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Abstract

Marques, Marcelo Costa; Medeiros, Marcelo (Advisor). Returns
and Hazard Mitigation: Evidence from Tropical Cyclones.
Rio de Janeiro, 2022. 69p. Dissertação de Mestrado – Departamento
de Economia, Pontifícia Universidade Católica do Rio de Janeiro.

In this paper, we provide evidence that information about hazard miti-
gation infrastructure in the United States (U.S.) during an indirect exposure
to tropical cyclones and the indirect exposure to tropical cyclones per se ge-
nerate anomalies in returns after considering the 5 Fama-French factors and
momentum. We formulate two possible hypotheses to explain these anoma-
lies: local investor and general market hypotheses. Both hypotheses assume
that hazard mitigation investments are lower than the ideal. Their difference
is based on how investors interpret the hazard mitigation programs. We focus
on local investors’ perceptions about them in the local investor hypothesis.
More significant investments in these programs mean more local investors will
acknowledge them and their flaws. On the other hand, we focus on general in-
vestors’ associations between hazard mitigation investment level and disaster
risk in the general market hypothesis. In the end, we give some evidence of
the local investors’ hypothesis, but we cannot guarantee that this is the only
possible explanation. The whole point depends on how much investors know
about hazard mitigation programs. Beyond that, we give evidence that an in-
formation channel is the probable path in which the anomalies are generated.
Thus, in this dissertation, we shed some light on the uncertainty generated
by natural disasters that prices assets, a topic that gets more attention in a
warming world.

Keywords
Climate Finance; Stock Returns; Hazard Mitigation Programs; Tropical

Cyclones.
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Resumo

Marques, Marcelo Costa; Medeiros, Marcelo. Retornos e Miti-
gação de Desastres: Evidência de Ciclones Tropicais. Rio
de Janeiro, 2022. 69p. Dissertação de Mestrado – Departamento de
Economia, Pontifícia Universidade Católica do Rio de Janeiro.

Nesse artigo, fornecemos evidências de que as informações sobre a in-
fraestrutura de mitigação de riscos nos Estados Unidos (EUA) durante uma
exposição indireta a ciclones tropicais e a própria exposição indireta a ciclones
tropicais geram anomalias nos retornos após considerar os 5 fatores Fama-
French e momentum. Formulamos duas hipóteses possíveis para explicar essas
anomalias: hipótese do investidor local e hipótese do investor geral. Ambas
as hipóteses assumem que os investimentos em mitigação de riscos são infe-
riores ao ideal. Sua diferença é baseada em como os investidores interpretam
os programas de mitigação de riscos. Na hipótese do investidor local, Nós nos
concentramos nas percepções dos investidores locais sobre os programas. Inves-
timentos mais significativos nesses programas significam que mais investidores
locais irão reconhecê-los e conhecer suas falhas. Por outro lado, na hipótese
do investor geral, nos concentramos nas associações que os investidores ge-
rais fazem entre o nível de investimento em mitigação de perigos e o risco de
desastres. No final, damos algumas evidências da hipótese dos investidores lo-
cais, mas não podemos garantir que essa seja a única explicação possível. A
questão toda depende de quanto os investidores sabem sobre os programas de
mitigação de riscos. Além disso, evidenciamos que um canal de informação é
o provável caminho pelo qual as anomalias são geradas. Assim, nesta disser-
tação, lançamos alguma luz sobre a incerteza gerada pelos desastres naturais
que precificam os ativos, um tema que recebe mais atenção em um mundo em
aquecimento.

Palavras-chave
Finanças do Clima; Retorno de ações; Programas de Mitigação de

Desastres; Ciclones Tropicais.
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1
Introduction

This dissertation provides evidence that information about hazard mit-
igation infrastructure and the risk of exposure to tropical cyclones affects in-
vestors’ trading behavior, i.e., they generate anomalies in returns. Firstly, the
evidence that tropical cyclone risks generate anomalies in returns agrees with
the growing literature that evaluates the effects of natural disaster strikes on
companies’ operations and stock prices short-term volatility (Dessaint & Ma-
tray, 2017, Kruttli et al., 2021, respectively). Secondly, understanding how
effective hazard mitigation infrastructures are is fundamental in a world where
climate changes are becoming the main worldwide concern. How much the
changing climate will affect natural disasters occurrences and destruction ca-
pacity is still debated. However, undoubtedly changes will happen, and adap-
tation to mitigate its effects is a first-order necessity (Burke & Emerick, 2016,
Barreca et al., 2016, Deschênes & Greenstone, 2011).

What could explain these anomalies? We propose two different ap-
proaches: one based on local investors and the other one based on a general
perspective of the market.

From the local investors’ perspective of the anomalies, we argue that local
investors perceive U.S. federal investments in hazard mitigation infrastructure
as insufficient to reduce the effects of tropical cyclones. In other words, the
more prominent presence of this kind of investment in a specific county makes
the inability of these investments to deal with tropical cyclones more known
by local investors.

On the other hand, the market explanation starts with acknowledging
that most hazard mitigation projects happen after a natural disaster, as
the hazard mitigation section shows. Thus, when a county receives a more
significant amount of money in hazard mitigation projects, it probably means
that more or worse disasters have happened to this county compared to others.
Hence, the general investors will understand that place is more susceptible to
a tropical cyclone strike, generating the anomaly.

Both explanations rely on the hypothesis that investors do not trust
the hazard mitigation projects’ capacity to deal with the threat of tropical
cyclones. This hypothesis comes from questions left by the literature that
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Chapter 1. Introduction 13

studies the effectiveness of hazard mitigation programs. This literature usually
uses cost-benefits methodology (Godschalk et al., 2009, Rose et al., 2007
and Davlasheridze et al., 2017). Beyond that, most papers show that these
programs are effective, with the benefits surpassing their cost. However,
in a second moment, two important questions arise with no clear answer:
Assuming the investment are effective, are they enough for a robust
answer? How do people perceive them?

For the first question, anecdotal evidence indicates that the U.S. federal
government and members of Congress understand that they are not enough.
The Federal Emergency Management Agency (FEMA) is an agency created
by the U.S. federal government to help people before, during, and after
disasters that surpass the response capacity of local and state authorities.
This agency is responsible for all the hazard mitigation programs. In its first
year in charge, President Biden’s administration committed $3.46 Billion in
hazard mitigation funds to reduce the effects of climate change. This one-time
investment represents a 23% increase in the funding made available for declared
disasters since the program’s inception1. Another critical recent legislation
change that will be better discussed later was the creation of the Building
Resilient Infrastructure and Communities (BRIC), which replaced the Pre-
Disaster Mitigation (PDM) program. The BRIC has a funding procedure that
generates larger and steadier funding streams of 6% of the estimated previous
year’s total disaster losses in the United States. On the other hand, the PDM
had a funding procedure based on annual congressionally appropriated budgets
2 which was subject to variation from one year to another. Beyond that, the
budget level significantly grew when the BRIC replaced PDM. This growth
can be explained by the fact that as PDM was a competition-driven program,
there were few incentives to elected members of Congress to direct large
amounts of the budget to a program that would not necessarily be beneficial
to their electoral districts. Figure 1.1 shows this pattern during the two years
that the program has been functioning. They represent records in pre-disaster
mitigation funding. Thus, recently there was a recognition that this type of
program was underfunded, and to improve its funding, it was necessary to
change the law.

Based on the recent changes made by the authorities in the hazard
mitigation programs, we expect that these programs are not perceived as
efficient by the exposed counties dwellers. This reality is stronger for the

1https://www.fema.gov/press-release/20210805/biden-administration-commits-historic-
346-billion-hazard-mitigation-funds

2An appropriated budget is a law of Congress that provides an agency with budget
authority
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Chapter 1. Introduction 14

Figure 1.1: Funding for Pre-Disaster Mitigation (1997-2021).

Source: https://crsreports.congress.gov/product/pdf/IN/IN11733.

people that live in areas with tropical cyclone risks. Since 2017, FEMA has
published the National Household Survey (NHS), a survey to track people’s
disaster preparedness in disaster-prone regions. Every year, the survey shows
that people who live in hurricane areas are more likely to take some action
than people from other hazard zones. Thus, it is plausible to assume that the
hazard mitigation programs are not seen as adequate by the dwellers, at least
for the hurricane areas. A relative measure in the NHS is how people perceive
their preparation efficacy. During all the years that the survey is available,
the perception of efficacy for hurricane areas has had only a slight variation,
showing that people do not substantially change their efficacy perceptions.

To link the possible inefficacy of hazard mitigation programs to firm
returns on the local investor’s hypothesis, we explore an important empirical
regularity explored in the finance literature: local bias. The local bias is a
tendency of market participants (retail investors, mutual funds, hedge funds,
and other investors) to give an overweight in their portfolio to companies
headquartered near their residence locations. I.e., local companies receive more
attention from local investors3. For example, Seasholes & Zhu, 2010 shows
that, on average, 30% of a retail investor’s portfolio was formed by companies
headquartered within a 250 miles radius from the investor. However, at the
same distance, the number of companies, on average, was 12% of all stocks in
the market.

What can explain that? The literature proposes two explanations: Cog-
nitive bias and access to better local information. The debate is still ongoing.
Coval & Moskowitz, 2001, Coval & Moskowitz, 1999, Kang et al., 2019, Shive,
2012, Brown et al., 2015, Shen et al., 2016, Gamble & Berry, 2012, Ivković

3This effect is less pronounced when the investor is more sophisticated.
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Chapter 1. Introduction 15

& Weisbenner, 2005 argue for the local bias as an information advantage. In
contrast, Baltzer et al., 2013, Lindblom et al., 2018, Stukalo, 2017, Seasholes
& Zhu, 2010, Bhamra et al., 2019, Pool et al., 2012 advocate for the non-
information based bias. The local investor’s hypothesis focuses on the rational
explanation, i.e., the local bias justified by the access to better local informa-
tion about hazard mitigation projects. Thus, joining together the local bias
concept and the hazard mitigation programs inefficiency to generate a robust
answer, we define an hypothesis based on our local investor’s explanation of
the anomalies: Larger investments in hazard mitigation programs in
a county make local investors more informed about them. However,
they do not make investors feel safer concerning the tropical cyclones
structural damage risk.

Here, we are trying to capture the local investors’ perceptions about the
hazard mitigation programs. We are interested in the informational channel the
mitigation programs give to investors. Suppose we put together the hypothesis
above with the local bias principle. In that case, we expect that firms exposed
to some disaster risk would receive a price discount promoted by the local
investors. This discount would grow with the investments in hazard mitigation
programs as more investors would be informed about them. This result is
based on a well-explored hypothesis in the literature that firms exposed to
disasters receive a discount in prices (negative return), at least in the short run.
Thus, we are getting a little further from that previously explored argument
in the literature. We are adding to the analysis the local investors’ perceptions
about hazard mitigation programs. A critical underline hypothesis that we
are assuming is that the hazard mitigation programs funding is insufficient
when we think about the trade-off between damage and hazard mitigation
investment. Investing enough to eliminate all damages caused by natural
hazards is virtually impossible, but this does not mean that not investing
or low investment is enough. There is an optimal investment level that we
hypothesized has not been reached based on the anecdotal pieces of evidence
of recent significant increases in funding shown above.

On the other side, the general market hypothesis does not need local
bias to be characterized. Beyond the investors’ perception of low investment
in hazard mitigation programs, this hypothesis interprets the hazard mitiga-
tion programs as a proxy for natural disaster risks. This interpretation comes
directly from the fact that the U.S. does not invest enough in hazard miti-
gation. Because of that, the hazard mitigation programs cannot reduce the
damage risks associated with tropical cyclones. Thus, the general market hy-
pothesis can be summarized by: Larger investments in hazard mitigation
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Chapter 1. Introduction 16

programs in a county are associated with larger risks of damages re-
lated to tropical cyclones.

Although the hypotheses appear to be significantly related, there is
an essential difference regarding hazard mitigation programs interpretation.
More significant investments in these programs mean that more investors will
acknowledge them and their flaws for local investors. On the contrary, for
general investors, as investors do not necessarily live near the areas that receive
these programs, the investors who trade based on these programs have some
knowledge about the programs’ lack of investment beforehand and associate
the more significant investments with larger risks of damages as the majority
of hazard mitigation projects are available after a disaster.

To construct the anomalies is important to clarify how we define expo-
sition to tropical cyclones. The literature that looks at the effects of disaster
over returns usually focuses on the direct exposition, i.e., the landfall of tropi-
cal cyclones over counties (Lanfear et al., 2018). Here, we look at the indirect
exposition to tropical cyclones.

Our definition of indirect exposition has three main characteristics.
Firstly, we are considering just hurricanes, i.e., we are only considering the
tropical cyclones that at some point in their lifetime had a wind speed
sufficiently to be considered a hurricane. Moreover, the indirect exposition
considers the tropical cyclones that do not affect the contiguous U.S., our
considered firm universe. Finally, the tropical cyclone must be at some point
in its lifetime at a maximum of one thousand kilometers from at least one
county. Thus, being a hurricane at some point during its lifetime, not affecting
the contiguous U.S., and being close to at least one county are the three
requirements for a tropical cyclone to be indirectly exposing a county.

Disasters expected to strike but do not are ideal for studying the
informational channel. Firstly, we consider just the perceived (salient) risk
that triggers investors’ reactions anticipating the disaster effects. However,
as the disaster does not occur, the disaster effects themselves do not fulfill,
making the investors’ reaction exclusive based on preconceived opinions about
the effects, including the investors’ opinion over county capacity (hazard
mitigation projects) to deal with it. Secondly, a disaster strike generates
significant side effects via network effects to other no affected counties. The
linkage that generates these side effects can have an economic origin, such
as firm’s internal linkages or relations between firms and their suppliers as
seen in Barrot & Sauvagnat, 2016, Seetharam, 2017 and Giroud & Mueller,
2019. Another possible origin for that linkage can be seen in Tubaldi, 2020
where hurricane strikes generate a run for liquidity by local investors, which
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causes local mutual funds’ fire sales and effects on firms not related to the
hurricane strike. On the other hand, there are no network effects in the indirect
exposition. Finally, Braun et al., 2021 shows differences between the states that
have direct exposure to hurricanes (Landfall) from the states with at least
one company that reported hurricane losses in U.S. Securities and Exchange
Commission (SEC) ’s filings. Most firms that reported hurricane losses are
located in the directly exposed states. However, there are firms not located in
these states characterizing the network effects.

Last but not least, direct disaster effects can affect hazard mitigation
programs’ perception. Turner & Landry, 2021 shows using survey data of U.S.
east coast homeowners how large their misperceptions are regarding hurricane
risks. The paper’s findings suggest a strong tendency to overestimate the prob-
ability of a major hurricane strike and the likely damage of a major hurricane.
As there is a mismatch between objective and subjective probabilities of hur-
ricane risk, a hurricane may strike with a strength different from the expected
strength. Thus, the perception of how good are the hazard mitigation projects
can change. Moreover, Henriksson, 2021 shows how disasters can affect the
disposition effect of impacted investors. Thus, for our purpose, the indirect
exposition is a better approach to identify how the investors perceive these
hazard mitigation investments.

Besides the two possible interpretations for the hazard mitigation pro-
gram anomaly, there is an anomaly related to the indirect exposition to tropical
cyclones. This return anomaly is associated with the susceptibility to tropical
cyclones.

This anomaly emerges from the use of indirect exposition. The indirect
exposition allows us to map counties exposed to a structural risk of hurricanes.
For example, a recent study by Braun et al., 2021 analyses hurricane exposure
as a systematic risk factor in the U.S. stock market. The authors theoretically
show that a systematic risk factor associated with hurricane strikes could exist
and show empirical evidence using aggregate hurricane loss growth. Thus, the
authors were interested in constructing a factor related to hurricane strikes.
On the other hand, we are simply interested in capturing anomalies in alpha
during an indirect exposition to hurricanes. In that sense, other studies are
more related to our goals. For example, Kruttli et al., 2021 shows that stock
options of firms exposed to hurricane landfall exhibit large increases in implied
volatility, which was not priced in terms of expected volatility, generating
abnormal returns.

Based on these perceptions about hazard mitigation programs and in-
direct exposition, our results show how these anomalies behave. Considering
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our favorite specification, an additional dollar, in real per capita terms, spent
on hazard mitigation programs related with hurricanes represents, on average,
a discount on firm stock’s excess returns of 3.4 percentage points on firms
headquartered in counties with an indirect exposition to hurricanes located
at a maximum 300 kilometers distance from the county, during the exposition
month. This value decreases when we consider ranges that include more distant
hurricanes from the counties. When we consider all hurricanes at 500 kilome-
ters, 700 kilometers, 900 kilometers, and 1000 kilometers maximum distances,
the excess returns fall, on average, 0.38, 0.17, 0.11, and 0.09 percentage points,
respectively. For the indirect exposure to tropical cyclones, the results are less
significant. When we consider all hurricanes at 300 kilometers, 500 kilometers
and 700 kilometers maximum distances, the anomaly associated with hurri-
cane risk makes the excess returns, on average, increase 5.14, 8.98 and 6.88
percentage points, respectively. The coefficients are not significant for the 900
kilometers and 1000 kilometers maximum distances.

Our dissertation is related to several streams of the literature. Firstly,
it may contribute to the policy evaluation literature of hazard mitigation
programs. The literature main focus is on cost-benefit analysis of the hazard
mitigation programs such as Godschalk et al., 2009, Rose et al., 2007 and
Davlasheridze et al., 2017. Here, instead of evaluating the program itself, we
want to capture the investors’ perceptions of the programs via the flow between
information and market prices.

Next, our dissertation may contribute to the literature on disaster shocks
in financial markets. The literature on this topic is vast and addresses different
aspects of the phenomenon, and our dissertation does the same. Firstly, part
of the literature focuses on event study analysis of the impact of disasters
on returns. Brounen & Derwall, 2010, Koerniadi et al., 2011, Worthington &
Valadkhani, 2004, Wang & Kutan, 2013, Seetharam, 2017 and Bourdeau-Brien
& Kryzanowski, 2017 are some researches that deal with these impacts in a
more general way. On the other hand, Lanfear et al., 2018 focuses on the
short-run effects of hurricanes over returns, as we do in our dissertation.

Moreover, our study explores the salient or indirect natural disaster
effects on firms. The finance literature explores salient exposition, usually
using neighborhood exposition, i.e., if the firm is near an area that suffered a
natural disaster strike. Dessaint & Matray, 2017 explores this idea by looking
at managers’ reaction to a hurricane landfall near the firm’s headquarters via
corporate cash holdings and expressed concerns about hurricane risk in 10-
Ks/10-Q, they show that both measures increase after the nearby strike. On
the contrary, our dissertation definition of indirect exposition is different. We
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define the indirect exposition based on the proximity of hurricanes to the coast,
i.e., considering just the hurricanes that do not affect the contiguous U.S. but
pass close to it.

Our dissertation may contribute to the local bias literature too. As
discussed above, there is an ongoing debate about what explains local bias:
information advantage or cognitive bias. Our work sheds some light on this
discussion and may contribute to the information advantage explanation for
the local bias phenomenon.

Last but not least, our dissertation may contribute more broadly to the
climate finance literature. Climate change affects the occurrence of natural
disasters worldwide, the effects that this phenomenon will have on the world
economy is not completely understood (Stern, 2007). The finance literature
tries to understand how the uncertainty generated by the changing climate af-
fects firms’ decisions (Kovacs et al., 2021, Dessaint & Matray, 2017, Ginglinger
& Moreau, 2019), investors’ decisions (Henriksson, 2021, Huynh & Xia, 2021)
and, in the end, market efficiency (Ilhan et al., 2021, Hong et al., 2019, En-
gle et al., 2020), i.e., how well all this uncertainty is priced. This research is
part of this effort as we relate information about government investments on
mitigating tropical cyclones with market prices.

The rest of the dissertation is organized as follows. Section 2 gives
an introduction to the hazard mitigation programs. Section 3 summarizes
information about tropical cyclones. Section 4 presents all the databases used
in this dissertation, our empirical strategy, and the methodology. Section 5
and 6 describe the results and the robustness checks, respectively. Last but
not least, section 7 concludes our dissertation.
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2
Hazard Mitigation Programs

Natural disasters frequently happen in the U.S., costing many lives and
assets. The Federal Emergency Management Agency (FEMA) is an agency
created by the U.S. federal government to help people before, during, and after
disasters when the disaster that has stroke overwhelms the response capacity
of local and state authorities. To receive FEMA’s resources, the governor of
a state hit by a disaster (natural or not) must declare a state of emergency
and request the President to declare that the federal government will help the
disaster response via FEMA. The federal response help procedure was defined
by the Robert T. Stafford Disaster Relief and Emergency Assistance Act of
1988.

When the President declares that federal resources can be used for
fighting the emergency declared by the state, FEMA starts to work via
three types of programs. Individual assistance focused on individuals and
households, public assistance focused on public facilities and private non-
profit organizations, and hazard mitigation assistance for investments to reduce
future losses related to disasters.

Individual and public assistance programs are focused on during and
post-disaster investments, i.e., their focus is to repair and reconstruct private
and public facilities hit by a disaster. On the other hand, hazard mitigation
assistance programs are focused on a pre-disaster approach. They are interested
in mitigating the long-run risks of disasters, fundamentally the natural ones, to
people and properties. As seen before, our dissertation focuses on these hazard
mitigation programs.

Hazard mitigation assistance programs can be of two different types:
disaster-driven assistance or competition-driven assistance. Firstly, the
disaster-driven assistance projects are related to the Hazard Mitigation
Grant Program (HMGP). HMGP is a program that provides funds to states
and local authorities when the President declares a major disaster. For each
approved project under HMGP’s umbrella, the federal government can provide
up to 75% of its cost. The competition-driven assistance projects are related
to hazard mitigation programs that do not need a major disaster declaration
to be triggered. This kind of program is meant to foment competition between
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different proposed projects from different states as just the best ones accord-
ing to FEMA’s criteria are chosen. This second criterion includes the PDM
program, which BRIC recently replaced, and the Flood Mitigation Assistance
(FMA) program focusing on flood-prone regions.

In terms of presidential declarations, the President can make two dif-
ferent declarations: emergency declarations and major disaster declarations.
Both declarations activate federal government assistance to affected locations.
However, the type and the amount of assistance that each declaration enables
are different.

Emergency declarations do not exceed the amount of $ 5 million dollar
in assistance, and for this type of declaration, just public assistance and
individual assistance programs are available, the HMGP program is not. An
important application for this type of declaration is the pre-disaster emergency
declaration. In that scenario, states could ask for an anticipated emergency
declaration when a potential threat has an imminent impact that could
generate destruction in the magnitude that a major disaster could be declared.
The resources are anticipated to better prepare for the imminent disaster.

On the other side, a major disaster declaration provides the affected
locations with a broader range of individual assistance and public assistance
programs when compared with an emergency declaration. HMGP program is
available.

Table 2.2 shows summary statistics for the three most important hazard
mitigation programs from 1989 to 2021. We can see that the HMGP program
has the most significant number of projects, mean and median, i.e., it is the
program with the largest budget. When we look to the max column, the budget
disparity is more evident. The maximum project under HMGP’s umbrella
is close to 730 million dollars. On the other hand, the maximum projects
associated with FMA and PDM are close to 35 million dollars. Although large
projects exist at least related to HMGP, most projects are low budget, as the
median shows. Again, HMGP is the program with the largest median value
of $123,813. The larger share of the HMGP disaster-driven program, when
compared with others, shows us that the general market hypothesis that higher
investments are associated with higher disaster risks is a good proxy.

As we know, HMGP projects need a major disaster declaration to be
available. In table 2.2, we present the five disasters that have more HMGP
projects related to them. Hurricanes are the second most important disaster,
getting behind of severe storms. Tropical cyclones generate storms that can
be severe but not necessarily reach the threshold to be considered a hurricane.
Thus, it is probable that some of the severe storm projects are related to the
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Table 2.1: Summary statistics for Hazard Mitigation Assistance Programs
from 1989 to 2019.

Program mean median standard deviation count max min
FMA $552,349 $93,254 $1,637,020 2,659 $31,476,299 $0
HMGP $977,274 $123,813 $10,205,000 23,085 $729,000,000 $0
PDM $460,578 $85,000 $1,522,164 3,928 $35,475,000 $0

Source: FEMA OpenDatabase.

Table 2.2: HMGP projects according to the natural disaster that generated
them from 1989 to 2019.

Natural Disaster Number of HMGP project grants Percentage of Total
Fire 980 4.3%
Severe Ice Storm 1200 5.2%
Flood 3168 13.7%
Hurricane 6121 26.5%
Severe Storm(s) 9432 40.9%

Source: FEMA OpenDatabase.

tropical cyclone phenomenon.
The low value associated with projects of hazard mitigation programs

reflects in the types of projects financed by these programs. Figure 2.1 shows
the categories of projects that the HGMP, FMA, and PDM programs financed
in terms of the number of grants and total obligations. Firstly, although the
planning category has a small cost, the number of grants associated with it is
almost 25% or one-quarter of all grants. The other three categories highlighted
in terms of the number of grants are: generators, property acquisition, and safe
rooms.

Looking for the expenditure part of the figure 2.1, we can see property
acquisition being the largest expenditure among all categories. The other
categories that have some highlights are related to protective measures and
reconstruction, multiple project types (more than one category), and elevation
and relocation of properties. Thus, the projects are generally associated with
local interventions.

Finally, an exciting topic that is related to the use of hazard mitigation
programs can be found at Petkov, 2021 paper. This research shows that culture
homogeneity matters for the expenditure in hazard mitigation. More specif-
ically, the author shows that more homogeneous counties spend more local
funds to mitigate disasters and, thus, they need a smaller amount of federal
funds. Furthermore, as seen above, the principal instrument to finance hazard
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Figure 2.1: HMGP, FMA and PDM project categories by percent of total
obligations and total number of grants (2010-2018).

Source: United States Government Accountability Office (GAO) analysis of
FEMA data.

mitigation is associated with post-disaster investments (HMGP). Hence, more
fractionalized places are more vulnerable to natural disaster damages.
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3
Tropical Cyclones

According to the National Oceanic and Atmospheric Administration
(NOAA), tropical cyclones are the deadliest and costliest natural disaster that
hit the U.S. annually. Table 3.1 shows us that among all natural disasters that
reached the one billion dollar cost threshold, Tropical Cyclones are the most
costly by event ($20.3B) and by year ($26.6B).

Table 3.1: Billion-dollar events that affect the United States from 1980 to
2021 (CPI-Adjusted).

Disaster Type Events Events/Year Percent Frequency Total Costs Percent of Total Costs Cost/Event Cost/Year Deaths Deaths/Year
Drought 29 0.7 9.4% $272.3B 13.1% $9.7B $6.5B 4,139 99
Flooding 35 0.8 11.4% $161.9B 7.8% $4.6B $3.9B 624 15

Freeze 9 0.2 2.9% $32.3B 1.5% $3.6B $0.8B 162 4
Severe Storm 141 3.4 45.8% $320.0B 15.3% $2.3B $7.6B 1,786 43

Tropical Cyclone 56 1.3 18.2% $1,117.7B 53.6% $20.3B $26.6B 6,697 159
Wildfire 19 0.5 6.2% $107.9B 5.2% $6.0B $2.6B 399 10

Winter Storm 19 0.5 6.2% $74.1B 3.6% $3.9B $1.8B 1,223 29
All Disasters 308 7.3 100.0% $2,086.2B 100.0% $6.8B $49.7B 15,030 358

Source: NOAA - https://www.ncdc.noaa.gov/billions/summary-stats.

The tropical cyclone leadership is reflected in firm managers’ climate risk
perceptions. Li et al., 2020 analyze earnings conference calls and found out
that hurricane is the most important and cited word related to severe climate
events, showing that tropical cyclones are an important matter of concern to
companies.

According to the National Hurricane Center of the United States (NHC),
tropical cyclones are:

"a warm-core non-frontal synoptic-scale cyclone, originating
over tropical or subtropical waters, with organized deep convection
and a closed surface wind circulation about a well-defined center.
Once formed, a tropical cyclone is maintained by the extraction of
heat energy from the ocean at high temperature and heat export at
the low temperatures of the upper troposphere."

Figure 3.1 shows the basic circular structure of a tropical cyclone. The
blue region is the cyclone eye, the red region is the eyewall, and the yellow
region is the rain bands. It is evident by the figure that the worse part is
located at the eyewall, and the winds get weaker as we go further away from
the eyewall.
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Figure 3.1: Tropical cyclone basic structure.

Source: http://www.hurricanescience.org/science/science/hurricanestructure.

This structure is fundamental for our empirical strategy, which consists
in getting all the tropical cyclones’ effects over the contiguous U.S. As figure
3.1 shows, the most critical factor to define a tropical cyclone strength is
the maximum sustained wind speed: Less than 62km/h (tropical depression),
63km/h to 118 km/h (tropical storm) and more than 119 km/h (hurricane).
Thus, hurricanes are the most potent form of tropical cyclones.

In addition, two tropical cyclones seasons can affect the U.S.: the Pacific
season and the Atlantic season. Although both seasons happen simultaneously,
between May and November, they have different consequences for the contigu-
ous U.S. While the Pacific cyclone system generates rare landfalls and effects
over the contiguous U.S., affecting mainly Hawaii and some small Pacific is-
lands, the Atlantic season generates frequent landfalls and damages over the
contiguous U.S.

That difference relies on two factors: tropical cyclones in the northern
hemisphere move in the west-northwest direction. Therefore, on the west coast
(Pacific ocean), tropical cyclones tend to move away from the U.S. coast. On
the contrary, on the east coast, it tends to move into the vicinity of the
coast. The second reason is related to the water temperature of the ocean.
The west coast water is colder when compared to the southeast coast water.
As seen in the tropical cyclone definition, a tropical cyclone is maintained
by the heat energy of hot ocean water. Thus, the west coast’s low water
temperature protects the land against tropical cyclones. Figure 3.2 shows all
tropical cyclones tracks since 1949 in the Pacific and since 1851 in the Atlantic.
It is clear from the pattern exposed above that the Atlantic season generates

DBD
PUC-Rio - Certificação Digital Nº 2011882/CA



Chapter 3. Tropical Cyclones 26

Figure 3.2: All tropical cyclones tracks from both seasons.

Source: NOAA.

Figure 3.3: Counties that received HMGP investments related with hurricane
at some point in time since 1990.

Source: OpenFEMA.

much more damage for the U.S. than the Pacific season1. As we are interested
in the indirect effect of hurricanes in our analysis, we will consider just the
Atlantic season in this dissertation because the indirect effect only makes sense
if it represents a real threat for investors.

Beyond that, when considering the covering area of HMGP projects re-
lated to hurricanes, we get support for excluding the Pacific season. Figure 3.3
shows how this program is distributed in the contiguous U.S. It is distributed
just to the states affected by the Atlantic season.

Two characteristics make tropical cyclones a useful natural disaster to
analyze: exogeneity and occurrence in a specific area.

When we talk about tropical cyclones, we are interested in two different
types of forecasting: season forecast and hurricane path forecast. The season
forecast depends on complex factors such as the El Niño-Southern Oscillation

1https://www.scientificamerican.com/article/why-do-hurricanes-hit-the-east-coast-of-
the-u-s-but-never-the-west-coast/
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Figure 3.4: Distribution of the number of tropical cyclones that occured by
year for each ENSO phase (1871-2020).

Source: HURDAT 2.

(ENSO) phase (El Niño and La Niña)2. The importance of the ENSO phase
for the season forecast can be seen in figure 3.4. It is clear that depending
on the ENSO phase, the expected number of tropical cyclones and their
distribution change from one year to another. Beyond that, ENSO tends to
develop between March-June. As the tropical cyclone season starts to form in
June, the season forecast depends on the forecast of other climate phenomena.
This lack of forecasting capacity reflects the probabilities that the NOAA’s
hurricane season outlooks give to each season. For example, in the 2021 Atlantic
hurricane season, the forecast was 60% above-normal season, 30% near-normal
season, and 10% below-normal season.

When we talk about hurricane path forecasts, the scenario is better, but
much work still needs to be done. On average, a tropical cyclone lasts for ten
days, and it can move more than 500 km per day. Thus, it is very unpredictable
when a hurricane starts where it will end. Following the National Hurricane
Center:

2The ENSO cycle refers to the variations in sea- surface temperatures, convective rainfall,
surface air pressure, and atmospheric circulation that occur across the equatorial Pacific
Ocean. El Niño refers to the above-average sea-surface temperatures that periodically
develop across the east-central equatorial Pacific. La Niña refers to the periodic cooling
of sea-surface temperatures across the east-central equatorial Pacific. El Niño occurs more
frequently than La Niña. Episodes of El Niño and La Niña typically last nine to 12 months
but can sometimes last for years.
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Figure 3.5: Emergency and major disaster declarations since 1964 by disaster
type.

Hurricane Drought

Tornado Flood
Source: OpenFEMA.

"Today a 3-day forecast is as accurate as those issued for a 2-day
prediction in the late 1980s. However, much work remains to better
understand and predict wind intensity changes in tropical storms
and hurricanes."

Another essential characteristic of tropical cyclones is that it is a local
phenomenon. When we say that, we mean that tropical cyclones affect just
the east/southeast part of the U.S. because it only hits that area. Firstly,
figure 3.5 shows us the distribution over contiguous U.S. counties of emergency
and major disaster declarations for four different natural hazards: hurricane,
drought, tornado, and flood. It is clear how, compared to the others, hurricanes
are concentrated in a specific region. The graph scale reinforces that point. We
can observe that the darker colors for the hurricane graph were associated with
a much larger number of occurrences than the other natural hazards, only flood
occurrences get close. This fact means that hurricane occurrence generates
enough damage to justify emergency and major disaster declarations and that
people who live in hurricane areas are aware of the possibility of recurrence.

The local aspect of tropical cyclones can be recognized too using the
natural disaster index constructed by Bybee et al., 2021 based on the Wall
Street Journal.3 The authors used full-text content of 800,000 Wall Street
Journal (WSJ) articles from 1984 to 2017 to estimate monthly news attention
indexes for different topics, including natural disasters.

With that in mind, we construct two measures based on the WSJ natural
3http://structureofnews.com
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Figure 3.6: Wall Street Journal index (1984–2017) distribution for natural
disaster divided by month and ENSO phase. The black dots represent months
in which an outlier number of tropical cyclones happened.

Source: Bybee et al., 2021 and HURDAT 2.

disaster index of how much attention tropical cyclones receive in a U.S. general
newspaper. The measures are based on the intensity and quantity of tropical
cyclones.

Firstly, we get all the months in which an outlier amount of tropical
cyclones happened based on the distribution of tropical cyclones on each ENSO
phase.4. If tropical cyclones are an important U.S. occurrence, at least for
investors, we would expect that all the months, or at least the majority, that
we selected would get a high score in the natural disaster index based on
WSJ. I.e., months with a considerable amount of tropical cyclones would get
attention to this topic from the WSJ and, hence, receive a relatively high
score in the WSJ natural disaster index. In figure 3.6 the black dots represent
these year/months with the highest number of tropical cyclones. Only two of
them are highlighted in the distribution: October/2005 (hurricane Katrina)
and August/2011 (hurricane Irene). Hence, the extensive margin of tropical
cyclones does not appear to get a lot of WSJ’s attention.

Secondly, we get all the months when a billion-dollar cost tropical cyclone
event happened. As seen in figure 3.6, the extensive margin of a tropical cyclone
does not generate enough salience to get more importance for the WSJ. Here,
we want to discover if the intensive margin of tropical cyclones is relevant to
the natural disaster index of the WSJ. In figure 3.7 the black dots represent
these year/months with the billion-dollar cost tropical cyclones. The intensive

4Here, the outlier amount was based on all months that surpass the threshold calculated
by the 75th percentile of the distribution plus 1.5 multiplied by the interquartile range.
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Figure 3.7: Wall Street Journal index (1984–2017) distribution for natural
disaster divided by month and ENSO phase. The black dots represent months
in which a high-cost tropical cyclone happened.

Source: Bybee et al., 2021 and OpenFEMA.

margin has a larger appeal for the WSJ than the extensive margin. This
result was expected as many tropical cyclones formed do not make landfall
in the U.S. but stay in the ocean, affecting just oil extraction in the Gulf of
Mexico. However, the appeal is not automatic. As we can see in figure 3.7, some
black dots are not highlighted in the distribution. Thus, even the most costly
tropical cyclones that made landfall in the U.S. do not necessarily receive more
attention from the WSJ than other natural disasters.
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4
Empirical Design

4.1
Data Description

4.1.1
Center for Research in Security Prices database

The Center for Research in Security Prices (CRSP) is a historical stock
market database. This dissertation used the monthly returns data from all
companies between 2004 and 2017. We exclude from the database companies
that had since 1996 less than two years of data. We exclude these companies
traded during a short period to reduce the number of companies less known
by the investors. Beyond that, we used 1996 year as a reference because if we
considered 2004 as a reference, companies publicly listed during a long period,
i.e., known by investors, but that were delisted during 2004 or 2005 would be
excluded from the database.

4.1.2
Factors

We use Fama/French 5 Factors and Momentum as controls in our
empirical strategy. The five factors are: Market Premium, SMB, HML, RMW,
and CMA. Firstly, the market premium is constructed as the difference
between the value-weight average return of all firms in the CRSP database
and the one-month Treasury bill rate. SMB is the factor related to the market
capitalization of the firm. It is constructed as the average return on the
nine small stock portfolios minus the average return on the nine big stock
portfolios of firms. HML is related to the B/M ratio (value vs. growth stocks).
It is constructed as the average return on the two value portfolios minus the
average return on the two growth portfolios. RMW is the factor related to the
firm profitability. It is constructed as the average return on the two robust
operating profitability portfolios minus the average return on the two weak
operating profitability portfolios. CMA is the factor related to the investment
policies by the firms (high vs. low). It is constructed as the average return on
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the two conservative investment portfolios minus the average return on the
two aggressive investment portfolios.1

4.1.3
Firm headquarters database

The firm headquarters database used in this study was constructed using
the Augmented 10-X Header Data from the Software Repository for Account-
ing and Finance of the University of Notre Dame2 that gives us historical firm
headquarters based on the SEC 10-K/Qs files stored on EDGAR.3 We used the
Central Index Key (CIK) number to match my monthly returns database with
this historical headquarters database. However, this merger was not enough
to capture all firms’ headquarters. Thus, we construct a web scraping code
to match company names between the stock prices database and EDGAR to
complete the missing headquarters information. The use of firm headquarters
information as a proxy for firm activity location is based on an empirical regu-
larity that firms are usually close to their primary activity. Barrot & Sauvagnat,
2016 show that the median firm has over 67 percent of its employees located at
the headquarters. The data of this paper was obtained considering listed and
not listed firms. We could think that as listed firms tend to be larger, on av-
erage, this percentage would be lower for them as their production is possibly
more decentralized. Thus, we should not worry about it because this is going
against and not in favor of our estimated effects as firms more decentralized
are less affected when a disaster hits its headquarters.

4.1.4
HURDAT 2

The HURDAT 2 is a historical database constructed by the NHC
using a post-storm analysis of each tropical cyclone’s area of responsibility
to determine the official assessment of the cyclone’s track history. For each
cyclone, the eye position is given on a 6-hour base (00h-06h-12h-18h), in that
case, we get the precise path that the tropical cyclone has made. From 2004
onwards, the database was improved. Nowadays, we can get wind strength
radii beyond the eye position in every ordinal direction: Northeast, southeast,

1The data can be found in the following link:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html

2The data can be found in the following link: https://sraf.nd.edu/data/augmented-10-x-
header-data/

3EDGAR is is the primary system for companies and others submitting documents under
the Securities Act of 1933, the Securities Exchange Act of 1934, the Trust Indenture Act of
1939, and the Investment Company Act of 1940. Contains millions of company and individual
filings.
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southwest, and northwest, with more precision. As seen before, a tropical
cyclone loses strength when it gets far away from its eye. Moreover, the tropical
cyclone has three possible states according to its wind speed: hurricane, tropical
storm, and tropical depression. Thus, the database defines three radii from
the eye where the cyclone behaves as a hurricane, tropical storm, or tropical
depression.

We can construct the tropical cyclone influence area with these wind
strength radii data. This measure gives us a more precise definition than using
just the eye position data into how far away from its eye the tropical cyclone
can still influence the weather. However, measuring distances using geographic
position data can be tricky. Our approach was based on the NAD83 geographic
coordinate system (GCS). This system is the most widely used by federal U.S.
agencies as it was built to better fit U.S. territory. For distance measures
between two coordinate points, we used the haversine formula. Beyond that,
we construct the hurricane size to capture its influence area. For that task, we
again needed to use the haversine formula to get the most distant point that the
tropical cyclones have some influence. Figure 4.1 represents this construction
effort of hurricane size for the Katrina Hurricane. The red figures represent the
influence area of the hurricane that varies throughout its existence period.

4.1.5
WSJ Natural disaster index

The WSJ natural disaster index was constructed by Bybee et al., 2021.
The authors estimate a topic model based on 800,000 WSJ articles from 1984
to 2017.4 The estimation allows us to construct time series of news attention
on each topic and compare the topic evolution through time. For example,
we use the natural disasters topic time series in our estimation to control the
evolution of attention to this topic on the financial market when a tropical
cyclone strikes in a county, as WSJ is one of the most influential media sources
for financial market participants.

4.1.6
Historical state Governor and President political parties

We construct a historical database for each U.S. state to know in what
years of our analyses the state governor was in the same party as the President.
Here, the idea is to capture possible political reasoning for the President’s
approval of emergency and major disaster declaration. As declarations come

4http://structureofnews.com/
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Figure 4.1: Hurricane Katrina path using hurricane size information.

Source: HURDAT 2.

with federal resources, we could expect that Presidents are more inclined to
declare for states with an allied governor.

4.1.7
Hazard Mitigation Programs

The hazard mitigation programs database is part of the OpenFEMA
Data Sets5 repository that has several databases related to FEMA’s operation
in disaster situations. Here, we use the database related to projects under
the Hazard Mitigation Programs umbrella. Our interest relies on the counties
primarily affected by each project and the amount of money each project
received.6

5https://www.fema.gov/about/openfema/data-sets
6In some projects, beyond the primary counties, some other counties are secondary

beneficiaries of the project. As we cannot find how much each of these secondary counties
receives from the project, we ignore them and focus just on the primary counties.
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4.1.8
State and Local Finance Data

The state and local finance data came from the Urban-Brookings Tax
Policy Center’s State and Local Finance Initiative project. The researchers
of this project processed data from the U.S. Census Bureau’s Census of
Governments and Annual Survey of State and Local Government Finances to
aggregate information about the states. Our interest here is in the investment
part. We get nominal per capita total capital outlays made by local and state
governments for each state.

4.2
Identification strategy

Our identification relies on the exogeneity of tropical cyclones, as de-
scribed in section 3. The tropical cyclone’s exogeneity is clear and generates
few debates. However, to test the significance of the anomalies estimations, we
need exogeneity for the variable related to the hazard mitigation programs and
the interaction between this variable and indirect exposition. Firstly, we need
to understand how the investment process works for this kind of program.
Figure 4.2 shows how hazard mitigation programs’ application and funding
processes work. The application process follows the opposite path of the fund-
ing process. It starts with local authorities receiving community demands and
conveying them to the state authorities. In the end, the state authorities must
organize the requests to the federal government via FEMA.

It is important to emphasize that the process order is the same for
disaster-driven assistance or competition-driven assistance, the differences
between programs are in the requirements and budget. This decentralized
infrastructure has advantages as the local authorities are better prepared to
know the more urgent necessities of their communities. However, Smith & Vila,
2020 argues that this process may hinder the capacity of communities with
less internal capacity to fight for resources, fundamentally in the competition-
driven programs.

What could generate endogeneity problems between excess
returns and investment in hazard mitigation programs or between
excess returns and indirect tropical cyclone exposition?

Firstly, as seen in the introduction, direct natural disasters can impact
investors’ behavior (Henriksson, 2021). I.e., direct disaster exposition can affect
stock returns not only through the physical impact over firms but changing
investors’ behavior too. Moreover, tropical cyclones can affect a specific county
directly and indirectly at the same time as they have a seasonal occurrence;
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they are correlated. Thus, we can have an endogeneity problem associated with
investors’ behavior change correlated with direct exposition that, in its turn,
is correlated with indirect exposition, making our estimation biased. To tackle
this endogeneity problem, we exclude from the database firms’ observations
in months that a tropical cyclone direct exposition and an indirect exposition
happened to the county where the firm is headquartered. We cut the thread
between investors’ behavior change and indirect exposition when we do this.
This database exclusion is also valid for all the aspects discussed in the
introduction concerning why indirect exposition is better for our identification
effort.

Secondly, Pirinsky & Wang, 2006 shows how returns are correlated be-
tween firms with headquarters located closely. Following the authors, this hap-
pens because of the co-movement of the local trading pattern. Suppose there
is a difference between local trading patterns based on county characteristics,
and these characteristics are related to the capacity of receiving resources from
FEMA hazard mitigation programs. In that case, we could expect that endo-
geneity is a problem. How could we solve that? Using a fixed-effects model
with county-level fixed effects could help solve that because we exclude from
the analysis all idiosyncratic county characteristics that do not change over
time.

Thirdly, there is a political component, as seen in section 2 in the
hazard mitigation programs processes, essentially, for the HMGP projects that
need major disaster declarations by the President to be available. Lee Helms,
a former Alabama Emergency Management Agency chief, said: "Politics
always plays a part in that, if it is a borderline call, the ultimate
decision is made by the President.". This emphasizes the idea that politics
matter for FEMA declarations. As the final process happens between the
state governor and President, we used a dummy variable that represents if
the governor was at the same party as the President or not.

Furthermore, another important point to worry about endogeneity is
related to investments per capita. It is clear that general state and local
investments and federal hazard mitigation investments are related as more
investments by local authorities could reduce the necessity of federal funds
(Petkov, 2021). Beyond that, investments are possibly related to returns as
better infrastructure helps businesses thrive. Thus, it is important in our
identification effort to control for local investments.

The cultural importance for the HMGP investment decision shown by
Petkov, 2021 is a concerning point in our analysis as Grinblatt & Keloharju,
2001 showed that culture matters for trading behavior too. We used county
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fixed effects to deal with this cultural problem because we are dealing with just
14 years of data, and we thought it was reasonable to assume that this is not
enough to change a county’s cultural roots. Beyond that, the infrastructure
variable can help us proxy for this cultural heritage as Petkov, 2021 showed us
that culture matters for the infrastructure expenditure.

In addition, firms are differently exposed to tropical cyclones, and hazard
mitigation measures have different effects on them. An important example
is firms in the oil sector that explore Gulf of Mexico wells. Although the
production over there is affected by tropical cyclones, hazard mitigation
measures do not reach them. Moreover, as we saw before, HMGP depends
on hazards to be available. This can generate endogeneity when we regress
excess returns in hazard mitigation investment. Hence, we use firm-level fixed
effects, dummies for hurricane season months, and tropical cyclones exposure
to overcome firm-level problems.

Finally, a concern is the real influence of local investors on firms. The
weight of local investors on firms varies according to some firms’ character-
istics. The literature shows that some characteristics are associated with a
larger presence of local investors in a firm’s ownership. Small firms (Coval &
Moskowitz, 1999, Ivković & Weisbenner, 2005, and Jacobs & Weber, 2012) is
the characteristic that is most correlated with a high local investment. Shive,
2012 explores other characteristics correlated with local firms, such as lower log
market to book ratio, lower log Tobin’s Q, and larger bid-ask spread. However,
in this dissertation, we do not split between firms with big local influence and
firms with low local influence. However, this should not be a problem because
we expect that the hazard mitigation programs’ perceptions do not influence
firms with low local influence as much as they influence firms with high local
influence. In that case, the inclusion of all firms could reduce the significance
of our results, making our significant results even more robust. Despite all of
that, we make a local firm exercise in the robustness chapter. At each month,
in our database, we exclude all firms’ observations that have a market value
lower than the average and the median market value at that specific month.
I.e., we used the principal characteristic (firm size) of a local company to split
between a local and non-local company database.

4.3
Methodology

We estimate the effects of the salient exposition to hurricanes over α̂i,t,c.
We are considering just hurricanes that do not affect the contiguous U.S. For
county indirect (salient) exposition, we consider five range definitions: 300km,
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Figure 4.2: FEMA application and funding process for all hazard mitigation
programs.

Source: Smith et all. (2020).

500km, 700km, 900km, and 1000km distances from hurricanes and estimate
each one separately. We estimate a fixed-effect model with county-level and
time-level clustering, and county-level and firm-level fixed effects. Abadie et al.,
2017 shows why we need to consider clustering and fixed effect when dealing
with county-level heterogeneous shocks. Beyond that, the time-level clustering
is necessary for the well-known high cross-section correlation between stock
returns even when we consider the 5 Fama-French factors (Petersen, 2009).
The subscripts represent: i stock level, t month/year, y year, c county level,
and s state level.

Ri,t,c−Rft = αi,t,c+β1,iMarket_Premiumt+β2,iSMBt+β3,iHMLt+β4,iRMWt

+ β5,iCMAt + β6,iMomentumt (4-1)
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Firstly, to construct α̂i,t,c, we estimate equation 4-1 regressing on the
time series each stock excess return against the five Fama-French factors and
momentum. With that estimation, we get the residuals α̂i,t,c which are used in
our principal estimation.

α̂i,t,c=αc+αi+λHurricanet,c+ιT ropical_Depressiont,c+ωTropical_Stormt,c+

θProximityHurricanet,c ∗ Project_per_capitat,c + δProjectpercapitat,c+

ψProximity_Hurricanet,c+
5∑

j=1
κjHurricaneSeasont∗PastHurricanej,y,c+ΛGovernorPartyt,s+

5∑
k=1

ζkPastHurricanek,y,c + γHurricaneSeasont + φTotal_cap_outs,y+

υNaturalDisasterINDEXt∗Hurricanet,c+ΥNaturalDisasterINDEXt∗Tropical_Stormt,c

+ ϱNaturalDisasterINDEXt ∗ Tropical_Depressiont,c + εi,t,c (4-2)

Ri,t,c is the monthly return of the stock i at month t and firm lo-
cated at county c. Rft is the risk-free (1-month T bill rate) at month
t. MarketPremiumt, SMBt, HMLt, RMWt and CMAt represent the 5
Fama/French factors and momentum factor. Hurricanet,c is a dummy vari-
able that assumes 1 if the county c at month t was exposed to a hurricane.
Tropical_Stormt,c is a dummy variable that assumes 1 if the county c at
month t was exposed to a tropical storm. Tropical_Depressiont,c is a dummy
variable that assumes 1 if the county c at month t was exposed to a tropical
depression7. Projectpercapitat,c is a variable that defines how much money per
capita in real terms8 had been invested on hazard mitigation projects at the
county c in the month t. Proximity_Hurricanet,c is a dummy variable that
assumes 1 if the county c at month t had a salient hurricane affecting it. I.e.,
following some range definition, there was at least one hurricane sufficiently
close to the county that did not affect the county and no other contiguous U.S.
counties. NaturalDisasterINDEXt is the value of the WSJ Natural Disaster
index for the month t. GovernorPartyt,s is a dummy variable that assumes 1

7We capture exposition to tropical cyclones getting the intersection between tropical
cyclone area of influence and the U.S. territory. Beyond that, tropical cyclones lose strength
when it gets away from its eye. Thus, when using the size construction method, weaker
tropical cyclones have a larger area than stronger ones. Hence, we get a dummy variable
equal to 1 for hurricanes, and by size construction, we probably get a dummy equal to 1 for
tropical storms and tropical depressions. To tackle this, we assume that when a county is
exposed to a stronger tropical cyclone, this status is the only one that prevails. For example,
if a county is exposed to a hurricane, it is exposed only by it and not by the other tropical
cyclone status.

8The Projectpercapitat,c variable was deflated to be in 1996 U.S. dollars value.
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if at the month t and state s the state governor is at the same political party
as the U.S. President. PastHurricanek,y,c is a dummy variable that assumes
1 if at year y and county c, there were in k9 years ago a hurricane strike in the
county. HurricaneSeasont is a dummy variable that assumes 1 if t is one of
the hurricane season months10. Total_cap_outs,y is the variable that defines
the total capital outlay per capita in real terms 11 spent during a year by local
and state governments for each state.

The most important estimated parameters are red: θ and ψ. The θ

refers to the interaction between investments per capita in hazard mitigation
programs and indirect exposure to hurricanes. On the other side, ψ is related
to the indirect exposure to hurricanes only.

The first part of our methodology estimates each equation separately as
different ranges represent different model specifications. In the second part,
we estimated the exposure by part, i.e., we estimate a single equation with
the following ranges: 0-300, 300-500, 500-700, 700-900, and 900-1000. The
idea here is to get how each range contributes to the total salient effect of
hurricanes. The methodology used is the same as the one shown above, with
the only difference that ProximityHurricanet,c and ProximityHurricanet,c ∗
Project_per_capitat,c repeats itself five times, one for each range.

9where k is 1,2,3,4 and 5
10from June until November
11The Total_cap_outs,y variable was deflated to be in 1996 U.S. dollars value.
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5
Results

The main results were presented in tables 5.1, 5.2 and 5.3. In the table
5.1, we consider just the 300km range with two different specifications for
the project per capita variable. The total mitigation column considers all
hazard mitigation programs except the HMGP projects not associated with
hurricanes in the project per capita variable. On the other hand, the HMGP
column considers just the HMGP projects associated with hurricanes. The only
difference between table 5.1 to tables 5.2 and 5.3 is the number of considered
ranges. Table 5.2 considers 500 km and 700 km ranges and table 5.3 considers
900 km and 1000 km ranges. The total mitigation and HMGP columns in
tables 5.2 and 5.3 have the same specification particularities of table 5.1. Thus,
the difference between the tables is on the range specification considered, as
described in the methodology section.

Going from the 300 km to 1000 km range, we expand the number of
hurricanes considered, i.e., all hurricanes in the 300 km range are in the 1000
km range. However, the hurricanes that pass between 300km and 1000 km are
not in the 300 km range, but they are in the 1000 km range.

In our favorite specification, we look at the HMGP column that reflects
HMGP related to hurricanes. For the iteration term between project per capita
and hurricane close (distance1)), we find a negative and significant parameter
estimation. Beyond that, the estimations get smaller when we change the
hurricane range specification. For example, it goes from −0.034 with the 300km
range specification to −0.0009 with the 1000km range specification. This result
was expected because adding hurricanes far away from the coast reduce the
general risk of a strike. Therefore, one dollar in project per capita investment
for a 300km range exposition to hurricanes is equivalent to an average reduction
of −1 ∗ −0.0340 ∗ 1 ∗ 1 = 0.034 in the realized return alpha during the month
of exposition. This is the first anomaly that our estimation captures.

The total mitigation columns in tables 5.1, 5.2 and 5.3 show that the
effect is less pronounced and even insignificant for some specifications when
we include other hazard mitigation programs. We understand this fact as a
capacity of investors to differentiate the HMGP projects related to hurricanes

1distance is equal to 300 km, 500 km, 700 km, 900 km or 1000 km.
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that have a higher probability of combatting hurricanes effects from other
hazard mitigation projects without the same goal. Our robustness analyses
give evidence in this direction too.

Moreover, the indirect exposition to hurricanes generates anomalies in
returns too. We find that Hurricane close (distance2) has positive and signif-
icant effects, however the results are less significant than the ones observed
for the iteration term above. The estimated parameters go from 0.0514 for the
300km range specification to 0.0688 for the 700km range specification. The
results are not significant for the 900km and 1000km specifications. The total
mitigation columns show little variation compared with the HMGP columns.

What could explain these estimated coefficients? As described in the
introduction section, there are two possible explanations for these anomalies.
Firstly, the local investor’s hypothesis is that hazard mitigation programs do
not make local investors feel safer concerning a tropical cyclone strike. On
the contrary, more hazard mitigation programs investments in a county make
local investors more aware of their failure to relieve the effects of the tropical
cyclone. As a result, firms in counties indirectly exposed to hurricanes will have,
on average, a reduction in their realized returns during the exposition month.
This reduction grows with the investment per capita in hazard mitigation
programs. I.e., supposing that local investors are more aware of this type of
program and its lack of capacity to mitigate risks with more investment per
capita. That is why, the discount on realized returns would grow with the
investment per capita in hazard mitigation programs. To explain the positive
estimated coefficients for the indirect exposition dummy, we rely on Alok et al.,
2020. In this study, the authors show that local investors sell more local firms
affected by a disaster when compared with distant investors. In our case, as the
disaster does not strike, the positive anomaly in returns could be associated
with compensation for the over-sell of local investors when the disaster does
not materialize.

On the other hand, the general market perspective can explain these
results too. The hazard mitigation section showed that most hazard mitigation
projects are available after a natural disaster strike. Beyond that, anecdotal
evidence indicates that the investments in hazard mitigation programs are
lower than necessary. With that information in mind, investors may interpret
that larger per capita investments in a county mean that this county is more
vulnerable than others to tropical cyclone strikes. Hence, investors will sell
stocks of companies exposed to tropical cyclone threats (indirect exposition).
This sell will grow with investments per capita as more investments per capita

2distance is equal to 300 km, 500 km, 700 km, 900 km or 1000 km
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are associated with larger risk, generating a negative and significant coefficient
estimation. The positive coefficient estimated again can be a reduction in the
discount as tropical cyclones do not strike.

In addition, when we look at the dummy variables related to being hit by
a tropical cyclone (hurricane, tropical depression, or tropical storm dummies),
we observe an interesting pattern: all tropical storm and hurricane coefficients
are not statistically different from zero, the tropical depression exposition
coefficient is significant and negative, i.e., it has a negative effect over returns of
firms headquartered in a county that they hit. A possible explanation for that
pattern can be associated with tropical cyclones’ dynamics. As seen before,
tropical cyclones become stronger when we get close to its eye. Hence, the
first impacts of tropical cyclones on land are less pronounced than the impact
when the eye gets closer to the coast. Thus, the tropical depression impact,
even without a posterior hurricane impact, can be interpreted as a messenger to
a possible worst-case scenario of future hurricane landfall. In that case, its first
and less damaging land impacts are associated with the first significant and
negative effects on firm returns. Thus, this dissertation confirms well-known
literature findings of the short-term impacts of tropical cyclone strikes over
returns.

A significant result for all hurricane range specifications is that the
parameters related to project per capita are statistically non-different from
zero. This result reinforces the idea of the irrelevance for investors of the project
per capita variable when there is no exposition to a hazard. I.e., investors are
only interested in the project per capita variable when evaluating the real risks
using the informational channel is necessary.

Another result worth noting is related to the total capital outlays
variable. The state and local investments per capita level variable is significant
and equal to negative 0.0002 in all regressions. This result was expected as
total investments are in a magnitude level of spending much higher than
hazard mitigation program. That is why the project per capita coefficients
are not statistically different from zero and only matter when we consider
the informational channel. Here, on the other hand, as the investment level is
higher than hazard mitigation federal funds, the investment by itself impacts
returns. This impact can be related to a better infrastructure acquired with
more significant investments.

Beyond that, some secondary results are found. First, we interact the
natural disaster index constructed using WSJ news with tropical cyclones
occurrence. We do not find any effects for the three stages of tropical cyclones.
The idea here was to capture if the WSJ natural disaster index would
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be more associated with tropical cyclones during an exposition to tropical
cyclones. I.e., when a disaster strikes, if the media’s attention to tropical
cyclones is larger, we should expect that investors would pay more attention
to tropical cyclones, generating anomalies, which was not the case. Although
the estimated coefficients are not significant, this result can be related to the
fact that tropical cyclones are a local phenomenon and do not raise a lot of
the attention of the WSJ, as seen previously. Moreover, the memory associated
with past hurricanes is irrelevant until three years after the strike, when it gets
too old, there is a reversal. Moreover, we capture no effects of being in the
hurricane season or being in the hurricane season and with a past hurricane
occurrence. Finally, a governor at the same party as the president does not
seem to make any difference for alpha.

Secondly, table 5.4 is the single equation estimation by a range of our
interest parameters. The results are similar to those obtained in the analyses
by different ranges. It is important to highlight that the results here are by a
range which can generate problems of lack of hurricanes in some ranges making
the results less straightforward. Besides this fact, the results are very similar
to those obtained when we consider separate range specifications.

Thus, our results show evidence that our two stories can be true. Local
investors’ lack of trust in hazard mitigation programs or investors in general
risk perceptions can be the two ways driving these anomalies results. The
conclusion for both stories, in policy terms, means that better and more robust
investment by the U.S. federal government into hazard mitigation programs are
necessary as investors do not see them as enough to fight hazard associated with
tropical cyclones. As seen in the introduction, the U.S. government appears
to agree with this story as recent changes have boosted hazard mitigation
programs.
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Table 5.1: Results for 300km range.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0130 -0.0129

(0.0202) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0020 0.0020

(0.0205) (0.0205)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0203 0.0202

(0.0171) (0.0171)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0136 0.0139

(0.0181) (0.0182)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0070 0.0073

(0.0182) (0.0182)
Tropical Cyclones Season -0.0103 -0.0103

(0.0189) (0.0189)
Hurricane -0.0256 -0.0246

(0.0321) (0.0319)
Tropical Depression -0.0798∗ -0.0799∗

(0.0425) (0.0426)
Tropical Storm -0.1152 -0.1154

(0.1149) (0.1149)
Project per capita*Hurricane close (300km) -0.0115 -0.0340∗∗∗

(0.0075) (0.0074)
Hurricane close (300km) 0.0463∗∗ 0.0514∗∗∗

(0.0189) (0.0191)
Project per capita 0.0007 0.0003

(0.0010) (0.0005)
Hurricane 1 Year Ago -0.0494 -0.0493

(0.0435) (0.0434)
Hurricane 2 Years Ago -0.0719 -0.0717

(0.0467) (0.0466)
Hurricane 3 Years Ago 0.0006 0.0008

(0.0341) (0.0341)
Hurricane 4 Years Ago 0.0585∗∗∗ 0.0587∗∗∗

(0.0166) (0.0166)
Hurricane 5 Years Ago 0.0721∗∗∗ 0.0724∗∗∗

(0.0141) (0.0141)
Governor Party -0.0080 -0.0081

(0.0152) (0.0152)
Total Cap outlays -0.0002∗∗∗ -0.0002∗∗∗

(6.56 × 10−5) (6.56 × 10−5)
Natural disaster index*Hurricane -1.128 -1.218

(2.402) (2.395)
Natural disaster index* Tropical Depression 1.907 1.907

(2.502) (2.504)
Natural disaster index* Tropical Storm 11.69 11.70

(8.174) (8.171)
Fit statistics
Observations 606,261 606,261
R2 0.02562 0.02556
Within R2 0.01514 0.01507

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 5.2: Results for 500km and 700km ranges.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0128 -0.0127 -0.0123 -0.0122

(0.0202) (0.0202) (0.0202) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0021 0.0020 0.0024 0.0024

(0.0205) (0.0205) (0.0204) (0.0204)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0182 0.0181 0.0184 0.0182

(0.0168) (0.0168) (0.0168) (0.0168)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0124 0.0124 0.0134 0.0135

(0.0181) (0.0181) (0.0182) (0.0182)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0058 0.0058 0.0037 0.0037

(0.0182) (0.0182) (0.0177) (0.0177)
Tropical Cyclones Season -0.0106 -0.0106 -0.0112 -0.0112

(0.0189) (0.0189) (0.0189) (0.0189)
Hurricane -0.0251 -0.0241 -0.0245 -0.0236

(0.0321) (0.0320) (0.0321) (0.0320)
Tropical Depression -0.0790∗ -0.0791∗ -0.0780∗ -0.0781∗

(0.0425) (0.0426) (0.0425) (0.0425)
Tropical Storm -0.1141 -0.1143 -0.1135 -0.1136

(0.1148) (0.1148) (0.1152) (0.1152)
Project per capita*Hurricane close (500km) -0.0030∗∗ -0.0038∗∗∗

(0.0014) (0.0014)
Hurricane close (500km) 0.0908∗∗∗ 0.0898∗∗∗

(0.0184) (0.0184)
Project per capita 0.0007 0.0003 0.0007 0.0003

(0.0010) (0.0004) (0.0010) (0.0005)
Hurricane 1 Year Ago -0.0491 -0.0491 -0.0491 -0.0490

(0.0434) (0.0434) (0.0433) (0.0432)
Hurricane 2 Years Ago -0.0717 -0.0715 -0.0717 -0.0715

(0.0466) (0.0465) (0.0465) (0.0464)
Hurricane 3 Years Ago 0.0009 0.0010 0.0009 0.0011

(0.0341) (0.0340) (0.0340) (0.0339)
Hurricane 4 Years Ago 0.0587∗∗∗ 0.0589∗∗∗ 0.0587∗∗∗ 0.0590∗∗∗

(0.0166) (0.0166) (0.0166) (0.0166)
Hurricane 5 Years Ago 0.0723∗∗∗ 0.0726∗∗∗ 0.0724∗∗∗ 0.0727∗∗∗

(0.0141) (0.0140) (0.0140) (0.0140)
Governor Party -0.0081 -0.0082 -0.0084 -0.0085

(0.0152) (0.0152) (0.0151) (0.0151)
Total Cap outlays -0.0002∗∗∗ -0.0002∗∗∗ -0.0002∗∗∗ -0.0002∗∗∗

(6.56 × 10−5) (6.56 × 10−5) (6.54 × 10−5) (6.55 × 10−5)
Natural disaster index*Hurricane -1.124 -1.215 -1.116 -1.205

(2.411) (2.405) (2.413) (2.407)
Natural disaster index* Tropical Depression 1.898 1.898 1.893 1.894

(2.504) (2.505) (2.506) (2.508)
Natural disaster index* Tropical Storm 11.66 11.67 11.70 11.71

(8.177) (8.174) (8.199) (8.196)
Project per capita*Hurricane close (700km) -0.0015∗∗ -0.0017∗∗

(0.0007) (0.0008)
Hurricane close (700km) 0.0692∗∗∗ 0.0688∗∗∗

(0.0207) (0.0206)
Fit statistics
Observations 606,261 606,261 606,261 606,261
R2 0.02602 0.02595 0.02650 0.02642
Within R2 0.01554 0.01547 0.01602 0.01594

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 5.3: Results for 900km and 1000km ranges.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0125 -0.0124 -0.0125 -0.0124

(0.0203) (0.0202) (0.0202) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0020 0.0019 0.0021 0.0020

(0.0206) (0.0207) (0.0206) (0.0206)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0195 0.0193 0.0198 0.0196

(0.0170) (0.0170) (0.0170) (0.0170)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0138 0.0138 0.0138 0.0138

(0.0182) (0.0182) (0.0182) (0.0182)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0056 0.0055 0.0054 0.0053

(0.0180) (0.0180) (0.0182) (0.0182)
Tropical Cyclones Season -0.0110 -0.0110 -0.0110 -0.0110

(0.0190) (0.0190) (0.0190) (0.0190)
Hurricane -0.0249 -0.0239 -0.0248 -0.0239

(0.0322) (0.0321) (0.0324) (0.0323)
Tropical Depression -0.0787∗ -0.0788∗ -0.0787∗ -0.0788∗

(0.0426) (0.0426) (0.0426) (0.0427)
Tropical Storm -0.1139 -0.1141 -0.1140 -0.1141

(0.1150) (0.1150) (0.1150) (0.1150)
Project per capita*Hurricane close (900km) -0.0011 -0.0011∗

(0.0008) (0.0006)
Hurricane close (900km) 0.0243 0.0240

(0.0300) (0.0298)
Project per capita 0.0007 0.0003 0.0007 0.0003

(0.0010) (0.0005) (0.0010) (0.0005)
Hurricane 1 Year Ago -0.0493 -0.0492 -0.0492 -0.0491

(0.0434) (0.0434) (0.0435) (0.0434)
Hurricane 2 Years Ago -0.0719 -0.0716 -0.0718 -0.0715

(0.0466) (0.0466) (0.0467) (0.0466)
Hurricane 3 Years Ago 0.0007 0.0009 0.0008 0.0010

(0.0341) (0.0340) (0.0341) (0.0340)
Hurricane 4 Years Ago 0.0584∗∗∗ 0.0587∗∗∗ 0.0585∗∗∗ 0.0587∗∗∗

(0.0166) (0.0166) (0.0166) (0.0166)
Hurricane 5 Years Ago 0.0722∗∗∗ 0.0725∗∗∗ 0.0722∗∗∗ 0.0725∗∗∗

(0.0141) (0.0140) (0.0141) (0.0140)
Governor Party -0.0082 -0.0083 -0.0082 -0.0083

(0.0151) (0.0152) (0.0151) (0.0151)
Total Cap outlays -0.0002∗∗∗ -0.0002∗∗∗ -0.0002∗∗∗ -0.0002∗∗∗

(6.56 × 10−5) (6.56 × 10−5) (6.55 × 10−5) (6.56 × 10−5)
Natural disaster index*Hurricane -1.123 -1.213 -1.121 -1.211

(2.407) (2.401) (2.407) (2.401)
Natural disaster index* Tropical Depression 1.901 1.901 1.906 1.906

(2.504) (2.505) (2.502) (2.504)
Natural disaster index* Tropical Storm 11.69 11.70 11.69 11.70

(8.180) (8.178) (8.183) (8.180)
Project per capita*Hurricane close (1000km) -0.0008 -0.0009∗

(0.0006) (0.0005)
Hurricane close (1000km) 0.0183 0.0181

(0.0258) (0.0257)
Fit statistics
Observations 606,261 606,261 606,261 606,261
R2 0.02584 0.02576 0.02578 0.02571
Within R2 0.01535 0.01527 0.01530 0.01522

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 5.4: Regression results when considering each individual range sepa-
rately.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0123 -0.0123

(0.0202) (0.0208)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0027 0.0025

(0.0204) (0.0210)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0181 0.0179

(0.0167) (0.0170)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0137 0.0139

(0.0183) (0.0183)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0045 0.0046

(0.0178) (0.0179)
Tropical Cyclones Season -0.0110 -0.0110

(0.0190) (0.0192)
Hurricane -0.0248 -0.0238

(0.0323) (0.0323)
Tropical Depression -0.0784∗ -0.0784∗

(0.0426) (0.0430)
Tropical Storm -0.1138 -0.1140

(0.1153) (0.1160)
Hurricane close (0-300km) 0.0472∗∗ 0.0524∗∗∗

(0.0188) (0.0196)
Hurricane close (300-500km) 0.0950∗∗∗ 0.0945∗∗∗

(0.0186) (0.0185)
Hurricane close (500-700km) 0.0609∗∗∗ 0.0606∗∗∗

(0.0225) (0.0227)
Hurricane close (700-900km) -0.0185 -0.0188

(0.0354) (0.0356)
Hurricane close (900-1000km) 0.0024 0.0024

(0.0239) (0.0240)
Project per capita*Hurricane close (0-300km) -0.0112 -0.0333∗∗∗

(0.0074) (0.0085)
Project per capita*Hurricane close (300-500km) -0.0026∗∗ -0.0035∗∗∗

(0.0010) (0.0011)
Project per capita*Hurricane close (500-700km) -0.0012∗∗ -0.0012∗∗

(0.0006) (0.0005)
Project per capita*Hurricane close (700-900km) -0.0009 -0.0005

(0.0012) (0.0010)
Project per capita*Hurricane close (900-1000km) -0.0001 -0.0002

(0.0002) (0.0007)
Project per capita 0.0007 0.0003

(0.0010) (0.0005)
Hurricane 1 Year Ago -0.0491 -0.0490

(0.0433) (0.0491)
Hurricane 2 Years Ago -0.0717 -0.0715

(0.0465) (0.0535)
Hurricane 3 Years Ago 0.0009 0.0011

(0.0340) (0.0361)
Hurricane 4 Years Ago 0.0588∗∗∗ 0.0590∗∗∗

(0.0166) (0.0167)
Hurricane 5 Years Ago 0.0724∗∗∗ 0.0727∗∗∗

(0.0140) (0.0140)
Governor Party -0.0083 -0.0084

(0.0151) (0.0160)
Total Cap outlays -0.0002∗∗∗ -0.0002∗∗

(6.54 × 10−5) (7.79 × 10−5)
Natural disaster index*Hurricane -1.119 -1.208

(2.414) (2.407)
Natural disaster index* Tropical Depression 1.894 1.894

(2.506) (2.508)
Natural disaster index* Tropical Storm 11.70 11.71

(8.201) (8.198)
Fit statistics
Observations 606,261 606,261
R2 0.02662 0.02656
Within R2 0.01614 0.01608

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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6
Robustness

Our robustness analysis help to better understand and support the results
seen in the prior section. Our analysis will focus on different ways to define
the project per capita variable. Our idea here is to support the vision that
the informational channel is the responsible for the existence of the anomalies.
The informational channel is not limited to one story, both stories argue for
the existence of an informational channel between investors’ (locals or not)
perceptions about the hazard mitigation programs and the market. The total
mitigation column in the results section gave us a preview of the robustness
results. There, when we considered all the hazard mitigation programs, the
results were less precise than those in the HMGP column considering only
the HMGP generated by hurricane disasters. This fact means that when we
construct the variable project per capita, what type of programs are considered
is essential for a precise result. Thus, the informational channel, what and how
information is used, is fundamental for our analysis.

In that sense, we explore two different ways to choose programs and
construct the project per capita variable here. Firstly, we consider all HMGP
projects that are not related to hurricanes. This estimation is the opposite of
what we have done in the results section, where we considered just the HMGP
projects related to hurricanes.

Tables 6.1, 6.2, 6.3 and 6.4 show the same tables of results section with
the different definition for the project per capita variable. While the total
mitigation column is composed of HMGP projects unrelated to hurricanes and
other hazard mitigation programs, the HMGP projects column is composed
of HMGP projects unrelated to hurricanes. When we look at the results that
try to answer our hypotheses, we can see that the results, in general, are
not significant, fundamentally, when we look at the interaction term between
project per capita and the Hurricane close (distance) variable. This result
shows that when we consider HMGP projects without relation to mitigating
tropical cyclones, investors do not consider this information when looking at
the risk of indirect exposition to hurricanes. Thus, the evidence points to
the importance of the informational channel and the investors’ capacity to
understand what information is important to consider.
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Secondly, we consider all HMGP projects, including those related to
tropical cyclones and those unrelated. Tables 6.5, 6.6, 6.7 and 6.8 show the same
tables of results section with the different definition for the project per capita
variable. The total mitigation column includes all total mitigation programs.
Otherwise, the HMGP column includes all HMGP projects. When we look
at the interaction term between hazard mitigation program and indirect
exposition, the results are less clear than the original HMGP specification.
However, they are clearer than the specification that does not consider HMGP
projects related to tropical cyclones.

In general, the interaction term between project per capita and Hurricane
close (distance) variable is significant when the Hurricane close (distance)
is significant too, reinforcing that the interaction term and Hurricane close
(distance) variable are complementary effects.

Finally, we make an exercise to give some evidence for local firms. As seen
before, the most important characteristic of a local firm is the firm size. Smaller
firms tend to be more local than larger firms. With that in mind, we find the
mean and median firm value for each month and exclude the firms’ observations
above these measures at the specific month from the database. With the
local firm database, we estimated the same model of the results section with
the project per capita, considering just the HMGP projects associated with
hurricanes. Tables 6.9, 6.10, 6.11 and 6.12 show the results of this exercise.
We can observe that the results in most ranges stay the same in signal and
size terms, though some results are not significant (range 900km and 1000km).
Thus, the exercise shows us that when we do a simple exercise to capture local
firms better, the results stay the same, indicating possible importance for local
investors in our analysis.

Thus, the robustness section improves the understanding of our results.
Firstly, the results support the information channel. When we consider different
project specifications, different results arise depending on how valuable the
projects are to mitigate the impacts of tropical cyclones. Therefore, we can
conclude that investors use information to formulate perceptions. I.e., they can
split between useful and useless information. Secondly, to give some evidence
for our local investors’ hypothesis, our local firm specification shows us that
when we restrict the database to firms with more local influence (small market
value), the results are still present, which indicates that local investor’s story
is a possible important path to consider.

DBD
PUC-Rio - Certificação Digital Nº 2011882/CA



Chapter 6. Robustness 51

Table 6.1: Results for 300km range.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0128 -0.0128

(0.0203) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0019 0.0020

(0.0206) (0.0206)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0203 0.0203

(0.0171) (0.0171)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0137 0.0136

(0.0181) (0.0181)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0068 0.0067

(0.0182) (0.0182)
Tropical Cyclones Season -0.0103 -0.0103

(0.0189) (0.0189)
Hurricane -0.0242 -0.0241

(0.0320) (0.0320)
Tropical Depression -0.0799∗ -0.0799∗

(0.0426) (0.0426)
Tropical Storm -0.1152 -0.1156

(0.1150) (0.1148)
Project per capita*Hurricane close (300km) -0.0047 -0.0391

(0.0095) (0.0456)
Hurricane close (300km) 0.0234 0.0147

(0.0159) (0.0424)
Project per capita 0.0002 -0.0002

(0.0012) (0.0012)
Hurricane 1 Year Ago -0.0494 -0.0493

(0.0434) (0.0434)
Hurricane 2 Years Ago -0.0719 -0.0716

(0.0465) (0.0465)
Hurricane 3 Years Ago 0.0001 0.0012

(0.0340) (0.0344)
Hurricane 4 Years Ago 0.0582∗∗∗ 0.0591∗∗∗

(0.0169) (0.0170)
Hurricane 5 Years Ago 0.0719∗∗∗ 0.0728∗∗∗

(0.0143) (0.0144)
Governor Party -0.0082 -0.0081

(0.0151) (0.0151)
Total Cap outlays -0.0002∗∗ -0.0002∗∗

(6.82 × 10−5) (6.77 × 10−5)
Natural disaster index*Hurricane -1.283 -1.275

(2.392) (2.393)
Natural disaster index* Tropical Depression 1.911 1.901

(2.504) (2.502)
Natural disaster index* Tropical Storm 11.70 11.70

(8.175) (8.166)
Fit statistics
Observations 606,261 606,261
R2 0.02556 0.02555
Within R2 0.01507 0.01506

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.2: Results for 500km and 700km ranges.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0126 -0.0126 -0.0122 -0.0122

(0.0202) (0.0202) (0.0203) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0018 0.0020 0.0023 0.0024

(0.0206) (0.0205) (0.0205) (0.0204)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0179 0.0179 0.0183 0.0181

(0.0168) (0.0168) (0.0168) (0.0168)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0122 0.0122 0.0134 0.0131

(0.0181) (0.0181) (0.0182) (0.0181)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0057 0.0057 0.0047 0.0057

(0.0182) (0.0182) (0.0180) (0.0181)
Tropical Cyclones Season -0.0106 -0.0106 -0.0113 -0.0112

(0.0189) (0.0189) (0.0189) (0.0189)
Hurricane -0.0236 -0.0236 -0.0230 -0.0229

(0.0321) (0.0320) (0.0321) (0.0320)
Tropical Depression -0.0790∗ -0.0791∗ -0.0780∗ -0.0780∗

(0.0427) (0.0426) (0.0426) (0.0426)
Tropical Storm -0.1141 -0.1145 -0.1134 -0.1137

(0.1149) (0.1147) (0.1153) (0.1151)
Project per capita*Hurricane close (500km) −5.29 × 10−5 -0.0015

(0.0017) (0.0033)
Hurricane close (500km) 0.0870∗∗∗ 0.0874∗∗∗

(0.0202) (0.0196)
Project per capita 0.0002 -0.0002 0.0002 -0.0001

(0.0012) (0.0012) (0.0012) (0.0012)
Hurricane 1 Year Ago -0.0491 -0.0490 -0.0491 -0.0490

(0.0433) (0.0433) (0.0432) (0.0432)
Hurricane 2 Years Ago -0.0717 -0.0714 -0.0717 -0.0713

(0.0465) (0.0465) (0.0464) (0.0464)
Hurricane 3 Years Ago 0.0004 0.0015 0.0004 0.0015

(0.0340) (0.0343) (0.0339) (0.0342)
Hurricane 4 Years Ago 0.0585∗∗∗ 0.0594∗∗∗ 0.0585∗∗∗ 0.0594∗∗∗

(0.0169) (0.0170) (0.0169) (0.0170)
Hurricane 5 Years Ago 0.0722∗∗∗ 0.0731∗∗∗ 0.0723∗∗∗ 0.0732∗∗∗

(0.0143) (0.0143) (0.0142) (0.0143)
Governor Party -0.0083 -0.0082 -0.0086 -0.0084

(0.0151) (0.0151) (0.0150) (0.0151)
Total Cap outlays -0.0002∗∗ -0.0002∗∗ -0.0002∗∗ -0.0002∗∗

(6.82 × 10−5) (6.77 × 10−5) (6.81 × 10−5) (6.76 × 10−5)
Natural disaster index*Hurricane -1.280 -1.272 -1.274 -1.266

(2.401) (2.402) (2.404) (2.405)
Natural disaster index* Tropical Depression 1.901 1.891 1.895 1.885

(2.506) (2.503) (2.508) (2.505)
Natural disaster index* Tropical Storm 11.68 11.67 11.71 11.71

(8.176) (8.168) (8.200) (8.192)
Project per capita*Hurricane close (700km) -0.0022 -0.0042∗∗

(0.0024) (0.0019)
Hurricane close (700km) 0.0707∗∗∗ 0.0707∗∗∗

(0.0217) (0.0212)
Fit statistics
Observations 606,261 606,261 606,261 606,261
R2 0.02595 0.02593 0.02644 0.02643
Within R2 0.01546 0.01545 0.01596 0.01595

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

DBD
PUC-Rio - Certificação Digital Nº 2011882/CA



Chapter 6. Robustness 53

Table 6.3: Results for 900km and 1000km ranges.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0125 -0.0125 -0.0125 -0.0125

(0.0203) (0.0202) (0.0203) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0017 0.0019 0.0017 0.0020

(0.0207) (0.0207) (0.0207) (0.0207)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0192 0.0192 0.0195 0.0194

(0.0170) (0.0171) (0.0170) (0.0170)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0138 0.0138 0.0138 0.0138

(0.0182) (0.0182) (0.0182) (0.0182)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0052 0.0051 0.0050 0.0049

(0.0179) (0.0179) (0.0181) (0.0181)
Tropical Cyclones Season -0.0110 -0.0110 -0.0110 -0.0110

(0.0190) (0.0190) (0.0190) (0.0190)
Hurricane -0.0234 -0.0234 -0.0233 -0.0233

(0.0322) (0.0321) (0.0323) (0.0323)
Tropical Depression -0.0787∗ -0.0788∗ -0.0788∗ -0.0788∗

(0.0427) (0.0427) (0.0428) (0.0427)
Tropical Storm -0.1139 -0.1143 -0.1140 -0.1144

(0.1151) (0.1149) (0.1151) (0.1149)
Project per capita*Hurricane close (900km) 0.0003 0.0006

(0.0012) (0.0012)
Hurricane close (900km) 0.0230 0.0228

(0.0311) (0.0306)
Project per capita 0.0002 -0.0002 0.0002 -0.0002

(0.0012) (0.0012) (0.0012) (0.0012)
Hurricane 1 Year Ago -0.0493 -0.0492 -0.0492 -0.0491

(0.0434) (0.0433) (0.0434) (0.0433)
Hurricane 2 Years Ago -0.0718 -0.0715 -0.0717 -0.0714

(0.0465) (0.0465) (0.0465) (0.0465)
Hurricane 3 Years Ago 0.0003 0.0014 0.0004 0.0015

(0.0340) (0.0343) (0.0340) (0.0344)
Hurricane 4 Years Ago 0.0583∗∗∗ 0.0592∗∗∗ 0.0583∗∗∗ 0.0592∗∗∗

(0.0169) (0.0170) (0.0169) (0.0170)
Hurricane 5 Years Ago 0.0721∗∗∗ 0.0730∗∗∗ 0.0722∗∗∗ 0.0731∗∗∗

(0.0143) (0.0143) (0.0143) (0.0144)
Governor Party -0.0083 -0.0082 -0.0083 -0.0082

(0.0151) (0.0151) (0.0151) (0.0151)
Total Cap outlays -0.0002∗∗ -0.0002∗∗ -0.0002∗∗ -0.0002∗∗

(6.82 × 10−5) (6.76 × 10−5) (6.81 × 10−5) (6.75 × 10−5)
Natural disaster index*Hurricane -1.277 -1.268 -1.276 -1.267

(2.398) (2.399) (2.399) (2.400)
Natural disaster index* Tropical Depression 1.904 1.894 1.908 1.898

(2.506) (2.503) (2.504) (2.502)
Natural disaster index* Tropical Storm 11.70 11.70 11.70 11.70

(8.179) (8.170) (8.180) (8.171)
Project per capita*Hurricane close (1000km) 0.0004 0.0006

(0.0011) (0.0011)
Hurricane close (1000km) 0.0168 0.0167

(0.0269) (0.0266)
Fit statistics
Observations 606,261 606,261 606,261 606,261
R2 0.02577 0.02576 0.02572 0.02572
Within R2 0.01528 0.01527 0.01523 0.01523

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.4: Regression results when considering each individual range sepa-
rately.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0122 -0.0122

(0.0202) (0.0201)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0023 0.0026

(0.0205) (0.0204)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0176 0.0178

(0.0167) (0.0168)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0133 0.0132

(0.0182) (0.0182)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0057 0.0065

(0.0182) (0.0184)
Tropical Cyclones Season -0.0110 -0.0110

(0.0190) (0.0190)
Hurricane -0.0232 -0.0232

(0.0323) (0.0323)
Tropical Depression -0.0784∗ -0.0785∗

(0.0428) (0.0427)
Tropical Storm -0.1138 -0.1141

(0.1154) (0.1152)
Hurricane close (0-300km) 0.0247 0.0162

(0.0163) (0.0426)
Hurricane close (300-500km) 0.0911∗∗∗ 0.0925∗∗∗

(0.0201) (0.0194)
Hurricane close (500-700km) 0.0637∗∗∗ 0.0635∗∗∗

(0.0239) (0.0235)
Hurricane close (700-900km) -0.0225 -0.0226

(0.0354) (0.0352)
Hurricane close (900-1000km) -0.0001 -0.0002

(0.0253) (0.0251)
Project per capita*Hurricane close (0-300km) -0.0046 -0.0391

(0.0093) (0.0452)
Project per capita*Hurricane close (300-500km) 0.0008 -0.0016

(0.0013) (0.0034)
Project per capita*Hurricane close (500-700km) -0.0029 -0.0044∗∗

(0.0024) (0.0019)
Project per capita*Hurricane close (700-900km) 0.0013 0.0017

(0.0012) (0.0012)
Project per capita*Hurricane close (900-1000km) 0.0006 0.0009

(0.0011) (0.0011)
Project per capita 0.0002 -0.0002

(0.0012) (0.0012)
Hurricane 1 Year Ago -0.0491 -0.0489

(0.0432) (0.0432)
Hurricane 2 Years Ago -0.0716 -0.0713

(0.0463) (0.0463)
Hurricane 3 Years Ago 0.0005 0.0017

(0.0339) (0.0343)
Hurricane 4 Years Ago 0.0586∗∗∗ 0.0596∗∗∗

(0.0169) (0.0170)
Hurricane 5 Years Ago 0.0724∗∗∗ 0.0733∗∗∗

(0.0143) (0.0143)
Governor Party -0.0085 -0.0084

(0.0150) (0.0151)
Total Cap outlays -0.0002∗∗ -0.0002∗∗

(6.8 × 10−5) (6.74 × 10−5)
Natural disaster index*Hurricane -1.276 -1.265

(2.405) (2.406)
Natural disaster index* Tropical Depression 1.895 1.885

(2.508) (2.504)
Natural disaster index* Tropical Storm 11.71 11.71

(8.202) (8.194)
Fit statistics
Observations 606,261 606,261
R2 0.02660 0.02661
Within R2 0.01612 0.01614

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.5: Results for 300km range.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0129 -0.0129

(0.0203) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0019 0.0020

(0.0205) (0.0206)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0203 0.0202

(0.0171) (0.0171)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0137 0.0140

(0.0181) (0.0182)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0070 0.0073

(0.0182) (0.0182)
Tropical Cyclones Season -0.0103 -0.0103

(0.0189) (0.0189)
Hurricane -0.0248 -0.0241

(0.0321) (0.0320)
Tropical Depression -0.0798∗ -0.0799∗

(0.0426) (0.0426)
Tropical Storm -0.1152 -0.1155

(0.1150) (0.1149)
Project per capita*Hurricane close (300km) -0.0087∗ -0.0259∗∗∗

(0.0051) (0.0054)
Hurricane close (300km) 0.0503∗∗ 0.0581∗∗∗

(0.0193) (0.0198)
Project per capita 0.0002 −1.93 × 10−5

(0.0009) (0.0009)
Hurricane 1 Year Ago -0.0493 -0.0493

(0.0435) (0.0434)
Hurricane 2 Years Ago -0.0719 -0.0717

(0.0466) (0.0466)
Hurricane 3 Years Ago 6.28 × 10−5 0.0008

(0.0338) (0.0341)
Hurricane 4 Years Ago 0.0580∗∗∗ 0.0588∗∗∗

(0.0168) (0.0168)
Hurricane 5 Years Ago 0.0717∗∗∗ 0.0725∗∗∗

(0.0142) (0.0142)
Governor Party -0.0081 -0.0081

(0.0151) (0.0152)
Total Cap outlays -0.0002∗∗ -0.0002∗∗

(6.77 × 10−5) (6.72 × 10−5)
Natural disaster index*Hurricane -1.214 -1.285

(2.402) (2.403)
Natural disaster index* Tropical Depression 1.914 1.904

(2.502) (2.502)
Natural disaster index* Tropical Storm 11.70 11.70

(8.176) (8.170)
Fit statistics
Observations 606,261 606,261
R2 0.02559 0.02554
Within R2 0.01510 0.01505

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.6: Results for 500km and 700km ranges.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0127 -0.0126 -0.0122 -0.0122

(0.0202) (0.0202) (0.0202) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0019 0.0019 0.0023 0.0023

(0.0205) (0.0205) (0.0204) (0.0205)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0182 0.0181 0.0184 0.0182

(0.0168) (0.0168) (0.0168) (0.0168)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0124 0.0124 0.0135 0.0135

(0.0181) (0.0181) (0.0182) (0.0182)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0058 0.0057 0.0045 0.0045

(0.0182) (0.0182) (0.0178) (0.0178)
Tropical Cyclones Season -0.0106 -0.0106 -0.0113 -0.0112

(0.0189) (0.0189) (0.0189) (0.0189)
Hurricane -0.0243 -0.0236 -0.0237 -0.0230

(0.0321) (0.0321) (0.0321) (0.0321)
Tropical Depression -0.0790∗ -0.0791∗ -0.0780∗ -0.0781∗

(0.0426) (0.0426) (0.0426) (0.0426)
Tropical Storm -0.1140 -0.1143 -0.1133 -0.1136

(0.1149) (0.1148) (0.1153) (0.1152)
Project per capita*Hurricane close (500km) -0.0020∗∗ -0.0023∗∗∗

(0.0008) (0.0008)
Hurricane close (500km) 0.0913∗∗∗ 0.0904∗∗∗

(0.0184) (0.0185)
Project per capita 0.0002 −1.83 × 10−5 0.0003 1.28 × 10−6

(0.0009) (0.0009) (0.0009) (0.0009)
Hurricane 1 Year Ago -0.0491 -0.0491 -0.0491 -0.0491

(0.0434) (0.0434) (0.0433) (0.0432)
Hurricane 2 Years Ago -0.0717 -0.0715 -0.0717 -0.0715

(0.0465) (0.0465) (0.0464) (0.0464)
Hurricane 3 Years Ago 0.0003 0.0010 0.0002 0.0010

(0.0338) (0.0340) (0.0337) (0.0339)
Hurricane 4 Years Ago 0.0583∗∗∗ 0.0590∗∗∗ 0.0583∗∗∗ 0.0590∗∗∗

(0.0167) (0.0168) (0.0167) (0.0168)
Hurricane 5 Years Ago 0.0720∗∗∗ 0.0728∗∗∗ 0.0720∗∗∗ 0.0728∗∗∗

(0.0141) (0.0142) (0.0141) (0.0141)
Governor Party -0.0082 -0.0082 -0.0085 -0.0085

(0.0151) (0.0151) (0.0151) (0.0151)
Total Cap outlays -0.0002∗∗ -0.0002∗∗ -0.0002∗∗ -0.0002∗∗

(6.77 × 10−5) (6.72 × 10−5) (6.76 × 10−5) (6.71 × 10−5)
Natural disaster index*Hurricane -1.209 -1.280 -1.200 -1.271

(2.411) (2.412) (2.414) (2.415)
Natural disaster index* Tropical Depression 1.905 1.895 1.900 1.891

(2.504) (2.503) (2.506) (2.506)
Natural disaster index* Tropical Storm 11.68 11.67 11.72 11.71

(8.179) (8.173) (8.202) (8.196)
Project per capita*Hurricane close (700km) -0.0015∗ -0.0016∗

(0.0009) (0.0010)
Hurricane close (700km) 0.0709∗∗∗ 0.0702∗∗∗

(0.0211) (0.0210)
Fit statistics
Observations 606,261 606,261 606,261 606,261
R2 0.02599 0.02594 0.02648 0.02642
Within R2 0.01550 0.01545 0.01600 0.01594

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.7: Results for 900km and 1000km ranges.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0125 -0.0125 -0.0125 -0.0125

(0.0203) (0.0203) (0.0203) (0.0203)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0017 0.0018 0.0018 0.0019

(0.0207) (0.0207) (0.0207) (0.0207)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0193 0.0192 0.0195 0.0194

(0.0170) (0.0170) (0.0169) (0.0170)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0137 0.0137 0.0138 0.0138

(0.0182) (0.0182) (0.0182) (0.0182)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0055 0.0054 0.0051 0.0050

(0.0180) (0.0180) (0.0181) (0.0181)
Tropical Cyclones Season -0.0110 -0.0110 -0.0110 -0.0110

(0.0190) (0.0190) (0.0190) (0.0190)
Hurricane -0.0240 -0.0233 -0.0239 -0.0232

(0.0322) (0.0322) (0.0323) (0.0323)
Tropical Depression -0.0787∗ -0.0788∗ -0.0788∗ -0.0788∗

(0.0427) (0.0427) (0.0427) (0.0427)
Tropical Storm -0.1139 -0.1142 -0.1139 -0.1142

(0.1151) (0.1149) (0.1151) (0.1149)
Project per capita*Hurricane close (900km) -0.0002 −6.83 × 10−5

(0.0007) (0.0007)
Hurricane close (900km) 0.0240 0.0238

(0.0308) (0.0305)
Project per capita 0.0002 −1.99 × 10−5 0.0002 −2.97 × 10−5

(0.0009) (0.0009) (0.0009) (0.0009)
Hurricane 1 Year Ago -0.0492 -0.0492 -0.0491 -0.0491

(0.0434) (0.0434) (0.0434) (0.0434)
Hurricane 2 Years Ago -0.0718 -0.0716 -0.0717 -0.0715

(0.0465) (0.0465) (0.0465) (0.0465)
Hurricane 3 Years Ago 0.0002 0.0010 0.0003 0.0011

(0.0338) (0.0340) (0.0338) (0.0341)
Hurricane 4 Years Ago 0.0581∗∗∗ 0.0588∗∗∗ 0.0582∗∗∗ 0.0589∗∗∗

(0.0167) (0.0168) (0.0168) (0.0168)
Hurricane 5 Years Ago 0.0719∗∗∗ 0.0727∗∗∗ 0.0719∗∗∗ 0.0728∗∗∗

(0.0142) (0.0142) (0.0142) (0.0142)
Governor Party -0.0083 -0.0083 -0.0083 -0.0083

(0.0151) (0.0151) (0.0151) (0.0151)
Total Cap outlays -0.0002∗∗ -0.0002∗∗ -0.0002∗∗ -0.0002∗∗

(6.76 × 10−5) (6.72 × 10−5) (6.76 × 10−5) (6.71 × 10−5)
Natural disaster index*Hurricane -1.208 -1.279 -1.209 -1.280

(2.408) (2.409) (2.409) (2.410)
Natural disaster index* Tropical Depression 1.907 1.898 1.911 1.902

(2.503) (2.503) (2.502) (2.502)
Natural disaster index* Tropical Storm 11.70 11.70 11.70 11.70

(8.181) (8.174) (8.182) (8.175)
Project per capita*Hurricane close (1000km) 1.76 × 10−5 0.0001

(0.0006) (0.0006)
Hurricane close (1000km) 0.0176 0.0175

(0.0267) (0.0265)
Fit statistics
Observations 606,261 606,261 606,261 606,261
R2 0.02579 0.02574 0.02574 0.02569
Within R2 0.01530 0.01525 0.01525 0.01520

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.8: Regression results when considering each individual range sepa-
rately.

Dependent Variable: Excess return alpha
Model: Total Mitigation HMGP
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0124 -0.0124

(0.0202) (0.0202)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0023 0.0024

(0.0204) (0.0204)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0178 0.0177

(0.0167) (0.0168)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0137 0.0139

(0.0182) (0.0183)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0050 0.0053

(0.0179) (0.0179)
Tropical Cyclones Season -0.0110 -0.0110

(0.0190) (0.0190)
Hurricane -0.0239 -0.0232

(0.0323) (0.0323)
Tropical Depression -0.0784∗ -0.0785∗

(0.0427) (0.0427)
Tropical Storm -0.1137 -0.1140

(0.1154) (0.1152)
Hurricane close (0-300km) 0.0512∗∗∗ 0.0590∗∗∗

(0.0192) (0.0198)
Hurricane close (300-500km) 0.0955∗∗∗ 0.0951∗∗∗

(0.0187) (0.0185)
Hurricane close (500-700km) 0.0626∗∗∗ 0.0620∗∗∗

(0.0232) (0.0231)
Hurricane close (700-900km) -0.0218 -0.0218

(0.0355) (0.0353)
Hurricane close (900-1000km) 0.0003 0.0004

(0.0247) (0.0246)
Project per capita*Hurricane close (0-300km) -0.0086∗ -0.0254∗∗∗

(0.0050) (0.0053)
Project per capita*Hurricane close (300-500km) -0.0017∗∗∗ -0.0022∗∗∗

(0.0006) (0.0006)
Project per capita*Hurricane close (500-700km) -0.0013 -0.0014

(0.0011) (0.0012)
Project per capita*Hurricane close (700-900km) 0.0009 0.0011

(0.0008) (0.0008)
Project per capita*Hurricane close (900-1000km) 0.0004 0.0006

(0.0006) (0.0005)
Project per capita 0.0002 −2.45 × 10−5

(0.0009) (0.0009)
Hurricane 1 Year Ago -0.0491 -0.0490

(0.0432) (0.0432)
Hurricane 2 Years Ago -0.0716 -0.0714

(0.0464) (0.0464)
Hurricane 3 Years Ago 0.0004 0.0012

(0.0337) (0.0339)
Hurricane 4 Years Ago 0.0584∗∗∗ 0.0592∗∗∗

(0.0167) (0.0168)
Hurricane 5 Years Ago 0.0721∗∗∗ 0.0729∗∗∗

(0.0141) (0.0142)
Governor Party -0.0085 -0.0085

(0.0151) (0.0151)
Total Cap outlays -0.0002∗∗ -0.0002∗∗

(6.74 × 10−5) (6.7 × 10−5)
Natural disaster index*Hurricane -1.201 -1.272

(2.414) (2.414)
Natural disaster index* Tropical Depression 1.901 1.890

(2.506) (2.506)
Natural disaster index* Tropical Storm 11.72 11.71

(8.202) (8.195)
Fit statistics
Observations 606,261 606,261
R2 0.02662 0.02659
Within R2 0.01614 0.01611

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.9: Results for 300km range - Local Firms.

Dependent Variable: valor.residuals
Model: (Mean) (Median)
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0114 -0.0093

(0.0171) (0.0173)
Tropical Cyclones Season*Hurricane 2 Years Ago -0.0001 -0.0008

(0.0188) (0.0190)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0196 0.0201

(0.0174) (0.0177)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0191 0.0182

(0.0186) (0.0185)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0075 0.0071

(0.0181) (0.0180)
Tropical Cyclones Season -0.0143 -0.0144

(0.0177) (0.0174)
Hurricane -0.0428 -0.0421

(0.0438) (0.0425)
Tropical Depression -0.0922∗∗ -0.0922∗∗

(0.0437) (0.0442)
Tropical Storm -0.1269 -0.1323

(0.1120) (0.1099)
Project per capita*Hurricane close (300km) -0.0363∗∗∗ -0.0358∗∗∗

(0.0082) (0.0080)
Hurricane close (300km) 0.0550∗ 0.0549∗∗

(0.0279) (0.0276)
Project per capita 3.69 × 10−6 −8.03 × 10−6

(0.0002) (0.0002)
Hurricane 1 Year Ago -0.0559 -0.0559

(0.0391) (0.0392)
Hurricane 2 Years Ago -0.0780∗ -0.0770∗

(0.0401) (0.0400)
Hurricane 3 Years Ago -0.0077 -0.0074

(0.0284) (0.0289)
Hurricane 4 Years Ago 0.0509∗∗∗ 0.0511∗∗∗

(0.0153) (0.0153)
Hurricane 5 Years Ago 0.0716∗∗∗ 0.0707∗∗∗

(0.0140) (0.0138)
Governor Party -0.0077 -0.0080

(0.0140) (0.0137)
Total Cap outlays -0.0002∗∗∗ -0.0002∗∗∗

(6.36 × 10−5) (6.27 × 10−5)
Natural disaster index*Hurricane 0.1505 0.1445

(4.027) (3.978)
Natural disaster index* Tropical Depression 2.784 2.797

(3.080) (3.166)
Natural disaster index* Tropical Storm 11.83 12.32

(7.853) (7.686)
Fit statistics
Observations 308,492 301,614
R2 0.04152 0.04190
Within R2 0.01245 0.01228

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.10: Results for 500km and 700km ranges - Local Firms.
Dependent Variable: valor.residuals
Model: (Mean) (Median) (Mean) (Median)
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0111 -0.0091 -0.0107 -0.0087

(0.0169) (0.0172) (0.0171) (0.0173)
Tropical Cyclones Season*Hurricane 2 Years Ago −8.39 × 10−5 -0.0008 0.0002 -0.0005

(0.0188) (0.0190) (0.0188) (0.0190)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0172 0.0179 0.0175 0.0180

(0.0173) (0.0176) (0.0173) (0.0175)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0177 0.0167 0.0186 0.0176

(0.0186) (0.0185) (0.0186) (0.0185)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0056 0.0053 0.0042 0.0038

(0.0180) (0.0179) (0.0175) (0.0174)
Tropical Cyclones Season -0.0146 -0.0147 -0.0152 -0.0153

(0.0177) (0.0174) (0.0178) (0.0175)
Hurricane -0.0425 -0.0417 -0.0419 -0.0411

(0.0439) (0.0426) (0.0439) (0.0426)
Tropical Depression -0.0914∗∗ -0.0914∗∗ -0.0906∗∗ -0.0906∗∗

(0.0437) (0.0442) (0.0437) (0.0442)
Tropical Storm -0.1257 -0.1312 -0.1252 -0.1308

(0.1119) (0.1099) (0.1123) (0.1102)
Project per capita*Hurricane close (500km) -0.0057∗∗∗ -0.0059∗∗∗

(0.0016) (0.0017)
Hurricane close (500km) 0.0954∗∗∗ 0.0922∗∗∗

(0.0229) (0.0232)
Project per capita 1.92 × 10−6 −9.5 × 10−6 2.88 × 10−5 1.76 × 10−5

(0.0002) (0.0002) (0.0002) (0.0002)
Hurricane 1 Year Ago -0.0558 -0.0558 -0.0557 -0.0557

(0.0390) (0.0392) (0.0389) (0.0390)
Hurricane 2 Years Ago -0.0779∗ -0.0768∗ -0.0779∗ -0.0768∗

(0.0401) (0.0400) (0.0400) (0.0399)
Hurricane 3 Years Ago -0.0074 -0.0072 -0.0074 -0.0071

(0.0284) (0.0288) (0.0284) (0.0288)
Hurricane 4 Years Ago 0.0511∗∗∗ 0.0512∗∗∗ 0.0513∗∗∗ 0.0514∗∗∗

(0.0153) (0.0153) (0.0153) (0.0153)
Hurricane 5 Years Ago 0.0718∗∗∗ 0.0709∗∗∗ 0.0720∗∗∗ 0.0711∗∗∗

(0.0140) (0.0138) (0.0140) (0.0138)
Governor Party -0.0079 -0.0081 -0.0081 -0.0083

(0.0139) (0.0137) (0.0139) (0.0137)
Total Cap outlays -0.0002∗∗∗ -0.0002∗∗∗ -0.0002∗∗∗ -0.0002∗∗∗

(6.36 × 10−5) (6.26 × 10−5) (6.35 × 10−5) (6.26 × 10−5)
Natural disaster index*Hurricane 0.1651 0.1580 0.1716 0.1657

(4.041) (3.991) (4.048) (3.999)
Natural disaster index* Tropical Depression 2.776 2.790 2.775 2.789

(3.083) (3.170) (3.087) (3.173)
Natural disaster index* Tropical Storm 11.81 12.30 11.85 12.34

(7.858) (7.691) (7.879) (7.711)
Project per capita*Hurricane close (700km) -0.0015∗ -0.0015∗

(0.0008) (0.0008)
Hurricane close (700km) 0.0643∗∗∗ 0.0622∗∗∗

(0.0236) (0.0234)
Fit statistics
Observations 308,492 301,614 308,492 301,614
R2 0.04193 0.04229 0.04217 0.04251
Within R2 0.01287 0.01268 0.01312 0.01291

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.11: Results for 900km and 1000km ranges - Local Firms.
Dependent Variable: valor.residuals
Model: (Mean) (Median) (Mean) (Median)
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0109 -0.0088 -0.0109 -0.0089

(0.0171) (0.0174) (0.0171) (0.0174)
Tropical Cyclones Season*Hurricane 2 Years Ago -0.0003 -0.0010 -0.0002 -0.0009

(0.0190) (0.0192) (0.0189) (0.0191)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0188 0.0193 0.0191 0.0196

(0.0174) (0.0177) (0.0174) (0.0177)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0189 0.0180 0.0190 0.0180

(0.0186) (0.0185) (0.0186) (0.0185)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0060 0.0056 0.0059 0.0055

(0.0178) (0.0177) (0.0180) (0.0179)
Tropical Cyclones Season -0.0149 -0.0150 -0.0148 -0.0149

(0.0178) (0.0175) (0.0178) (0.0175)
Hurricane -0.0423 -0.0415 -0.0423 -0.0416

(0.0439) (0.0427) (0.0440) (0.0428)
Tropical Depression -0.0913∗∗ -0.0913∗∗ -0.0915∗∗ -0.0915∗∗

(0.0438) (0.0443) (0.0438) (0.0443)
Tropical Storm -0.1257 -0.1313 -0.1259 -0.1314

(0.1121) (0.1100) (0.1120) (0.1099)
Project per capita*Hurricane close (900km) -0.0010∗ -0.0012

(0.0006) (0.0007)
Hurricane close (900km) 0.0206 0.0197

(0.0289) (0.0285)
Project per capita 2.1 × 10−5 1.28 × 10−5 1.41 × 10−5 5.31 × 10−6

(0.0002) (0.0002) (0.0002) (0.0002)
Hurricane 1 Year Ago -0.0559 -0.0558 -0.0558 -0.0558

(0.0390) (0.0392) (0.0391) (0.0392)
Hurricane 2 Years Ago -0.0780∗ -0.0769∗ -0.0779∗ -0.0769∗

(0.0401) (0.0400) (0.0401) (0.0400)
Hurricane 3 Years Ago -0.0076 -0.0073 -0.0076 -0.0073

(0.0284) (0.0288) (0.0284) (0.0289)
Hurricane 4 Years Ago 0.0509∗∗∗ 0.0511∗∗∗ 0.0510∗∗∗ 0.0511∗∗∗

(0.0153) (0.0153) (0.0153) (0.0153)
Hurricane 5 Years Ago 0.0717∗∗∗ 0.0708∗∗∗ 0.0717∗∗∗ 0.0708∗∗∗

(0.0140) (0.0138) (0.0140) (0.0138)
Governor Party -0.0079 -0.0081 -0.0078 -0.0081

(0.0139) (0.0137) (0.0139) (0.0137)
Total Cap outlays -0.0002∗∗∗ -0.0002∗∗∗ -0.0002∗∗∗ -0.0002∗∗∗

(6.36 × 10−5) (6.26 × 10−5) (6.35 × 10−5) (6.26 × 10−5)
Natural disaster index*Hurricane 0.1623 0.1569 0.1633 0.1574

(4.034) (3.985) (4.033) (3.984)
Natural disaster index* Tropical Depression 2.780 2.794 2.783 2.797

(3.082) (3.169) (3.081) (3.168)
Natural disaster index* Tropical Storm 11.83 12.32 11.83 12.32

(7.860) (7.691) (7.860) (7.691)
Project per capita*Hurricane close (1000km) -0.0005 -0.0007

(0.0005) (0.0005)
Hurricane close (1000km) 0.0133 0.0128

(0.0250) (0.0246)
Fit statistics
Observations 308,492 301,614 308,492 301,614
R2 0.04165 0.04202 0.04159 0.04196
Within R2 0.01258 0.01240 0.01252 0.01234

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6.12: Regression results when considering each individual range sepa-
rately - Local Firms.

Dependent Variable: valor.residuals
Model: (Mean) (Median)
Variables
Tropical Cyclones Season*Hurricane 1 Year Ago -0.0109 -0.0088

(0.0170) (0.0172)
Tropical Cyclones Season*Hurricane 2 Years Ago 0.0004 -0.0003

(0.0187) (0.0189)
Tropical Cyclones Season*Hurricane 3 Years Ago 0.0170 0.0176

(0.0173) (0.0175)
Tropical Cyclones Season*Hurricane 4 Years Ago 0.0190 0.0181

(0.0187) (0.0186)
Tropical Cyclones Season*Hurricane 5 Years Ago 0.0053 0.0050

(0.0177) (0.0176)
Tropical Cyclones Season -0.0148 -0.0149

(0.0178) (0.0175)
Hurricane -0.0424 -0.0416

(0.0441) (0.0428)
Tropical Depression -0.0911∗∗ -0.0911∗∗

(0.0439) (0.0443)
Tropical Storm -0.1258 -0.1313

(0.1122) (0.1102)
Hurricane close (0-300km) 0.0557∗∗ 0.0556∗∗

(0.0278) (0.0276)
Hurricane close (300-500km) 0.0996∗∗∗ 0.0962∗∗∗

(0.0240) (0.0244)
Hurricane close (500-700km) 0.0518∗∗ 0.0502∗∗

(0.0239) (0.0234)
Hurricane close (700-900km) -0.0217 -0.0214

(0.0314) (0.0313)
Hurricane close (900-1000km) -0.0062 -0.0058

(0.0224) (0.0217)
Project per capita*Hurricane close (0-300km) -0.0357∗∗∗ -0.0353∗∗∗

(0.0081) (0.0079)
Project per capita*Hurricane close (300-500km) -0.0055∗∗∗ -0.0056∗∗∗

(0.0014) (0.0015)
Project per capita*Hurricane close (500-700km) -0.0009∗∗∗ -0.0009∗∗∗

(0.0002) (0.0002)
Project per capita*Hurricane close (700-900km) -0.0002 -0.0008

(0.0010) (0.0010)
Project per capita*Hurricane close (900-1000km) 0.0010∗∗∗ 0.0009∗∗∗

(0.0003) (0.0003)
Project per capita 1.75 × 10−5 6.1 × 10−6

(0.0002) (0.0002)
Hurricane 1 Year Ago -0.0558 -0.0558

(0.0389) (0.0390)
Hurricane 2 Years Ago -0.0779∗ -0.0769∗

(0.0399) (0.0398)
Hurricane 3 Years Ago -0.0074 -0.0072

(0.0283) (0.0288)
Hurricane 4 Years Ago 0.0513∗∗∗ 0.0514∗∗∗

(0.0153) (0.0153)
Hurricane 5 Years Ago 0.0719∗∗∗ 0.0710∗∗∗

(0.0140) (0.0138)
Governor Party -0.0081 -0.0083

(0.0139) (0.0137)
Total Cap outlays -0.0002∗∗∗ -0.0002∗∗∗

(6.35 × 10−5) (6.26 × 10−5)
Natural disaster index*Hurricane 0.1683 0.1609

(4.046) (3.998)
Natural disaster index* Tropical Depression 2.772 2.786

(3.087) (3.173)
Natural disaster index* Tropical Storm 11.84 12.34

(7.875) (7.709)
Fit statistics
Observations 308,492 301,614
R2 0.04235 0.04269
Within R2 0.01331 0.01309

Note: All models are fixed effects estimates controlling for county-level and stock-level fixed effects.
Robust standard errors are clustered at the county and year/month levels.
Numbers between parentheses are the coefficient standard deviations.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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7
Conclusions

My dissertation may contribute to the climate finance literature. Our con-
tributions emphasize the tropical cyclones’ capacity to generate uncertainty,
as Kruttli et al., 2021 shows, to firms’ operations and market prices. In the
future, with a warmer world, this uncertainty could grow, making it even more
important to investors, in general, to take into account this risk. For example,
one of the most debated aspects of climate change is the sea level rise, Hauer
et al., 2016 discuss this aspect for the U.S. Tropical cyclones are formed and
sustained in warm waters and dissipate when they move over land or cooler
waters. Thus, with the sea level rise, the hurricanes could reach more often in-
terior counties that nowadays are not significantly affected by them. Another
important climate finance aspect that we studied is the perceived efficacy of
hazard mitigation projects that are getting much more attention recently and
will in the future when mitigating natural disaster effects will be much more
crucial.

We showed evidence of the presence of anomalies. Firstly, there is
evidence that hurricane strike risk generates anomalies in returns. Secondly,
the small investments in hazard mitigation programs do not seem enough to
convince investors of their power to face the threat of hurricanes strikes and
their effects on the counties. Our methodology captures information pricing
assets. We argue that this information flows from investors to the market as
they know the insufficiency of mitigation programs in protecting firms and
their production. The robustness checks give more evidence that investors use
information advantages to price assets, as specific hazard mitigation projects
related to hurricanes are more meaningful to firms exposed to hurricanes.
Beyond that, we explain two possible mechanisms behind the anomalies, both
mechanisms are possible, and further study is needed to address which one is
probably correct. The whole point depends on how much investors know about
hazard mitigation in general. The local investor’s argument is probably more
accurate if they are more locally known. On the other hand, if the knowledge
about them is widespread, the general investor’s argument better suits the
anomalies found.

Our dissertation leaves several open questions that could be addressed
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in the future. Some questions are: Is this phenomenon exclusive of tropical
cyclones? Are the new BRIC program and the larger HMGP budget enough
to change the investors’ perceptions about hazard mitigation programs?
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