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Abstract

Martins Coutinho, Daniel; Cunha Medeiros, Marcelo (Advisor). A
theory based, data driven selection for the regularization
parameter for LASSO. Rio de Janeiro, 2020. 38p. Dissertação
de Mestrado – Departamento de Economia, Pontifícia Universidade
Católica do Rio de Janeiro.

We provide a new way to select the regularization parameter for the
LASSO and adaLASSO. It is based on the theory and incorporates an estimate
of the variance of the noise. We show theoretical properties of the procedure
and Monte Carlo simulations showing that it is able to handle more variables
in the active set than other popular options for the regularization parameter.

Keywords
Machine Learning; LASSO; adaLASSO; Regularization Parameter.
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Resumo

Martins Coutinho, Daniel; Cunha Medeiros, Marcelo. Selecio-
nando o parâmetro de regularização para o LASSO: base-
ado na teoria e nos dados. Rio de Janeiro, 2020. 38p. Dissertação
de Mestrado – Departamento de Economia, Pontifícia Universidade
Católica do Rio de Janeiro.

O presente trabalho apresenta uma nova forma de selecionar o parâmetro
de regularização do LASSO e do adaLASSO. Ela é baseada na teoria e
incorpora a estimativa da variância do ruído. Nós mostramos propriedades
teóricas e simulações Monte Carlo que o nosso procedimento é capaz de lidar
com mais variáveis no conjunto ativo do que outras opções populares para a
escolha do parâmetro de regularização

Palavras-chave
Aprendizado por Máquina; LASSO; adaLASSO; Parâmetro de

Regularização.
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1
Introduction

The linear model, usually estimated by ordinary least squares (OLS), is
the workhorse for the analysis of economic data. It provides reliable statistical
properties and easy interpretation. However, nowadays is not uncommon to
have more variables than observations, which precludes the use of OLS. This
arises in forecasting, in which one uses a large number of inputs to make better
forecasts or when doing causal inference, in which one has a large number
of variables that are potential confounders that should be used as controls.
The LASSO (Least Absolute Shrinkage and Select Operator), first suggested
by Tibshirani (1996), extends the usual OLS estimators and allows for more
variables than observations. It is able to select variables using the `1 norm as
a penalty, which induces kinks in the objective function.

The main issue with LASSO is selecting the regularization parameter.
There are lots of possible choices: information criteria, Cross Validation and
some attempts to choose the regularization parameter using the theory created
for the LASSO. As shown in Bickel et al. (2009), and discussed in Bühlmann
& Van de Geer (2011) and Wainwright (2019), setting the regularization
parameter λ = 2σ

√
2 log(p)/n guarantees good results. However, it requires

knowledge of the variance of the error.
The contribution of this paper is twofold: we show how to use the

regularization parameter in Bickel et al. (2009) using an iterative procedure in
which at each step we estimate the model and, using the coefficients obtained,
we compute the variance of the residual. We discuss the convergence properties
of our algorithm. In general, it is not true that the LASSO version converges:
it is highly dependent on the sample size, number of variables and the size of
the active set. On the other hand, a simple twist of the LASSO, called the
adaptive LASSO, first suggested by Zou (2006), allows us to have much better
results regarding convergence.

The second contribution is to show that, when using the adaLASSO,
one can use λ = σ

√
2 log(p)/n and the proofs still work. We show theoretical

results for this regularization parameter for the adaLASSO.
Bickel et al. (2009) is the main article in which we base our ideas. The

selection of the regularization parameter is a key problem for the LASSO and
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Chapter 1. Introduction 11

an active area of research. There are suggestions based on information criteria,
as Zhang et al. (2010), Fan & Tang (2013) and Hui et al. (2015), among others;
and some suggestions based on the theory, as Belloni et al. (2012) and Belloni
et al. (2013). See Coutinho et al. (2017) for a review of different choices of the
regularization parameter for the adaLASSO and the LASSO.

This paper has five sections: the next one describes the algorithm. Section
3 shows a bit of the theory. Section 4 shows the Monte Carlo simulations. The
last section concludes.

1.1
Notation

We will say that β̂ is the estimated vector of coefficients, and β0 is the
true vector of coefficients. XS are the columns of X for which β0 is different of
zero, andXSc is the set for which the columns ofX are equal to zero. Therefore,
β0
S 6= 0 and β0

Sc = 0. There are p variables with s is the cardinality of the set
S. We use ‖xi‖q = (∑i |xi|q)1/q, with the convention that ‖xi‖∞ = maxi |xi|.

In the algorithm definition, we use Sd(u) = 1
n−1

∑n
i=1(ui − ū), the

empirical standard deviation of u, in which ū is the mean of u.
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2
The Algorithm

Formally, the LASSO solves:

βLASSO ∈ arg min
β

1
2n

n∑
i=1

(Yi −Xiβ)2 + λ,
p∑
j=1
|βj|,

in which λ is the regularization parameter. Algorithms for solving the LASSO
problem are well establish and our algorithm focus in selecting the regulariza-
tion parameter.

The choice of the regularization parameter is an important part of the
algorithm, as it controls how many variables will be added to the model and
the amount of shrinkage of the coefficients. Cross Validation is a popular
choice (see Hastie et al. (2009)). However, Cross Validation might be slow for
large data sets and is not suitable for dependent data without modifications.
Information Criteria are also a possibility. Although one could use AIC and
BIC, neither of these criteria were created having in mind a high dimensional
setting. There are criteria created for the high dimensional case, as Zhang
et al. (2010), Fan & Tang (2013) and Hui et al. (2015). Bickel et al. (2009)
is one of the first articles suggesting a regularization parameter based on the
theory and Bühlmann & Van de Geer (2011) explicit use the theory to suggest a
feasible regularization parameter, using the variance of the dependent variable.
Belloni et al. (2012) and Belloni et al. (2013) also provides a way to select the
regularization parameter based on the theory, that handles heterocedasticity.
This huge variety of procedures is due to the fact that they try to solve different
problems and work for different kinds of DGPs.

Based on Bickel et al. (2009), we suggest that λ = σA
√

2 log(p)/n,
where σ is the standard deviation of the error, p is the number of regressors,
potentially p � n, and A is a parameter - in Bickel et al. (2009), A = 2.
This regularization parameter is unfeasible, since it depends on the standard
deviation of the error. However, we can use an estimator of the standard
deviation of the error, which we denote by σ̂, to get a feasible version of the
regularization parameter, λ̂. We propose Algorithm 1 that uses the LASSO
to generate the estimate for σ̂ and iterates on it to get β̂: start with a guess
for the standard deviation and compute the LASSO using the regularization
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Chapter 2. The Algorithm 13

parameter by Bickel et al. (2009). This will give us a vector of coefficients. Use
this vector to calculate the residuals û := Y −Xβ. Use the standard deviation
of û as a new guess and iterate.

Input: Some guess for σ, the data
while convergence fails do

1.Set λ̂ = σ̂
√

2 log(p)/n;
2.Estimate the LASSO (β̂LASSO) using λ̂ as the regularization
parameter;
3.Compute the residual û = Y −Xβ̂LASSO ;
4.Compute σ̂ = Sd(û);
if convergence then

Return β̂LASSO and report sucess
else

Go back to step 1
end

end
Algorithm 1: An algorithm for LASSO

There can be several ways to define convergence. In the following simu-
lations we use one of the two bellow:

1. The max(abs(β̂i − β̂i−1)) is smaller than a δ

2. The abs(σ̂i − σ̂i−1) is smaller than a ε

i is the number of iteration and abs(·) stands for the absolute value function.
We also limit the maximum number of iterations, so even if there is not
convergence the algorithm still quits. It is simple to extended our algorithm to
deal with adaptive LASSO (adaLASSO), Elastic Net or Thresholded LASSO.
The adaLASSO uses a two step procedure in which we first estimate the model
with the LASSO. In the second step, we solve the following problem:

βadaLASSO ∈ arg min
β

1
2n

n∑
i=1

(Yi −Xiβ)2 + λ
p∑
j=1

ωj|βj|,

in which ωj are a set of positive weights. We implement two versions of the
adaLASSO, and they only change with respect to the weights. The first version
use fixed weights based on a first stage LASSO with the initial guess for the
regularization parameter, so ω = 1/(1/

√
n+|β̂LASSO|), in which n is the sample

size. This weight never changed again. The second version uses as weights
the previous estimation of the adaLASSO, so ω = 1/(1/

√
n + |β̂i−1|), so the

weights are updated at each step. The algorithm for the adaLASSO is shown
in Algorithm 2.
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Chapter 2. The Algorithm 14

Input: Some guess for σ (σ̂), the data
a.Set λ̂ = σ̂

√
2 log(p)/n;

b.Estimate the LASSO (β̂LASSO) using λ̂ as the regularization
parameter;
c. Set ω = 1

1/n+|βLASSO|
;

while convergence fails do
1.Set λ̂ = σ̂

√
2 log(p)/n;

2.Estimate the adaLASSO (β̂LASSO) using λ̂ as the
regularization parameter and ω as weights;
3.Compute the residual û = Y −Xβ̂LASSO ;
4.Compute σ̂ = Sd(û);
if convergence then

Return β̂LASSO and report sucess
else

Go back to step 1
end
if reweighted then

Set ω = 1
1/n+|β| in which β is the parameters obtained in step

2.
end

end
Algorithm 2: An algorithm for adaLASSO
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3
Theory

In this chapter we will lay out the theory for two things:

1. That λ = σ
√

2 log(p)/n allows us to say ‖X ′u‖∞ < λ with high
probability

2. Under which conditions our algorithm converges to the true variance of
the error

We will focus on model selection. It requires more hypothesis than if
we focused on doing prediction. However, economists are usually interested in
causal explanations and it requires knowing which variables are relevant and
which are irrelevant. Another goal economists nowadays use variable selection
is for choosing controls when estimating a treatment effect. For this goal, the
conditions are milder than model selection.

There are numerous assumptions about the Data Generating Process
(DGP) sufficient to prove the theorems bellow:

Assumption 1 The true model is linear on the parameters:

Y = Xβ0 + u,

and X is independent of u

Assumption 2 The true vector of coefficients β0, can be sparse: card(β0) =
s ≤ p

Assumption 3 The smallest eigenvalue of the sample covariance matrix of
the active variables is bounded away from zero.

Assumption 4 u, the error vector, is independent and subgaussian with
parameter σ

Assumption 5 X is deterministic

Assumption 6 Thw eights for the adaLASSO, ωj, are 1/
√
n + |β̂|, in which

β̂ is a consistent estimator of the true vector of coefficients, β0
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Chapter 3. Theory 16

Hypothesis 1 allows the use of dictionary of variables, e.g. powers of
variables. Hypothesis 2 allows for the possibility that the true vector of
coefficients is sparse. We will always work with sparse coefficients in the
simulations. Most bounds bellow depend on the cardinality of the true vector of
coefficients, s. We can allow s = p, however it makes most of the bound bellow
large and potentially useless if p→∞. Hypothesis 4 allows for gaussian errors
with variance σ2 and more general distributions that are not heavy tailed.
Hypothesis 5 is a bit unusual in economics and Bühlmann & Van de Geer
(2011) provides ways of relaxing it. Hypothesis 6 is similar to the hypothesis
in Zou (2006). For models in which p < n, one could use the Least Squares
estimator. For cases in which p > n, one could use the LASSO. Medeiros &
Mendes (2016) provides guarantees that in a more general setting that ours,
the weights coming from a first stage LASSO penalize more the coefficients
that are zero than the non zero coefficients.

We will need also a hypothesis concerning both the data and the
estimation process:

Assumption 7 X satisfies the Restricted Eigenvalue (RE) condition with
(κ, 3), i.e.

1
n
‖X∆‖2

2 > κ‖∆‖2
2 ∀∆ ∈ Cα(S),

in which Cα(S) = {∆ ∈ Rp : ‖∆SC‖1 < α‖∆S‖1}

Besides these hypothesis, we will also use the Basic Inequality, that comes
from the basic optimality condition:

0 ≤ ‖X∆̂‖2
2

n
≤ 2u′X∆̂/n+ 2λ(‖β0‖1 − ‖β̂‖1), (3-1)

where ∆̂ = β̂ − β0.

3.1
Convergence of the Algorithm

We want to show that the procedure outlined in Algorithm 1 converges.
We ideally would like to show that it converges to somewhere near the real
error variance. This is not always true for the LASSO.

On the other hand, the algorithm will always converge to some point.
The reason for that is simple: the sequence of regularization parameters is
monotonic and bounded, and any monotonic sequence that is bounded has a
limit. For this consider the function:

Λ(λ) = ‖Y −Xβ(λ)‖2√
n

√
2 log(p)/n
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Chapter 3. Theory 17

Lets prove both claims. To see that it is bounded, notice that ‖û‖2 is
never larger than ‖y‖2. This will happen only if no variable is added to the
model for a given λ. So starting the algorithm at ‖y‖2/

√
n it can only go

down: if, with σk = σy, no variable is added, then σk+1 = σy and the algorithm
quits. On the other hand ‖û‖2 is never smaller than zero, since it is a norm.
A more statistical approach requires that we break this case in two: if there
are more variables than observations, the LASSO will select a subset such that
there are n− 1 variables with coefficients different from zero. Since there is no
penalization, we will fit the OLS estimate for that subset of variables. On the
other hand, if p < n, then all variables will be on the model and we will have
the OLS fit, which will generate ‖û‖2 ≥ 0

Now let’s show that it is monotonic. To see that, assume that from the
k to the k + 1 interation we have λk+1 < λk. This is equivalent to make the
constraint less tight, and therefore ||βk+1||1 > ||βk||1. Now notice that:

min
||β||1<R′

||y −Xβ||22 ≤ min
||β||1<R

||y −Xβ||22 (3-2)

If R′ > R, since the solution of the problem on the right hand side is
feasible for the left hand side. So, we have that ||y −Xβk+1||22 ≤ ||y −Xβk||22.
This leaves two options: if ||y −Xβk+1||22 = ||y −Xβk||22, the algorithm quits.
If ||y − Xβk+1||22 < ||y − Xβk||22, then λk+2 = ||uk+1||2/

√
n
√

2 log(p)/n <

||uk||2/
√
n
√

2 log(p)/n = λk+1. If λk+1 > λk, then we can apply the same
argument to see that λk+2 ≥ λk+1.

Monotonicty and the fact that the algorithm only searches a limited
space guarantees the existence of a fixed point, and the fact that iteration will
reach a fixed point - this is guaranteed by the Tarski-Kantorovich Theorem
(see the Appendix). The theorem also states that there will be a minimum
and a maximal fixed point, and that in order to reach the minimum fixed
point one needs that there exists a point such that λ ≥ Λ(λ); in order to
reach the maximum fixed point, we need a point λ ≤ Λ(λ). We have both: if
λ = 0, then Λ(0) = ‖Y − XβOLS‖2A

√
2 log(p)/n ≥ 0, which can be equal to

zero if p ≥ n. Now, on the other side if we use λσy = σyA
√

2 log(p)/n, then
∀λ > 0 ‖Y −Xβ(λ)‖2/

√
n ≤ σy, and therefore Λ(σy) ≤ σy.

Tarski Kantorovich Theorem does not tells us how many fixed point there
are, or even what are their values. However, the existence of this fixed point and
how to find it is also of independent interest: most theorem on the consistency
of the LASSO depend on the fact that ‖2X ′u/n‖∞ < λ. Frequently, people use
the fact that σu

√
2 log(p)/n > ‖2X ′u/n‖∞ with high probability. Now, assume

one uses a model estimated by the LASSO and selects the regularization
parameter by any method. Then, if the standard deviation of the residual
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implies that σ
√

2 log(p)/n > λ, the researcher faces an internal consistency
problem: if his model is right, his choice of regularization parameter violates
the most common bound given to guarantee the conditions for `2 consistency
of the parameters.

Fortunately, we can get some bounds on the size of the error. Using
Theorem 1, and after some algebra, equation iii yields:

||û− u||2√
n

≤ 3
√
s

κ
λ

Denote ûk the residual obtained by the k step of Algorithm 1. Then,
substituting our choice of λ, we get:

||ûk − u||2√
n

≤ 3A ||ûk−1||2
n

√
2s log(p)

κ

Cancel the 1/
√
n on both sides to get:

||ûk − u||2 ≤ 3A ||ûk−1||2√
n

√
2s log(p)

κ
(3-3)

Since we do not have the distance between the previous estimation
and the true error in the right hand side, we cannot use stronger results to
characterize the fixed point. One could be tempted to pick A in such a way
that this bound is really small. However, in all theorems above we made the
hypothesis that λ > ‖2u′X/n‖∞. Choosing an A too small will lead to a
violating of this hypothesis. In the next section we will show some results that
allow us to get around this.

We will also work with the adaLASSO, and while the proofs of the
LASSO can be carried for the adaLASSO case, we can prove conditions for
the adaLASSO that allow more control over the bounds. Let’s start with the
weighted LASSO:

min
β
‖y −Xβ‖2

2 + λ‖Wβ‖1,

in whichW is a p×p diagonal matrix of weights. We can rewrite the expression
above by setting βw = Wβ and we will get:

min
β
‖y −XW−1βw‖2

2 + λ‖βw‖1

We will define ‖β‖w1 := ‖Wβ‖1, the weighted `1 norm. We can have a
basic inequality for this new penalty that is:

0 < 1
n
‖X∆̂‖2

2 <
2
n
u′X∆̂ + 2λ(‖β0‖w1 − ‖β̂‖w1),
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Chapter 3. Theory 19

and ∆̂ = β0 − β̂. We can also define a Cα(S) cone with respect to ‖.‖w1:

Cw1
α (S) = {∆ ∈ Rp ‖∆Sc‖w1 < α‖∆S‖w1},

and we can define a RE condition with respect to this new cone, with
parameters (κ, α), which we will call the weighted RE condition:

κw‖∆̂w‖2
2 ≤

1
n
‖XW−1∆̂w‖2

2

We will work with assumption 1 unaltered and A2A:
Assumption 2A X satisfies the weighted RE condition with (κ, 3)

Now we can do a slight change to Theorem A of Appendix I to use the
Weighted Eigenvalue condition:

Theorem 3.1 With λ ≥ ‖ 2
n
u′XW−1‖∞ and the Weighted RE condition (κ, 3):

‖β̂ − β0‖2 ≤
3
κw
λ
√
s

This might not seem like a big change from the LASSO to the adaLASSO,
however notice that the weighted RE condition allows us to write, for the case
in which the Gram Matrix is the identity:

κw‖∆̂w‖2
2 ≤

1
n

∆̂′wW−1X ′XW−1∆̂w

κw‖∆̂w‖2
2 ≤ ∆̂′wW−1W−1∆̂w

κw‖∆̂w‖2
2 ≤ ∆̂′wW−2∆̂w

(3-4)

Now, since W is just a diagonal matrix that can be written as a vector
ω with size p and so ∆̂′wW−2∆̂w = ∑p

j=1 ω
−2
j ∆̂2

wj and so:

κw‖∆̂w‖2
2 ≤

p∑
j=1

ω−2
j ∆̂2

wj ≤ max
j=1,...,p

ω−2
j ‖∆̂w‖2

2

So κw ≤ maxj=1,...,p ω
−2
j , which is possibly a really large number and

helps in our contraction argument. Notice that in the case of a identity Gram
matrix, κ = 1.

This result is true for any set of weights. It does not mean that it is always
useful, since a random set of weights might not generate a useful inequality.
One could also argue that we could choose the weights such that ‖ω−2‖2 was
as large as possible. To avoid this complications, we work with the weights
that are the inverse of the absolute value of the LASSO.

DBD
PUC-Rio - Certificação Digital Nº 1811826/CA



Chapter 3. Theory 20

3.2
Regularization Parameter

So what about our regularization parameter? We require that λ >

‖2u′X/n‖∞. While the proof for the case λ = 2σ
√

2 log(p)/n is available in
Bickel et al. (2009), Bühlmann & Van de Geer (2011) and Wainwright (2019),
we will show what happens when λ = Aσ

√
2 log(p)/n.

Theorem 4 justifies why A > 2 in Bickel et al. (2009). Otherwise, 2p1−A2/4

would diverge and λ > ‖2u′X/n‖∞ would not happen with high probability.
This means that our proposal of A = 1 would not work for the LASSO.

The adaLASSO, on the other hand, requires a different event: λ >

‖2u′XW−1‖∞. This gives us a lot more room:

Theorem 3.2 Assume X fixed and u be subgaussian with parameter σ and
let ωj = (1/

√
n + |βL|)−1, in which βL is some consistent estimator of the

coefficients. Then P (σA
√

2 log(p)/n > ‖2u′XW−1/n‖∞) > 1−2p1−(ωjminA)2/4,
in which ωmin is the smallest weight.

Proof. See the Appendix �
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4
Simulations

This chapter shows Monte Carlo experiments. We have two sets of
experiments: the first one investigate the convergence of the algorithm. We
show that the algorithm using adaLASSO has better convergence properties
than the one using the LASSO.

The second set of experiments shows how the algorithm behave, with
respect to model selection and forecasting. We compare it with some alterna-
tives and show that for a number of cases, particularly when we have many
variables in the active set, it behaves reasonable well.

4.1
Convergence

We begin analysing when the algorithm converges. Notice that since
the only part of λ that is updated is the standard deviation of the error,
we will analyse the convergence of the standard deviation of the error. In
all simulations of this subsection, we have X i.i.d. from a standard normal
and the error also comes from a standard normal. Using an i.i.d design with
covariance matrix equals to the identity allows us to say that κ = 1. In this
section, we will always make 2000 replications for each experiment. We will
vary the sample size (n), the number of variables included (p) and the size of
the active set (s). We conjecture that convergence of the algorithm depends
on 3σ

√
2s log(p)/n and controlling for the three parameters above allow us to

control 3σ
√

2s log(p)/n. Smaller values for it should give better convergence
and simulations back this claim.

In our first experiment, we set n = 100, p = 50 and s = 10. These values
imply 3σ

√
2s log(p)/n = 2.65. Our initial guess for the variance of the error

is the standard deviation of the dependent variable, which is around
√

11.
We show the results in Figure 4.1. We show the results for the LASSO and
two cases of the adaLASSO: updating the weights at each iteration and not
updating the weight at each iteration. The former corresponds to adaLASSOrw
in the figure.

It is clear that the LASSO does not converge to the true value of the
standard deviation of the error. The adaLASSO in which the weights are not

DBD
PUC-Rio - Certificação Digital Nº 1811826/CA



Chapter 4. Simulations 22

Figure 4.1: Experiment 1. Boxplot of estimated variances

updated makes things a lot better. On the other hand, always re-estimating
the weights allow to the adaLASSO to get the standard deviation with much
more precision.

It also shows a nice feature of the algorithm: in no case the standard
deviation of the error diverges. As a matter of fact, we never reach the limit of
iterations. This backs the claim that the algorithm will always converge, but
not always to the right point.

The second experiment keeps all the parameters above the same, but
change the initial guess of the standard deviation to 0.5. A better guess and
a finite number of iterations should cause a better estimation of the standard
deviation of the error by the LASSO and the adaLASSO not re-weighted, as
we show in Figure 4.2. The gains for the adaLASSO not re weighted are clear,
while the gains for the LASSO are less clear.

Experiment three only changes the sample size, to n = 1000, so
3σ
√

2s log(p)/n = 0.83. Figure 4.3 shows the estimates for this case. Notice
the change of the axis y: the LASSO comes down from almost double the true
value of the standard deviation of the error, in the case of experiments above,
to a value 5% above the true value - and the “outliers" are a bit above 10%
off.

Experiment four changes the sample size to 400 and 3σ
√

2s log(p)/n =
1.32. The results are in Figure 4.4. Again, the LASSO does not converge and
the adaLASSO shows better properties. Experiment five is closely related, and
uses n = 400 and s = 5 and therefore 3σ

√
2s log(p)/n = 0.93. The objective

is to show that is not only sample size that matters, but actually all the three
elements: the size of the active set, the number of variables included and the
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Figure 4.2: Experiment 2. Boxplot of estimated variances

Figure 4.3: Experiment 3. Boxplot of estimated variances

sample size. The results are illustrated in Figure 4.5.

4.2
Model selection

Building on Coutinho et al. (2017), we will test the our method (NM) for
selecting the regularization parameter against three competitors: adaLASSO
using Cross Validation (CV) and the BIC (Bayesian Information Criteria) for
the regularization parameter and the hdm package1, that is based on Belloni
et al. (2013). We always let the regularization parameter change from the first
step estimation for the second step estimation (unlike Coutinho et al. (2017)).

1We change the default to let the package assume that the error is homoscedastic. The
results are even worse when we use the default
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Figure 4.4: Experiment 4. Boxplot of estimated variances

Figure 4.5: Experiment 5. Boxplot of estimated variances

We have six designs, and the results are reported in Tables 4.1 to 4.6 . The
variable Non zeros Right pick how many relevant coefficients were recovered;
the Zeros Right pick how many irrelevant coefficients were set to zero; the
Right model is a dummy that is equals to 1 if in a given simulation the method
been tested recovered all the variables, setting the irrelevant variables to zero
and the relevant variables different of zero. The design of the Monte Carlo
simulations are:

1. n = 100, σ2 = 3, 20 relevant variables and 30 irrelevant variables.

2. n = 100, σ2 = 3, 10 relevant variables and 40 irrelevant variables.

3. n = 100, σ2 = 1, 10 relevant variables and 40 irrelevant variables.
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4. n = 1000, σ2 = 1, 40 relevant variables and 60 irrelevant variables.

5. n = 100, σ2 = 1, 10 relevant variables and 90 irrelevant variables.

6. n = 100, σ2 = 1, 30 relevant variables and 70 irrelevant variables.

We set that if the variable j is relevant, then βj = 1. Otherwise, βj = 0.
Designs 1 and 6 are particularly tricky for the LASSO due to the high variance
and the fact that the model is not as sparse as the others, respectively. Only
design 5 and 6 can be considered “big data" i.e. p ≥ n.

Table 4.1: Design 1: Result for 5000 replications
Non Zeros Right Zeros Right Right model?

BIC 1.00 0.85 0.04
CV 0.99 0.90 0.10
NM 0.97 0.98 0.44

HDM 0.27 0.99 0.00

Table 4.2: Design 2: Result for 3000 replications
Non Zeros Right Zeros Right Right model?

BIC 1.00 0.93 0.17
CV 0.99 0.96 0.35
NM 1.00 0.97 0.31

HDM 0.73 0.99 0.14

Table 4.3: Design 3: Result for 1000 replications
Non Zeros Right Zeros Right Right model?

BIC 1.0000 0.9647 0.3940
CV 1.0000 0.9830 0.6990
NM 1.0000 0.9968 0.8780

HDM 0.9926 0.9811 0.4650

Table 4.4: Design 4: Result for 1000 replications
Non Zeros Right Zeros Right Right model?

BIC 1.0000 0.9976 0.9090
CV 1.0000 0.9999 0.9920
NM 1.0000 0.9997 0.9800

HDM 1.0000 0.9987 0.9250

The results show that our option is not always the best: for designs 2 and
4, the CV is better than our method, but not by much. On the other hand,
for designs 1 and 6, our method dominates the other options and is better in
the remaining tests.
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Table 4.5: Design 5: Result for 1000 replications
Non Zeros Right Zeros Right Right model?

BIC 0.995 0.280 0.033
CV 1.000 0.983 0.525
NM 1.000 0.996 0.723

HDM 0.984 0.983 0.241

Table 4.6: Design 6: Result for 1000 replications
Non Zeros Right Zeros Right Right model?

BIC 1.00 0.93 0.04
CV 1.00 0.94 0.03
NM 0.90 0.98 0.32

HDM 0.09 1.00 0.00

It’s interesting to note that designs 1 and 6 show clearly the trade off
between getting more zeros right and getting the non zeros right: our method is
worst than CV if our main concern is to include all the relevant regressors and
is worst than the HDM in exclude the irrelevant variables. However, by allowing
the possibility of exclusion of more variables than CV and less than the HDM,
we are able to set more right zeros. Its interesting to note that this actually
makes our method better than the others in situations in which the model is
less sparse, namely designs 1 and 6.

Table 4.7, we repeat the same designs as above. However, instead working
with a randomX and a random u, we keepX fixed. This is more in line with the
hypothesis we used in the theory. This should make easier to recover the right
model, and the simulations back it, although the difference is not dramatic.

Table 4.7: Simulations with fixed design
Non Zeros Right Zeros Right Model Right

Design 1 0.976 0.985 0.473
Design 2 0.998 0.970 0.290
Design 3 1.000 0.992 0.714
Design 4 1.000 0.999 0.967
Design 5 1.000 0.997 0.727
Design 6 1.000 0.996 0.743

Table 4.8 shows the simulations using an error with chi-squared distribu-
tion - a distribution that is not subgaussian, but is subexponential. We change
the number of degrees of freedom in order to change the variance. We keep
X fixed between simulations and make 2000 replications. The number of ob-
servations and variables and relevant variables are the same as the designs
above. The performance is worse than the case with gaussian errors, which is
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unsurprising since the theory is based on the hypothesis that the errors are
subgaussian.

Table 4.8: Simulations with Subexponential error
Non Zeros Right Zeros Right Model Right

Design 1 0.984 0.985 0.577
Design 2 0.997 0.971 0.314
Design 3 1.000 0.992 0.733
Design 4 1.000 0.999 0.959
Design 5 1.000 0.991 0.463
Design 6 0.984 0.992 0.636

Tables 4.9, 4.10 and 4.11 show the results of simulations using the
algorithm when we use Student’s t distribution for the error with different
degrees of freedom, with 3000 replications each. We use a fixed design for X
and the designs are the same as in the previous simulations. We drop design
2 since the only change between it and design 1 is the variance of the error.
Notice that these designs are not completely equivalent to the previous designs,
since setting the degrees of freedom define the variance of the distribution. The
number of observations and variables and relevant variables are the same as
the designs above. The fact that the variances are not the same make it harder
to compare these results with the previous results. However, more degrees of
freedom make the distributions more well behaved and we would expect better
results as the degrees of freedom increase. The model right column illustrates
exactly that.

Table 4.9: Simulations with Polynomial Tails: Student’s t Distribution with 4
degrees of freedom

Non Zeros Right Zeros Right Model Right
Design 1 0.99 0.99 0.72
Design 3 1.00 0.98 0.45
Design 4 1.00 1.00 0.85
Design 5 0.99 0.99 0.32
Design 6 0.97 0.98 0.35

4.3
Regularization Parameter

Using λ = σ
√

2 log(p)/n instead of using λ = 2σ
√

2 log(p)/n is another
innovation that needs backing. In this section, we show some Monte Carlo
simulation that compares this to the original proposal made in Bickel et al.
(2009). We gave an explanation on why it is not problematic when used with
the adaLASSO, and therefore we will compare all results using the adaLASSO.
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Table 4.10: Simulations with Polynomial Tails: Student’s t Distribution with
8 degrees of freedom

Non Zeros Right Zeros Right Model Right
Design 1 1.00 1.00 0.90
Design 3 1.00 0.99 0.61
Design 4 1.00 1.00 0.93
Design 5 1.00 0.99 0.55
Design 6 0.98 0.99 0.50

Table 4.11: Simulations with Polynomial Tails: Student’s t Distribution with
3 degrees of freedom

Non Zeros Right Zeros Right Model Right
Design 1 0.97 0.98 0.59
Design 3 0.99 0.97 0.36
Design 4 1.00 1.00 0.75
Design 5 0.99 0.98 0.18
Design 6 0.96 0.97 0.23

We start with design 1, and the results are showed on Table 4.3. Both are fitted
using the same algorithm, all that changes is the value of A.

Table 4.12: Design 1, 2000 replications
Non Zero Right Zero Right Model right

A = 1 0.97 0.98 0.45
A = 2 0.59 0.99 0.00

Looking at the model right column, using A = 1 is better then A = 2
for this design. All the gain comes from the fact that we get more non zero
coefficients right then using A = 2. In other words, in a design in which we have
a lot of noise and a lot of relevant variables, the regularization parameter from
Bickel et al. (2009) do not let enough coefficients be different then zero. Notice
that both benefit from using adaLASSO, but since A = 1 was engineered to
work with adaLASSO, it works better than the alternative.

It could be that in cases in which the variance of the error is smaller and
we have less relevant variables we perform (much) worse. We then test design
3, which is shown in Table 4.3. Notice that using A = 2 still beats BIC and
HDM from Table 4.3.

Table 4.13: Design 3, 2000 replications
Non Zero Right Zero Right Model right

A = 1 1.0000 0.9966 0.8710
A = 2 0.9445 0.9997 0.6670
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Figure 4.6: Boxplot of estimated standard deviation

A valid worry is whatever we have a situation in which we have two errrors
cancelling each other. Our method could be overestimating the variance in both
cases, and A = 1 is just correcting for the bias. Figures 4.6 and 4.7 show the
estimated residual standard deviation for Tables 4.3 and 4.3, respectively. The
horizontal line mark the true standard deviation. Notice that for Design 3,
using A = 2 generates gross errors. Even for Design 1, the residual standard
deviation is a lot more spread than for A = 1.
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Figure 4.7: Boxplot of estimated standard deviation
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5
Empirical Example

As an empirical example, we repeat the regressions made by Donohue &
Levitt (2001) over the effects of abortion over crimes. We follow closely the
replication done by Belloni et al. (2013), using their data and their program
to generate regressors to be selected via adaLASSO. We will compare our
implementation with two different guesses to the variance and compare the
results to the HDM package in R1. The initial guess is 1 and the lower guess is
0.1. Results for the coefficients and standard errors are reported in Tables 5.1,
5.2 and 5.3.

Table 5.1: Coefficients: Effect over Violent Crimes
Coef SE t-Stat P-value

HDM -0.17 0.12 -1.41 0.16
Us -0.28 0.13 -2.17 0.03

Us - Lower Guess -0.09 0.13 -0.63 0.53

Table 5.2: Coefficients: Effect over Property Crimes
Coef SE t-Stat P-value

HDM -0.12 0.42 -0.28 0.78
Us -0.05 0.05 -1.04 0.30

Us - Lower Guess -0.10 0.63 -0.16 0.87

Table 5.3: Coefficients: Effect over Murder
Coef SE t-Stat P-value

HDM -0.12 0.42 -0.28 0.78
Us -0.11 0.45 -0.24 0.81

Us - Lower Guess -0.10 0.63 -0.16 0.87

There are differences between our algorithm with different guesses.
However, considering the amount of regressors and the size of the series,
previous results say that the algorithm won’t necessarily converge to a single
value, which explains the difference between the guesses. The results are

1Even the Matlab programs available online do not replicate the results they report in
Belloni et al. (2013)

DBD
PUC-Rio - Certificação Digital Nº 1811826/CA



Chapter 5. Empirical Example 32

more scattered for the coefficient over violent crimes, with one estimate being
significant, while the estimates are incredibly concentrated for murders.

To understand better what each algorithm is doing, Tables 5.4, 5.5 and
5.6 show how many regressors are select by each method in both the Outcome
and Treatment regressions

Table 5.4: Number of variables selected: Violent Crimes
HDM Us Us - Lower Guess

Outcome ∼ x 3 2 40
Treat ∼ x 12 9 26

Table 5.5: Number of variables selected: Property Crimes
HDM Us Us - Lower Guess

Outcome ∼ x 6 2 32
Treat ∼ x 14 11 30

Table 5.6: Number of variables selected: Murder
HDM Us Us - Lower Guess

Outcome ∼ x 0 2 72
Treat ∼ x 9 10 22

In line with the results from the simulation, our algorithm is able to select
more variables than HDM. The effect is larger when we lower the starting guess
of the variance. This might explain the difference in the coefficients we obtain.
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6
Conclusion

This paper presents yet another way to select the regularization parame-
ter. We use both the theory and the data to select the regularization parameter.
In the end, we have a relatively simple algorithm that is useful - as shown by
the simulations.

Using the adaptive LASSO instead of the LASSO proves to be important
for the convergence of the algorithm. The adaptive LASSO also plays a key role
for variable selection - this was the main point of Zou (2006). Our simulations
point to the potential of the adaLASSO, especially in challenging problems
that are not “too sparse". However, its non asymptotic theory is not completely
developed.

The simulation results are encouraging about the effectiveness of the
algorithm. However, it still requires that the user sets a initial guess for
the variance, and the result can be quite sensitive to the initial guess.
Understanding the sensitivity and what is the optimal initial guess - if there
is one - would be an important direction to make the algorithm easier to use.
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Appendix I: Theorems

Theorem 1 Under Assumptions 1 and 2 and λ > maxj=1,..J |2u′Xj|/n, we
have:

‖β̂ − β0‖2 <
3
κ

√
sλ (ii)

‖X(β0 − β̂)‖2
2

n
≤ 9sλ2

κ
(iii)

The proof can be found in Wainwright (2019)

Theorem 2 (Banach Fixed Point Theorem) Let f : A → A and x, y ∈
A and (A, d) is a complete metric space. If:

d(f(x), f(y)) ≤ hd(x, y)

For h < 1, then f has a unique fixed point that is reached from any point by
the sequence x0 ∈ A, xn = fn(x0) and f is called a contraction map

Theorem 3 (Tarski Kantorovich Fixed Point) Let (P,�) be a partially
ordered set and F : P → P continuous. Assume that b ∈ P and:

– if x � y, F (x) � F (y)

– b � F (b)

– Every countable chain in {x|x � b} has a supremum

Then F has a fixed point µ = supn F n(b) and µ is the infimum of the set
of fixed points of F in {x|x � b}

For a proof, see Granas & Dugundji (2013). For an application similar
to the one we do here, see Coleman (1991).

Theorem 4 Assume X fixed and u be subgaussian with parameter σ. Then
P (σA

√
2 log(p)/n > ‖2u′X/n‖∞) > 1− 2p1−A2/4

For a proof of this Theorem, se Bickel et al. (2009)
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Appendix II: Proofs

Theorem 4

We will show that by using the concentration bound for σA
√

2 log(p)/n <
‖2u′XW−1/n‖∞, the complementary event. The event ‖2u′XW−1‖∞ > λ

is equal to ∩pj=1|2u′Xjω
−1
j | > λ and using DeMorgan’s law we get the

complementary event is ∪pj=1|2u′XjW
−1
jj | ≥ λ and plug in our regularization

parameter:

P

 p⋃
j=1
|2u′Xjω

−1
j | ≥ Aσ

√
2 log(p)/n


Boole’s law gives that:

P

 p⋃
j=1
|2u′Xjω

−1
j |/n ≥ Aσ

√
2 log(p)/n

 ≤ p∑
j=1

P
(
|2u′Xjω

−1
j |/n ≥ Aσ

√
2 log(p)/n

)
(iv)

Use again the facts that u is subgaussian and we have a fixed design.
Also, notice that ω−1

j = 1/
√
n+|βL| .Apply Chernoff Bounds to the probability

above:

p∑
j=1

P
(

2u′Xjω
−1
j /n ≥ Aσ

√
2 log(p)/n

)
≤

p∑
j=1

2 exp
(
−2A2σ2 log(p)/n

2× 4ω−2
j σ2/n

)
≤ 2p1−(Aωmin)2/4

Since ωmin ≤ ωj ∴ −ωmin ≥ −ωj∀j = 1, . . . , p �

Lemma 1

Lemma 1 The weighted LASSO solution belongs to Cw1
3 for λ ≥

‖2u′XW−1/n‖∞

Proof. Start with the basic inequality:

0 < 1
n
||X∆̂||22 <

2
n
u′X∆̂ + 2λ(‖β0‖w1 − ‖β̂‖w1)
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Now, β̂ = β0 − ∆̂, and substituting this on the norm we get:

‖β̂‖w1 = ‖β0 − ∆̂‖w1 = ‖β0
S − ∆̂S‖w1 + ‖∆̂Sc‖w1

Plug the expression above on the basic inequality:

0 < 1
n
||X∆̂||22 <

2
n
u′X∆̂ + 2λ(‖β0‖w1 − (‖β0

S − ∆̂S‖w1 + ‖∆̂Sc‖w1))

Use the inverse triangle inequality on ‖β0
S − ∆̂‖w1:

‖β0 − ∆̂‖w1 ≥
∣∣∣‖β0‖w1 − ‖∆̂‖w1

∣∣∣
This allows us to rewrite the basic inequality:

0 < 1
n
||X∆̂||22 ≤

2
n
u′X∆̂ + 2λ(‖β0‖w1 − (‖β0

S‖w1 − ‖∆̂S‖w1 + ‖∆̂Sc‖w1)) =

= 2
n
u′X∆̂ + 2λ(‖∆̂S‖w1 − ‖∆̂Sc‖w1)

Rewrite 2/nu′X∆̂ as 2/nu′XW−1W ∆̂ and use Hölder Inequality to get:

2
n
u′X∆̂ ≤ | 2

n
u′X∆̂| ≤ ‖ 2

n
u′XW−1‖∞‖W ∆̂‖1 = ‖ 2

n
u′XW−1‖∞‖∆̂‖w1

The last equality comes from the definition of ‖.‖w1. Plug it once again
in the basic inequality:

0 < 1
n
||X∆̂||22 ≤

2
n
u′X∆̂+2λ(‖∆̂S‖w1−‖∆̂Sc‖w1) ≤ ‖ 2

n
u′W−1X‖∞‖∆̂‖w1+2λ(‖∆̂S‖w1−‖∆̂Sc‖w1)

We swapped W−1 because it is a diagonal matrix. Use that λ >

‖2/nu′W−1X‖∞ to get:

0 < λ(‖∆̂‖w1 + 2‖∆̂S‖ − 2‖∆̂Sc‖w1) = λ(‖∆̂S‖w1 + ‖∆̂Sc‖w1 + 2‖∆̂S‖ − 2‖∆̂Sc‖w1) =

= λ(3‖∆̂S‖w1 − ‖∆̂Sc‖w1)

�
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