ

]2}
− 1

)]
= O{s0

√
T log(2p)}.

where Pβϑ, Xϑ and Cm are provided in Lemmas 4, 7 and Assumption 4,
respectively.
Prova. For ϑ ≤ vw, the cumulative regret of both HD εt-Greedy and CHD
εt-Greedy algorithms are given by Lemma 5.

For ϑ > vw, Lemmas 6 and 7 indicates that, with probability 1 − Pβϑ ,
instantaneous regret of both algorithms are bounded. Considering the whole
period vw < ϑ < T , there exists Pβmax ≡ max

vw<ϑ<T
Pβϑ such that, at least, with

probability 1−Pβmax all instantaneous regret are bounded. Following this line,
we first compute the cumulative regret for the HD εt Greedy algorithm until
time T and then, express the regret for the conservative version as a function
of the first. Since 1/ϑ is a decreasing function of ϑ, using Lemma 12:

RHD
T−1,ϑ>vw ≤wθxhτW

T−1∑
ϑ=vw+1

PHD
kϑ ≤ wθxhτW

T−1∑
ϑ=vw+1

v

ϑ
+

(
1− vw

ϑ

) 8Cmθxs0Cλσ
√

2log(2p)
φ2

0
√
ϑ

≤

wθxhτW

[
v log

(
T − 1
vw

)
+

16Cmθxs0Cλσ
√

2log(2p)
φ2

0[(√
T − 1−

√
vw + 1√

T − 1
− 1√

vw

)]]
= O{s0

√
T log(2p)}.

Adding the period before vw, then with probability at least 1 − Pβmax ,
the total cumulative regret for the HD εt-Greedy until time T is bounded as:

RHD
T−1 ≤wθxhτW

[
v + v log

(
T − 1
vw

)
+

16Cmθxs0Cλσ
√

2log(2p)
φ2

0

[(√
T − 1−

√
vw + 1√

T − 1
− 1√

vw

)]]
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For the CHD εt-Greedy algorithm, from Lemma 7:

RCHD
T−1,ϑ>vw ≤ wθxhτW

T−1∑
ϑ=vw+1

(
PCHD
kϑ − εϑsϑ

w
+ PHD

kϑ

)

≤ RHD
T−1,ϑ>vw + wθxhτW

T−1∑
ϑ=vw+1

vwsϑ
ϑ(

exp
{
− 2
w

[
w
(
1− Pβϑ

)
−Xϑ

]2})
− vsϑ

ϑ

For an st ≡ s chosen by the end-user:

RCHD
T−1,ϑ>vw ≤RHD

T−1,ϑ>vw + wθxhτW

[
vws log

(
T − 1
vw

)
(

exp
{
− 2
w

[
w
(
1− Pβϑ

)
−Xϑ

]2})
− vs log

(
T − 1
vw

) ]

Finally, also with probability at least 1 − Pβmax , the total cumulative
regret for the CHD εt-Greedy algorithm until time T is bounded as:

RCHD
T−1 ≤ RHD

T−1 + wθxhτW

[
vs log

(
T − 1
vw

)(
w exp

{
− 2
w

[ [
w
(
1− Pβϑ

)
−Xϑ

]2}
− 1

)]
= O{s0

√
T log(2p)}.

Provided that w > (12 + 2
√

2)Xmax, Theorem 2 indicates that:

w exp
{
− 2
w

[
w
(
1− Pβϑ

)
−Xϑ

]2}
< 1

and RCHD
T−1 as a whole is O{log(T )} strictly lower than the bound for RHD

T−1. �

Theorem 2 (Flexibility and Dominance of CHD εt-Greedy algorithm)
Provided that the conditions required by Lemmas 6 and 7 are satisfied, the
upper bound for the CHD εt-Greedy algorithm does not depend on κϑ and,
at least with probability 1 − Pβmax, for an increasing sequence {λϑ}ϑ>vw, if
w ≥ (12 + 2

√
2)Xmax:

sup
ϑ∈T ∩{ϑ|ϑ>vw}

rCHDϑ < sup
ϑ∈T ∩{ϑ|ϑ>vw}

rHDϑ ,

where Pβϑ is defined in Lemma 4, rCHDϑ is provided in Lemma 6, while rHDϑ
and Xmax are defined in Lemma 7, where Xmax is the usual Xϑ plugged with
λmax.
Prova.

For the second part of the theorem, note that from the results of Lemmas
6 and 7, we know that for every k ∈ {0, ..., w − 1} and for ϑ > vw, at least
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with probability 1− Pβmax (see Theorem 1):

sup
ϑ>vw

rCHDϑ ≤ wθxhτW

(
PCHD
kϑ − εϑsϑ

w
+ PHD

kϑ

)
= sup

ϑ>vw
rHDϑ +wθxhτW

(
PCHD
kϑ − εϑsϑ

w

)

For the CHD εt-Greedy to have a stricter instantaneous bound than its
non-conservative version, it is sufficient that:

PCHD
kϑ − εϑsϑ

w
< 0⇐⇒ 1

κϑ
P(x′ϑβ̂k ∈ H

(κϑ)
ϑ ) < 1

w

which is guaranteed to occur when:

w <
2
w

[
w
(
1− Pβϑ

)
−Xϑ

]2
=⇒ w < exp

{ 2
w

[
w
(
1− Pβϑ

)
−Xϑ

]2}
= κϑ

P(x′ϑβ̂k ∈ H
(κϑ)
ϑ )

(A-25)

The LHS of equation (A-25) unfolds three cases of interest:
Case 1: Consider the set E1 ≡ {ϑ > vw|(1 − Pβϑ) ≥ 0.75}, where 0.75

is arbitrarily chosen to guarantee that Pβϑ < 1 −
√

1/2. On E1, the LHS of
equation (A-25) has positive curvature and a discriminant of ∆ϑ = 8X 2

ϑ > 0,
indicating the existence of two real roots, wl < wr.

Then, for any ϑ ∈ E1, it is sufficient for our purposes to analyze when w
can be greater than or equal to the largest root (w ≥ wr). Since wr is increasing
with Pβϑ , we require that:

w ≥ 2Xmax(2(0.75) +
√

2)
4 (0.75)2 − 2

= (12 + 2
√

2)Xmax ≥ wr = 2Xϑ(2(1− Pβϑ) +
√

2)
4
(
1− Pβϑ

)2
− 2
(A-26)

where Xmax ≡ Xϑ for values of λϑ = λmax.
Refer to the discussion made in Remark 5 for the cases when {λϑ}ϑ>vw

is an increasing sequence. Coupled with a decreasing relationship between Pβϑ
and λϑ (see Lemma 4), case 1 (Pβϑ < 1−

√
1/2) is the most important situation

for the high-dimensional case studied in this work. Nonetheless we also briefly
provide below the analysis for the other cases.

Case 2: Consider the set E2 ≡ {ϑ > vw|(1 − Pβϑ) ≤ 0.7} where, like
case 1, 0.7 is chosen to guarantee a negative curvature for the LHS of equation
(A-25). The discriminant is the same as in case 1 (8X 2

ϑ ) but, easy calculations
show that @w > 0 for our result to hold, since wl < wr < 0.

Case 3: Consider the set E3 ≡ {ϑ > vw|(1− Pβϑ) = 1−
√

1/2}. In this
case, 1 < w < Xmin√

2 is sufficient for our result to hold, for Xmin the counterpart
of the above-defined Xmax.

For the first part of this theorem, recall that
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sup
ϑ>vw

rCHDϑ =wθxhτW
(
PCHD
kϑ − εϑsϑ

w
+ PHD

kϑ

)
=

wθxhτWεϑsϑ

P(x′ϑ ∈ H
(κϑ)
ϑ )

κϑ
− 1
w

+ wθxhτWP
HD
kϑ ≤

wθxhτWεϑsϑ

(
exp

{
− 2
w

[
w
(
1− Pβϑ

)
−Xϑ

]2}
− 1
w

)
+ wθxhτWP

HD
kϑ

(A-27)

None of the terms in inequality (A-27) depend on κϑ, which completes
the proof. �
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B
Appendix to Chapter 2

In this appendix, we provide the proofs of the Theorems proposed in
Chapter 2, and respective Auxiliary Lemmas.

B.1
Auxiliary Lemmas

Proof of Lemma 1

For any tree Tb, b = 1, ..., B, provided that an arbitrary cell Ab,k−1 has
n(Ab,k−1) > 2 then, any cell Ab,k, child of Ab,k−1 and formed by a sequence of
splits Hb,k has the property:

n(Ab,k) ≥
∆n(Ab,k−1)2

2(n(Ab,k−1)− 2) ≥ n
(∆

2

)k
Prova.

Consider a tree Tb, and an arbitrary cell Ab,k−1 formed by the sequence of
splits Hb,k−1. Let hb,k ∈ Cb,k be a new split and label, without loss of generality,
the left child of Ab,k−1 as Ab,k and its right child as Ar,b,k−1. Since results are
valid for any tree, in the rest of this proof we suppress the subscript b to
simplify notation.

The purity improvement generated by an arbitrary split hk is:

DBD
PUC-Rio - Certificação Digital Nº 1712566/CA



Appendix B. Appendix to Chapter 2 99

Γ(Ak−1, hk) =G(Ak−1)− φl(Ak−1)G(Ak)− φr(Ak−1)G(Ar,k−1) =

2φ0(Ak−1)(1− φ0(Ak−1))− 2φl(Ak−1)φ0(Ak)(1− φ0(Ak))−

2φr(Ak−1)φ0(Ar,k−1)(1− φ0(Ar,k−1)) =

2
(
n0(Ak−1)n1(Ak−1)

n(Ak−1)2 − n0(Ak)n1(Ak)
n(Ak−1)n(Ak)

− n0(Ar,k−1)n1(Ar,k−1)
n(Ak−1)n(Ar,k−1)

)
≤

2
n(Ak−1)2

(
n0(Ak−1)n1(Ak−1)− n0(Ak)n1(Ak)− n0(Ar,k−1)n1(Ar,k−1)

)
=

2
n(Ak−1)2

(
n0(Ak−1)n1(Ak−1)− n0(Ak)n1(Ak)−

(n0(Ak−1)− n0(Ak))(n1(Ak−1)− n1(Ak))
)

=
2

n(Ak−1)2

(
n0(Ak−1)n1(Ak) + n1(Ak−1)n0(Ak)− 2n0(Ak)n1(Ak)

)
≤

2
n(Ak−1)2 ((n0(Ak−1) + n1(Ak−1))(n1(Ak) + n0(Ak))− 2(n0(Ak) + n1(Ak)) =

2(n(Ak−1)− 2)n(Ak)
n(Ak−1)2

(B-1)
where the first inequality uses the fact the ∀k, both n(Ak) ≤ n(Ak−1) and
n(Ar,k−1) ≤ n(Ak−1), while the second inequality is a simplification that
recognizes both that ∀x, y, z, w ≥ 2, xy + zw ≤ (x + z)(y + w) and that
yw ≥ y + w.

Since Ak−1 was in fact divided to generate two children, by the stopping
rule described in Section 2.2, the purity improvement was higher enough to
not trigger an early stop in the tree growing process. That is:

∆ ≤ Γ(Ak−1, hk) ≤
2(n(Ak−1)− 2)n(Ak)

n(Ak−1)2 ⇐⇒ n(Ak) ≥
∆n(Ak−1)2

2(n(Ak−1)− 2)
(B-2)

which implies, recursively that:

n(Ak) ≥
∆n(Ak−1)2

2(n(Ak−1)− 2) >
∆
2 n(Ak−1) >

(∆
2

)2
n(Ak−2) > · · · >

(∆
2

)k
n

�

Proof of Lemma 2

For any tree Tb, b = 1, ..., B and any cell Ab,k−1 it is true that for any
hb,k ∈ Cb,k, uniformly:

lim
n→∞

P sup
hb,k∈Cb,k

∣∣∣∣Ω̂(Ab,k−1, hb,k)− Ω(Ab,k−1, hb,k)
∣∣∣∣ p−→ 0

Prova.
As we did in the proof of Lemma 1, we also remove the index b here, since
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all steps of this proof can be equally applied to any tree without distinction.
If an arbitrary cell Ak−1, formed by the sequence of splits Ĥk−1, is going to be
split into Al,k−1 and Ar,k−1 then, the procedure to select best splits (see Section
2.2) finds a pair ĥk = (ĵk, ζ̂k) ∈ Ck, such that the gain in purity is maximum,
which is equivalent to minimize:

Ω̂(Ak−1, ĥk) = φ̂l(Ak−1, ĥk)Ĝ(Al,k−1, ĥk) + φ̂r(Ak−1, ĥk)Ĝ(Ar,k−1, ĥk) (B-3)

Also, notice that any set Ck is discrete in itself bounded down, according
to the Definition 7. To see that, by contradiction, assume that Ck is not discrete
in itself. Then, by definition, there exists a sequence of splits {ĥi ∈ Ck; i =
1, 2, 3...} such that ĥ∗i = lim ĥi for some ĥ∗i ∈ Ck. That is, for each ε > 0,
∃N ∈ N such that ∀n ≥ N implies that

∥∥∥ĥ∗i − ĥn∥∥∥2
≤ ε.

Define: δ = min
i,i′
|ζ̂i− ζ̂i′ | for all possible cuts ĥi, ĥi′ ∈ Ck and take ε = δ/2.

Then, for all n ≥ N :

∥∥∥ĥ∗i − ĥn∥∥∥2
≤ δ

2 ⇐⇒
√

(ĵ∗i − ĵn)2 + (ζ̂∗i − ζ̂n)2 ≤ δ

2 =⇒ |ζ̂∗i − ζ̂n| ≤
δ

2

which is impossible, since both ζ̂∗i and ζ̂n, ∀n ≥ N , belong to Ck.
For the bounded down part, one needs only to recognize that δ as above

defined is the lower bound for the distance between any two points in Ck.
Therefore, there is a finite amount of possibilities to choose ĥk. Since ĵk ∈ Wb,
with cardinality w, and ζ̂k ∈ {x(ĵk)

1 , ...,x(ĵk)
s }, then #Ck = ws.

In this context, take φ̂l(Ak−1, ĥk) in equation (B-3) as example. By
definition:

φ̂l(Ak−1, ĥk) = 1
n(Ak−1)

n(Ak−1)∑
i=1

1{x(ĵk)
i < ζ̂k}

For every ĥk ∈ Ck, the random sequence
{
1{x(ĵk)

i < ζ̂k}
}

is uniformly

integrable, since E
[
1{x(ĵk)

i < ζ̂k}
]

= P(x(ĵk)
i < ζ̂k|xi ∈ Ak−1) ∈ [0, 1]. Then, a

Pointwise Law of Large Numbers holds, leading to:

φ̂l(Ak−1, ĥk) = 1
n(Ak−1)

n(Ak−1)∑
i=1

1{x(ĵk)
i < ζ̂k}

p−→ P(x(ĵk)
i < ζ̂k|xi ∈ Ak−1) ≡ φl(Ak−1, ĥk)

In our discrete set context, this is sufficient for the uniform convergence
in probability. In fact, notice that for every ĥk ∈ Ck:
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sup
ĥk∈Ck

|φ̂l(Ak−1, ĥk)− φl(Ak−1, ĥk)| ≤
ws∑
i=1
|φ̂l(Ak−1, ĥi)− φl(Ak−1, ĥi)|

p−→ 0

The same operational steps is applied to Ĝ(·) in equation (B-3). For the
sake of completeness take the sequence {φ̂0(Al,k−1, ĥk)}. Also, by definition,

φ̂0(Al,k−1, ĥk) = 1
n(Al,k−1)

n(Al,k−1)∑
i=1

1{di = 0}1{x(ĵk)
i < ζ̂k}

which is also integrable, leading to the uniform convergence of φ̂0(Al,k−1, ĥk)
to φ0(Al,k−1, ĥk).

Consequently, by the Uniform Continuous Mapping Theorem:

Ĝ(Al,k−1, ĥk) = 2φ̂0(Al,k−1, ĥk)(1− φ̂0(Al,k−1, ĥk))
p−→

2P(di = 0|x(ĵk)
i < ζ̂k,xi ∈ Ak−1)(1− P(di = 0|x(ĵk)

i < ζ̂k,xi ∈ Ak−1)) ≡

2φ0(Al,k−1, ĥk)(1− φ0(Al,k−1, ĥk)) = G(Al,k−1, ĥk)

The same developments can be made for Ar,k−1, which yields the result.
�

Lemma 13 (Marcinkiewicz-Zygmund-Burkholder Inequality) Let
r ≥ 1, {Xj} a sequence of independent random variables with E[Xj] = 0,
j = 1, ..., n. Then, there are positive constants ar and br such that:

arE
( n∑
j=1

X2
j

)r/2
≤ E

∣∣∣∣ n∑
j=1

Xj

∣∣∣∣r ≤ brE
( n∑
j=1

X2
j

)r/2

Prova. See Section 9.7 of Lin and Bai (2011) �

Lemma 14 (εb-Greedy) For Q > 1, if policy εb-Greedy is run with input
parameter µ > 0 then, the probability that after any number b ≥ µψQ of plays,
εb-Greedy chooses a suboptimal action is at most:

Pε ≡
µ

b
+ 2

(
µlog

((b− 1)e1/2

µQ

))(
Q

(b− 1)µe1/2

)µ/5
+ 4e
ψ2

(
Q

(b− 1)µe1/2

)
where 0 < ψ < 1 and Q is defined in Section 2.3.

Prova. See Theorem 3 in Auer et al. (2002) �
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B.2
Theorems

Proof of Theorem 3

For any tree Tb, b = 1, ..., B and any cell Ab,k−1, provided that Assumption
9 holds, an empirical split ĥb,k ∈ Cb,k is consistent in the sense that ĥb,k − h0

b,k

is op(1).
Prova.

First of all, notice that for every tree Tb, Ω̂(Ak−1, hk) is uniformly
continuous in Ck. If it were not, there should exists an ε > 0, such that
for all δ > 0, we could find an h′k ∈ Ck such that ‖hk − h′k‖ < δ and
|Ω̂(Ak−1, hk) − Ω̂(Ak−1, h

′
k)| > ε. Take the same δ = min

k,k′
|ζk − ζk′| defined

in the proof of Lemma 2. Although hk is defined in terms of the pair (jk, ζk),
we do not mention jk and j′k when choosing δ, since by assumption, xi ∈ [0, 1]p

∀i. Therefore, this particular δ guarantees that we are referring to cuts at the
same direction, since min

k,k′
|ζk − ζk′ | < 1.

Therefore, for two splits at the same direction, hk = (jk, ζk) and h′k =
(jk, ζ ′k), given the discreteness of Ck and argued by Burgin (2010), the only
possibility for ‖hk − h′k‖ < δ is when hk = h′k. This implies that there is not
an ε > 0, such that |Ω̂(Ak−1, hk)− Ω̂(Ak−1, h

′
k)| > ε. Uniform continuity comes

from the Heine-Cantor Theorem, since Ck is a compact set.
Moreover, recall that Lemma 2 shows that Ω̂(Ak−1, hk) uniformly con-

verges in probability in hk ∈ Ck to its population expectation Ω(Ak−1, hk).
Then, provided that Assumption 9 holds, all conditions of Theorem 4.1.1 of
Amemiya (1985) are satisfied, and the result follows. �

Proof of Theorem 4

Provided that Assumptions 5 to 10 hold, with probability at least 1−Pε,
for b ≥ µψQ, the sequence of trees {Tb}, trained on random subsamples of Sn,
asymptotically identifies the boundary Aa induced by a deterministic complex
assignment rule a and, for p > 0 finite and fixed (not growing with sample
size), τ̂ − τ is op(1), where Pε and ψ are defined in Lemma 14.
Prova.

Considering Assumption 8 and the model in equation (2-2), border
treatment effects can be estimated by the difference between intercepts at
each side of cutoff: τ̂ (f)

b,l = α̂b,l+ − α̂b,l.
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Consider a tree Tb and a pair (Ab,ki , Ab,kj) ∈ Fb sharing the l-th border.
Without loss of generality, take the regression to the left of the cutoff (units
inside Ab,ki) as example and consider the definitions made in Assumption 10.
In the following development we eliminate the subscripts “b” and “ki|κl” but
keep in mind that we are investigating the regression using units inside Ab,ki|κl .
Write, in matrix representation, y = ια + Zβ + e.

Using an empirical split ζ̂ as an approximation for ζ0, the well known
OLS estimator for the intercept is given by α̂(ζ̂) = (ι′ι)−1ι′(y− Z(ζ̂)β̂(ζ̂)).

Then:

α̂(ζ̂)− α̂(ζ0) = 1
n(A)

[ n(A)∑
i=1
y(i) −Z(i)(ζ̂)β̂(ζ̂)−

n(A)∑
i=1
y(i) −Z(i)(ζ0)β̂(ζ0)

]
=

1
n(A)

n(A)∑
i=1

p∑
j=1

[
Z(i,j)(ζ0)β̂(j)(ζ0)−Z(i,j)(ζ̂)β̂(j)(ζ̂)

]
=

1
n(A)

n(A)∑
i=1

p∑
j=1

[
Z(i,j)(ζ0)(β̂(j)(ζ0)− β(j)) + (Z(i,j)(ζ0)−Z(i,j)(ζ̂))β(j)+

Z(i,j)(ζ̂)(β(j) − β̂
(j)(ζ̂))

]
Consequently, for ε > 0:

P
(
|α̂(ζ̂)− α| > ε

)
= P

(
|α̂(ζ̂)− α̂(ζ0) + α̂(ζ0)− α| > ε

)
≤

P
(∣∣∣∣ 1
n(A)

n(A)∑
i=1

p∑
j=1

[
Z(i,j)(ζ0)(β̂(j)(ζ0)− β(j)) + (Z(i,j)(ζ0)−Z(i,j)(ζ̂))β(j)

∣∣∣∣ > ε/4
)

+

P
(∣∣∣∣ 1
n(A)

n(A)∑
i=1

p∑
j=1
Z(i,j)(ζ̂)(β(j) − β̂

(j)(ζ̂))
∣∣∣∣ > ε/4

)
+ P

(
|α̂(ζ0)− α| > ε/2

)
≤

P
( 1
n(A)

n(A)∑
i=1

p∑
j=1

∣∣∣∣Z(i,j)(ζ0)(β̂(j)(ζ0)− β(j))
∣∣∣∣ > ε/8

)
︸ ︷︷ ︸

A

+

P
( 1
n(A)

n(A)∑
i=1

p∑
j=1

∣∣∣∣(Z(i,j)(ζ0)−Z(i,j)(ζ̂))β(j)
∣∣∣∣ > ε/8

)
︸ ︷︷ ︸

B

+

P
( 1
n(A)

n(A)∑
i=1

p∑
j=1

∣∣∣∣Z(i,j)(ζ̂)(β(j) − β̂
(j)(ζ̂))

∣∣∣∣ > ε/4
)

︸ ︷︷ ︸
C

+P
(
|α̂(ζ0)− α| > ε/2

)
︸ ︷︷ ︸

D

(B-4)
where all inequalities use either the triangle inequality or the proposi-
tion 5.1 in Lin and Bai (2011). In our framework, for every ζ ∈ C,

max
i∈{1,...,n(A)},j∈{1,...,p}

Z(i,j)(ζ) ≤ 1. Using this fact, equation B-4 resumes to:
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P
(
|α̂(ζ̂)− α| > ε

)
≤ P

(
max

j∈{1,...,p}

∣∣∣∣β̂(j)(ζ0)− β(j)
∣∣∣∣ > ε/8p

)
︸ ︷︷ ︸

A′

+B+

P
(
max

j∈{1,...,p}

∣∣∣∣β(j) − β̂
(j)(ζ̂))

∣∣∣∣ > ε/4p
)

︸ ︷︷ ︸
C′

+D
(B-5)

Since α̂(ζ0) and β̂(ζ0) are OLS local parameters estimates based on the
knowledge of true splits and considering the exogeneity premise in Assumption
7, for any p > 0 fixed and finite (not growing with the sample size) lim

n→∞
A′ → 0

and the same happens with D in equation (B-5).
Regarding the term B, notice that ∀i ∈ {1, ..., n(A)} and ∀j ∈ {1, ..., p}:

Z(i,j)(ζ0)−Z(i,j)(ζ̂) =

ζ
0 − ζ̂ , if j = 1

0, otherwise
Then, using assumption 7.i:

P
( 1
n(A)

n(A)∑
i=1

p∑
j=1

∣∣∣∣(Z(i,j)(ζ0)−Z(i,j)(ζ̂))β(j)
∣∣∣∣ > ε/8

)
≤

P
( 1
n(A)

n(A)∑
i=1

∣∣∣∣(ζ0 − ζ̂) max
j∈{1,...,p}

β(j)
∣∣∣∣ > ε/8

)
≤

P
(∣∣∣∣ζ0 − ζ̂

∣∣∣∣ > ε/8δβ
)

(B-6)

which also goes to zero as n→∞ by the results of theorem 3.
Finally, regarding the term C ′:

P
(
max

j∈{1,...,p}

∣∣∣∣β(j) − β̂
(j)(ζ̂))

∣∣∣∣ > ε/4p
)
≤

P
(
max

j∈{1,...,p}

∣∣∣∣β(j) − β̂
(j)(ζ0))

∣∣∣∣ > ε/8p
)

︸ ︷︷ ︸
C′1

+P
(
max

j∈{1,...,p}

∣∣∣∣β̂(j)(ζ0)− β̂(j)(ζ̂))
∣∣∣∣ > ε/8p

)
︸ ︷︷ ︸

C′2

(B-7)
The term C ′1 in equation (B-7) is op(1) by the arguments already

discussed in this proof. Regarding the term C ′2, notice that the functions
defined as r(ζ) = Z′(ζ)(Id − Pι)y are continuous for ζ ∈ [0, 1]. To see this,
consider two points ζ, ζ ′ in the domain. Then:

r(ζ)− r(ζ ′) = Z′(ζ)(Id−Pι)y− Z′(ζ ′)(Id−Pι)y =[
(y(1− n(A)))(ζ ′ − ζ) 0 · · · 0

]′
where y is the sample average 1

n(A)
∑n(A)
i=1 y

(i).
Then, ∀τ > 0, choose δn(τ) small enough, such as δn(τ) = τ/n, and

notice that for for any realization of the random matrix Z, |ζ−ζ ′| < δn implies
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that

P
(
‖r(ζ)− r(ζ ′)‖2 > τ

)
≤ P

(∣∣∣∣ n(A)∑
i=1

y(i)
( 1
n(A) − 1

)∣∣∣∣ > τ

δn

)
=

P
(∣∣∣∣ n(A)∑

i=1
y(i)

∣∣∣∣ > τ

δn

∣∣∣∣( 1
n(A) − 1

)∣∣∣∣
)
≤

(
δn

∣∣∣∣( 1
n(A) − 1

)∣∣∣∣)r
τ r

E
[∣∣∣∣ n(A)∑

i=1
y(i)

∣∣∣∣r]
(B-8)

where the last inequality is Markov inequality. Since equation (B-8) is valid
for any r > 0, take r = 1 and b1 > 0 to get that

(
δn

∣∣∣∣( 1
n(A) − 1

)∣∣∣∣)
τ

E
[∣∣∣∣ n(A)∑

i=1
y(i)

∣∣∣∣] ≤
δn

∣∣∣∣( 1
n(A) − 1

)∣∣∣∣
τ

E
[∣∣∣∣ n(A)∑

i=1
α +

p∑
j=1

Z(i,j)β(j)
∣∣∣∣+ ∣∣∣∣ n(A)∑

i=1
e(i)

∣∣∣∣] ≤
δn

∣∣∣∣( 1
n(A) − 1

)∣∣∣∣
τ

(
n(A)δα + n(A)pδβ + E

[∣∣∣∣ n(A)∑
i=1

e(i)
∣∣∣∣]) ≤

δn

∣∣∣∣( 1
n(A) − 1

)∣∣∣∣
τ

(
n(A)δα + n(A)pδβ + b1E

( n(A)∑
i=1

e(i)2
)1/2)

≤

δn

∣∣∣∣( 1
n(A) − 1

)∣∣∣∣
τ

(n(A)δα + n(A)pδβ + b1σ
√
n(A)) ≤

Clδn
τ

(C1n(A) + C2n(A)1/2)

where the first inequality is triangle inequality, the second uses the bounds in
Assumption 7, the third uses Lemma 13, the fourth is Jensen inequality and
the Assumption 7, the fifth only recognizes that for n(A) ∈ N+,

∣∣∣∣( 1
n(A)−1

)∣∣∣∣ =
n(A)−1
n(A) = Cl < 1, for every border l and C1, C2 are (δα+pδβ), b1σ, respectively.

Since n ≥ n(A), picking the above mentioned suggestion for δn(τ), for every
τ > 0, guarantees that with high probability the functions r are continuous.

Using Assumption 10 and the functions t defined therein, β̂(ζ) = t(ζ)q(ζ)
is continuous on [0, 1]. From the Continuous Mapping Theorem and the results
of Theorem 3, we get that |β̂(ζ̂)− β̂(ζ0)| is op(1). The whole term C ′ also goes
to zero, applying the triangle inequality, for p fixed and finite when n→∞.

Therefore, α̂(ζ̂) is a consistent estimator of α. It rests to argue that RDF
algorithm provides a way to select “good” empirical splits ĥ so that α̂(ζ̂) is not
only consistent, but estimated on empirical boundaries that asymptotically
approach those identified by trees in Da (causal α’s).
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Take a tree Tb, b ≥ µψQ, and f ′b unique leaves Ab,k in Fb, f ′b > fb. From
Lemma 14, with probability at least 1 − Pε, the εb-Greedy rule (superscript
(εG)) selects W εG

b ∈ Q that, once imputed to the root of Tb, leads to sequences
of splits that result in empirical leaves with overall minimum impurity among
all possibilities in Q. That is:

f ′b∑
k=1

Ĝ(Ab,k, ĥ(εG)
b,k ) ≡ min

{ĥb,k}∈C

f ′b∑
k=1

Ĝ(Ab,k, ĥb,k)

where C is the set of all possible splits, defined in Section 2.2.
Since ĥ(εG)

b,k is an empirical split like any other, from Theorem 3, ĥ(εG)
b,k

p−→
h

(εG)
b,k ≡ argmin

h∈Cb,k
G(Ab,k, h), such that:

f ′b∑
k=1

G(Ab,k, h(εG)
b,k ) ≡ min

{hb,k}∈C

f ′b∑
k=1

G(Ab,k, hb,k)

Now we claim that there must be a m ∈ {1, ...,Ma} and a k′ > 0,
such that with high probability and for b ≥ µψQ, h(εG)

b,k = hm,k′ for some
tree Tm ∈ Da as defined in Assumption 5. Otherwise, ∀m and ∀b ≥ µψQ,∑f ′b
k′=1G(Am,k′ , hm,k′) >

∑f ′b
k=1G(Ab,k, h(εG)

b,k ) indicating that hm,k′ does not
attain maximum purity, an absurd, since from Assumption 5 there exists a
unique boundary correctly identified by trees Tm ∈ Da using observables x.

Since the same developments can be made for the regression to the right
of cutoff (using units inside Ab,kj |κl), for a tree Tb, consistency for the l-th
border treatment effects follows:

|τ̂ (f)
l (ζ̂l)− τ (f)

l | = |α̂l+(ζ̂l)− α̂l(ζ̂l) + αl − αl+| ≤ |α̂l+(ζ̂l)− αl+|︸ ︷︷ ︸
op(1)

+ |α̂l(ζ̂l)− αl|︸ ︷︷ ︸
op(1)

Finally, since the sequence {Tb}b∈{µψQ,...,B} is trained on random subsam-
ples of Sn and considering the model in equation (2-2):

τ̂ = 1
B − µψQ

B∑
b=µψQ

τ̂
(t)
b = 1

B − µψQ

B∑
b=µψQ

1
fb

fb∑
l=1

τ̂
(f)
b,l =

1
B − µψQ

B∑
b=µψQ

1
fb

fb∑
l=1

(α̂b,l+(ζ̂b,l)− α̂b,l(ζ̂b,l)) =⇒

|τ̂ − τ | ≤ 1
B − µψQ

B∑
b=µψQ

1
fb

fb∑
l=1

[∣∣∣∣α̂b,l+(ζ̂b,l)− αb,l+
∣∣∣∣+ ∣∣∣∣αb,l − α̂b,l(ζ̂b,l))∣∣∣∣] p−→ 0

(B-9)
by the convergence preservation through summation.

�
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