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1 Introduction

This paper is concerned with the interaction between monetary policy and asset pricing. We

present a DSGE model that considers a portfolio allocation� stocks and bonds� made by

agents with heterogeneous information to analyze (i) how asset prices exert real e¤ects in

the economy, (ii) how central banks should respond to macroeconomic conditions to prevent

asset price boom-bust episodes within the economy, (iii) how informational factors determine

the moment of a bust and (iv) how real and informational shocks alter asset prices.

Analogously to Areosa, Areosa, and Carrasco (2010), our model combines sticky and

dispersed information. The model incorporates informational stickiness by assuming, as

in Mankiw and Reis (2002), that only a �xed fraction of agents update their information

sets each period, and the model includes informational dispersion by positing, as in Morris

and Shin (2002), that public and private signals about current shocks, which describe the

state of the economy, are available to all agents in each period, even to those who have not

updated their information set. In addition to giving imperfect information about the state

of the economy, public signals cause agents to coordinate their actions by helping them to

predict one another�s actions, as shown in Morris and Shin (2002), while stickiness adds

a dynamic dimension to the strategic use of information by allowing agents to predict how

information di¤uses over time. For this reason, we believe that a sticky-dispersed information

(SDI) model creates the perfect environment for studying dynamic models that incorporate

a game of incomplete information.

We consider a model with two assets traded in di¤erent stages within a period� morning

and afternoon. In the morning, on the basis of new information, households negotiate stocks

while �rms set their prices. In the afternoon, after observing the outcome of the �rst stage of

the game, households determine their consumption, working hours and the amount to invest

in the bond market while the central bank sets the interest rate. The decision to break up each

period into two di¤erent stages has two important implications. First, as households invest in

stock and bond markets at di¤erent time points, they are not necessarily indi¤erent regarding

these two markets. Second, as households make their decisions regarding consumption and

saving after observing the results of their stock investments, there is a wealth e¤ect on

consumption.

From this framework, we prove that, after a shock, asset prices can persistently increase

over many periods and suddenly drop, a result that is consistent with the general idea of a

boom-bust episode. The model also shows that as asset prices increase, in�ation stays low
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and the output gap becomes positive. This long period of exuberance is consistent with the

recent empirical literature. After the bust, both the stock market index and the output gap

become negative and slowly recover until reaching a steady state. These dynamics arise from

the agents�decisions and depend on how the central bank responds to expected in�ation and

asset price variations. Informational factors� the degree of informational stickiness and the

relative importance of public information� are important in determining the moment of the

bust as well as in explaining why not all shocks generate asset price booms. We dissociate

the occurrence of boom-bust episodes from the argument that asset prices may not re�ect

fundamentals. As the central bank may want to prevent extreme movements, even if this

dynamic does re�ect fundamentals, we derive a criterion, which relates the coe¢ cients of the

monetary policy rule to the other parameters of the model, to show how the central bank

should react to prevent the creation of boom-bust episodes in the economy. When the central

bank is permissive of the creation of boom-bust episodes, the economy becomes much more

volatile, given that the e¤ects of a shock are ampli�ed, even if it does not trigger any stock

market booms. We also show that, in equilibrium, there is no trade in the stock market, a

result that is consistent with Milgrom and Stokey (1982).

Methodological Contribution. Since the seminal paper of Grossman and Stiglitz

(1980), many studies have considered the use of dispersed information in asset pricing.1

Nevertheless, most of these studies consider static models. Even those that incorporate

dynamics, such as Allen, Morris, and Shin (2006) and Albagli, Hellwig, and Tsyvinski (2011),

as far as we know, build small models that do not allow one to consider the implications

for monetary policy. The degree to which the strategic use of information in asset pricing

relates to monetary policy is a perennial topic of discussion among scholars because of the

di¢ culty of solving a dynamic model when agents take asset prices as a signal of the current

state of the economy, a framework that has become standard in the literature.

In opposition to Grossman and Stiglitz (1980), we posit that agents do not take informa-

tion from the aggregate price index or the stock market index to avoid endogenous signaling.

This assumption is also present in Angeletos and La�O(2011b, 2011a) and Mankiw and Reis

(2007) for DSGE models with heterogeneously informed agents that do not consider asset

pricing.2 Even considering only exogenous signaling, solving a model with information het-

1See section 2 for a more detailed literature review.
2Areosa, Areosa, and Carrasco (2010) shows that the trajectory obtained for the aggregate price index

in a sticky-dispersed model that does not consider endogenous signaling converges to that stated in Morris
and Shin (2002) for the limit values of some parameters. This result proves that the equilibrium derived in
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erogeneity is challenging because it is not possible to rely on computational methods, as

Blanchard and Kahn (1980), to obtain the dynamics of the aggregate variables. Although

we have not been the �rst to solve a DSGE model that incorporate informational hetero-

geneity, our approach departs from what have been done before. Therefore, our contribution

is also methodological.

We derive the equilibrium from the aggregation of agents�decisions, which depend on

their (individual) information set. We proved a proposition that shows how to compute ag-

gregate expectations when agents have heterogeneous information. This proposition is not

model speci�c and depends only on the informational structure, meaning the it can be used

to solve any other model that incorporates sticky-dispersed information. By means of this

proposition, we analytically derive the equilibrium dynamics of the aggregate variables. In

equilibrium, aggregate variables are linear combinations of current and past shocks. The

complexity of these combinations makes it extremely di¢ cult for agents to extract informa-

tion about any shock from the aggregate variables, which reinforces the idea that agents do

not derive information from these variables.

Organization. The next section brie�y describes the literature. We introduce the

model in Section 3 and its log-linear version in Section 9.1. We describe agents�information

set in Section 5 and derive the equilibrium in Section 6. We calibrate the model to evaluate its

quantitative implications in Section 7 and provide concluding remarks in Section 8. Details

of all the derivations are available from the authors.

2 Related Literature

Theoretical Literature. Most models in the monetary policy literature assume a

representative agent and complete information. Clarida, Gali, and Gertler (1999) describes

the workhorse New Keynesian model. This basic model has been extended in many dif-

ferent directions. In particular, there has been an increasing interest in how �nancial fric-

tion interacts with monetary policy. Bernanke, Gertler, and Gilchrist (1999) is regarded

as being the most in�uential paper on this subject. Other important contributions that

present models featuring both nominal rigidities and �nancial friction are Kiyotaki and

Moore (1997), Christiano, Motto, and Rostagno (2007), Gertler and Karadi (2011) and

Morris and Shin (2002) does not consider the agents to extract any information from the aggregate price
index.
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Cúrdia and Woodford(2010b, 2010a, 2011).

To some extent, our work revisits some of the questions addressed in Bernanke and Gertler

(1999). Nevertheless, we choose a completely di¤erent approach to analyze those questions.

While we focus on the strategic use of information in asset pricing, they modify the model

proposed in Bernanke, Gertler, and Gilchrist (1999) by allowing asset prices to deviate from

fundamentals and rely on the balance sheet channel to show that asset price �uctuations can

create real e¤ects in the economy. Because of these di¤erences, we can derive the conditions

for the occurrence of a boom-bust episode. Furthermore, although the central bank does

not need to react to changes in asset prices, such a "lean against the wind" policy can help

the central bank prevent disruptive episodes in the economy without becoming excessively

reactive to expected in�ation.

A distinct strand of the literature, one that dates back to Phelps (1968) and Lucas (1972)

and is revisited in Woodford (2003), studies the various macroeconomic implications of het-

erogeneous information without considering the interaction with asset pricing. Sims (2003)

studies the case in which agents have a limited capacity for processing information. More

recently, Angeletos and La�O (2011b) studies optimal monetary policy in an environment in

which �rms have incomplete information while Mankiw and Reis (2007) analyzes a general

equilibrium model with sticky information. Christiano, Ilut, Motto, and Rostagno (2008)

introduces informational friction in a homogeneous information model to show that a boom

phase in capital (or stock) price starts when agents obtain new information about a future

improvement in technology and ends some periods later when another informational shock

leads agents to realize that they have been overly optimistic.

Bubbles, measured as deviations from the fundamental price, have also been the subject

of many theoretical papers. Rational bubbles occur in a setting in which all agents have

rational expectations and share the same information. As in Blanchard and Watson (1983)

and Bernanke and Gertler (1999), in each period, the bubble persists with some probability

or bursts with the complementary probability. As a consequence, the bubble necessarily

grows with expectations at a rate that depends on the interest rate. The literature on limits

to arbitrage challenges the view that rational investors should go against a bubble even

before it emerges. Abreu and Brunnermeier (2003) considers a model in which an asset

bubble can persist despite the presence of rational arbitrageurs because rational traders

face a synchronization risk in knowing that coordination is required to bring the market

down. Bubbles can also emerge when investors have heterogeneous beliefs and face short-

sale constraints or when investors have di¤erent information, but still share a common prior
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distribution. Miller (1977) analyzes the former case while Allen, Morris, and Postlewaite

(1993) presents a good example of the latter. In these models, an investor might hold an

overpriced asset if he thinks he can resell it in the future to a less informed trader or to

someone who holds biased beliefs.

Empirical Literature. The empirical literature addresses many of the issues men-

tioned in our study. One line of research provides evidence for the existence of a stock

market wealth e¤ect on consumption. Funke (2004) �nds a small but statistically signi�cant

e¤ect in 16 emerging markets over 1985�2000. ? and Carroll, Otsuka, and Slacalek (2011)
�nd similar results for advanced economies� Japan, European countries and the United

States.

Another line of research documents some stylized facts that are associated with stock

market booms. Bordo and Wheelock (2004, 2007) draws attention to the fact that stock

market booms are periods of low in�ation. In particular, the work of Adalid and Detken

(2007) documents that, in boom-bust episodes, in�ation is low in the boom phase and

then rises slightly at the end. On the basis of vector autoregression evidence, Barsky and

Sims (2011) argues that information shocks drive stock prices and economic activity up and

in�ation down.

3 The Model

The model encompasses a continuum of in�nitely-lived households, indexed by z 2 [0; 1], a
continuum of �rms, indexed by k 2 [0; 1], a central bank and the government. The households
invest in bonds and stocks. They also o¤er labor in a perfectly competitive market with fully

�exible wages and purchase di¤erentiated goods in a retail market with monopolistically

competitive �rms. The households and �rms have heterogeneous information about the state

of the economy. We assume that each household z owns a �rm k. This assumption ensures

that information is distributed among �rms in exactly the same way that it is distributed

among households.

Timing. Each period has two stages: morning and afternoon. In the morning, new

private and public signals, which give imperfect information about the state of the economy,

become available to the households and �rms. On the basis of this information, households

buy or sell a stock portfolio and �rms decide upon their prices. In the afternoon, after goods
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and stock prices become publicly known, households decide on consumption, working hours

and how much to invest in the bond market while the central bank sets the interest rate.

We do not consider a cash-in-advance constraint as in Christiano, Eichenbaum, and Evans

(2005) and Ravenna and Walsh (2006). All payments occur in the afternoon, although in

the morning, agents commit themselves with some payments while they negotiate stocks.

Firms pay dividends at the end of the period.

3.1 Households

The preference of household z at period t is represented by an expected utility function that

is separable in consumption, C� (z), and working hours, H� (z):

1X
�=t

���tE

"
(C� (z))

1��

1� � � (H� (z))
1+!

1 + !

�����=t (z)
#
: (1)

We use E [ �j =t (z)] to represent the expectation conditioned at the information set =t (z) of
household z and � 2 (0; 1) to denote the discount factor.
Household z uses a Dixit and Stiglitz (1977) aggregator to combine the goods purchased

from each �rm k, Ct (z; k), in a consumption bundle, Ct (z),

Ct (z) =

�Z
(Ct (z; k))

1
� dk

��
:

Therefore, the price index of the economy, Pt, and demand for each good k are given by

Pt =

�Z
(Pt (k))

1
1�� dk

�1��
; (2)

Ct (z; k) = Ct (z)

�
Pt (k)

Pt

� �
1��

;

where � > 1.

Household z chooses how much to invest in bonds, Bt (z), and in a portfolio that holds

the same share of each �rm�s capital stock, BSt (z), considering the budget constraint

Bt (z) +B
S
t (z)Qt = Bt�1 (z) (1 + rt�1) +B

S
t�1 (z) (Qt +Dt�1)

+WtHt (z)� PtCt (z)� Tt (z)� Vt (z) ;
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where Wt is the wage per hour received by each agent, rt is the nominal interest rate, Tt (z)

is a lump-sum tax, Qt is the price of the portfolio per share, Dt is the amount of dividends

paid per share and, in a similar manner to Agénor, Alper, and da Silva (2011), Vt (z) is a

transaction costs associated with changes in stock holdings. In this context BSt (z) represents

the proportion of the stock market owned by household z.

3.1.1 First Stage: Morning

In the morning, households decide how much to invest in the stock market. Considering

Vt (z) =
K

2

�
BSt (z)

�2
1 + rt

;

we get from the �rst order conditions associated to BSt (z) and Bt (z) that

BSt (z) =
1

K
E [Qt+1 +Dt �Qt (1 + rt)j =t (z)] : (3)

This relation tells that households hold stock shares as long as they believe that the return

they will get in the stock market will exceed the opportunity costs of not investing in the

bond market. The constant K, besides converting the transaction cost into monetary units,

captures the sensitiveness of stock holdings to the return agents expect to obtain on stocks

relative to the return o¤ered by the bond market

To some extent, this relation resembles the demand for assets stated in Grossman and

Stiglitz (1980), considering that (Qt+1+Dt) represents the payo¤ households will receive on

the risky asset. In their work, K = aV where a and V = V [Qt+1 +Dt �Qt (1 + rt)j =t (z)]
are the coe¢ cient of absolute risk aversion and the conditional variance, that would be equal

for all agents.3 In our work, however, we cannot give the same interpretation since the

conditional variance di¤ers between agents due to informational stickiness.

We use a simplifying assumption by stipulating that dividends follow

Dt = '+ �Qt + vt: (4)

We justify this assumption in terms of the steady-state levels.4

3In fact, they write V = V [Qt+1 +Dtj =t (z)] because agents observe Qt (1 + rt).
4In Subsection (9.1.1), we show that �D = '+ � �Q in steady-state. Therefore, equation (4) considers small

departures from the steady-state relation.
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3.1.2 Second Stage: Afternoon

In the afternoon, households choose consumption, working hours and how much to invest in

the bond market. This choice occurs after households observing the outcome of the �rst stage.

We argue that househods incorporate this new information in two di¤erent ways. First, as

they observe Pt and Qt, they do not have to make predictions about it. This approach di¤ers

from Grossman and Stiglitz (1980) as households do not try to decompose these variables to

extract information about the state of the economy. Second, as households already know how

much was allocated in stocks, they will choose st (z) �
�
Bt (z) +B

S
t (z)Qt

�
=BSt (z)Qt, which

represents the amount of wealth household z wants to hold at period t, expressed relative

to the amount invested in stocks. Although choosing st (z) indirectly determines how much

household z spends on bonds when BSt (z)Qt is known, it is not equivalent to choosing Bt (z).

Choosing st (z) means that households consider what has occurred in the stock market when

they decide how much to invest in bonds, rather than facing two independent investment

decisions.

Therefore, in each period t, each household z chooses Ct (z), Ht (z) and st (z) in order to

solve

max
P1

�=t �
��tE

"
(C� (z))

1��

1� � � (H� (z))
1+!

1 + !

�����=�t (z)
#

s.t. s� (z)B
S
� (z)Q� = s��1 (z)B

S
��1 (z)Q��1 (1 + r��1)

+BS��1 (z) (Q� +D� � (1 + r��1)Q��1)
+W�H� (z)� P�C� (z)� T� (z)� V� (z) :

where =�t (z) denotes the information set of household z after the outcome of the previous
stage becomes publicly available.

From the �rst-order conditions of this problem, we obtain a labor supply relation and an

Euler equation,

Wt

Pt
= (Ht (z))

! (Ct (z))
� ; (5)

(Ct (z))
��

Pt
= �E

�
BSt+1 (z)Qt+1
BSt (z)Qt

(Ct+1 (z))
��

Pt+1
(1 + rt)

����=�t (z)� : (6)

The Euler equation, expressed in (6), incorporates a new term that represents the ex-

pected variation in the wealth allocated in the stock market. This augmented Euler equation
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exposes the fact that, in a dynamic optimization program, transformations of the choice vari-

able induces the other variables to evolve di¤erently to reach the same point of maximum.

We justify the use of st (z) as the relevant choice variable when agents face investment

opportunities in two di¤erent markets on the basis of three arguments. First, households

may be willing to incorporate the outcome of the �rst stage when they take their decisions

at the second stage. This information is implicit in st (z). Second, although the new term

does not represent total wealth, ~Wt (z) � Bt (z) +BSt (z)Qt, it captures the wealth e¤ect on
consumption through variations in the stock market index. Mathematically,

@Ct (z)

@ ~Wt (z)
=
@Ct (z)

@Qt

@Qt

@ ~Wt (z)
6= 0:

Finally, st (z) incorporates a portfolio allocation decision. In order to make this point clear,

we rewrite the budget constraint as

~Wt (z) = ~Wt�1 (z) (1 +Rt (z)) +WtHt (z)� PtCt (z)� Tt (z)

where Rt (z) is the return household z obtains for transferring wealth from one period to

another, given by

1 +Rt (z) =

�
1� 1

st�1 (z)

�
(1 + rt�1) +

1

st�1 (z)

�
Qt +Dt�1

Qt�1

�
: (7)

Equation (7) shows that the return household z receives on investments may be expressed

as a convex combination of the return it receives on bonds and stocks, proving that st (z)

includes a portfolio composition decision.

3.2 Firms

In every period t, each �rm k chooses Pt (k) in order to maximize the expected pro�t, �t (k),

given by

�t (k) � E [ (1 + s)Pt (k)Yt (k)�WtHt (k)j =t (k)] ;

where s is the subsidy that o¤sets the e¤ect of imperfect competition on output, Ht (k) is

the total hours hired by �rm k and Yt (k) is the amount produced by �rm k. Considering

that the production function of each �rm is

Yt (k) = AtHt (k) ;
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where At > 0 is an exogenous technology factor, and that total demand, including govern-

ment purchases, for the good k is

Yt (k) = Yt

�
Pt (k)

Pt

� �
1��

;

the price that the �rm k would choose to maximize its expected pro�t is

E

�
Yt (Pt)

�
��1

�
(1 + s) (Pt (k))

�
1�� � �Wt

At
(Pt (k))

�
1���1

�����=t (k)� = 0: (8)

If �rms had full information about the state of the economy, they would maximize pro�ts

by setting

P �t =
�

1 + s

Wt

At
: (9)

3.3 Potential Output

We de�ne potential output as the output that would prevail if all agents had complete informa-

tion about the state of the economy. This de�nition recognizes that information heterogeneity

represents an ine¢ ciency that prevents �rms from optimizing their pro�ts and households

from maximizing their utility. Moreover, because prices are �exible, under complete infor-

mation, all �rms would maximize their pro�ts by choosing the same price P �t , expressed in

(9). That is, under complete information, Pt (k) = Pt = P �t and consequently

1 =
Pt (k)

Pt
=

�

1 + s

Wt

PtAt
:

When all households have the same information, they choose the same level of consump-

tion and working hours. Using (5), we can implicitly de�ne the potential output as

1 =
�

1 + s

1

At

�
Y nt
At

�!
(Y nt �Gt)

� : (10)
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4 Reduced form

We summarize the log-linear version of the model in two equations that describes dynamics

of the aggregate variables, P̂t and Q̂t,5

P̂t = �E

�
�P P̂t + �QQ̂t �

�
� + !

�

�
Ut + !Ĝt � (1 + !) Ât

�
(11)

0 = �E
h�
1� ��1�Q

� �
Q̂t+1 � Q̂t

�
� ��1�P

�
P̂t+1 � P̂t

�
+ ~� v̂t � ��1ût

i
: (12)

In these equations, ŵt and �E [�] denote the percent deviation of a variable wt and, as in
Morris and Shin (2002), the average expectation �E [�] =

R
E [ �j =t (k)] dk. The constants �P ,

�Q and ~� depend on the parameters of the model.6

We obtain these equations from the aggregation of individual decisions, considering that

the policy rule takes the form of

r̂t = �PE
CB
t

h
P̂t+1 � P̂t

i
+ �QE

CB
t

h
Q̂t+1 � Q̂t

i
+ ût; (13)

where ECBt [�] is the expectation conditioned on central bank�s information set. We consider
that the central bank updates its information set every period, meaning that it knows as

much about the state of the economy as the most informed agent.7 Following Bernanke and

Gertler (1999), this simple forward-looking policy rule does not include the output gap to

focus on price �uctuations. The weights �P and �Q measures the intensity of the policy

response to expected in�ation and to expected growth in the stock market index. In some

cases, we will set �Q = 0 to evalute how the dynamics of the aggregate variables change when

the central bank does not "lean against the wind". The term ût represents the monetary

shock

Equation (11) comes from the aggregation of pricing decisions, P̂t =
R
P̂t (k) dk, while

equation (12) results from the log-linear version of the market clearing condition
R
BSt (z) dz =

1. These equations make clear that the dynamics of the aggregate variables depend on how

agents build their expectations on the state of the economy, described by the shocks Ĝt, Ât,

v̂t and ût (given that Ut is a function of ût+k).

5In the appendix, we discuss the steady-state and the linear model.
6More speci�cally, �P � 1 +

�
�+!
�

�
(�P � 1), �Q �

�
�+!
�

�
(1 + �Q) and ~� = �=( �D �K), where �P and

�Q are parameters of the policy rule, as shown in (13), and �D is the stady state value of Dt, as shown in
the appendix.

7Peek, Rosengren, and Tootell (2003) �nds evidence that the Federal Reserve has an informational ad-
vantage over the public that helps to improve macroeconomic forecasts.
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5 Information

In our model, four exogenous variables a¤ect the economy in each period: productivity (Ât),

government spending (Ĝt), dividend surprise (v̂t) and monetary surprise (ût).8 The agents

know that each of these variables follows an AR(1) process,

Ât = �aÂt�1 + ât ât � N (0; 
�1a ) ;
Ĝt = �gĜt�1 + ĝt ĝt � N

�
0; 
�1g

�
;

v̂t = �vv̂t�1 + "̂t "̂t � N (0; 
�1" ) ;
ût = �uût�1 + �̂t �̂t � N

�
0; 
�1�

�
;

with persistence �w 2 (0; 1), for w 2 fa; g; "; �g. The set of shocks, �t � (ât; ĝt; v̂t; ût),

characterizes the current state of the economy. If agents had complete information, they

would observe all states, �t�k, for all k � 0. Nevertheless, in our model, the information is
both sticky and dispersed.

As in Mankiw and Reis (2002), a fraction 1 � � of households in each period receives
information about the current and past state of the economy whereas the other fraction �

does not. For simplicity, the probability of being selected to receive information about the

state of the economy is the same across agents and is independent of history. We use �j
to refer to the set of all households that last received information about the state of the

economy at t � j and zj to refer to z 2 �j. Therefore, because of stickiness, household zj
observes �t�k for all k � j.
Similarly to Morris and Shin (2002), public and private signals about the state of the

economy are available in every period, even for those who have not been selected to update

their information set because of informational stickiness. For ŵt�k 2
�
ât�k; ĝt�k; "̂t�k; �̂t�k

	
,

these signals take the form of

xwt�k (z) = ŵt�k + �
w
t�k (z) ; �wt�k (z) � N

�
0; ��1w

�
;

ywt�k = ŵt�k + �
w
t�k; �wt�k � N (0; ��1w ) :

where �wt�k (z) and �
w
t�k are informational shocks respectively associated with private and

public signals. For simplicity, all informational shocks are independent across time and

between agents. That is, for any k 6= i and any z 6= ~z,
8We use the expressions "productivity shock", "�scal shock", "dividend shock" and "monetary shock" to

refer to ât, ĝt, "̂t and �̂t, respectively.
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�wt�k (z) ? �wt�i (z) ? �wt�i (~z) ? �wt�k:

In summary, the information set of household zj is given by

=t (zj) =
n
~Xt (zj) ; ~Yt;�t�j

o
;

where ~Xt (zj) and ~Yt are the set of all private and public signals received by household zj
prior to period t and �t�j is a set that encompasses past states of the economy prior to

period t� j,

~Xt (zj) � fxt�k (zj)g1k=0 ; xt�k (zj) �
�
xat�k (zj) ; x

g
t�k (zj) ; x

"
t�k (zj) ; x

�
t�k (zj)

�
;

~Yt � fyt�kg1k=0 ; yt�k �
�
yat�k; y

g
t�k; y

"
t�k; y

�
t�k
�
;

�t�j � f�t�kg1k=j ; �t�k � (ât�k; ĝt�k; v̂t�k; ût�k) :

We specify that the central bank updates its information set every period. Thus, =CBt =

f ~XCB
t ; ~Yt;�tg. Because the central bank observes shocks every period, it does not need to

use public and private signals to build its expectations.

6 Equilibrium

In order to compute the equilibrium, it is necessary to obtain P̂t and Q̂t that simultaneously

satisfy (11) and (12). We determine the equilibrium dynamics of the other aggregate variables

as a function of P̂t, Q̂t and shocks. The di¢ culty in �nding P̂t and Q̂t lies in the fact that, as

agents have di¤erent expectations, we cannot rely on any computational method to evaluate

the solution. In this situation, we need to derive the solution analytically.9

We use the method of matching coe¢ cients to obtain the equilibrium. First, we assume

that the equilibrium is linear and takes the form of

P̂t =
1P
k=0

�
cakât�k + c

g
kĝt�k + c

"
k"̂t�k + c

�
k�̂t�k

�
+

1P
k=0

�
~caky

a
t�k + ~c

g
ky
g
t�k + ~c

"
ky
"
t�k + ~c

�
ky
�
t�k
�

Q̂t =
1P
k=0

�
dakât�k + d

g
kĝt�k + d

"
k"̂t�k + d

�
k�̂t�k

�
+

1P
k=0

h
~daky

a
t�k +

~dgky
g
t�k +

~d"ky
"
t�k +

~d�ky
�
t�k

i
:

This solution speci�es that only the shocks associated with the state of the economy�
9See the appendix for details.
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productivity (ât�k), �scal (ĝt�k), dividend ("̂t�k) and monetary (�̂t�k) shocks� and public

signals drive aggregate variables. Private signals interfere with the individual decisions of

agents. However, as idiosyncratic shocks die out with aggregation, only the part of the

private signals in common to all agents, i.e., the shocks associated with the state of the

economy, appears in the solution of P̂t and Q̂t.

Then, we prove that, for w 2 fa; g; "; �g, an agent that last updated its set of past states
of the economy at t� j computes expectations as

E [ŵt�kj =t (zj)] =

8>>><>>>:
ŵt�k ; k � j
�wy

w
t�k + �wx

w
t�k

�w + �w + 
w
; 0 � k < j

0 ; k < 0

: (14)

It is important to highlight the fact that expectations depend exclusively on the signals

received about shocks. If we had considered an approach similar to that of Grossman and

Stiglitz (1980), agents would had tried to extract information from the current and past

values of the aggregate variables, fP̂t�k ; Q̂t�kg1k=0, as they are also function of the shocks.
We derive the following proposition based on this expectation, which tells us how to compute
�E [�].

Proposition 1 In an SDI model, if E [ŵt�kj =t (zj)] is given by (14) and fqkg1k=0 is a se-
quence of real numbers, we obtain

�E

� 1P
k=0

qkŵt�k

�
=

1P
k=0

qk
�
1� �w�k+1

�
ŵt�k + �w

1P
k=0

qk�w�
k+1ywt�k:

where �w =
�w+
w

�w+�w+
w
and �w =

�
�w

�w+
w

�
:

From this proposition, we make two corollaries:

Corollary 1 In an SDI model, if Ŵt = �wŴt�1+ŵt�k and E [ŵt�kj =t (zj)] is given by (14),
we have

�E
h
Ŵt

i
=

1P
k=0

�kw
�
1� �w�k+1

�
ŵt�k + �w

1P
k=0

�kw�w�
k+1ywt�k:

Corollary 2 In an SDI model, if Ŵt = �wŴt�1+ŵt�k and E [ŵt�kj =t (zj)] is given by (14),
we obtainZ 1P

i=0

E
h
Ŵt+i

���=t (z)i dz = 1

1� �w

1P
k=0

�kw
��
1� �w�k+1

�
ŵt�k + �w�w�

k+1ywt�k
�
:
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We use Corollary 1 to compute �E[Ât], �E[Ĝt], �E [ût] and �E [v̂t], Corollary 2 to compute

Ut and Proposition 1 to �nd �E [Ut].Applying these results to equations (11) and (12), we can

match coe¢ cients to obtain the solution. The manner in which we compute the equilibrium

rules out solutions that would result in a permanent e¤ect on the aggregate variables, as

these solutions would not be compatible with the steady state.

7 Results

We calibrate the model to illustrate the impulse responses of the variables of interest�

in�ation, output gap, interest rate and stock market index� to both real and informational

shocks. We divide the model�s structural parameters into two di¤erent sets: those that

are associated with shocks, f�w; �w; 
w; �wg, for w 2 fa; g; "; �g, and those that are not,
f�; �; !; �;�P ;�Qg. The baseline values used for the latter set, shown in Table 1, are

standard and are based on Giannoni and Woodford (2004). In our baseline case, we set

�Q = 0, meaning that the central bank does not respond to variations in the stock market

index. We set � = 0:67 to obtain the value of ��1 � 1:50, which is similar to the value

obtained Giannoni and Woodford (2004) for their equivalent parameter #�1. The discount

factor � is set equal to 0:99, which is appropriate for interpreting the time interval as one

quarter. We consider � = 0:45, implying that most agents receive new information about

the current and past state of the economy. We set K = �� ��1 to get �Q = 1, meaning that
~� = 1. A value of 1:2 for � implies a steady state markup of 20% and makes K � 0:19.

Table 1: Baseline calibration - parameters of the model
Parameter Description Value

� Time discount factor 0:99
� Degree of informational rigidity 0:45
� Risk aversion parameter 0:67
! Inverse of elasticity of labor supply 0:33
�Q Steady-state value of the stock market index 1
�P Degree of policy response to expected in�ation [0; 3:5]
�Q Degree of policy response to expected variations in the stock price index [0; 0:2]

Table 2 shows the baseline values used for the former set. As will be clari�ed below, we

can use these parameters to determine whether a shock can generate a boom-bust episode
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in the economy. In our benchmark calibration, we specify that only a dividend shock can

trigger such an episode. Accordingly, the values associated with "̂t are di¤erent from those

for the other shocks. By taking � = 0:99, we posit that �r is approximately 4% per year,

while a one-standard-deviation change is approximately equal to 4 basis points.

Table 2: Baseline calibration - parameters of the shocks
Parameter Description ŵt = ât ŵt = ĝt ŵt = "̂t ŵt = �̂t

�w
(�y=1=

p
�w)

Precision of the public signal ywt 108
(0:0001)

108
(0:0001)

106
(0:001)

108
(0:0001)

�w�
�x=1=

p
�w

� Precision of the private signal xwt 1012
(1�10�6)

1012
(1�10�6)

107
(3;16�10�3)

1012
(1�10�6)


w
(�w=1=p
w)

Precision of the shock ŵt 108
(0:0001)

108
(0:0001)

108
(0:0001)

108
(0:0001)

�w Persistence 0:5 0:5 0:9 0:5

All shocks have the same variance, although the importance of private signals relatively

to public signals can be quite di¤erent.

7.1 Impulse responses

Here, we show the impulse responses to a one-standard-deviation shock for all four exogenous

variables. In our benchmark calibration, represented by a solid line, the central bank is

permissive of the occurrence of boom-bust episodes. The scale on the right-hand side should

be used for this case. For the other cases, the scale on the left-hand side should be used.

Figure 1 shows the impulse responses to a dividend shock, "t. As shown in panel (A),

after a dividend shock, the stock market index persistently increases over a long period (8

quarters) and suddenly crashes, which is compatible with a boom-bust episode. The intensity

of the peaks and troughs depends on the calibration. We have chosen to consider the case

in which the trough is more intense than the peak. In the present case, the stock market

index increases by 100% over two years and decreases almost 400% in the following quarter.

After the bust, the stock market index slowly returns to its equilibrium value. The boom

phase is characterized as a period of "exuberance". The output gap, illustrated in panel

(B), in�uenced by the wealth e¤ect on consumption, remains positive throughout the whole

period while in�ation, plotted in panel (C), stays low. In�ation rises at the end of the boom

phase, when the stock market index and the output gap start to increase more intensively.
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As shown in panel (D), the central bank, anticipating this in�ation growth, raises the interest

rate. This increase in the interest rate occurs just before the bust. After the bust, a great

contraction in output occurs, followed by a slow recovery. In�ation drops when the output

gap becomes negative, but as the economy recovers, it rises again and slowly returns to

its equilibrium level. This analysis is in line with empirical evidence. Contradicting the

conventional idea that stock market booms are periods of high in�ation, Christiano, Ilut,

Motto, and Rostagno (2010) shows that, in each of the 18 US stock market boom episodes

that occurred in the past two centuries, in�ation was relatively low. Furthermore, this result

is also compatible with the conventional wisdom that the boom phase ends when the central

bank starts raising the interest rate.

The rationale behind this �gure is easy to understand. Due to informational stickiness,

households become aware of a positive dividend shock at di¤erent times: while some observe

the shock, others are unsure about occurs as they only receive imprecise news about the

shock. However, as time passes, the number of agents who are uncertain about the shock

decreases. During the following periods, stock prices rise as (i) high dividends continue to

be paid because of the shock inertia and (ii) the stock market receives more attention as

households become more informed about the market. When the expected in�ation increases

more intensively, forcing the central bank to raise interest rate, households face an increase

in the opportunity cost of holding stocks. As the information sets of all agents are very

similar at this moment, households can predict one another�s actions and anticipate that a

great number of agents will be willing to sell stocks at the same time. This situation forces

stock prices to collapse.

Mathematically, it is easy to explain how a boom-bust episode emerges from the model.

The e¤ect of a dividend shock on P̂t and Q̂t depends on the coe¢ cient c"k, which may present

a singularity if �
1� �P �

�Q�P
(� � �Q)

�
+

�
�P +

�Q�P
(� � �Q)

�
�"�

k+1 = 0

We can rewrite this condition as �"�
k+1 = #, where

# =
(1 + �) �P + (�Q � �)

(1 + �) �P +
�

!
�+!

�
(�Q � �)

: (15)

Using dxe to denote the smallest integer that is larger than x, we �nd that
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Figure 1: Impulse responses to a dividend shock

Conclusion 1 A dividend shock on period t creates a boom-bust episode when # 2 (0; 1) and
�"� � #. The bust occurs at period t+ k", k" =

l
ln(#)�ln(�"�)

ln(�)

m
.

In this case, when k increases, �k+1 decreases, forcing �"�
k+1 to become closer to the

singularity and causing jc"kj to increase. At some point k", �"�k"+1 becomes smaller than
#. From this point on, c"k inverts its signal and jc"kj decays. In this context, k" marks the
occurrence of the bust.

The condition �"� � # gives us a criterion to analyze the possibility of boom-bust

episodes. For the case �Q = 0, which implies that the central bank does not respond to

asset price variations, # becomes

# =
(1 + �) �P � �

(1 + �) �P � �
�

!
�+!

�
It is clear that # 2 (0; 1) if and only if �P > �

1+�
.

Although our analysis does not allow us to say that it is optimal for the central bank

to prevent boom-bust episodes, these events clearly create disruptive movements in the

economy. A central bank concerned with stabilizing the economy may wish to prevent these

events insofar as they bring an excessive volatility to macroeconomic variables. In order to
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prevent a dividend shock from triggering a boom-bust episode, # > �"�, a central bank that

disregards changes in asset prices must respond to expected in�ation according to:

�P �
�

�

1 + �

��
1 +

�
�

� + !

��
�"�

1� �"�

��
:

In contrast to the Taylor principle, which establishes the manner in which a central bank

should react to stabilize the entire economy, this criterion is speci�c for this shock and tells us

nothing about the other shocks. Nevertheless, from (33), we know that all shocks present the

same singularity, #. In this case, in order to prevent the occurrence of boom-bust episodes,

we must have # > �w� for all shock ŵt, w 2 fa; g; "; �g. The condition # > �w� makes

clear that both informational stickiness, represented by �, and informational dispersion,

represented by �w, are important in explaining the creation of boom-bust episodes. While

the informational stickiness plays a central role in determining the timing of the busts,

informational dispersion explains why some shocks may not trigger these events. If public

information concerning the stock market� which is based on companies�balance sheets and

�nancial analysts�reports� is relatively more precise than that concerning �scal conditions,

we will have, for instance, �" >> �g. Therefore, we may have, �"� � # > �g�. In this case,
as k increases, �g�

k+1 becomes increasingly distant from #, which explains why changes in

dividends can generate boom-bust episodes while changes in government spending cannot.

In order to guarantee that no shock will trigger a boom-bust episode in the economy, the

central bank must respond to expected in�ation according to

�P �
�

�

1 + �

��
1 +

�
�

� + !

�� ���

1� ���

��
; (16)

where
�� = max f�a; �g; �"; ��g :

Conclusion 2 Even responding only to expected in�ation (�Q = 0), monetary policy can

prevent the occurrence of boom-bust episodes in the economy. The intensity of the response

depends, however, on the greatest relative precision of all shocks, ��.

When ��� is close to one, it becomes very di¢ cult for the central bank to avoid boom-bust

episodes. According to our baseline calibration, ��� is close to 0:9, meaning that the central

bank should raise the interest rate by approximately 3.5% for each 1% increase in expected

in�ation. In this situation, we must consider whether central banks should respond to asset

price variations.
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When �Q 6= 0, the singularity # is given by (15). It is clear that when �Q � �, # � 1,
implying that the condition for no boom-bust episodes, # > ���, is trivially satis�ed for any

�P . We have # 2 (0; 1) if and only if � > �Q > � � �P (1 + �). In this case, the criterion
that guarantees that no shock will trigger a boom-bust episode in the economy, # > ���,

becomes

�P >

�
� � �Q
1 + �

��
1 +

�
�

� + !

�� ���

1� ���

��
(17)

In comparison with (16), �Q helps to make the condition looser. When �Q approaches

�, it becomes easier for the central bank to prevent the occurrence of boom-bust episodes.

This leads to our next conclusion.

Conclusion 3 For any value of �P , there is a �Q large enough to avoid the occurrence of
boom-bust episodes in the economy.

According to this criterion, the central bank does not need to react to asset price varia-

tions to prevent boom-bust episodes, although it might be willing to "lean against the wind"

to avoid an excessive reaction to expected in�ation. This �nding is advocated by Pava-

suthipaisit (2010), based on empirical evidence, and contradicts the prominent suggestion

of several authors that central banks should respond to asset price movements only insofar

as the latter a¤ects the expected in�ation.10 For instance, in order to obtain a coe¢ cient

compatible with a Taylor rule, typically �P = 1:5, in our baseline calibration, a central bank

should set �Q equal to approximately 0:6.

As we have seen so far, central banks can prevent the occurrence of boom-bust episodes

by choosing �Q > � or, when �Q < �, by obeying the condition established in (17). Never-

theless, as # 2 (0; 1) if and only if � > �Q > � � �P (1 + �), there is another alternative:

�P <
� � �Q
1 + �

: (18)

In this case, the central bank�s response to expected in�ation and expected variations in

the stock price index is very mild. The rationale behind this �nding is similar to the point

made in Farhi and Tirole (2012): as the central bank responds to the aggregate variables,

which incorporate the average behavior of agents, and in�uences individual decisions, it

creates strategic complementarity among the agents�actions. In this environment, agents

10See, for instance, Gilchrist and Saito (2008), Faia and Monacelli (2005), Gilchrist and Leahy (2002), and
Bernanke and Gertler (2001).
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try to predict one another�s actions, inducing coordination. Therefore, when the response is

very mild, coordination diminishes, which avoids boom-bust episodes.

Conclusion 4 Central banks can prevent the occurrence of boom-bust episodes in the econ-
omy by implementing very mild responses to aggregate variables and keeping the interest rate

near its steady-state level.

One would expect that this case would not be compatible with economy stabilization.

However, the manner in which we computed the equilibrium does not induce any conditions

for stabilizing the economy. Even in the limit case, when the central bank sets the interest

rate at its steady-state level and does not change it (�P = �Q = 0), we do not �nd explosive

dynamics.

The argument that the central bank should not respond to asset prices variations for not

being capable of identifying bubbles is totally irrelevant to our analysis. From the obtained

solution, we have that

E0

h
Q̂t+1 � Q̂t + ~� v̂t � ��1r̂t

i
= 0; (19)

where E0 � E [ �j =t (z0)] represents the expectation of the most informed agent.11 From this

equation, it is easy to see that, for all z, B̂st (z) = 0, meaning that, at equilibrium, there is

no trade in the stock market. This result is in line with Milgrom and Stokey (1982).

Dividing both sides of (17) by �P , we see that there is an in�nite number of pairs (�P ,�Q)

that cause the right-hand side to give the same number. From this observation, we can de�ne

an equivalence criterion between two di¤erent policies. We say that two policies, (�AP ,�
A
Q)

and (�BP ,�
B
Q), are equivalent if

�
� � �AQ

�
�BP =

�
� � �BQ

�
�AP holds.

The two other lines in Figure 1 show that the central bank can prevent the occurrence

of boom-bust episodes by reacting to the expected in�ation and expected stock market

index variations. Regarding the proposed criterion, the policies presented above are almost

equivalent. We see that both policies lead to similar results: almost no e¤ect on all four

variables of interest. Indeed, there is a slight reaction in the interest rate, which produces a

small drop in the stock market index and, by consequence, a small drop in the output gap.

However, all of these e¤ects are almost unperceivable.

Although the persistence of the shocks, �w, plays no role in the computation of the

singularity, it can be very important for the perception of a boom-bust episode. A low level

11In the appendix, we de�ne the variables fwk and ~fwk , for w 2 fa; g; "; �g, and show that in equilibrium
~fwk = 0;8w and fak = f

g
k = f

"
k + ~��

k
v = f

�
k � �

�1�ku = 0. This result implies that the equation (19) holds in
equilibrium.
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Figure 2: Impulse responses to a productivity shock

of persistence can greatly attenuate the boom phase, as well as the e¤ects of the bust. As

an earthquake may not be perceivable at locations distant from the epicenter, when the

persistence is very small, a boom-bust episode can exist but not be noticeable. In the case

of an earthquake, the event occurs when there is a crash between two tectonic plates. In our

case, the conditions for the occurrence of a boom-bust episode have already been established

in Conclusion 1. In both cases, the occurrence of the event is not related to whether or not

it is perceivable. The reason that low persistence can make these episodes unperceivable

is easy to understand. Investors may react very little to information about high gains in

the stock market if they believe that an opportunity that appeared in the past no longer

represents a signi�cant opportunity. Persistence becomes particularly important when the

boom phase lasts for a long period.

Figure 2 shows the impulse responses to a productivity shock. A positive productivity

shock is consistent with lower future marginal costs, which generate a drop in expected

future in�ation. Anticipating the fact that in�ation will become negative, the interest rate

is reduced, diminishing the return on bonds. As a consequence, households �y to the stock

market, forcing the stock market index to rise. Because of the wealth e¤ect on consumption,

output also rises. In�ation, taken as the �rst di¤erence of prices, becomes positive when
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the shock occurs and, as expected, negative afterwards, re�ecting an increase in the price

index at the moment of the shock followed by a smooth convergence to its steady-state

value. This dynamic is consistent with all policy parameters. Nevertheless, when the central

bank is permissive of the occurrence of boom-bust episodes, the e¤ects of the shock are

greatly ampli�ed. This �nding is analogous to the one described in Bernanke, Gertler, and

Gilchrist (1999) when they consider �nancial frictions. It also suggests that agents become

more reactive to shocks when there is an environment in which a boom-bust episode can

emerge. In other words, the economy becomes less volatile when the central bank creates an

environment that calms all agents.

We observe a similar pattern when we analyze the impulse responses to a �scal shock,

as plotted in Figure 3. In this case, all of the lines present a similar behavior, but we �nd

that when the central bank acts to prevent the occurrence of boom-bust episodes in the

economy, it also attenuates the e¤ect of a �scal shock. After a positive �scal shock, in�ation

is expected to rise, causing the central bank to increase the interest rate. Investors �y to

the bond market, causing the stock market index to drop. As a result of the wealth e¤ect

on consumption, output also decreases, and this decrease causes the price index to diminish.

As prices slowly return to their steady-state level, in�ation, taken as the �rst di¤erence of

prices, becomes positive, as anticipated.

Figure 4 illustrates the impulse responses to a monetary shock. As before, when the

central bank permits the creation of boom-bust episodes, the magnitude of the shock in-

creases. After a monetary shock, the interest rate increases, forcing the stock market index

to decrease. The output gap also decreases as a result of the wealth e¤ect on consumption.

Prices, because of this contraction in consumption, drop. However, as prices slowly recover

to its state-state value, in�ation increases. This movement is anticipated by the central bank,

reinforcing the idea that the interest rate should increase.

8 Conclusions

We incorporated asset prices and information heterogeneity into a very simple DSGEmodel�

with neither �nancial friction nor special channels� and showed that its dynamics are com-

patible with the creation of boom-bust episodes. In contrast to other models, these episodes

are not exogenous processes that force asset prices to deviate from fundamentals, but rather

arise from the strategic use of information that guides agents�decisions. In this framework,

we show that a central bank can prevent the occurrence of these episodes and determine the
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Figure 3: Impulse responses to a �scal shock
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Figure 4: Impulse responses to a monetary shock
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timing of a speci�c bust.

We derive the equilibrium from the aggregation of agents�decisions, which depends on

each individual information set. We proved a proposition that shows how to compute ag-

gregate expectations when agents have heterogeneous information. This proposition is not

model speci�c and depends only on the manner in which new information is disseminated

among agents.

This fact is useful because we can extend the model in many di¤erent directions. First,

it is important to endogenize the �rms� dividends. Productivity and �scal shocks may

change �rms�pro�ts and, consequently, dividends. Another important extension concerns

the incorporation of the output gap in policy rule and possibly the study of optimal policies

for this model.

9 Appendix

9.1 Linear model

We compute the linear version of the model to derive the linear equilibrium. Throughout

the text, ŵt represents the percent deviation of a variable wt from its steady-state value

�w, ŵt � (wt � �w) = �w. We de�ne ŵt � wt for variables whose steady-state value is zero.

Nevertheless, it is more convenient to write Ĝt � Gt= �Y , where �Y represents the steady-state
of the output level. With a slight abuse of terminology, we use r̂t to refer to \(1 + rt).

9.1.1 Steady-State

We consider a steady state without productivity shocks, �A = 1, without government spend-

ing, �G = 0, and with zero in�ation. We also consider that in steady state all households

have the same consumption level, �C. Although we do not explicitly show a mechanism to

prevent their wealth from becoming increasingly dispersed as a result of di¤ering individ-

ual informational histories, we could easily do so. As in Cúrdia and Woodford (2009), we

could assume, for instance, that households sign state-contingent contracts with one another

and that Tt(z) incorporates not only lump-sum taxes but also a net insurance transfer that

households receive at the same date upon which they update their information sets.

In a steady state with equal consumption, equation (5) indicates that all agents choose

the same number of working hours. In the steady state, we o¤set any ine¢ ciency that

comes from monopolistic competition in the goods market by taking the �rms�subsidies as
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s = �� 1. Using (10), the steady-state output level is implicitly de�ned by

1 =
�
�Y
�!+�

:

We also consider that, in the steady state, the �rms distribute all their pro�ts. Therefore,

in the steady state,

�D = �� = (�� 1)
�W
�P
�P �Y = (�� 1) �P :

We normalize �P = 1 in order to have no di¤erence between real and nominal variables in

the steady-state.

The Euler equation, expressed in (6), in the steady state reduces to (1 + �r) = ��1.

In order to negotiate stocks, households must �nd someone who is willing to be the

counterpart in the transaction. In other words, the stock market must clear every period.

Mathematically, this condition is equivalent toZ
BSt (z) dz = 1:

From the demand function for stocks, expressed in (3), we obtainZ
E [Qt+1 +Dt �Qt (1 + rt)j =t (z)] dz = K; (20)

which, in the steady state reduces to

�D = K +
�
��1 � 1

�
�Q: (21)

In order to make the steady-state version of (4) compatible with this relation, we must

have ' = K and � =
�
��1 � 1

�
, meaning that (4) represents small departures from the

steady-state relation. Furthermore, from (21) we write the steady-state value of �Q as

�Q =
�D �K
�

: (22)

9.1.2 Individual Consumption

In the afternoon, when households decide how much they will consume and the central

bank sets the interest rate in a simultaneous game, agents have already observed P̂t and Q̂t,

meaning that they do not need to make predictions about these variables , E[ P̂t
���=�t (z)] = P̂t
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and E[Q̂t
���=�t (z)] = Q̂t. Log-linearizing the Euler equation, (6), we obtain

E
h
�Ĉt+1 (z) + P̂t+1 � r̂t � B̂St+1 (z)� Q̂t+1

���=�t (z)i = �Ĉt (z) + P̂t � B̂St (z)� Q̂t: (23)

Because households have not yet observed r̂t, they use (13) to make predictions about it.

Furthermore, as the central bank updates its information set every period, the law of iterated

expectations holds for all households individually, E
�
ECBt [�]

��=�t (z)� = E [ �j =�t (z)]. We can
write the log-linearized Euler equation, (23), as

E
h
�Ĉt+1 (z) + (1� �P ) P̂t+1 � (1 + �Q) Q̂t+1 � B̂St+1 (z)

���=�t (z)i� E [ ûtj =�t (z)]
= �Ĉt (z) + (1� �P ) P̂t � (1 + �Q) Q̂t � B̂St (z) :

As =�t (z) � =�t+1 (z) � ::: � =�t+i (z) � :::, we can use the law of iterated expectations in
this expression to �nd

�Ĉt (z) + (1� �P ) P̂t � B̂St (z)� (1 + �Q) Q̂t = �
P1

i=0E [ ût+ij =�t (z)] : (24)

We know from Morris and Shin (2002) that the law of iterated expectations may not

hold when agents have heterogeneous information. However, we can use the law of iterated

expectations for agents with di¤erent information sets because this case does not involve

any aggregation. The di¤erence between this case and the one described in Morris and Shin

(2002) lies in the fact that households have to build expectations about their own (individual)

consumption in the future, instead of, for instance, aggregate consumption. As agents do

not use the aggregate variables, P̂t and Q̂t, to take information about the shocks, we have

E [ ût+ij =�t (z)] = E [ ût+ij =t (z)].

9.1.3 Aggregate Consumption

We can use (24) to write the individual consumption as

Ĉt (z) = ���1
P1

i=0E [ ût+ij =t (z)] + ��1 (�P � 1) P̂t + ��1 (1 + �Q) Q̂t + ��1B̂St (z) :
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From this equation, the log-linearized aggregate consumption, Ct �
R
Ct (z) dz, is

Ĉt �
Z
Ĉt (z) dz = ���1Ut + ��1 (�P � 1) P̂t + ��1 (1 + �Q) Q̂t; (25)

where

Ut =

Z P1
i=0E [ ût+ij =t (z)] dz:

Equality (25) holds because market clearing in the stock market imposesZ
BSt (z) dz = 1)

Z
B̂St (z) dz = 0:

9.1.4 Price Index and Stock Market Index

Price index. Although �rms decide on prices in the �rst stage, nominal wages can

still be adjusted to clear the labor market,
R
Ht (z) dz = Ht =

R
Ht (k) dk. Therefore, the

log-linearized version of (5) results in

Ŵt � P̂t =
Z �

Ŵt � P̂t
�
dz =

Z
�Ĉt (z) + �Ĥt (z) dz = �Ĉt + !Ĥt: (26)

From the production function, we know that the total production

Ŷt =

Z
Ŷt (k) dk = Ât +

Z
Ĥt (k) dk = Ât + Ĥt: (27)

We use (26), (27) and Ŷt = Ĉt + Ĝt to write the log-linearized version of (8) as

P̂t (k) = E
h�
Ŵt � P̂t

�
+ P̂t � Ât

���=t (k)i
= E

h
P̂t + (� + !) Ĉt + !Ĝt � (1 + !) Ât

���=t (k)i :
Using (25), the solution of the second stage, we obtain

P̂t (k) = E

" �
�+!
�

� h
(�P � 1) P̂t + (1 + �Q) Q̂t � Ut

i
+P̂t + !Ĝt � (1 + !) Ât

�����=t (k)
#
; (28)
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From this equation, we can compute the price index as

P̂t =

Z
P̂t (k) dk = �E

�
�P P̂t + �QQ̂t �

�
� + !

�

�
Ut + !Ĝt � (1 + !) Ât

�
where �P � 1 +

�
�+!
�

�
(�P � 1), �Q �

�
�+!
�

�
(1 + �Q) and �E [�], as in Morris and Shin

(2002), represents the average expectation given by

�E [�] =
Z
E [ �j =t (k)] dk:

Stock Market Index. By plugging the interest rule, (13), into the log-linear version

of (20), we obtain

0 =

Z
E

�
Q̂t+1 � Q̂t + ~� v̂t �

1

�
r̂t

����=t (z)� dz
= �E

h�
1� ��1�Q

� �
Q̂t+1 � Q̂t

�
� ��1�P

�
P̂t+1 � P̂t

�
+ ~� v̂t � ��1ût

i
where ~� = 1= �Q = �=( �D �K). This equation makes clear that, besides altering the steady-
state value of �Q, which a¤ects the intensity of the aggregate variable responses to v̂t, K plays

no role on the model.

9.2 Expectations

First, we compute E
�
�̂t�k

��=t (z)�. A household zj that last updated its information set at
t� j knows, with certainty, the value of �̂t�k when k � j, as household observes all previous
shocks at the moment that it adjusts its information set. Therefore, E

�
�̂t�k j =t (zj)

�
=

�̂t�k. If k < 0, household zj does not have any information about it. If 0 � k � j,

household zj does not observe �t�k. Nevertheless, it has two signals about this shock. That

is, E
�
�̂t�k

��=t (zj)� = E � �̂t�k�� y�t�k; x�t�k (zj)�.
In order to compute E

�
�̂t�k

�� y�t�k; x�t�k (zj)�, we need to obtain the distribution function
f
�
�̂t�k

�� y�t�k; x�t�k (zj)�. We use Bayes�theorem to write

f
�
�̂t�k

�� y�t�k; x�t�k (zj)� = f
�
y�t�k; x

�
t�k (zj)

�� �̂t�k� f ��̂t�k�R
f
�
y�t�k; x

�
t�k (zj)

�� �̂t�k� f ��t�k� d�̂t�k
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However, we know that

f
�
y�t�k; x

�
t�k (zj)

�� �̂t�k� f ��̂t�k�
= f

�
y�t�k

�� �t�k� f �x�t�k (zj)�� �̂t�k� f ��̂t�k�
= N

�
�̂t�k; �

�1
�

�
N
�
�̂t�k; �

�1
�

�
N
�
0; 
�1�

�
= c exp

(
�1
2

"�
y�t�k � �̂t�k

�2
��1�

+

�
x�t�k � �̂t�k

�2
��1�

+

�
�̂t�k

�2

�1�

#)

= c exp

�
�1
2

��
�� + �� + 
�

�
�̂2t�k � 2

�
��y

�
t�k + ��x

�
t�k
�
�̂t�k + ��y

�
t�k + ��x

�
t�k
��

= c2

r
�� + �� + 
�

2�
exp

(
�1
2

"�
�� + �� + 
�

��
�̂t�k �

��y
�
t�k + ��x

�
t�k

�� + �� + 
�

�2#)

= c2N

�
��y

�
t�k + ��x

�
t�k

�� + �� + 
�
;
�
�� + �� + 
�

��1�
where

c =

s
����
�

(2�)3

c2 = c

s
2��

�� + �� + 
�
� exp(1

2

"�
��y

�
t�k + ��x

�
t�k
�2

�� + �� + 
�
� ��y�t�k � ��x

�
t�k

#)

Thus,

f
�
�̂t�k

�� y�t�k; x�t�k (z)� =
c2N

�
��y

�
t�k+��x

�
t�k

��+��+
�
;
�
�� + �� + 
�

��1�
c2

= N

�
��y

�
t�k + ��x

�
t�k

�� + �� + 
�
;
�
�� + �� + 
�

��1�
:

In summary,

E
�
�̂t�k

��=t (zj)� =
8>>><>>>:

�̂t�k ; k � j
��y

�
t�k + ��x

�
t�k

�� + �� + 
�
; 0 � k < j

0 ; k < 0

The same argument can be used to compute expectations for the other shocks.

31



9.3 Proofs

Proof of Proposition 1. The notation introduced in Section 5 makes clear that we can

decompose the set of all agents in a union of disjoint sets of agents that last updated its

information set at t� j, [0; 1] =
S1
j=0 �j. As shown in (14), household zj, that last updated

its information set at period t� j, knows for sure ŵt�k, if k � j, and uses its signals about
ŵt�k� xwt�k and y

w
t�k� to build its expectation when k < j. Thereafter,

12

�E

� 1P
k=0

qkŵt�k

�
=

Z
E

� 1P
k=0

qkŵt�k

����=t (z)� dz
=

1P
j=0

Z
�j

E

"
1P
k=j

qkŵt�k +
j�1P
k=0

qkŵt�k

�����=t (zj)
#
dzj

=
1P
j=0

Z
�j

"
1P
k=j

qkŵt�k +
j�1P
k=0

qk

�
�wy

w
t�k + ��x

w
t�k (zj)

�w + �w + 
w

�#
dzj

Since the Lebesgue measure of �j is (1� �)�j and idiosyncratic shocks die out with ag-
gregation, we have that

R
�j
ywt�kdzj = (1� �)�jywt�k,

R
�j
ŵt�kdzj = (1� �)�jŵt�k andR

�j
xwt�k (zj) dzj =

R
�j
ŵt�k + �

w
t�k (zj) dzj = (1� �)�jŵt�k. Therefore,

�E

� 1P
k=0

qkŵt�k

�
= (1� �)

1P
k=0

qkŵt�k

 
kP
j=0

�j

!
=

1P
k=0

qkŵt�k
�
1� �k+1

�

�E

� 1P
k=0

qkŵt�k

�
= (1� �)

1P
j=0

�j

"
1P
k=j

qkŵt�k +
j�1P
k=0

qk

�
�wy

w
t�k + ��ŵt�k

�w + �w + 
w

�#

= (1� �)
1P
k=0

qkŵt�k
kP
j=0

�j + (1� �)
1P
k=0

qk

�
�wy

w
t�k + ��ŵt�k

�w + �w + 
w

� 1P
j=k+1

�j

=
1P
k=0

qk
�
1� �k+1

�
ŵt�k +

1P
k=0

qk�
k+1

�
�wy

w
t�k + ��ŵt�k

�w + �w + 
w

�
=

1P
k=0

qk
�
1� �w�k+1

�
ŵt�k + �w

1P
k=0

qk�w�
k+1ywt�k

Proof of Corollary 1. Since we have Ŵt =
P1

k=0 �
k
wŵt�k, we apply Proposition 1,

12With a slight abuse of terminology, we write
R
�j
[�] dzj to refer to the Lebesgue integral

R
�j
[�] d�, where �

represents the Lebesgue measure. We believe the terminology we use clari�es which agents we are considering,
although this information is implicit in �j .
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considering qk = �kw, to get the result.

Proof of Corollary 2. From (14), E [ŵt+kj =t (z)] = 0 when k > 0. Therefore,

E
h
Ŵt+i

���=t (z)i = �iwE hŴt

���=t (z)i, which gives
P1

i=0E
h
Ŵt+i

���=t (z)i = E hŴt

���=t (z)i �P1
i=0 �

i
u

�
=
E
h
Ŵt

���=t (z)i
1� �w

:

Thus, applying corollary 1, we get

Z P1
i=0E

h
Ŵt+i

���=t (z)i dz = �E
h
Ŵt

i
1� �w

9.4 Computing the linear equilibrium.

In order to compute the equilibrium, we must �nd P̂t and Q̂t that simultaneously satisfy

(11) and (12). We guess that the solution takes the form of a linear function of the shocks,

i.e.,

P̂t =
1P
k=0

�
cakat�k + c

g
kgt�k + c

"
k"t�k + c

�
k�t�k

�
+

1P
k=0

�
~caky

a
t�k + ~c

g
ky
g
t�k + ~c

"
ky
"
t�k + ~c

�
ky
�
t�k
�
(29)

Q̂t =
1P
k=0

�
dakat�k + d

g
kgt�k + d

"
k"t�k + d

�
k�t�k

�
+

1P
k=0

h
~daky

a
t�k +

~dgky
g
t�k +

~d"ky
"
t�k +

~d�ky
�
t�k

i
(30)

Substituting the solution (29) in (11), we get

1P
k=0

�
cakât�k + c

g
kĝt�k + c

"
k"̂t�k + c

�
k�̂t�k

�
+

1P
k=0

�
~caky

a
t�k + ~c

g
ky
g
t�k + ~c

"
ky
"
t�k + ~c

�
ky
�
t�k
�

= �E

" P1
k=0

�
eakât�k + e

g
kĝt�k + e

"
k"̂t�k + e

�
k�̂t�k

�
+
P1

k=0

�
~eaky

a
t�k + ~e

g
ky
g
t�k + ~e

"
ky
"
t�k + ~e

�
ky
�
t�k
� #

+ �E

�
!Ĝt � (1 + !) Ât �

�
� + !

�

�
Ut

�
where, for w 2 fa; g; "; �g, ewk = �P c

w
k + �Qd

w
k and ~e

w
k = �P ~c

w
k + �Q

~dwk . As y
w
t�k is on the

information set of all agents, for all k � 0 and w 2 fa; g; "; �g, E
�
ywt�k

��=t (k)� = ywt�k. We
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use the results presented in Section 6 to write

1P
k=0

�
cakât�k + c

g
kĝt�k + c

"
k"̂t�k + c

�
k�̂t�k

�
+

1P
k=0

�
~caky

a
t�k + ~c

g
ky
g
t�k + ~c

"
ky
"
t�k + ~c

�
ky
�
t�k
�

=
1P
k=0

�
eak � (1 + !) �ka

� �
1� �a�k+1

�
ât�k +

1P
k=0

�
egk + !�

k
g

� �
1� �g�k+1

�
ĝt�k

+
1P
k=0

e"k
�
1� �"�k+1

�
"̂t�k +

1P
k=0

�
e�k �

�
� + !

�

�
�ku

1� �u
�
1� ���k+1

�� �
1� ���k+1

�
�̂t�k

+
1P
k=0

�
�a
�
eak � (1 + !) �ka

�
�a�

k+1 + ~eak
�
yat�k +

1P
k=0

�
�g
�
egk + !�

k
g

�
�g�

k+1 + ~egk
�
ygt�k

+
1P
k=0

�
�"e

"
k�"�

k+1 + ~e"k
�
y"t�k

+
1P
k=0

"
��

"
e�k �

�
� + !

�

�
�ku
�
1 +

�
1� ���k+1

��
1� �u

#
���

k+1 + ~e�k

#
y�t�k

Matching coe¢ cients, we get

i) cak =
�
eak � (1 + !) �ka

� �
1� �a�k+1

�
v) ~cak = �

a
kc
a
k + ~e

a
k

ii) cgk =
�
egk + !�

k
g

� �
1� �g�k+1

�
vi) ~cgk = �

g
kc
g
k + ~e

g
k

iii) c"k = e
"
k

�
1� �"�k+1

�
vii) ~c"k = �

"
kc
"
i + ~e

"
k

iv) c�k = e
�
k

�
1� ���k+1

�
viii) ~c�k = �

�
kc
�
k + ~e

�
k

�
�
�+!
�

� �ku
1��u

�
1� ���k+1

�2 ���
�
�+!
�

� �ku
1��u

���
k+1

(31)

where

�wk = �w

�
�w�

k+1

1� �w�k+1
�

Similarly, plugging the solution (30) in (12), we get

0 = �E

" P1
k=0 f

a
k ât�k +

P1
k=0 f

g
k ĝt�k +

P1
k=0 f

"
k "̂t�k +

P1
k=0 f

�
k �̂t�kP1

k=0
~fak y

a
t�k +

P1
k=0

~f gky
g
t�k +

P1
k=0

~f "k+1y
"
t�k +

P1
k=0

~f�k y
�
t�k

#
+ �E

�
~� v̂t � ��1ût + Zt+1

�
where

fwk =
�
1� ��1�Q

� �
dwk+1 � dwk

�
� ��1�P

�
cwk+1 � cwk

�
~fwk =

�
1� ��1�Q

� �
~dwk+1 � ~dwk

�
� ��1�P

�
~cwk+1 � ~cwk

�
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and Zt+1 is a function of the shocks that occurs at t+1.13 As agents do not receive information

about future events, �E [Zt+1] = 0. Therefore, using the results presented in Section 6, we get

0 =
1P
k=0

fak
�
1� �a�k+1

�
ât�k +

1P
k=0

h
�af

a
k �a�

k+1 + ~fak

i
yat�k

+
1P
k=0

f gk
�
1� �g�k+1

�
ĝt�k +

1P
k=0

h
�gf

g
k �g�

k+1 + ~f gk

i
ygt�k

+
1P
k=0

�
f "k + ~��

k
v

� �
1� �"�k+1

�
"̂t�k +

1P
k=0

h
�"
�
f "k + ~��

k
v

�
�"�

k+1 + ~f "k

i
y"t�k

+
1P
k=0

�
f�k � �

�1�ku
� �
1� ���k+1

�
�̂t�k +

1P
k=0

h
��
�
f�k � �

�1�ku
�
���

k+1 + ~f�k

i
y�t�k:

We can summarize this equation as

ix) 0 = fak
�
1� �a�k+1

�
xiii) 0 =

�
f "k + ��

k
v

� �
1� �"�k+1

�
x) 0 = �af

a
k �a�

k+1 + ~fak xiv) 0 = �"
�
f "k + ��

k
v

�
�"�

k+1 + ~f "k
xi) 0 = f gk

�
1� �g�k+1

�
xv) 0 =

�
f�k � �

�1�ku
� �
1� ���k+1

�
xii) 0 = �gf

g
k �g�

k+1 + ~f gk xvi) 0 = ��
�
f�k � �

�1�ku
�
���

k+1 + ~f�k

(32)

In order to �nd all 16 coe¢ cients, we must solve (31) and (32).

9.4.1 Coe¢ cients cat�k, d
a
t�k, ~c

a
t�k, ~d

a
t�k

We start considering the coe¢ cients associated to ât�k. As
�
1� �a�k+1

�
6= 0, from (ix) we

have

fak = 0;8k ,
�
1� ��1�Q

�
dak+1 � ��1�P cak+1 =

�
1� ��1�Q

�
dak � ��1�P cak = Ka;8k

where Ka is a constant. From the last equality, we have

dak =
Ka + ��1�P c

a
k

1� ��1�Q
13More precisely, Zt+1 = ���1�P

�
ca0at+1 + c

g
0gt+1 + c

"
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�
0�t+1 + ~c

a
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g
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"
0"t+1 + ~c

�
0�t+1

�
+�

1� ��1�Q
� h
da0at+1 + d

g
0gt+1 + d

"
0"t+1 + d

�
0�t+1 +

~da0y
a
t+1 +

~dg0y
g
t+1 +

~d"0y
"
t+1 +

~d�0y
�
t+1

i
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Plugging this expression in eak = �P c
a
k + �Qd

a
k and puting it in (i), we get

cak =

"
�P c

a
k

�
1� ��1�Q

�
+ �QK

a + �Q�
�1�P c

a
k

1� ��1�Q
� (1 + !) �ka

# �
1� �a�k+1

�
=

�
�QK

a � (1 + !) �ka
�
1� ��1�Q

�� �
1� �a�k+1

��
1� ��1�Q

�
� �P

�
1� ��1�Q

� �
1� �a�k+1

�
� �Q��1�P

�
1� �a�k+1

�
In order to have limk!1 c

a
k = 0, we must have K

a = 0. This restriction says that there is no

permanent e¤ect after a shock. In this case,

cak =
� (1 + !) (� � �Q) �ka

�
1� �a�k+1

�
(� � �Q)

�
1� �P

�
1� �a�k+1

��
� �Q�P

�
1� �a�k+1

�
dak =

�P c
a
k

� � �Q
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� (1 + !) �P�ka
�
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�
(� � �Q)

�
1� �P

�
1� �a�k+1

��
� �Q�P

�
1� �a�k+1

�
Furthermore, from (x), fak = 0 implies ~f

a
k = 0 and, based in the same argument presented

before
~dak =

~Ka + ��1�P ~c
a
k

1� ��1�Q
:

where ~Ka is another constant. Putting this expression in ~ewk = �P ~c
w
k + �Q

~dwk and plugging it

in (v), we get

~cak =
�akc

a
k

�
1� ��1�Q

�
+ �Q ~K

a

(1� �P )
�
1� ��1�Q

�
� ��1�Q�P

Once again, in order to have limk!1 ~c
a
k = 0, we must have ~K

a = 0: Thus

~cak = 	�akc
a
k

~dak =
�P ~c

a
k

� � �Q
:

where

	 =

�
� � �Q

(1� �P ) (� � �Q)� �Q�P

�
:
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9.4.2 Coe¢ cients cgt�k, d
g
t�k, ~c

g
t�k, ~d

g
t�k

The steps followed to derive cgt�k, d
g
t�k, ~c

g
t�k, ~d

g
t�k are exactly the same as those previously

described. In summary, from (xi), we also know that for all k, f gk = 0, implying that8>>>><>>>>:
) dgk =

Kg+��1�P c
g
k

1���1�Q
(ii)) cgk =

[��QKg+!(���Q)�kg](1��g�k+1)
(���Q)[1��P (1��g�k+1)]��Q�P (1��g�k+1)

(xii)) ~f gk = 0 ) ~dgk =
~Kg+��1�P ~c

g
k

1���1�Q
(vi)) ~cgk =

�
���Q

(���Q)(1��P )��Q�P

�h
�gkc

g
k +

��Q ~K
g

���Q

i
whereKg and ~Kg are constants. To avoid any permanent e¤ects, we must have limk!1 c

g
k = 0

and limk!1 ~c
g
k = 0. These conditions imply that K

g = 0 and ~Kg = 0, which gives

cgk =
!(���Q)�kg(1��g�k+1)

(���Q)[1��P (1��g�k+1)]��Q�P (1��g�k+1)
; dgk =

�P c
g
k

���Q ;

~cgk = 	�
g
kc
g
k and ~dgk =

�P ~c
g
k

���Q :

9.4.3 Coe¢ cients c"t�k, d
"
t�k, ~c

"
t�k, ~d

"
t�k

From (xiii), we have

f "k+~��
k
v = 0;8k )

��
1� ��1�Q

�
d"k � ��1�P c"k

�
=
��
1� ��1�Q

�
d"k+1 � ��1�P c"k+1

�
+~��kv ;8k:

Iterating this expression, we obtain

�
1� ��1�Q

�
d"k � ��1�P c"k =

�
1� ��1�Q

�
d"k+p � ��1�P c"k+p + ~�

p�1P
i=0

�k+iv

By requiring that limp!1
�
1� ��1�Q

�
d"k+p � ��1�P c"k+p = 0, which is analogous to the

condition of no permanent e¤ects on the economy, we obtain
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�
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~��kv
1� �v

) d"k =
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�
~��kv
1� �v

+ ��1�P c
"
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�

37



Plugging the expression for d"k into (iii), we obtain

c"k = [�P c
"
k + �Qd

"
k]
�
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From this expression, d"k is
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(� � �Q)

�
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We calculate the two other coe¢ cients, ~c"t�k and ~d

"
t�k, as before:

f "k + ~��
k
v = 0

(xiv)) ~f "k = 0) ~d"k =
~K" + ��1�P ~c

"
k

1� ��1�Q

where ~K" is a constant. Remembering that ~ewk = �P ~c
w
k + �Q

~dwk , we can put the expression

for ~d"k into (vii) to obtain

~c"k = 	

"
�"kc

"
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��Q ~K
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!#
In order to have limk!1 ~c

"
k = 0, we must have ~K

" = 0. Thus,

~c"k = 	�
"
kc
g
k and ~d"k =

�P ~c
"
k

���Q :

9.4.4 Coe¢ cients c�t�k, d
�
t�k, ~c

�
t�k, ~d

�
t�k

The steps used to derive c�t�k, d
�
t�k, ~c

�
t�k, ~d

�
t�k are exactly the same as those described for

the previous coe¢ cients. In summary, from (xv), we know that, for all k, f�k � �
�1�ku = 0,

implying that
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h
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and, from (xvi), that ~f�k = 0; consequently,
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where ~K� is a constant. Finally, in order to have limk!1 ~c
�
k = 0, we must have ~K� = 0.

Thus,

~d�k =
�P ~c

�
k

���Q
(viii)) ~c�k = 	�

�
k

�
c�k �

�
�+!
�

� �ku(1����k+1)
1��u

�
9.4.5 Summary

We can summarize the results we obtained for the coe¢ cients of (29) and (30) as

cak = � (1 + !) (� � �Q) �ak; dak =
�

�P
���Q

�
cak;

cgk = ! (� � �Q) �
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g
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where
�wk =

�kw(1��w�k+1)
(���Q)[1��P (1��w�k+1)]��Q�P (1��w�k+1)

�wi = �w

�
�w�

i+1

1��w�i+1

�
	 =

���Q
(1��P )(���Q)��Q�P

(33)

9.4.6 Aggregate veriables

After obtaining the equilibrium dynamics of P̂t and Q̂t, we evaluate the dynamics of the

other aggregate variables as a function of P̂t and Q̂t and shcks. We compute in�ation as the

�rst diference of prices, �t � P̂t � P̂t�1,and use (25) to �nd Ŷt as

Ŷt � Ĉt + Ĝt

= Ĝt � ��1Ut + ��1 (�P � 1) P̂t + ��1 (1 + �Q) Q̂t;
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We can also log-linearize (10) to obtain

Ŷ nt =
�Ĝt + (1 + !) Ât

� + !
; (34)

From this expression, we can derive the output gap, xt, as

xt � Ŷt � Ŷ nt

=
!Ĝt � (1 + !) Ât

� + !
� ��1Ut + ��1 (�P � 1) P̂t + ��1 (1 + �Q) Q̂t:
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