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Fear no more the heat o’ the sun,
Nor the furious winter’s rages;

Thou thy worldly task hast done,
Home art gone, and ta’en thy wages:

Golden lads and girls all must,
As chimney-sweepers, come to dust.

- W. S.
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Abstract

Ferreira, Iúri H.; Medeiros, Marcelo C. (Advisor); Ribeiro, Ruy
M. (Co-Advisor). Essays on Volatility and Returns Predic-
tability. Rio de Janeiro, 2022. 73p. Tese de doutorado – Depar-
tamento de Economia, Pontifícia Universidade Católica do Rio de
Janeiro.
This thesis is composed of three papers on financial econometrics.

The first two papers explore the relation between intraday equity market
returns and implied volatility, represented by the CBOE Volatility Index
(VIX). In both papers, we estimate one-minute-ahead forecasts using rolling
windows within a day. In the first paper, the estimates indicate that
our volatility factor models outperform traditional benchmarks at high
frequency time-series analysis, even when excluding crisis periods. We also
find that the model has a better out-of-sample performance at days without
macroeconomic announcements. Interestingly, these results are amplified
when we remove the crisis period. The second paper proposes a machine
learning modeling approach to this forecasting exercise. We implement a
minute-by-minute rolling window intraday estimation method using two
nonlinear models: Long-Short-Term Memory (LSTM) neural networks and
Random Forests (RF). Our estimations show that the VIX is the strongest
candidate predictor for intraday market returns in our analysis, especially
when implemented through the LSTM model. This model also improves
significantly the performance of the lagged market return as predictive
variable. Finally, the third paper explores a multivariate extension of the
FarmPredict method, by combining factor-augmented vector autoregressive
(FAVAR) and sparse models in a high-dimensional environment. Using a
three-stage procedure, we estimate and forecast factors and its loadings,
which can be observed, unobserved, or both, as well as a weakly sparse
idiosyncratic structure. We provide an application of this methodology to
a panel of daily realized volatilities. Finally, the accuracy of the stepwise
method indicates improvements of this forecasting method when compared
to consolidated benchmarks.

Keywords
Return predictability; High dimensional data; Machine learning;

Nonlinear models
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Resumo

Ferreira, Iúri H.; Medeiros, Marcelo C.; Ribeiro, Ruy M.. Ensaios
sobre Volatilidade e Previsibilidade de Retornos. Rio de Ja-
neiro, 2022. 73p. Tese de Doutorado – Departamento de Economia,
Pontifícia Universidade Católica do Rio de Janeiro.
Essa tese é composta por três artigos em econometria financeira.

Os dois primeiros artigos exploram a relação entre retornos intradiários
do mercado de equities e a implied volatility, representada pelo Índice de
Volatilidade da CBOE (VIX). Nos dois artigos, estimamos previsões um
minuto à frente utilizando janelas rolantes para cada dia. No primeiro
artigo, as estimativas indicam que nossos modelos de fatores de volatilidade
têm uma performance superior a benchmarks tradicionais em uma análise
de séries de tempo em alta frequência, mesmo aos excluirmos períodos de
crise da amostra. Os resultados também indicam uma performance fora da
amostra maior para dias em que não ocorrem anúncios macroeconômicos.
A performance é ainda maior quando removemos períodos de crise. O
segundo artigo propõe uma abordagem de aprendizado de máquinas para
modelar esse exercício de previsão. Implementamos um método de estimação
intradiário minuto a minuto com janelas móveis, utilizando dois tipos de
modelos não lineares: redes neurais com Long-Short-Term Memory (LSTM)
e Random Forests (RF). Nossas estimativas mostram que o VIX é o
melhor previsor de retornos de mercado intradiários entre os candidatos
na nossa análise, especialmente quando implementadas através do modelo
LSTM. Esse modelo também melhora significativamente a performance
quando utilizamos o retorno de mercado defasado como variável preditiva.
Finalmente, o último artigo explora uma extensão multivariada do método
FarmPredict, combinando modelos vetoriais autoregressivos aumentados em
fatores (FAVAR) e modelos esparsos em um ambiente de alta dimensão.
Utilizando um procedimento de três estágios, somos capazes de estimar e
prever fatores e seus loadings, que podem ser observados, não observados
ou ambos, assim como uma estrutura idiossincrática fracamente esparsa.
Realizamos uma aplicação dessa metodologia em um painel de volatilidades
realizadas e os resultados de performance do método em etapas indicam
melhorias quando comparado a benchmarks consolidados.

Palavras-chave
Previsibilidade de retornos; Dados em alta dimensão; Aprendizado

de máquinas; Modelos não-lineares
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1
Forecasting intraday returns using VIX

1.1
Introduction

The prediction of equity market returns an inexhaustible subject of
interest for both practitioners and researchers in finance. With advances in
high-frequency data processing capability, the challenge of predicting returns at
higher frequencies has been gradually overcome. Ait-Sahalia and Jacod (2014)
emphasize the undeniable progress of mathematical tools to analyze these data,
which has become increasingly more accessible, allowing the development of
new fields of study, as well as the boost of high-frequency trading strategies.

This paper presents a one-minute-ahead rolling window experiment to
forecast intraday equity returns. We show that the Chicago Board Options
Exchange (CBOE) VIX index succeeds as a strong predictor for market
returns in high-frequency, outperforming traditional benchmarks. The outputs
of minute-by-minute estimations indicate that our volatility factor models
employing the intraday VIX in level as the main predictor present a much
higher out-of-sample performance. These results hold, even when we remove
crisis periods from the analysis.

Additional empirical findings suggest that our method has a better fore-
casting performance on days without macroeconomic announcements, while it
seems to perform poorly when analyzing only the dates on which the announce-
ments take place. These results do not find any definitive pattern of forecasting
throughout the day, but highlight the aggregate out-of-sample forecasting ca-
pability in each day in the sample. Finally, we calculate similar performance
metrics for each minute across the days, as a way to verify this pattern in
different hours of the day. In general, the results point in the same direction
as the ones obtained through rolling-windows.

The choice of VIX as a predictive variable is due to its importance in
the literature and practice in finance. Also known as “fear gauge”, this index
stands out as a measure of the market’s implied volatility, based on S&P
500 Index option prices. This metric provides real-time updates on market
sentiment and expectations of future 30-day volatility (Moran and Liu, 2020).
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Chapter 1. Forecasting intraday returns using VIX 14

As pointed out by Martin (2011), it is generally interpreted as a measure of
risk-neutral variance, and under certain circumstances may be thought as a
proxy for the risk-neutral expectation of the quadratic variation of log returns.

The relation between market returns and VIX is widely explored in the
literature through multiple approaches. Fernandes et al. (2014) examine time-
series properties of the index at daily frequency, which holds a very strong
negative relationship with the S&P 500 index returns as well as a positive link
with the contemporary S&P 500 volume change. Bollerslev et al. (2009) explore
the characteristics of a innovattive risk measure to explain the aggregate stock
market returns. They propose the variance risk premium (VRP) variable,
defined as the difference between implied (IVt) and realized variances (RVt),
an useful predictor for observed return variation. The authors use the VIX
index to quantify IVt, while the RVt is defined as the sum of the intraday
non-overlapping 5-minute returns, in a similar framework to what is done in
many works as Liu et al. (2015) and Bollerslev et al. (2018).

Bekaert and Hoerova (2014) suggest that the well-known results obtained
in Bollerslev et al. (2009) exaggerate the predictive power of the VRP for
stock returns. The authors strategy is to decompose the squared VIX into
a conditional variance of the stock market (CV ) and the equity variance
premium (V P ). In their work, they find that the the V P is a significant
predictor of stock returns, while the CV mostly is not, recognizing that
this decomposition critically depends on the accuracy of the model for the
conditional component.

Martin (2017) introduces a volatility index named SVIX and claims
that, under determinate circumstances, it provides a bound on the equity
premium perceived by the investor. In the paper, the author infers that the
equity premium is extremely volatile (more than implied by valuation-ratio
predictors) and approximately tight, so that the SVIX index provides a direct
measure of the equity market premium. Martin and Wagner (2019) explore a
similar approach for stock returns.

The challenge of predicting equity returns in within a day is not a
novel issue. Chinco et al. (2019) use intraday data to identify simultaneously
unexpected, short-lived, and sparse predictors. The authors apply shrinkage
methods in high-frequency intraday data, for the cross-section of a randomly
chosen subset of NYSE-listed stocks. They implement a thirty-minute window
framework, also using rolling estimations throughout the day. In a similar
fashion, our work evaluates one-minute-ahead market return forecasts using
the VIX as the main predictive variable.

Motivated by the results presented by Lucca and Moench (2015) and
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Chapter 1. Forecasting intraday returns using VIX 15

Faust and Wright (2018), we also investigate if the market return predictability
varies accordingly to macroeconomic announcement dates. Through a resource-
ful approach, Lucca and Moench (2015) find the existence of large average ex-
cess returns in anticipation of U.S. monetary policy actions. Faust and Wright
(2018) analyze intraday data to compute the expected excess returns earned
in short windows around the exact times of macroeconomic announcements,
compared to the other times of the day. We select major macroeconomic an-
nouncement dates, and we run the model for two groups of days: one in which
the announcements happen and another for the days without announcements,
in which our model performs better.

For all the estimations in this paper, we set multiple regression bench-
marks to contrast the predictive power of our outputs. Through out-of-sample
performance metrics as the ones developed by Welch and Goyal (2008), Camp-
bell and Thompson (2008), and Chinco et al. (2019), we are able to assess and
attest the predictive power our models in a high-frequency environment. We
combine these statistics with robustness exercises for crisis periods and differ-
ent samples of days.

The paper is organized as follows. Section 1.2 presents the model defi-
nition, as well as the methodology adopted to forecast intradaily returns. It
also introduces the data, its summary statistics, and the model implementa-
tion framework for estimation and prediction. Section 1.3 gathers the main
results and robustness for the estimations. Finally, Section and 1.4 concludes
the paper.

1.2
Methodology and Estimation Setup

For each asset i and day t, define m = 1, 2, . . . , M as a rolling one minute
interval. Define Yit,m as the variable we want to predict. We want to capture
short-lived effects from the predictors Xit,m

Yit,m = β′
m · Xit,m + Uit,m. (1-1)

Using a very short-term estimation framework, we can estimate the one-
minute-ahead forecast for each window

Ŷit,m+1|m = β̂′
m+1|m · Xit,m. (1-2)
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Chapter 1. Forecasting intraday returns using VIX 16

1.2.1
Data

We use available intraday data for the SPDR S&P 500 ETF Trust (SPY)
and the Cboe Volatility Index (VIX), comprising all business days between
February 2005 and February 2017, totaling 3032 days. We perform a standard
data pre-processing, described in Appendix A.1.1. For each day in the sample,
we filter the data to include observations during the regular market trade
hours, between 09:40 and 15:50 (inclusive).

In order to forecast market returns, we use five-minute log returns in
minute-by-minute frequency as our main estimation framework. To compute
rolling five-minute log-return of SPY for each minute of day t, we calculate the
logarithmic difference of prices at minute m and minute (m − 4)

rt,m−4:m = log(Pt,m) − log(Pt,m−4), (1-3)

where Pt,m is the close price of SPY at day t and minute m, and rt,m2:m1

represents the log-return computed between minutes m1 and m2. The summary
statistics for intraday SPY log-returns and daily VIX are given in Table A.1.
Both stock market returns (SPY) and expectation of volatility (VIX) are
skewed right and leptokurtic. Compared to a normal distribution, its tails are
longer and fatter, presenting a higher and sharper central peak, as illustrated
by the Q-Q plot in Figure A.1. As expected, market returns and volatility are
negatively correlated.

Finally, to better interpret the outputs of the estimates presented in the
following section, we transform the VIX, defined as an annualized implied
volatility, in an intraday minute measure1. This transformation allows us to
analyze directly the estimated coefficients for each model, as described below.

1.2.2
Implementation

For each day t we run 340 intradaily minute estimations, using 30 minute
rolling windows as in-sample data, described by equation 1-1. As portrayed
below, the set of predictions at day t starts at 10:11 (09:40 + 30 minutes
window) and goes until 15:50, estimated minute by minute in a rolling scheme

1For 1440 minutes a day and 252 days a year: V IXIntraday = V IXAnnual × (1/
√

1440) ×
(1/

√
252)
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Chapter 1. Forecasting intraday returns using VIX 17

. . . , m − 29, m − 28, m − 27, . . . , m − 2, m − 1, m,︸ ︷︷ ︸
Estimate coefficients using data from previous 30 minutes

m + 1︸ ︷︷ ︸
Forecast

Once we obtain the window coefficients from the past 30 minutes, we
are able to forecast the 31st minute (m + 1). Following the methodological
framework presented in the begin of this section, the general forecasting
equation will be given by

r̂t,m−4:m = β̂m−4:m · Xt,m−5 (1-4)

where Xt,m−5 may represent a range of setups for the lagged intraday VIX
and potential benchmarks. The high frequency estimation allows us not only
to the derive a relation between the market returns and volatility, but also to
predict the one minute ahead return, by using an extremely simple and easy
to implement framework.

1.2.3
Intraday Models

The minute by minute models are based on non-overlapping dependent
and independent variables. For example, in order to run a regression of the
5-min SPY log-return on the lagged V IX2 difference at day t, compute both
variables in the following way

. . . , V IX2
t,m−6, V IX2

t,m−5,︸ ︷︷ ︸
Compute ∆V IX2

t,m−6:m−5

Pt,m−4, Pt,m−3, Pt,m−2, Pt,m−1, Pt,m︸ ︷︷ ︸
Compute rt,m−4:m

This strategy allows us to predict intraday cumulative returns coherently,
without using non-disclosed information from future minutes. After calculating
the properly lagged variables at each m, one can run the equation

rt,m−4:m = αm + βm∆V IX2
t,m−6:m−5 + εt,m.

The same rationale is applied to the model benchmarks, described below.
In the interest of identifying each regression, we define volatility factor models
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Chapter 1. Forecasting intraday returns using VIX 18

VIX 1 to VIX 5 as

Model Equation

VIX 1 rt,m−4:m = αm + βm · V IXt,m−5 + εt,m

VIX 2 rt,m−4:m = αm + βm · V IX2
t,m−5 + εt,m

VIX 3 rt,m−4:m = αm + βm · ∆V IXt,m−6:m−5 + εt,m

VIX 4 rt,m−4:m = αm + βm · ∆V IX2
t,m−6:m−5 + εt,m

VIX 5 rt,m−4:m = αm + βm · ∆V IX2
t,m−6:m−5 + εt,m

where models 1 and 2 use the intraday VIX and squared-VIX (VIX2) as
independent variables in level, respectively. Model 3 and 4 use the first
differences of these same variables. Finally, model 5 applies a rolling five-minute
moving average over the first difference squared-VIX. These transformations
aim to capture how the market’s expectation of future volatility relates to
intraday returns, one-period-ahead.

As a strategy to compare out-of-sample performance of volatility models,
we use standard time-series analysis benchmarks, composed by autoregressive
(AR) models with lags p = 1, 2, . . . , 5:

AR(p) : rt,m−4:m = αm +
p∑

k=1
βk,m · rt,m−8−k:m−4−k + εt,m

where the past log-return is also non-overlapping, as described above. The
following section presents the outputs obtained for both volatility factor and
benchmarks models.

1.3
Results

Table A.2 evaluates the performance of the forecasts through the average
out-of-sample R2 statistic that can be directly compared to the in-sample R2

in daily frequency. As done in Welch and Goyal (2008) and Campbell and
Thompson (2008), we calculate the average daily R2

OOS,t

R2
OOS = 1 −

∑T
t=1

∑M
m=1(rt,m−4:m − r̂t,m−4:m)2∑T

t=1
∑M

m=1(rt,m−4:m − rt,m−4:m)2 (1-5)
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Chapter 1. Forecasting intraday returns using VIX 19

where rt,m−4:m is the in-sample window average of the realized log-return
rt,m−4:m, and r̂t,m−4:m is the one-minute-ahead return forecast at minute m.
This measure compares the average error assigned to the model prediction
and the one of the past window average. When the R2

OOS is positive, it means
that our model outperforms on average the naive approach. If this metric is
negative, it indicates that the model was not able to overcome the accuracy of
the prediction based solely on the in-sample window average.

In line with the performance evaluation framework presented by Chinco
et al. (2019), we also estimate a set of predictive regressions as an alternative
measure of out-of-sample fit for each day t

rt,m−4:m = at + bt · r̂t,m−4:m + et,m (1-6)

rt,m−4:m = b̃t · r̂t,m−4:m + et,m. (1-7)

We aim to capture the ability of the predicted return (r̂t,m−4:m) to
explain the observed return (rt,m−4:m) at minute m, by computing the ordinary
least squares coefficients and adjusted fit measure as additional out-of-sample
performance metrics. The first two columns of Table A.3 report the average
metrics and confidence intervals from equation 1-6 estimation outputs, where
b = 1

T

∑T
τ=1 bτ and Adj.R2 = 1

T

∑T
τ=1 Adj.R2

τ . Analogously, the last two columns
report b̃ and Adj. R̃2 retrieved from the estimation of equation 1-7, in which
we force the intercept to be zero (at = 0). Additionally, Figure A.2 presents
the box plots of the daily out-of-sample metrics for each model.

As carried out by Martin (2017), we run the same regressions removing
the crisis period between 2008 and 2009, characterized by high volatility and
the stock market crash. The argument for this robustness exercise is to check if
the results obtained above are entirely driven by these dates, that comprise the
days between August 1, 2008 and July 31, 2009. Table A.4 reports the summary
statistics for the restrained data set, while Tables A.5 and A.6 display the out-
of-sample metrics for the model estimations stated above. The results show
that suppressing this period does not change significantly the predictability of
intraday returns by our models, in which VIX and VIX2 still outperform as
independent variables.

To illustrate out-of-sample performance over time, Figure A.3 plots each
metric described above at daily frequency. We choose to represent only models
VIX 1, VIX 2 and AR(1) (the most accurate benchmark on average) for
the sake of organization. As shown in Tables A.2 and A.3, these are best
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performance volatility factor and benchmark models, respectively. As the figure
suggests, the R2

OOS, b, and adjusted R2 are consistently higher for VIX 1 and
VIX 2 models across the days, when compared to the AR(1) model. The AR(1)
model has an almost strictly negative daily R2

OOS, and the VIX models seem to
outperform the historical average in most part of the days across our sample.

Furthermore, Figure A.4 reports the average out-of-sample R2 and the
adjusted R2 from equation 1-6 each month. The results obtained previously
maintain in this analysis as well, confirming a better performance of volatility
models. In the following section we replicate the same analysis by splitting the
sample according to the occurrence of macroeconomic announcements.

1.3.1
Macroeconomic Announcements

To estimate the effects of information disclosure, we use selected macroe-
conomic announcements dates, available in the Bloomberg Economic Releases
data to split the out-of-sample into announcements and non-announcements
days. The events that compose the data set are detailed in Appendix A.1.2.
As we are dealing with high-frequency data, and the estimations are computed
within a day, we can simply break the sample of daily outputs presented in the
last section in two groups of days. We follow Faust and Wright (2018) in order
to select 9 major groups of events in which macroeconomic announcements
happen.

The left columns in Table A.8 report the summary statistics for the
subsample containing only non-announcement dates, while the columns in the
right present the same statistics for the announcement dates subsample. It
is noticeable that the announcement days SPY market returns are higher on
average, as well as its kurtosis and the contemporary absolute correlation with
the VIX index.

Table A.9, in turn, presents clear discrepancies in performance when
comparing the average out-of-sample R2 for announcement, in contrast with
non-announcement dates. These compelling results are inflated when we ex-
clude the crisis period, as shown in Table A.7. These results assist shedding a
light on the question of whether and when market returns are predictable.

1.3.2
Minute by Minute Analysis

In this section, we confirm the previous phenomenons by another ap-
proach: Figure A.5 plots a minute by minute analysis, in which instead of
calculating the metrics for each day, we compute it for each minute across all
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days in the sample. In the figure, the plot in the top reports the out-of-sample
R2

OOS,m, calculated for each minute m as

R2
OOS,m = 1 −

∑T
t=1(rt,m−4:m − r̂t,m−4:m)2∑T
t=1(rt,m−4:m − rt,m−4:m)2

in which we include the in-sample mean return at minute m (rt,m−4:m) as
a naive prediction metric, among with the selected models. The plot in the
bottom displays the Hit rate, or the percentage of correct direction assignment
of the predicted returns when compared to the observed returns at each minute
m, computed in the following manner

HitRatem = 1
T

·
T∑

t=1
1{Sign(rt,m−4:m) = Sign(r̂t,m−4:m)}.

Once again, after calculating these minute-by-minute statistics, the out-
puts seem to confirm that our volatility factor models surpass the best per-
forming benchmark in both out-of-sample R2

OOS,m and amount of correct sign
attribution for the predicted values.

Additionally, we carry out the same analysis by excluding the crisis period
in Figure A.6. The results obtained are quite close to the ones of the full sample.
Interestingly, in both approaches the return predictability seem to differ from
the intraday pattern in the minutes between 14:00 and 15:00pm.

1.4
Conclusions

Predicting high frequency returns can be a challenging task, but the
advances in data processing capacity and the development of intraday models
allowed a great evolution in this field of research. In this paper we generate
intraday estimations through rolling windows, as a strategy to forecast equity
market returns at minute frequency. We employ volatility factor models, in
which we relate Cboe Volatility index (VIX) and the S&P 500 ETF (SPY)
intraday data. The results obtained suggest that our method has a better
forecasting performance than well-established autoregressive benchmarks, even
when we exclude crisis periods. Additionally, the returns seem to be more
predictable on dates in which macroeconomic announcements do not take
place. Interestingly, this effect is amplified when we remove the crisis period.
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2
Modeling and Forecasting Intraday Market Returns: a Ma-
chine Learning Approach

2.1
Introduction

The recent advances in high-frequency data estimation are associated
not only to the technological development and growing processing capacity
of big data, but also to the interest in understanding and predicting the
behavior of variables in shorter time spaces. Machine Learning methods
have been developed in parallel as increasingly accurate tools for estimating
and predicting high-dimensional data. Both these fields of study can be
easily accommodated into the economic and financial data environment. The
adaptation of these methods to incorporate and update information over time
allowed the development of robust predictive methods, progressively more
relevant in time series analysis.

This paper examines the intrinsic relation between market returns and
volatility measures, besides lagged returns themselves. Using minute-by-minute
intraday data, we find that the CBOE Volatility Index (VIX) can be a strong
predictor for the S&P 500 ETF (SPY) in high-frequency, especially through
machine learning models. For each day in the sample, we implement a 30
minute rolling-window estimation procedure to forecast the subsequent minute,
totaling 340 estimated market returns in a day. This framework is based on the
estimation scheme of Chinco et al. (2019) for a cross-section of stock returns.
We use different approaches to estimate these returns, from ordinary least
squares (OLS) regression benchmarks to more sophisticated methods, focusing
on nonlinear models. To build minute-by-minute machine learning models, we
relied on the work of Masini et al. (2021).

Particularly, we apply Long-Short-Term Memory (LSTM) neural net-
works (Hochreiter and Schmidhuber, 1997) and Random Forest (RF) models
(Breiman, 2001) to estimate multiple intraday rolling windows, using a range
of predictive variables in different settings. LSTM models are a variant of
Recurrent Neural Networks (RNNs), that differ from the standard neural net-
works on the ability to remember the previous states in time. This method is
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broadly used in applications related to weather data, and speech and writing
recognition. For economic and financial data in particular, we want this time
dependence to be present, what makes the LSTM such an attractive model,
specially due to its ability to remember what matters and forget what is irrel-
evant to the model. For a nice application of LSTMs in asset pricing see Chen
et al. (2019).

Introduced by Breiman (2001), the Random Forest is an ensemble
method, which means it combines several simpler models, producing an
optimal improved aggregate version in the end. In this case, the base models
are classification or regression trees, a nonparametric method based on the
mechanism of recursive partitioning of the space of covariates. The average
of the estimates generated by each tree are used to build the final forecast,
known as Random Forest. RF models have been shown to be a very competitive
forecasting tool. See, for example, Medeiros et al. (2021).

The choice to analyze volatility measures as potential predictors is an
important issue in the economic literature. Among others, Corsi (2009) and
Patton and Sheppard (2015) established a whole literature on realized volatility
(RV ), defined as the daily sum of the cumulative squared returns during
business hours of a trading day. The forecasting methodology in this field
of research uses predominantly autoregressive structures endowed with long
memory to predict realized volatilities. McAleer and Medeiros (2008) provide
a extensive review of theoretical developments and empirical applications
concerning realized volatility.

Time-series properties of the VIX index are addressed by works like
Fernandes et al. (2014), as well as its positive contemporaneous link with
the volume of the S&P 500 index. Martin (2017) and Martin and Wagner
(2019) explore the predictability of market and stock returns defining an
associated volatility index named SVIX that provides a bound on the equity
premium perceived by the investor. By associating implied variance (VIX2)
and realized variances measures, Bollerslev et al. (2009) introduce the variance
risk premium (VRP) as the difference between those two variables, that can
be used to explain the aggregate stock market returns. Bekaert and Hoerova
(2014) extend these results by decomposing VIX2 into a conditional variance
of the stock market and the equity variance premium. The authors conclude
that the variance premium is a significant predictor of stock returns.

This plethora of applications for volatility measures and machine learning
methods raises our interest in combining these fields of study in a high
frequency environment to predict future market returns. As will be discussed
throughout the paper, our outputs indicate that machine learning models
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as the LSTM may improve the performance of benchmark linear regression
models in a minute-by-minute framework. Furthermore, if we choose the right
regressors, particularly the VIX in our study, the predictive ability becomes
even higher. On the other hand, Random Forests did not bring improvements
to our estimations, when compared to the established benchmarks.

The paper is organized as follows. Section 2.2 reviews the methodology
to be implemented in the machine learning framework. The high-frequency
data details are presented in Section 2.3. Section 2.4 discusses the employment
of different predictive models, as well as the benchmarks to our exercise. The
results of intraday estimations and aggregate outputs are described in Section
2.5. Finally, we conclude the paper in Section 2.6.

2.2
Methodology

Define the following high-frequency forecasting model, where t is the day,
and m the intraday minute:

Yt,m+h = Fh(Xt,m) + Ut,m+h, h = 1, . . . , H, t = 1, . . . , T (2-1)

where Xt,m := (Yt,m−1, . . . , Yt,m−p, Z ′
t,m, . . . , Z ′

t,m−r)′ is a n-dimensional vector
of predictors, with p ≥ 1 and r ≥ 0. Fh : Rn → R is an unknown measurable
function and Ut,m+h := Yt,m+h − Fh(Xt,m) has zero mean and finite variance.

For any chosen model framework and forecasting horizon h = 1, . . . , H,
we want to define the target function Fh, to be estimated from the available
data set. This function can be an ensemble of multiple models, and it can vary
according to the horizon h.

2.2.1
Nonlinear Models

Masini et al. (2021) detail different machine learning methods, as well as
their advances and applications in time series data environment. The authors
discuss both linear and nonlinear models, of which we will focus on the last. The
reason for this is that sometimes the linearity hypothesis may not encompass all
the characteristics of variables such as volatility measures, specially in a high-
frequency environment. In this case, we look for alternatives in the universe of
models in statistical learning literature.
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2.2.2
Long-Short-Term Memory Neural Networks

Recurrent Neural Networks (RNNs) are neural networks that allow for
feedback among the hidden layers. RNNs can use their internal state (memory)
to process sequences of inputs. A generic RNN can be written as

Ht,m = f(Ht,m−1, Xt,m),
Ŷt,m+h|m = g(Ht,m),

where Ŷt,m+h|m is the prediction of Yt,m+h given observations only up to minute
m at day t, f and g are functions to be defined and Ht,m is what we call the
(hidden) state. From a time-series perspective, RNNs can be see as a kind of
nonlinear state-space model.

RNNs can remember the order that the inputs appear through its hidden
state (memory) and they can also model sequences of data so that each sample
can be assumed to be dependent on previous ones. However, RNNs are hard
to be estimated as they suffer from the vanishing/exploding gradient problem.
Fortunately, there is a solution to the problem proposed by Hochreiter and
Schmidhuber (1997): the Long-Short-Term Memory (LSTM) network . Figure
A.7 shows the architecture of a typical LSTM layer. A LSTM network can be
composed of several layers. In the figure, red circles indicate logistic activation
functions, while blue circles represent hyperbolic tangent activation. The
symbols “X” and “+” represent, respectively, the element-wise multiplication
and sum operations. The RNN layer is composed of several blocks: the cell
state and the forget, input, and ouput gates. The cell state introduces a bit
of memory to the LSTM so it can “remember” the past. LSTM learns to keep
only relevant information to make predictions, and forget non relevant data.
The forget gate tells which information to throw away from the cell state. The
output gate provides the activation to the final output of the LSTM block
at day t and minute m. Usually, the dimension of the hidden state (Ht,m) is
associated with the number of hidden neurons.

Algorithm 2.1 describes how the LSTM cell works. ft,m represents the
output of the forget gate. It is a combination of the previous hidden-state
(Ht,m−1) with the new information (Xt,m). Note that ft,m ∈ [0, 1] and it
attenuates the signal coming com ct,m−1. The input and output gates have
similar structure. Their goal is to filter the “relevant” information from the
previous minute as well as from the new input. pt,m scales the combination of
inputs and previous information. This signal will be then combined with the
output of the input gate (it,m). The new hidden state will be an attenuation of
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the signal coming from the output gate. The prediction is a linear combination
of hidden states. Figure A.8 illustrates how the information flows in a LSTM
cell.

Algorithm 2.1 Mathematically, RNNs can be defined by the following algo-
rithm:

1. Initiate with ct,0 = 0 and Ht,0 = 0.

2. Given the input Xt,m, for m ∈ {1, . . . , M}, do:

ft,m = Logistic(WfXt,m + UfHt,m−1 + bf )
it,m = Logistic(WiXt,m + UiHt,m−1 + bi)
ot,m = Logistic(WoXt,m + UoHt,m−1 + bo)
pt,m = Tanh(WcXt,m + UcHt,m−1 + bc)
ct,m = (ft,m ⊙ ct,m−1) + (it,m ⊙ pt,m)
ht,m = ot,m ⊙ Tanh(ct,m)

Ŷt,m+h|m = Wyht,m + by

where Uf , Ui, Uo ,Uc ,Uf , Wf , Wi, Wo, Wc, bf , bi, bo, and bc are
parameters to be estimated.

2.2.3
Regression Trees and Random Forests

A regression tree is a nonparametric model that approximates an un-
known nonlinear function with local predictions using recursive partitioning of
the space of the explanatory variables (predictors).

The idea of regression trees is to approximate Fh(Xt,m) in (2-1) by

hD(Xt,m) =
J∑

j=1
βjIj(Xt,m), where Ik(Xt,m) =

1 if Xt,m ∈ Rj,

0 otherwise.

From the above expression, it becomes clear that the approximation of
Fh(·) is equivalent to a linear regression on J dummy variables, where Ij(Xt,m)
is a product of indicator functions.
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Let J and N be, respectively, the number of terminal nodes (regions,
leaves) and parent nodes. Different regions are denoted as R1, . . . , RJ . The
root node at position 0. The parent node at position j has two split (child)
nodes at positions 2j + 1 and 2j + 2. Each parent node has a threshold (split)
variable associated, Xsjt, where sj ∈ S = {1, 2, . . . , p}. Define J and T as the
sets of parent and terminal nodes, respectively. Figure 2.1 gives an example.
In the example, the parent nodes are J = {0, 2, 5} and the terminal nodes are
T = {1, 6, 11, 12}.

Figure 2.1: Example of tree with labels.

Parent
node 0

Terminal
node 1

(Region 1)

Parent
node 2

Parent
node 5

Terminal
node 11

(Region 2)

Terminal
node 12

(Region 3)

Terminal
node 6

(Region 4)

Therefore, we can write the approximating model as

hD(Xt,m) =
∑
i∈T

βiBJi (Xt,m; θi) , (2-2)

where

BJi (Xt,m; θi) =
∏
j∈J

I(Xsj ,t,m; cj)
ni,j (1+ni,j )

2 ×
[
1 − I(Xsj ,t,m; cj)

](1−ni,j)(1+ni,j)
,

(2-3)

I(Xsj ,t,m; cj) =

1 if Xsj ,t,m ≤ cj

0 otherwise,
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ni,j =


−1 if the path to leaf i does not include parent node j;

0 if the path to leaf i include the right-hand child of parent node j;

1 if the path to leaf i include the left-hand child of parent node j.

Ji: indexes of parent nodes included in the path to leaf i. θi = {ck} such that
k ∈ Ji, i ∈ T and ∑

j∈J BJi (Xt,m; θj) = 1.
Random Forest (RF) is a collection of regression trees, each specified in a

bootstrap sample of the original data. The method was originally proposed by
Breiman (2001). Since we are dealing with time series, we use a block bootstrap.
Suppose there are B bootstrap samples. For each sample b, b = 1, . . . , B,
a tree with Kb regions is estimated for a randomly selected subset of the
original regressors. Kb is determined in order to leave a minimum number of
observations in each region. The final forecast is the average of the forecasts
of each tree applied to the original data:

Ŷt,m+h|m = 1
B

B∑
b=1

 Tb∑
i=1

β̂i,bBJi,b(Xt,m; θ̂i,b)
 .

2.3
Data

Our dataset consists of 1 minute frequency data for both the S&P 500
ETF (SPY) and the CBOE Volatility Index (VIX), gathering a total of 3,000
business days between January 2005 and December 2016. We filter the data
within each day to the observations between 09:40 and 15:50 (inclusive).

We calculate log-returns of SPY for each minute of day t, using a rolling
five-minute return scheme, as follows:

rt,m−4:m = log(Pt,m) − log(Pt,m−4), (2-4)

where rt,m2:m1 represents the log difference in prices computed between minutes
m1 and m2, and Pt,m is the price of SPY at day t and minute m. We explore the
VIX index variable in level, and implement a transformation of the annualized
VIX to an intraday minute variable, in order to facilitate the interpretation
of our results1. Using this data set, we also compute the one-minute squared

1V IXIntraday = V IXAnnual × (1/
√

1440) × (1/
√

252): 252 business days in a year and
1440 minutes in a day.
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version VIX2
m and first difference ∆VIXm.

Inspired by Bollerslev et al. (2009), we generate a measure of what could
be a high-frequency analogous to the variance risk premium, as the difference
between the squared one-minute SPY return and the VIX2 at minute m:

V RPt,m = r2
t,m − V IX2

t,m. (2-5)

The following estimations will be centered on models that use volatil-
ity measures as inputs, particularly the VIX. Despite presenting additional
configurations and benchmark models, we focus on understanding how the
minute-by-minute VIX relates to very high-frequency market returns, as well
as its overall predictive capability across the models.

To illustrate the common behavior of market return and the volatility
measure over the years, Figure A.9 displays the contemporary relation between
the average minute-by-minute SPY log-return and VIX for each day of the
sample. The darker the dots in the figure, the more recent the analyzed sample.
It is noticeable that the relationship between both variables becomes less
disperse over time, more concentrated in recent years, exhibiting lower returns
for lower levels of volatility. Additionally, we present the summary statistics
for minute-by-minute SPY log-returns and the annualized VIX in Table A.10,
which shows that both variables are skewed right and leptokurtic. As expected,
market returns and the VIX are negatively correlated.

Despite the clear intrinsic relationship between market returns and near-
term volatility implied by stock index option prices, we want to investigate the
forecasting potential of SPY returns in high-frequency using volatility mea-
sures. The subsequent section presents the fundamental estimation framework
adopted in this paper, based on a minute-by-minute rolling window mecha-
nism. This approach is similar to the one developed by Chinco et al. (2019),
and allows the researcher to understand very short-term effects over intraday
periodicity variables.

2.4
Empirical Analysis

To estimate our models, we implement a 30-minute rolling window
estimation scheme for very high-frequency predictions. For each minute m and
day t, we use the previous non-overlapping thirty minute window to forecast
the one-minute-ahead five-minute log-return of SPY. At the end of each day
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t, we run a total of 340 estimations between 09:40 and 15:502.
It is important to point out that our high frequency analysis uses non-

overlapping input and output variables. This means that for each minute-by-
minute log return rt,m2:m1 , we use lagged regressors that do not overlap minutes
m2 to m1. For example, if we want to run a regression of the five-minute
log return (rt,m−4:m) on the lagged ∆VIX, we compute the non-overlapping
variable as ∆VIXt,m−6:m−5 = VIXt,m−5− VIXt,m−6. This strategy prevents
from using future information to forecast minute m + h when observations
are available only up to minute m.

Machine learning algorithms perform better when numerical input vari-
ables are scaled. For each window, we perform a standard MinMax scaling to
the data, by using the parameters from the train observations to scale both
train and test data3. This transformation rescales variables into the range [0, 1].
We implement the standardization to the entire estimation data set, explored
in both machine learning and benchmark models, as described in sequence.

2.4.1
Machine Learning Models

The architecture of the LSTM network allows the model to learn and
forecast long sequences of data, a particularly useful attribute for time-series
analysis. This approach can be put into action by running rolling window
regressions in a one-shot multi-step framework for each day t. There are many
options available to the researcher in terms of network structure and hyper-
parameters to be chosen, including the number of layers, hidden states, loss
function and optimizer. In our paper, we optimize the hyper-parameter by
tuning it according the models performance on random subsamples.

As discussed in Section 2.2.1, Random Forest models (which we will also
refer as RF from now on) fit classifying decision trees on data subsamples and
employ an averaging approach to enhance the predictive power of the data.
This ensemble learning method bootstraps the observations in blocks, using
randomly sampled training sets (estimation intraday windows, in our case),
controlling for potential overfit of the model. The choice of the number of
trees to be used is a critical decision in a Random Forest, once it represents
the main tuning engine in the model framework.

2We chose to avoid the first and last ten minutes of each business day in our estimations
because these are the moments that usually contain a greater amount of missing values
and/or repeated values.

3For each window ω rescale:

x̃train
ω,m =

xtrain
ω,m − min(xtrain

ω )
max(xtrain

ω ) − min(xtrain
ω )

; x̃test
ω,m =

xtest
ω,m − min(xtrain

ω )
max(xtrain

ω ) − min(xtrain
ω )
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For each machine learning model (LSTM and RF), we establish three
groups of predictors Xt,m. The first one is composed exclusively by the lagged
volatility variable Xt,m = V IXt,m−5, while the second contains only the lagged
five-minute return Xt,m = rt,m−9:m−5. We call these models VIX and AR(1),
respectively. Finally, the last group gathers all the variables described in
Section 2.3:

Xt,m =
(
rt,m−9:m−5, r2

t,m−9:m−5, V IXt,m−5, ∆V IXt,m−6:m−5, V RPt,m−5
)′

,

which we labeled as the aggregate model.

2.4.2
Benchmark Models

As benchmarks, we chose different setups for Xt,m, implementing the
same rolling-window approach. In addition to applying a traditional autore-
gressive model of order 1, we use lagged squared return, VIX, ∆VIX, and V RP

as predictors. We estimate the coefficients in each window through standard
ordinary least squares (OLS) regressions.

We define the benchmark models as follows:

OLS-AR(1): rt,m−4:m = αm + βm · rt,m−9:m−5 + εt,m

OLS-RV: rt,m−4:m = αm + βm · r2
t,m−9:m−5 + εt,m

OLS-VIX: rt,m−4:m = αm + βm · V IXt,m−5 + εt,m

OLS-∆VIX: rt,m−4:m = αm + βm · ∆V IXt,m−6:m−5 + εt,m

OLS-VRP: rt,m−4:m = αm + βm · V RPt,m−5 + εt,m

(2-6)

We use the logic presented in the beginning of this section in order to
regress the market returns on non-overlapping lagged variables. The bench-
marks OLS-AR(1) and OLS-VIX are particularly important to our analysis,
once it can be directly compared to the first two groups of predictors defined
in the previous section. From both machine learning and benchmark models,
we expect to understand the importance of the lagged log-return, as well as
the VIX, in high-frequency forecasting.

This estimation practice was executed in a cloud environment, applying
scikit-learn , tensorflow , and keras Python libraries to implement
machine learning methods. We employ Python 3.9.4 version to perform
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the estimations and R 4.1.2 version for output analysis. In the next
section, we compare the performance metrics for both machine learning and
benchmark models. We contrast specifically the regressions over different
groups of predictors presented in Section 2.4.1 to the single input OLS models
in the set of equations 2-6.

2.5
Estimation Results

Due to the high dimension of the estimated intraday outputs in each
model (described in Section 2.4), we summarise our results through two
performance metrics widely used in the literature: the daily Root-mean-square
error (RMSE) and out-of-sample R2. To obtain the mean and median RMSE,
as well as the standard deviation, we calculate the daily measure

RMSEt =

√√√√ 1
M

M∑
m=1

(rt,m−4:m − r̂t,m−4:m)2 (2-7)

and then compute its overall metric throughout the sample. Then, we calculate
the same out-of-sample performance metric implemented by Welch and Goyal
(2008) and Campbell and Thompson (2008) for each day t

R2
OOS,t = 1 −

∑M
m=1(rt,m−4:m − r̂t,m−4:m)2∑M
m=1(rt,m−4:m − rt,m−4:m)2 (2-8)

to generate the average R2
OOS, its median, and standard deviation across the

days. This metric is relevant to introduce a relation between the mean squared
error of our model estimate and the naive projection, represented by the in-
sample historical mean within each estimation window. If the error of the
model’s prediction is lower than the error of the naive forecast, the R2

OOS is
necessarily positive. The same holds for the opposite case, in which a negative
R2

OOS represents a better performance of the historical average model.

2.5.1
Intraday Analysis

To exemplify how each predictive model works throughout a day, Figures
A.10 and A.11 illustrate the intraday rolling prediction for a randomly selected
date t (January 8, 2007). Each plot represents a machine learning model
(LSTM and Random Forest) compared to the actual series, the historical mean
based prediction, and the respective VIX or AR(1) benchmark. At each day t
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calculate the daily performance metrics for each one of those series, and then
compute the average, mean, and standard deviation for the entire sample.

The top plot in Figure A.10 presents the LSTM-VIX model (that uses
VIX as predictive variable) minute-by-minute predictions, while the bottom
one displays the same scenario for the RF-VIX model. Comparing both to the
OLS-VIX benchmark, and the naive projection, one can see that the LSTM
method tracks the observed series more smoothly, but also more precisely,
while the Random Forest follows pretty much the same pattern established by
the benchmark model. For this specific date, the R2

OOS for the LSTM, Random
Forest, and benchmark models were 21.15%, −37.10%, and 6.33%, respectively.
We can see a clear superiority of the LSTM model, followed by the benchmark
and, finally, the Random Forest model.

This pattern is repeated in Figure A.11, in which we perform the same
analysis comparing autoregression based models. The minute-by-minute series
forecasts follow an akin behavior to that observed in the previous figure. The
curves are smoother, but also more precise for LSTM-AR(1) predictions. Even
more interesting, the model now presents a positive R2

OOS, compared to the
negative ones obtained through the RF-AR(1) and OLS-AR(1) models on
the same date: 6.93%, −21.87%, and −14.03%, respectively. Once again, the
Random Forest output suggests a poor performance for this model. Obviously,
these results are restricted to the analysis of a random day in the sample. The
subsequent tables present and summarize the general outputs obtained by the
estimation of the full sample, leading to similar conclusions.

2.5.2
Overall performance

Tables A.11 and A.12 present the average, median, and standard de-
viation of R2

OOS and RMSE, respectively. These outputs are calculated over
the performance metrics, using out-of-sample predictions for each day t, as de-
scribed above4. Looking only at the bottom panel of each table, which contains
the benchmarks presented in the set of equations 2-6, there is a clear hegemony
of the OLS-VIX in terms of performance. The mean and median values of the
out-of-sample R2 outperform the naive prediction based on the historical mean
(R2

OOS > 0). As expected, this same conclusion can be drawn from the RMSE
table, in which the VIX excels all the other variables as a predictor of market
returns among the OLS equations.

4We trim the outputs in each model to restrict it to be between the 1st and 99th

percentiles, excluding outliers in both directions.
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When we include the LSTM and Random Forest machine learning models
in the analysis, we can see critical improvements in terms of performance. The
LSTM-VIX is the best performing model, followed by the OLS-VIX model.
Even though the RF-VIX model performs well when compared to other models,
it is not able to surpass the benchmark’s performance. The LSTM approach for
the autoregressive component also improves its performance when compared to
the OLS-AR(1) model. Differently from the benchmark outputs, the mean and
median R2

OOS values for the LSTM-AR(1) are strictly positive, outperforming
the historical mean projection. On the other hand, the RF-AR(1) model
presents a drastic deterioration in performance when we use the lagged market
return as predictor.

The LSTM and RF aggregate models (including all variables) do not
present any improvement in its statistics when compared to the OLS-VIX
benchmark, signaling that inserting other volatility measures and lagged
market returns on the same model do not provide a better performance,
compared to the models presented previously. To illustrate the different
distributions of R2

OOS metrics across the days in our sample, Figure A.12
presents the density for both machine learning (in the top row), and benchmark
models (in the bottom). As one can see, the LSTM R2

OOS distribution is
predominantly left-skewed for every group of predictors, in accordance with
the results presented in Tables A.11 and A.12. The RF models distributions
present a reasonable performance in general, apart from the RF-AR(1). Still,
these models are not able to overcome the OLS-VIX, which stands out as the
best performing benchmark.

In a complementary way, Figure A.13 pursues to unravel the relationship
between the results obtained by each machine learning model, compared to
their respective benchmarks over the years. The vertical axis of each plot
represent the LSTM and Random Forest models estimations using as regressor
the AR(1) (in the first column of plots) and the VIX (in the second column).
The horizontal axis displays the predicted values for the benchmark models.
This visualization allows one to identify when machine learning models were
able to overcome its benchmarks (the points below the 45° dotted line). The
last years in our sample seem to present lower and less disperse estimation
errors for all models combinations. Moreover, the VIX-based models got even
better recently, when using both LSTM and RF models. These highlights
synthesize the objective of this paper: contribute to the short-term forecasting
literature, as well as the implementation of modern forecasting techniques
through nonlinear rolling window models in a high-frequency setting.
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2.6
Conclusion

There is growing interest in understanding how to predict high-frequency
stock returns. Our paper introduces an innovative approach to estimate
minute-by-minute market return (SPY) forecasts using volatility measures
and lagged returns as predictors. In addition to standard benchmark models,
we implement nonlinear machine learning methods as an attempt to capture
idiosyncrasies of this kind of data, whose properties can differ substantially
from variables at lower frequencies.

The outputs obtained in our estimations indicate a preliminary, but also
encouraging path to better understand how to predict high-frequency market
returns. We focus on neural networks (Long-Short-Term Memory) and tree-
based (Random Forests) models to estimate multiple intraday rolling windows,
using different regressors configurations. Models that use the Cboe Volatility
Index (VIX) as predictor stand out, indicating that the VIX is a strong
candidate predictor, when compared to other variables. The precision of the
forecasts obtained using the OLS benchmark model gets even higher when we
apply the LSTM to predict market returns using exclusively the VIX. Although
the random forest model is not able to outperform the results obtained by
the previous models (eventually even worsening it in some cases), the LSTM
proved to be very promising in terms of predictive power, for both VIX and
past market returns as regressors.
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3
Factor Augmented High-Dimension Vector Autoregressive
Models: Application to a Panel of Realized Volatilities

3.1
Introduction

In the presence of large data sets (e.g. financial) the number of parameters
can be much larger than the observed sample size. In a high-dimensional
environment one may need to impose some structure on the data as a
way of dealing with that challenge, known as the curse of dimensionality.
Modeling time-series in the context of big data generates additional demands
to the researcher, especially regarding its asymptotic properties, as shown by
Medeiros and Mendes (2012).

This paper carries out a combination of factor and shrinkage models,
as a strategy to enhance standard single-step realized variance (RV) estima-
tion procedures. Based on Fan et al. (2021)’s FarmPredict three-step esti-
mation approach, we are able to boost a single factor model, initially with a
poor performance for a single-step approach, but with a much higher predic-
tive capacity when the multiple-step method is implemented. Moreover, this
method improves the performance of well-known RV forecasting methods, as
Corsi (2009)’s heterogeneous autoregressive (HAR) model. The most interest-
ing output of this paper is the application of an easily replicable method, able
to improve single factor models, delivering performances practically as good as
those of consolidated methods, such as HAR and its variations. Finally, these
outputs are ameliorated when using larger size windows for one-step-ahead
daily estimations.

Applying factor models is a fairly convenient way of reducing the number
of parameters to be estimated. This approach is not done in a completely ad hoc
manner, since it aims to capture a few commonalities that properly explain the
independent variable and concurrently reduce the dimension of the analyzed
data. The main idea is to “focus on what really matters" to the model. Since
the seminal work of Chamberlain and Rothschild (1983), the factor model
structure has been widely explored by both practitioners and academics, as
Stock and Watson (2002), Bai (2003), Bai and Ng (2003), Bernanke et al.
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(2004), Bai and Ng (2006), and Fan et al. (2017).
In the macroeconomic forecasting literature, Stock and Watson (2002)

develop a two stage dynamic factor model, in which the factors used to forecast
the variable of interest are estimated by Principal Components Analysis
(PCA), a practical approach to shrink large data sets. Bernanke et al. (2004)
explore this framework to expand the vector autoregressive (VAR) model, by
introducing factor-augmented vector autoregressive models (FAVARs). This
method admits high dimensional data sets, assuming that the observable
variables are directly related to the factors to be estimated, along with the
variable to be predicted.

Statistical or implicit factor models as the Principal Components Re-
gression (PCR) let the data tells us the relevant information, reducing the
subjectivity of the process of choosing factors. On the other hand, analysis
based on heuristically chosen observed factors are widely explored in finan-
cial econometrics and asset pricing literature. Welch and Goyal (2008) show
that while some factors can be historically successful, they are also subject to
different out-of-sample performances over time. A predictor may be useful in
one period, but that does not guarantee that it will predict well in the future,
specially in high-dimensional context. In a complementary way, Campbell and
Thompson (2008) explore this fact in the context that most of the observable
factors perform better when out-of-sample weak restrictions are imposed on
the signs of coefficients and forecasts.

In the context of factor analysis, Feng et al. (2020) propose a model
selection method to estimate and test the marginal importance of factors in
pricing the cross section of returns, by extrapolating a large dimension set
of potential factors (Cochrane (2011)’s factor zoo). The authors incorporate
shrinkage methods to the factor approach in order to select the best control
model, while taking into account potential selection errors. Brito et al. (2018)
present a forecasting model for high-dimensional realized covariance matrices
of returns, by combining firm-level factor decomposition, and sectorial restric-
tions. Their model also combines penalized methods and factor estimation.

In this paper we contribute to the literature on shrinkage and factor
models, focusing on the FAVAR. We implement a generalization of the results
in Fan et al. (2021). Their work assemble high-dimensional models in an
unprecedented manner, by combining both factor and shrinkage models, and
extracting its potential comparative advantages at different estimation steps.
Moreover, the authors demonstrate that the combination of factors and a
sparse regression strongly outperforms the traditional principal component
regression. In an empirical application of this method, we assume that realized
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variances are driven by a limited set of factors, which can be both observed
and unobserved (latent). The goal of this exercise is to combine the stepwise
method developed by Fan et al. (2021) to a multivariate panel prediction
model. This strategy allows us to model the volatility panel as a factor model,
while assuming that the idiosyncratic error term follows a (weakly) sparse VAR
structure.

The paper is organized as follows: Section 3.2 introduces the model
definition and some cases in which it can be applied. Section 3.3 discusses
the panel data estimation, presenting each step of the three-stage method in
detail. The empirical application of the realized variance panel data forecasting
is addressed in Section 3.4. Finally, we conclude the paper in Section 3.5.

3.2
Model Definition

Consider the following model for a nT -dimensional vector of time series:

Yt = ΛFt + Vt,

= Ct + Vt, t = 1, 2, . . . , T,
(3-1)

where Ft ∈ Rm, m < nT , is a vector of, possibly unobserved, common factors,
Λ is a (nT × m) matrix of unknown factor loadings, and Vt ∈ Rn is the vector
of idiosyncratic components. We assume that the number of factor m is fixed.

The vector of idiosyncratic components, Vt, follows a nT -dimensional,
(weakly) sparse, vector autoregressive (VAR) model

Vt = A0 + A1Vt−1 + . . . + At−pVt−p + Ut (3-2)

where p := pT , such that both the dimension and the lag order of the VAR are
allowed to grow with the sample size. Furthermore, Ut a zero-mean martingale
difference error term ,A0 is a (nT × 1) vector of parameters and A1, . . . , Ap

are (nT × nT ) matrices of parameters.
To complete the model, the factors follows a zero-mean VAR model:

Ft = B1Ft−1 + . . . + BqFt−p + Wt (3-3)

where Wt is also a zero-mean martingale difference error term. B1, . . . Bq are
(m × m) matrices of parameters. For simplicity we assume that both VARs
have the same order.

Substituting equations (3-2) and (3-3) into (3-1) the model can be written
as:
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Yt = A0 + A1Yt−1 + · · · + ApYt−p + ΛFt − A1ΛFt−1 − · · · − ApΛFt−p + Ut

= A0 + A1Yt−1 + · · · + ApYt−p + (ΛB1 + A1Λ)Ft−1 + · · · + (ΛBp + ApΛ)Ft−p + Ut + ΛWt

Therefore, the final specification is a Factor-Augmented VAR model
(FAVAR):

Yt

Ft

 =
D0

0

 +
A1 D1

0 B1

 Yt−1

Ft−1

 + · · ·

· · · +
Ap Dp

0 Bp

 Yt−p

Ft−p

 +
Ut + ΛWt

Wt

 .

(3-4)

Defining Zt = (Y ′
t , F ′

t )
′, equation (3-4) can be written in compact form

as

Zt = Π0 + Π1Zt−1 + · · · + ΠpZt−p + Et. (3-5)

This general specification nests several interesting special cases as dis-
cussed in the following examples.

Example 1 (Diagonal Model) If all matrices Ai, i = 1, . . . , p are diagonal,
the idiosyncratic terms follow autonomous AR models augmented by a factor
structure.

Example 2 (Block-Diagonal Model) One generalization of the above ex-
ample is to assume that each Ai, i = 1, . . . , p, is block-diagonal, representing,
for instance, the cross-section dependence among the idiosyncratic shocks.

3.3
Estimation Methodology

The panel data model is described by

Yit = β′
i Xit︸︷︷︸

Observed
factors

+
=:Rit︷ ︸︸ ︷

λ′
i Ft︸︷︷︸

Latent
factors

+ Uit︸︷︷︸
Idiosyncratic

term

= β′
iXit + Rit (3-6)
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where Xit is a k−dimensional observable random vector1, Ft is a r-dimensional
vector of common latent factors, and Uit is a zero mean idiosyncratic shock.
We also can write the equation (3-6) in the matrix aggregate form. For
Yt := (Y1t, . . . , Ynt)′, and Ut := (U1t, . . . , Unt)′, define:

Y = BX + ΛF ′ + U = BX + R (3-7)

composed by (n × T ) dependent variable Y := (Y1, . . . YT )′ and idiosyncratic
shock U := (U1, . . . UT )′ matrices; a (nk × T ) covariates matrix Xi :=
(Xi1, . . . , XiT ); and a (r × T ) matrix of latent factors F ′ = (F1, . . . , FT ).
B is a (n × nk) matrix of observable factor parameters βi,k(i) and Λ a (n × r)
matrix of factor loadings λir. We will predict Yi,t+h through an extension of
the three-stage estimation procedure proposed by Fan et al. (2021) known as
FarmPredict , explained subsequently.

3.3.1
Three-Stage Method

The methodology in this paper involves a sequence of estimation steps.
For each i regress Yit on Xit to estimate the first-stage residuals R̂it. Compute
the Principal Components Analysis (PCA) of the aggregated set of residuals R̂t

to estimate the latent factors F̂t and its respective loadings. Gather the second-
stage residuals in a vector Ût. Then, estimate equation-wise a (weakly) sparse
Vector Autoregression (VAR) model of order p for Ût, through a penalized
estimation method. Finally, combine the models and construct the forecasting
equation. This procedure is presented in detail below, as well as the models
adopted in each stage.

3.3.1.1
First Stage

For each i ∈ {1, . . . , n} run the following regression on the observable
factors

Yit = β′
iXit + Rit, t = 1, . . . , T (3-8)

using linear regression models. In this stage, we choose to estimate the
coefficients and residuals through linear methods. In accordance with Masini
et al. (2021), the estimator β̂i for the unknown desired parameter minimizes

1k may also be a function of i: Xit = (X(1)
it ; X

(2)
t ).
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L(βi) =
T∑

t=1
(Yit − β′

iXit)2 − ρ(βi)

where ρ(βi) is the penalization term that depends on a tuning parameter2

λ ≥ 0. After choosing the method that will be implemented, compute R̂it :=
Yit − β̂′

iXit and write the first-stage residuals as a n-dimensional vector

R̂t := (R̂1t, . . . , R̂nt)′ (3-9)

As pointed out in equation 3-7, this vector corresponds to Rt = ΛFt+Ut.
We assume the implicit premise that the observable factors Xit are independent
of the latent factors Ft.

3.3.1.2
Second Stage

Compute the PCA of R̂t to estimate the latent factors F t and run a
regression on these principal components for each i

R̂it = ΛFt + Ûit (3-10)

using models with potential for selection of latent factors. To determine the
factors to be used among the principal components, one can adopt shrinkage
models as the (adaptive) LASSO, or apply selection methods as the Bai and Ng
(2002) information criteria, and Ahn and Horenstein (2013) eigenvalue ratio
test, and simply estimate it through OLS. For each i, calculate the second-stage
residuals Ûit = R̂it−Λ̂F̂t (equivalent to the idiosyncratic term in equation 3-7).
Collect the residuals in a n-dimensional vector

Ût := (Û1t, . . . , Ûnt)′ (3-11)

This aggregate object will be used to compute the final stage outputs.

3.3.1.3
Third Stage

Define Ût as a sparse Vector Autoregressive model VAR(p) with n

variables and lag p

2Notice that when λ = 0, we have the standard Ordinary Least Squares (OLS) estimation.
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U1t

...
Unt

 = Γ1


U1,t−1 . . . Un,t−1

... . . . ...
U1,t−1 . . . Un,t−1

 + · · · + Γp


U1,t−p . . . Un,t−p

... . . . ...
U1,t−p . . . Un,t−p

 +


e1t

...
ent



Ut = Γ1Ut−1 + · · · + ΓpUt−p + et (3-12)

where the matrices Γl=1,...,p are autoregressive parameters and the vector
et = (e1t, . . . , ent)′ is the error term. The standard VAR approach is to estimate
OLS equation by equation. However, due to the large dimension of the data,
it may be preferable to use an adaptive LASSO approach for the estimation
of a sparse VAR model.

Define Ui = (Ui,p+1, . . . , Ui,T )′; UL = (Υp+1, . . . , ΥT )′, with Υt =
(U ′

t−1, . . . , U ′
t−p)′; Γi = (Γi,1, . . . , Γi,p); and Ei = (ei,p+1, . . . , ei,T )′. Rewrite

the VAR in matrix notation

Ui = ULΓi + Ei (3-13)

To estimate Γ∗
i through LASSO-VAR(p), we minimize

L(Γi) = 1
T

∥Ui − ULΓi∥2 + 2λT ∥Γi∥ℓ1

Defining a weighting scheme as the inverse of the LASSO estimator,
estimate the adaptive-LASSO-VAR(p) through the minimization

L̃(Γi) = 1
T

∥Ui − UL,J̃(Γi)Γ̂i,J̃(Γ̂i)∥
2 + 2λT

∑
j∈J(Γ̂i)

|Γi,j|
|Γ̂i,j|

where J(Γ̂i) = {j ∈ Rkp : Γ̂i,j ̸= 0} represent the indices of the coefficients in
the i’th equation deemed zero by the LASSO and J̃(Γ̂i) = {1} ∪ {J(Γ̂i) + 1},
following the framework of Callot et al. (2017). The penalization works in the
following manner: if Γ̂i,j is small, and hence 1/Γ̂i,j is large, the penalty on Γi,j

will be large. Alternatively, if the estimated Γ̂i,j is large, the penalty will be
small.
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3.4
Application to a Panel of Realized Volatilities

3.4.1
Data

We use Intraday data for constituents of the Dow Jones Industrial Av-
erage Index comprising all business days between January 2006 and February
2017, totaling 2802 days. We filter the data to include observations during the
regular market trade hours, between 09:30 and 16:00 (inclusive). We consider
firms that remained in the index for the full sample period, culminating in a
total of 28 stocks.

Out of this high-dimensional data set, we are able to construct the daily
realized variance measures (RVit) using 5-minutes returns as an estimator
of the ex-post volatility on day t for a given stock i. In addition to the
standard autoregressive framework described in the following section, we chose
the first-difference lagged squared CBOE Volatility Index (V IX) as observed
volatility factor Xit. This fundamental relation between RV and the V IX

has been already explored in literature by Bollerslev et al. (2009), Bekaert
and Hoerova (2014), and, Martin (2017), among others. Ultimately, train-test
split establishes different estimation windows to determine the forecast in a
one-step-ahead framework.

3.4.2
Realized Variance Forecasting

The daily realized variance (RV ) is given by the sum of all available
intraday high frequency squared returns

RVit =
M∑

m=1
r2

itm (3-14)

Where M represents the number of intradaily intervals m for a given
asset i on day t. In a similar fashion to what is done by Liu et al. (2015) and
Bollerslev et al. (2018) we use subsampled 5-minute RV , which seems to work
well in the majority of volatility forecasting exercises.

For each stock i and day t define Yit := log(RVit) as the observed daily
logarithmic realized variance. This approach is also implemented by Bekaert
and Hoerova (2014), who argue that due to right-skewed distributions of
variances, it is preferable to predict instead its logarithmic transformation,
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which tends to have near Gaussian distributions. Using the panel data model
represented by equation 3-6, we want to predict for each given i

Ŷi,t+1|t := β̂′
iXit + λ̂′

iF̂t+1|t + Ûi,t+1|t = β̂′
iXit + R̂i,t+1|t (3-15)

through the stepwise methodology presented in Section 3.3.1. As pointed out
by McAleer and Medeiros (2008) the volatility of returns seems to be relatively
easier to forecast, when compared to daily returns of financial assets per se:
a multitude of realized volatility forecasting methods have been explored in
literature, including Corsi (2009), Patton and Sheppard (2015), and Bollerslev
et al. (2016). That motivates us to implement the multiple-step procedure over
some of the main realized volatility estimation methods, detailed in the next
section.

3.4.3
Setup

The empirical application in this paper employs a multivariate extension
of Fan et al. (2021)’s FarmPredict . This procedure allows the researcher to
explore a number of distinct combinations of factor and shrinkage models. In
the first two stages, we decided to use combinations of non-penalized (OLS)
and shrinkage (PCA) models, while in the third stage we restrict our analysis
to the sparse VAR estimation, focusing on the adaptive LASSO method.

The intuition underlying the first stage relates to the ability of determin-
ing the adequate observable variables, and remove its contribution in order
to properly estimate the second stage, both described in Section 3.3.1. In the
standard OLS approach, which we call the Volatility Factor Model, define the
observable variable as: Xit := ∆V IX2

t = V IX2
t − V IX2

t−1.
Additionally, we explore the heterogeneous autoregressive (HAR) struc-

ture, proposed by Corsi (2009), as well as its extensions. We select conventional
models utilized to predict realized volatility: the HAR-J (jump augmented),
the HAR-RS (realized semi-variance augmented), and the HAR-Q (introduc-
ing the “realized quarticity” to the model), as well as its fully time-varying
specification, the HARQ-F. The fundamental HAR equation of Corsi (2009) is
characterized as

(HAR): RVi,t+1 = µ + ϕdRV d
it + ϕwRV w

it + ϕmRV m
it + Rit
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In each model, RV d
it = RVit denotes the lagged daily realized vari-

ance, RV w
it = 1

4
∑4

d=1 RVi,t−d the lagged weekly realized variance, and RV m
it =

1
17

∑21
d=5 RVi,t−d the lagged monthly realized variance. This alternative autore-

gressive format aims to capture long memory in financial volatility, by includ-
ing the mean realized variances computed for the preceding week and month,
besides the daily lagged component. McAleer and Medeiros (2008) discuss this
additive hierarchical structure, specified as a sum of components over different
horizons.

As done in Andersen et al. (2007) and Patton and Sheppard (2015), we
extend the HAR model by including jumps (Jit), positive (RS+

it ), and negative
(RS−

it ) realized semi-variances. The jump augmented model is given by

(HAR-J): RVi,t+1 = µ + ϕdRV d
it + ϕwRV w

it + ϕmRV m
it + ϕJJit + Rit

The jumps are defined as Jit = max{(RVit − BVit), 0}, where BVit =
(2/π)−1 ∑M

m=2 |rit,m| · |rit,m−1| is the bipower variation, proposed by Barndorff-
Nielsen (2004). The realized semi-variance augmented model is

(HAR-RS): RVi,t+1 = µ + ϕ+
d RS+

it + ϕ−
d RS−

it + ϕwRV w
it + ϕmRV m

it + Rit

in which the positive and negative realized semi-variances are constructed as
follows

RS+
it =

M∑
m=1

r2
itm · 1{rit > 0}, RS−

it =
M∑

m=1
r2

itm · 1{rit < 0}

This approach bounds the realized variance measure according to the
sign of the return in each intradaily interval m. The concept of setting apart
realized semi-variances is widely discussed in the realized volatility forecasting
literature, as in Barndorff-Nielsen et al. (2008) and Bollerslev et al. (2020).
Finally the realized quarticity (RQ) augmented model of Bollerslev et al. (2016)
is specified as

(HAR-Q): RVi,t+1 = µ + ϕd,t+1RV d
it + ϕwRV w

it + ϕmRV m
it + Rit
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Define ϕd,t+1 = ϕd +ϕdQRQ
1/2
it , where RQit = M

3
∑M

m=1 r2
itm is the realized

quarticity, a consistent estimation of the integrated quarticity presented in
Barndorff-Nielsen and Shephard (2002). To compute the daily RQ for each i,
we use the same high-frequency specification as in equation 3-14. The fully
time-varying specification includes the same transformations for the weekly
and monthly realized variances

(HARQ-F): RVi,t+1 = µ + ϕd,t+1RV d
it + ϕw,t+1RV w

it + ϕm,t+1RV m
it + Rit

where ϕw,t+1 = ϕw + ϕwQ(1
4

∑4
d=1 RQi,t−d)1/2 and ϕm,t+1 = ϕm +

ϕmQ( 1
17

∑21
d=5 RQi,t−d)1/2.

As detailed in Section 3.3.1, after estimating the first-stage residuals, the
second-stage involves an objective process to define the non-observed factors.
While using a non-penalized method, we select the number of latent factors
from the set of estimated principal components, by applying the information
criteria designed by Bai and Ng (2002), or Ahn and Horenstein (2013)’s eigen-
value ratio test for the number of factors. If we choose to implement a penalized
method, the principal components selection is automatically executed by the
shrinkage mechanism inherent to the model.

At all estimation steps we are able to combine shrinkage (penalized)
models: we can obtain the first-stage residuals, select latent factors, calculate
the second-stage residuals, and impose a sparse structure at the third stage to
estimate the VAR of order p. We follow Garcia et al. (2017) and include up to
four lags (p = 4) for each candidate variable in the third step of our model. The
(adaptive) LASSO framework and its implementation are described in Section
3.3.1.

Through this setup, we are able to estimate all the steps of the
FarmPredict method for a panel of realized volatilites. Gathering the out-
puts in each stage, one can predict Ŷi,t+1|t for stock i as in equation 3-15. The
aggregate results of this exercise are presented in the following section.

3.4.4
Forecasting Results

Using the model combinations described in Section 3.4.3, we report the
accuracy of our model in Tables A.13 and A.14. The panels report the out-of-
sample performance metrics of the one-step-ahead rolling estimation scheme,
using different sized windows. For each one, we present the average measure
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across DJIA stocks, for the first, second, and third stages of the FarmPredict
method described in Section 3.3.1.

The panels on Table A.13 evaluate the performance of the forecasts
through an overall out-of-sample (OOS) R2 statistic, that can be directly
compared to the in-sample R2. Analogously to Welch and Goyal (2008) and
Campbell and Thompson (2008), we calculate

R2
OOS = 1 −

∑T
t=1

∑n
i=1(Yi,t − Ŷi,t)2∑T

t=1
∑n

i=1(Yi,t − Y i)2 (3-16)

where Ŷi,t represents the fitted value estimated through the forecasting equa-
tion, as a combination of each stage of the stepwise model, and Y i is the his-
torical average of Yi,t, computed for each i. This measure of predictive power
of the forecasted models works in the following manner: if the R2

OOS is posi-
tive, the predictive regression has lower average mean squared error prediction
error than the historical average approach, outperforming it. Nonetheless, a
negative out-of-sample R2 indicates that the model was not able to overcome
the naive prediction accuracy. In a complementary way, Table A.14 reports for
each panel the mean absolute error (MAE), using different estimation windows.

The outputs indicate that, in general, the FarmPredict procedure
applied to the stocks’ realized volatilities outperforms its single step estimation
benchmarks, located in the first column of each panel. Moreover, it seems
to improve not only traditional forecasting models performance when the
second and third stages are implemented over it, but enhance dramatically the
performance of the single volatility factor model, specially for larger estimation
windows. These compelling results are displayed in Tables A.13 and A.14.

We run rolling estimations using different window sizes (1, 2, 4, and 5
years) for all models. In general, the performance of HAR family models seem
to improve slightly for longer windows, having the best absolute performance
for 5-year windows, followed by 1-year estimation windows. On the other hand,
the volatility factor model presents a dramatic improvement in all scenarios,
showing a monotonic progression on larger size estimation windows. These
results show an extremely poor performance when estimating solely the first-
step, but a massive improvement when applying the following steps over it.

As described in equation 3-16, the R2
OOS summarises a direct comparison

between the method and the naive historic approach. When comparing these
statistics in Table A.13, the volatility factor model initially appears not to
contain enough information to explain future RV. However, the application
of the following steps seems to put in evidence the existence of potentially
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unobserved (latent) factors, derived in the second and third steps from the
residual terms. The second step delivers a better result for all windows, while
the third step enhances exclusively the 1 year length estimation window. The
results indicate the possibility of improvements of third step outputs for larger
estimation windows, by modeling the second stage residuals more efficiently.
Finally, for some scenarios, the volatility factor model gets quite close to
the traditional HAR in terms of performance, as well as some of its family
constituents, a challenging task in the RV literature.

3.5
Conclusions

In this paper we implement an extension the FarmPredict method to a
multivariate approach, allowing to combine both factor-augmented autoregres-
sive (FAVAR) and shrinkage models for high-dimensional data sets. In order
to predict some dependent variable, we assume that its time-series dynamic
is driven by a limited set of factors, that can be observed or unobserved. Us-
ing a three step procedure, this method allows one to estimate the unobserved
(latent) factors, while modeling the idyosincratic term. We document an appli-
cation to a panel of realized volatilities, revealing an increase in out-of-sample
performance driven by our method.

We are able to boost a single factor model, that initially shows poor per-
formance for single-step estimations, but a much higher forecasting accuracy
when estimated through multiple-steps. The method improves the performance
of well-known RV forecasting methods, as the heterogeneous autoregressive
(HAR) model and its variations, and specially a factor model based solely on
the CBOE VIX. The application of this method improves substantially single
factor models, delivering performances practically as good as those of consol-
idated methods in the literature. Finally, the method seems to work better
when using larger size windows for one-step-ahead daily estimations.
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Appendix

A.1
Forecasting intraday returns using VIX

A.1.1
Data Pre-Processing

We pre-process the historical prices for each variable before running the
predictive models. For both SPY and VIX, we fill the minute by minute daily
sample by using the last available observation. For example, for a day t, if we
have a missing values between the minutes 09:40 and 09:44, we can adjust the
prices by doing the following

Time Close Price Adjusted Close Price
09:40 19.22 = 19.22
09:41 NA → 19.22
09:42 19.42 = 19.42
09:43 19.45 = 19.45
09:44 NA → 19.45

... ... ...

By doing this, we assume that all the information disclosed in a missing
price at minute m comes from the last observation. After filling all missing
observations, we generate the variables of interest that will be used in each
regression. We consider only the days when both indices have been reported,
totaling a period consisting of 3032 trading days between February 2005 and
February 2017.

Although the market’s regular business hours are between 09:30 and
16:00, we chose limit our analysis to returns calculated between 09:40 and
15:50, since the trimmed minutes may suffer from distortions or a greater
occurrence of missing data. On the other hand, once we are working with five-
minute log-return data, the first returns are effectively calculated only after
09:35, which means that our decision leads to an even smaller loss of data in
practice.
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A.1.2
Macroeconomic Announcements

We use the Bloomberg Economic Releases from the Economic Calendar1

to extract the announcements dates data set. These data contain a wide variety
of economic announcements data, including National Accounts (GDP), Prices,
Labor Market, Retail and Wholesail Sector, Industrial Sector, Services Sector,
Surveys and Cyclical Indicators, Purchasing Managers’ Index, Housing and
Real Estate, Personal/Household Sector, International Trade and Balance of
Payments, Governance Finance and Debt, Monetary Sector, and Financial
Indicators.

In order to organize the data, we select major macroeconomic an-
nouncements as done by Faust and Wright (2018), and arrange them into
9 groups: FOMC, GDP, Household, Housing, Industrial, Labor, Prices, Retail
and Wholesale, and Trade Balance. We extract both the announcements (1580
days) and the non-announcements subsets (1452 days) from the original data
set, composed by 3032 days between February 2005 to February 2017. The
events enclosed in each group are listed as follows

Group Macroeconomic Announcement Number of Events
FOMC U.S. Federal Reserve Releases Beige Book 198
FOMC Fed Releases Minutes from FOMC Meeting 198
FOMC FOMC Rate Decision (Upper Bound) 198
FOMC FOMC Rate Decision (Lower Bound) 198
GDP Personal Consumption 363
GDP GDP Annualized 363
GDP GDP Price Deflator 363
Household Personal Income 181
Housing Housing Starts 303
Industrial Industrial Production 413
Industrial Durable Goods Orders 413
Labor Initial Jobless Claims 1149
Labor Unemployment Rate 1149
Labor Change in Nonfarm Payrolls 1149
Prices PPI 578
Prices CPI 578
Retail and Wholesale Retail Sales Advance 181
Trade Balance Trade Balance 181

Several of the announcements above take place on the same day. All
events are recurring at different frequencies: while some events as the Initial
Jobless Claims happen on a weekly basis, the FOMC announcements only
occur a few times a year.

1See https://www.bloomberg.com/markets/economic-calendar (accessed in July 2021)

https://www.bloomberg.com/markets/economic-calendar
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A.1.3
Figures

Figure A.1: Intraday SPY returns Q–Q plot

Complete sample Excluding crisis period

The Q-Q plots above represent the intraday SPY distribution for the entire sample and for
the same dates, excluding crisis period between August 1, 2008 and July 31, 2009, as done
in Martin (2017). Each figure plots sample data quantiles in sorted order versus quantiles
from a standard Normal distribution. Both plots present heavy tails when compared to a
normal distribution. This format is often present in log-returns empirical distributions.

Figure A.2: Metrics boxplot for each model

The boxplot displays the distribution of the daily out-of-sample R2
OOS , out-of-sample fit b,

and adjusted R2 for each model presented in Section 1.2.3, reporting the median, 25% and
75% percentiles, and potential outliers. The sample period extends from February 2005 to
February 2017.
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Figure A.3: Daily performance metrics - VIX models vs AR(1) benchmark

For each day in the sample, the set of figures above report the computed out-of-sample R2
OOS

(%), and out-of-sample fit coefficient b and adjusted R2 (%) for selected models presented
in Section 1.2.3. Each figure displays the performance metrics for the VIX 1, VIX 2 models,
and AR(1) benchmark. The sample period extends from February 2005 to February 2017.
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Figure A.4: Average monthly statistics

VIX 1 Model

VIX 2 Model

AR(1) Model

The figures above plot for each model the average out-of-sample R2 and adjusted R2 each
month. These statistics are described in section 1.3. The dashed red line indicate the time-
series average, and the grey bands represent the 99.9% confidence interval. The sample
period extends from February 2005 to February 2017.
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Figure A.5: Minute by minute analysis

The figure on the top reports for each model the out-of-sample R2 for each minute m across
all days (in %). The figure on the bottom represents the mean hit rate output, calculated
as the percentage of equal signs between observed and predicted return at each minute m.
The sample period extends from February 2005 to February 2017.

Figure A.6: Minute by minute analysis - excluding crisis period (Aug 1, 2008
– Jul 31, 2009)

The figure on the top reports for each model the out-of-sample R2 for each minute m across
all days (in %). The figure on the bottom represents the mean sign output, calculated as
the percentage of equal signs between observed and predicted return at each minute m.
The sample period extends from February 2005 to February 2017, excluding days between
August 1, 2008 and July 31, 2009, as done in Martin (2017).
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A.1.4
Tables

Table A.1: Summary Statistics

Variable SPY VIX
Descriptive Statistics (%)
Mean 0.0002 19.410
Std. Deviation 0.097 9.381
Skewness 0.292 2.485
Kurtosis 41.716 8.153
Correlations (%)
SPY 100 -0.391
VIX -0.391 100

The summary statistics and correlations are reported
for intraday variables in percentage form for both the
minute by minute SPDR S&P 500 ETF Trust (SPY)
and the annualized Cboe Volatility Index (VIX) at
minute frequency. The sample period extends from
February 2005 to February 2017.

Table A.2: Model performance metrics - Out-of-sample R2

Model R2
OOS (%)

Mean 95% CI
VIX 1 0.25 [-0.15 , 0.65]
VIX 2 0.27 [-0.12 , 0.67]
VIX 3 -5.12 [-5.44 , -4.79]
VIX 4 -5.11 [-5.43 , -4.79]
VIX 5 -5.21 [-5.50 , -4.93]
AR(1) -4.07 [-4.23 , -3.91]
AR(2) -8.47 [-8.79 , -8.15]
AR(3) -13.15 [-13.58 , -12.73]
AR(4) -18.36 [-18.91 , -17.80]
AR(5) -24.67 [-25.64 , -23.71]

The table reports the average out-of-sample R2
OOS (%) de-

scribed in equation 1-5 for each model across all days. 95 %
CI are the 95% confidence intervals for population averages.
The top panel of rows represents models presented in Sec-
tion 1.2.3, and the bottom panel represents the benchmarks.
The sample period extends from February 2005 to February
2017.
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Table A.3: Model performance metrics - Out-of-sample fit

Model b Adj. R2 (%) b̃ Adj. R̃2 (%)
Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

VIX 1 0.45 [0.442 , 0.451] 5.50 [5.38 , 5.62] 0.45 [0.448 , 0.457] 5.75 [5.62 , 5.87]
VIX 2 0.45 [0.442 , 0.452] 5.50 [5.38 , 5.62] 0.45 [0.448 , 0.457] 5.75 [5.63 , 5.87]
VIX 3 0.19 [0.179 , 0.193] 0.92 [0.87 , 0.98] 0.23 [0.227 , 0.240] 1.33 [1.27 , 1.40]
VIX 4 0.19 [0.179 , 0.193] 0.92 [0.87 , 0.97] 0.23 [0.227 , 0.240] 1.33 [1.27 , 1.40]
VIX 5 0.28 [0.276 , 0.287] 2.27 [2.18 , 2.35] 0.31 [0.305 , 0.315] 2.77 [2.68 , 2.87]
AR(1) 0.27 [0.262 , 0.274] 1.84 [1.76 , 1.91] 0.30 [0.297 , 0.308] 2.34 [2.25 , 2.42]
AR(2) 0.23 [0.226 , 0.236] 1.75 [1.67 , 1.82] 0.26 [0.255 , 0.265] 2.19 [2.10 , 2.27]
AR(3) 0.20 [0.196 , 0.206] 1.66 [1.59 , 1.74] 0.23 [0.222 , 0.231] 2.05 [1.97 , 2.13]
AR(4) 0.18 [0.173 , 0.183] 1.6 [1.53 , 1.67] 0.20 [0.195 , 0.205] 1.95 [1.87 , 2.03]
AR(5) 0.16 [0.159 , 0.168] 1.63 [1.56 , 1.71] 0.18 [0.178 , 0.186] 1.95 [1.87 , 2.03]

The table reports the average out-of-sample coefficients and adjusted R2 (%), for each model across all days. The first two
columns represent the performance metrics for the regression including the intercept (equation 1-6), while the last two columns
represent the same outputs in which the intercept is forced to be zero (equation 1-7). 95 % CI are the 95% confidence intervals
for population averages, reported in brackets. The top panel of rows represents models presented in Section 1.2.3, and the
bottom panel represents the benchmarks. The sample period extends from February 2005 to February 2017.
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Table A.4: Summary Statistics - excluding crisis period (Aug 1, 2008 – Jul 31,
2009)

Variable SPY VIX
Descriptive Statistics (%)
Mean 0.0002 17.489
Std. Deviation 0.076 5.770
Skewness 0.082 1.386
Kurtosis 32.565 2.190
Correlations (%)
SPY 100 -0.728
VIX -0.728 100

The summary statistics and correlations are reported
for intraday variables in percentage form for both the
minute by minute SPDR S&P 500 ETF Trust (SPY)
and the annualized Cboe Volatility Index (VIX) at
minute frequency. The sample period extends from
February 2005 to February 2017, excluding days be-
tween August 1, 2008 and July 31, 2009, as done in
Martin (2017).

Table A.5: Model performance metrics - R2
OOS (%) - excluding crisis period

(Aug 1, 2008 – Jul 31, 2009)

Model R2
OOS (%)

Mean 95% CI
VIX 1 0.22 [-0.20 , 0.64]
VIX 2 0.24 [-0.17 , 0.65]
VIX 3 -5.12 [-5.46 , -4.78]
VIX 4 -5.11 [-5.44 , -4.77]
VIX 5 -5.28 [-5.58 , -4.97]
AR(1) -4.11 [-4.28 , -3.94]
AR(2) -8.53 [-8.87 , -8.18]
AR(3) -13.25 [-13.7 , -12.79]
AR(4) -18.49 [-19.09 , -17.89]
AR(5) -24.86 [-25.91 , -23.81]

The table reports the average out-of-sample R2
OOS (%) de-

scribed in equation 1-5 for each model across all days. 95 %
CI are the 95% confidence intervals for population averages.
The first panel of rows represents models presented in Sec-
tion 1.2.3, while the last panel represents the benchmarks.
The sample period extends from February 2005 to February
2017, excluding days between August 1, 2008 and July 31,
2009, as done in Martin (2017).
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Table A.6: Model performance metrics - Out-of-sample fit - excluding crisis
period (Aug 1, 2008 – Jul 31, 2009)

Model b Adj. R2 (%) b̃ Adj. R̃2 (%)
Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

VIX 1 0.44 [0.440 , 0.450] 5.49 [5.36 , 5.61] 0.45 [0.446 , 0.456] 5.73 [5.61 , 5.86]
VIX 2 0.44 [0.440 , 0.450] 5.49 [5.36 , 5.61] 0.45 [0.446 , 0.456] 5.74 [5.61 , 5.87]
VIX 3 0.18 [0.176 , 0.190] 0.91 [0.86 , 0.97] 0.23 [0.224 , 0.238] 1.32 [1.25 , 1.39]
VIX 4 0.18 [0.176 , 0.190] 0.91 [0.86 , 0.97] 0.23 [0.224 , 0.238] 1.32 [1.25 , 1.39]
VIX 5 0.28 [0.273 , 0.284] 2.24 [2.15 , 2.33] 0.31 [0.302 , 0.313] 2.74 [2.64 , 2.84]
AR(1) 0.27 [0.260 , 0.272] 1.83 [1.75 , 1.90] 0.30 [0.295 , 0.306] 2.32 [2.23 , 2.41]
AR(2) 0.23 [0.224 , 0.235] 1.74 [1.66 , 1.82] 0.26 [0.253 , 0.264] 2.17 [2.09 , 2.26]
AR(3) 0.20 [0.195 , 0.205] 1.65 [1.57 , 1.73] 0.23 [0.220 , 0.230] 2.04 [1.95 , 2.12]
AR(4) 0.18 [0.172 , 0.182] 1.59 [1.51 , 1.67] 0.20 [0.194 , 0.204] 1.94 [1.85 , 2.02]
AR(5) 0.16 [0.158 , 0.167] 1.62 [1.54 , 1.70] 0.18 [0.177 , 0.186] 1.94 [1.85 , 2.02]

The table reports the average out-of-sample coefficients and adjusted R2 (%), for each model across all days. The first two
columns represent the performance metrics for the regression including the intercept (equation 1-6), while the last two columns
represent the same outputs in which the intercept is forced to be zero (equation 1-7). 95 % CI are the 95% confidence intervals
for population averages, reported in brackets. The first panel of rows describe the VIX models presented in Section 1.2.3, while
the last panel represents the benchmarks. The sample period extends from February 2005 to February 2017, excluding days
between August 1, 2008 and July 31, 2009, as done in Martin (2017).

Table A.7: Model performance metrics - Out-of-sample R2 - excluding crisis
period (Aug 1, 2008 – Jul 31, 2009)

Model Non Announcement R2
OOS (%) Announcement R2

OOS (%)
Mean 95% CI Mean 95% CI

VIX 1 0.54 [0.13 , 0.94] -0.07 [-0.79 , 0.65]
VIX 2 0.54 [0.14 , 0.94] -0.03 [-0.73 , 0.67]
VIX 3 -4.58 [-4.90 , -4.26] -5.61 [-6.20 , -5.02]
VIX 4 -4.59 [-4.93 , -4.25] -5.58 [-6.15 , -5.02]
VIX 5 -5.16 [-5.55 , -4.78] -5.38 [-5.84 , -4.92]
AR(1) -3.99 [-4.18 , -3.80] -4.22 [-4.50 , -3.94]
AR(2) -8.11 [-8.38 , -7.83] -8.91 [-9.52 , -8.30]
AR(3) -12.69 [-13.14 , -12.25] -13.76 [-14.53 , -12.98]
AR(4) -17.73 [-18.31 , -17.14] -19.20 [-20.22 , -18.18]
AR(5) -23.49 [-24.15 , -22.83] -26.11 [-28.03 , -24.20]

The table reports the average out-of-sample R2
OOS (%) described in equation 1-5 for each model

across all days. 95 % CI are the 95% confidence intervals for population averages. The top panel of
rows represents models presented in Section 1.2.3, the bottom panel represents the benchmarks.
The first two columns represent the statistics for the subsample containing non-announcement
dates, and the last two columns report the subsample for macroeconomic announcements days.
The sample period extends from February 2005 to February 2017, excluding days between August
1, 2008 and July 31, 2009, as done in Martin (2017).
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Table A.8: Summary Statistics

Variable Non Announcement Announcement
SPY VIX SPY VIX

Descriptive Statistics (%)
Mean 0.00002 19.474 0.0003 19.351
Std. Deviation 0.091 9.383 0.103 9.378
Skewness 0.298 2.421 0.284 2.543
Kurtosis 18.463 7.659 53.453 8.612
Correlations (%)
SPY 100 −0.029 100 −0.684
VIX −0.029 100 −0.684 100

The summary statistics and correlations are reported for intraday variables in per-
centage form for both the minute by minute SPDR S&P 500 ETF Trust (SPY)
and the annualized Cboe Volatility Index (VIX) at minute frequency. The first two
columns represent the statistics for the subsample containing non-announcement
dates, while the last two columns report the subsample for macroeconomic an-
nouncements days. The sample period extends from February 2005 to February
2017.

Table A.9: Model performance metrics - Out-of-sample R2

Model Non Announcement R2
OOS (%) Announcement R2

OOS (%)
Mean 95% CI Mean 95% CI

VIX 1 0.49 [0.07 , 0.90] 0.04 [-0.63 , 0.71]
VIX 2 0.49 [0.08 , 0.90] 0.07 [-0.58 , 0.72]
VIX 3 -4.65 [-4.98 , -4.32] -5.54 [-6.09 , -5.00]
VIX 4 -4.66 [-5.00 , -4.32] -5.52 [-6.05 , -5.00]
VIX 5 -5.14 [-5.51 , -4.77] -5.29 [-5.71 , -4.86]
AR(1) -3.97 [-4.15 , -3.79] -4.17 [-4.43 , -3.90]
AR(2) -8.09 [-8.35 , -7.83] -8.81 [-9.37 , -8.25]
AR(3) -12.66 [-13.08 , -12.24] -13.61 [-14.32 , -12.89]
AR(4) -17.66 [-18.20 , -17.11] -19.00 [-19.94 , -18.05]
AR(5) -23.40 [-24.02 , -22.79] -25.84 [-27.61 , -24.07]

The table reports the average out-of-sample R2
OOS (%) described in equation 1-5 for each model

across all days. 95 % CI are the 95% confidence intervals for population averages. The top panel of
rows represents models presented in Section 1.2.3, the bottom panel represents the benchmarks.
The first two columns represent the statistics for the subsample containing non-announcement
dates, and the last two columns report the subsample for macroeconomic announcements days.
The sample period extends from February 2005 to February 2017.

DBD
PUC-Rio - Certificação Digital Nº 1811820/CA



Appendix A. Appendix 60

A.2
Modeling and Forecasting Intraday Market Returns: a Machine Learning
Approach

A.2.1
Figures

Figure A.7: Architecture of the Long-Short-Term Memory Cell (LSTM)
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Figure A.8: Information flow in a LTSM Cell

DBD
PUC-Rio - Certificação Digital Nº 1811820/CA



Appendix A. Appendix 61

Figure A.9: Average rt,m and V IXt,m at each day t

The figure presents the daily average rt,m and V IXt,m computed
minute-by-minute within each day. The color scale represents the
different years analyzed in the sample. The sample period extends
from January 2005 to December 2016.
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Figure A.10: Intraday prediction: VIX models (January 8, 2007)

The plots above represent the intraday rolling prediction of minute-by-minute log-
returns on the market. As detailed in Section 2.4, we run 340 estimations between
09:40 and 15:50, where the first prediction takes place at 10:11 (after the first 30
minute window). The plots represent the LSTM and Random Forest VIX-based models
compared to its respective OLS-VIX benchmark, as well as the naive projection. The
sample period extends from January 2005 to December 2016.
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Figure A.11: Intraday prediction: AR(1) models (January 8, 2007)

The plots above represent the intraday rolling prediction of minute-by-minute log-
returns on the market. As detailed in Section 2.4, we run 340 estimations between 09:40
and 15:50, where the first prediction takes place at 10:11 (after the first 30 minute
window). The plots represent the LSTM and Random Forest AR(1)-based models
compared to its respective OLS-AR(1) benchmark, as well as the naive projection.
The sample period extends from January 2005 to December 2016.
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Figure A.12: R2
OOS distribution and density plots

The figure presents the density plots for the daily R2
OOS distribution generated

by each model. The first row of plots display machine learning models, divided by
the groups of regressors described in Section 2.4.1, while the second row exhibits
benchmark OLS models detailed in equations 2-6. The sample period extends from
January 2005 to December 2016.
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Figure A.13: Daily RMSE: Machine Learning models vs Benchmarks

The plots above represent each machine learning model (vertical axis) against its
respective benchmark (horizontal axis). The first column of plots displays the OLS-
AR(1) model, while the second reports the OLS-VIX model. The rows of plots
represent the LSTM and Random Forest models using AR(1) and VIX as single
regressors, respectively. The sample period extends from January 2005 to December
2016.
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A.2.2
Tables

Table A.10: Summary Statistics

Variable SPY VIX
Descriptive Statistics (%)
Mean 0.0001 19.519
Std. Deviation 0.099 9.404
Skewness 0.168 2.483
Kurtosis 42.886 8.140
Correlations (%)
SPY 100 −0.432
VIX −0.432 100

The summary statistics and correlations are reported
for intraday variables in percentage form for both the
minute by minute SPDR S&P 500 ETF Trust (SPY) and
the annualized Cboe Volatility Index (VIX) at minute
frequency. The sample period extends from January 2005
to December 2016.
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Table A.11: Out-of-sample R2

R2
OOS (%) Mean Median Std. Deviation

VIX AR(1) Agg. VIX AR(1) Agg. VIX AR(1) Agg.
LSTM 6.52 0.41 1.68 8.76 2.89 4.51 11.46 11.25 13.45
RF 4.45 -9.73 4.17 4.43 -9.75 4.32 9.27 7.77 8.86
OLS-AR(1) - -2.11 -2.11 - -1.99 -1.99 - 6.46 6.46
OLS-RV - - -14.07 - - -7.20 - - 28.22
OLS-VIX 4.76 - 4.76 5.80 - 5.80 10.81 - 10.81
OLS-∆VIX - - -3.42 - - -2.98 - - 7.52
OLS-VRP - - -14.11 - - -7.20 - - 28.44

The table reports mean, median, and standard deviation of the out-of-sample R2 (R2
OOS)

throughout the sample. The top panel reports the estimation outputs of machine learning
models, while the bottom panel displays the ordinary least squares regression benchmark
models, detailed in Section 2.4. For each metric, the columns represent the groups of
predictors described in Section 2.4.1: VIX, AR(1), and Aggregate. The sample period extends
from January 2005 to December 2016.

Table A.12: Root-mean-square error (RMSE)

RMSE (×104) Mean Median Std. Deviation
VIX AR(1) Agg. VIX AR(1) Agg. VIX AR(1) Agg.

Naive 0.0085 0.0086 0.0086 0.0043 0.0043 0.0043 0.0125 0.0129 0.0127
LSTM 0.0080 0.0086 0.0084 0.0041 0.0044 0.0043 0.0117 0.0127 0.0123
RF 0.0081 0.0095 0.0082 0.0041 0.0048 0.0041 0.0121 0.0143 0.0123
OLS-AR(1) - 0.0087 0.0087 - 0.0044 0.0044 - 0.0128 0.0128
OLS-RV - - 0.0098 - - 0.0051 - - 0.0145
OLS-VIX 0.0081 - 0.0081 0.0041 - 0.0041 0.0121 - 0.0121
OLS-∆VIX - - 0.0089 - - 0.0046 - - 0.0131
OLS-VRP - - 0.0098 - - 0.0051 - - 0.0145

The table reports mean, median, and standard deviation of the Root-mean-square error
(RMSE) throughout the sample. The top panel reports the estimation outputs of machine
learning models, while the bottom panel displays the ordinary least squares regression
benchmark models, detailed in Section 2.4. For each metric, the columns represent the
groups of predictors described in Section 2.4.1: VIX, AR(1), and Aggregate. The sample
period extends from January 2005 to December 2016.
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A.3
Factor Augmented High-Dimension Vector Autoregressive Models: Appli-
cation to a Panel of Realized Volatilities

A.3.1
Tables

Table A.13: Model performance metrics (R2
OOS)

1-year estimation window
R2

OOS First Step Second Step Third Step
HAR 23.3% 23.6% 23.7%
HARJ 24.2% 24.2% 24.2%
HARQ 25.0% 25.0% 25.0%
HARQF 24.8% 24.6% 24.7%
HARRS 23.6% 23.9% 23.9%
Vol. Factor OLS -1316.5% 12.7% 13.3%

2-year estimation window
R2

OOS First Step Second Step Third Step
HAR 18.7% 19.5% 19.5%
HARJ 19.7% 20.1% 20.0%
HARQ 20.6% 21.0% 20.9%
HARQF 20.5% 20.7% 20.7%
HARRS 19.1% 19.8% 19.7%
Vol. Factor OLS -1410.2% 14.9% 14.8%

4-year estimation window
R2

OOS First Step Second Step Third Step
HAR 22.0% 22.9% 22.8%
HARJ 22.9% 23.5% 23.5%
HARQ 23.5% 24.1% 24.1%
HARQF 23.7% 24.1% 24.1%
HARRS 22.4% 23.2% 23.2%
Vol. Factor OLS -1352.8% 21.0% 19.3%

5-year estimation window
R2

OOS First Step Second Step Third Step
HAR 24.7% 25.5% 25.5%
HARJ 25.6% 26.1% 26.1%
HARQ 26.0% 26.6% 26.5%
HARQF 26.2% 26.6% 26.6%
HARRS 25.1% 25.8% 25.7%
Vol. Factor OLS -1303.9% 24.4% 22.9%

The tables above report the out-of-sample R2 (R2
OOS) for each model using different estimation windows.

In each panel, the columns represent the chosen model outputs computed in the first, second, and third
estimation stages, including the heterogeneous autoregressive (HAR) model, and its extensions HAR-J,
HAR-RS, HAR-Q and HARQ-F, as well as the standard OLS volatility factors approach. The sample period
extends from January 2006 to February 2017. We use estimation windows of 252 (≈ 1 year), 504 (≈ 2 years),
1008 (≈ 4 years), and 1260 business days (≈ 5 years). For comparison purposes, all metrics are computed
using the same out-of-sample range as the of 5-year estimates.
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Table A.14: Model performance metrics (MAE)

1-year estimation window
MAE First Step Second Step Third Step
HAR 0.279 0.2766 0.2765
HARJ 0.2728 0.2727 0.2726
HARQ 0.2669 0.267 0.2667
HARQF 0.2685 0.2696 0.2692
HARRS 0.277 0.275 0.2749
Vol. Factor OLS 95.2189 0.359 0.3551

2-year estimation window
MAE First Step Second Step Third Step
HAR 0.2759 0.2707 0.2709
HARJ 0.2695 0.2669 0.2671
HARQ 0.2636 0.2611 0.2612
HARQF 0.2642 0.2626 0.2625
HARRS 0.2732 0.269 0.2692
Vol. Factor OLS 94.7516 0.3026 0.3034

4-year estimation window
MAE First Step Second Step Third Step
HAR 0.2751 0.2686 0.269
HARJ 0.2683 0.2644 0.2646
HARQ 0.2646 0.2601 0.2604
HARQF 0.2633 0.2602 0.2603
HARRS 0.272 0.2665 0.2668
Vol. Factor OLS 94.6134 0.2829 0.295

5-year estimation window
MAE First Step Second Step Third Step
HAR 0.2746 0.2687 0.2691
HARJ 0.268 0.2644 0.2647
HARQ 0.2655 0.2611 0.2615
HARQF 0.2636 0.2607 0.261
HARRS 0.2716 0.2667 0.267
Vol. Factor OLS 94.5559 0.2771 0.2886

The tables above report the mean absolute error (MAE) in the right panel for each model using different
estimation windows. In each panel, the columns represent the chosen model outputs computed in the
first, second, and third estimation stages, including the heterogeneous autoregressive (HAR) model, and its
extensions HAR-J, HAR-RS, HAR-Q and HARQ-F, as well as the standard OLS volatility factors approach.
The sample period extends from January 2006 to February 2017. We use estimation windows of 252 (≈ 1
year), 504 (≈ 2 years), 1008 (≈ 4 years), and 1260 business days (≈ 5 years). For comparison purposes, all
metrics are computed using the same out-of-sample range as the of 5-year estimates.
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