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ABSTRACT. Standard indirect Inference (II) estimators take a given finite-dimensional
statistic, Zn, and then estimate the parameters by matching the sample statistic with the
model-implied population moment. We here propose a novel estimation method that uti-
lizes all available information contained in the distribution of Zn, not just its first moment.
This is done by computing the likelihood of Zn, and then estimating the parameters by
either maximizing the likelihood or computing the posterior mean for a given prior of the
parameters. These are referred to as the maximum indirect likelihood (MIL) and Bayesian
Indirect Likelihood (BIL) estimators, respectively. We show that the IL estimators are first-
order equivalent to the corresponding moment-based II estimator that employs the op-
timal weighting matrix. However, due to higher-order features of Zn, the IL estimators
are higher order efficient relative to the standard II estimator. The likelihood of Zn will
in general be unknown and so simulated versions of IL estimators are developed. Monte
Carlo results for a structural auction model and a DSGE model show that the proposed
estimators indeed have attractive finite sample properties.

Keywords: Approximate Bayesian Computation; Indirect Inference; maximum-likelihood;
simulation-based methods.
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1. INTRODUCTION

Suppose we have a fully specified model indexed by a parameter θ ∈ Θ ⊂ R
k. Given

a sample Yn = (y1, ..., yn) generated at the unknown true parameter value θ0, a natural
estimator is maximum likelihood estimator (MLE), θ̂MLE = arg supθ∈Θ log f (Yn|θ). How-
ever, the MLE is in some situations difficult to compute due to the complexity of the
model. In particular, its computation may require numerical approximations that can de-
teriorate the performance of the resulting approximate MLE. For example, if the model
involves latent variables, they must be integrated out in order to obtain the likelihood
in terms of observables. In such situations, researchers often resort to Indirect Inference
(II) type methods where estimation is based on a statistic Zn = Zn (Yn) chosen by the re-
searcher. This could be a set of sample moments or some other more complicated sample
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statistic. The standard II estimator takes the form of a continuous-updating (CU) GMM
estimator,

(1) θ̂CU = arg min
θ∈Θ

1
2
(Zn − Eθ [Zn])

′
Ω−1

n (θ) (Zn − Eθ [Zn]) ,

where Ωn (θ) = Eθ

[

(Zn − Eθ [Zn]) (Zn − Eθ [Zn])
′] and Eθ [·] denotes expectations im-

plied by the model evaluated at θ. In most cases, analytical expressions of Eθ [Zn] and
Ωn (θ) are not available, and instead simulated versions are used.1 If Zn is a set of sam-
ple moments, one obtains the simulated method of moments (McFadden, 1989; Duffie
and Singleton, 1993). The II estimator (Gouriéroux, Monfort, Renault, 1993; Smith, 1993)
chooses Zn as an extremum estimator arriving from on an auxiliary model; in this setting,
the limit of the function θ 7−→ Eθ [Zn] is normally referred to as the “binding function”.
The efficient method of moments (Gallant and Tauchen, 1996) sets Zn to be the score
vector of an auxiliary model.

We here propose a novel II estimation method that is attractive both from a compu-
tational and statistical perspective relative to θ̂CU . We also take as starting point some
statistic Zn , but rather than using a weighted L2-distance to match the model with data,
we propose to use the Kullback-Leibler distance. This leads to the following maximum-
indirect likelihood (MIL) estimator,

(2) θ̂MIL = arg max
θ∈Θ

log fn(Zn|θ).

In some situations, the above optimization problem may be difficult to solve numerically.
This is particularly the case when θ is high-dimensional. To circumvent this numerical
difficulty, we introduce Bayesian indirect likelihood (BIL) estimators as a computation-
ally attractive alternative. We here focus on the posterior mean of θ given Zn defined
as

(3) θ̂BIL =
∫

Θ
θ fn (θ|Zn) dθ,

where, for some prior density π(θ) on the parameter space Θ, fn (θ|Zn) is the posterior
distribution given by

fn (θ|Zn) =
fn (Zn, θ)

fn (Zn)
=

fn(Zn|θ)π (θ)
∫

Θ
fn(Zn|θ)π (θ) dθ

.

We derive the asymptotic distributions of the two IL estimators and find that they are
first-order equivalent to the CU version based on the same auxiliary statistic. However,
due to the fact that the IL estimators utilize higher-order distributional features of Zn

that the CU version ignores, the former are shown to be higher-order efficient relative to
the moment-based estimator. More precisely, higher-order expansions of the estimators
reveal that the second-order variance term of the bias-adjusted IL estimators is smaller
than that of the CU-II estimator. This property is a well-known feature of MLE’s and
generalized Bayes estimators based on the full likelihood of cross-sectional data; see,
e.g., Pfanzagl and Wefelmeyer (1978) and Takeuchi and Akahira (1979). We demonstrate

1Alternatively, a sample-based estimator of Ωn (θ) can be employed but this leads to additional biases, c.f.
Newey and Smith (2004).



INDIRECT LIKELIHOOD INFERENCE 3

that this fundamental result extends to our non-standard setting where the likelihood is
defined in terms of a statistic rather than the full sample.

The implementation of the IL estimators requires computation of fn(Zn|θ). In most
cases, similar to the CU-II estimator, no analytical expression of fn(Zn|θ) is available. We
develop feasible versions of the MIL and BIL estimators by combining simulations with
nonparametric density and regression techniques, respectively, as in, for example, Creel
and Kristensen (2012), Fermanian and Salanié (2004), and Kristensen and Shin (2012). The
simulated versions are shown to approximate the infeasible exact MIL and BIL estimators
at any given tolerance level by letting the number of simulations increase sufficiently fast
as n → ∞. In this scenario, the simulated versions will inherit the higher-order efficiency
that the exact estimators enjoy.

The above mentioned theoretical arguments for improved finite-sample performance
of our IL estimators over the CU version are supported by Monte Carlo results. We
investigate the performance of the proposed estimators through two examples presented
in this paper: a structural auction model and a dynamic stochastic general equilibrium
(DSGE) model, and additional examples presented in a longer working paper version
(Creel and Kristensen, 2011). In terms of root mean squared error and bias, we find that
the simulated version of the IL estimators exhibit performance that is almost always as
good, and in most cases better, than the corresponding CU estimators.

There exists a related literature on Approximate Bayesian Computation (ABC); see
Marin et al., 2012, for a recent survey. One implementation of ABC proposed in Beau-
mont, Zhang and Balding (2002) is very similar to what we call the simulated BIL (SBIL)
estimator. However, this literature has mainly focused on methodology and applications
in the biological sciences, including genetics, epidemiology and population biology. We
here show that IL estimators are also useful in the estimation of economic models. More-
over, while the ABC literature is quite mature from an empirical point of view, only lim-
ited asymptotic theory is available for ABC estimators and their simulated versions. This
paper therefore offers a number of new contributions to and extensions of what is in the
ABC literature.

The remains of the paper is organized as follows: Section 2 presents the first- and
higher-order theory of the estimators while Section 3 discusses the computational aspects
of the estimators. Section 4 contains the simulation studies, while Section 5 concludes.
All proofs and lemmas have been relegated to Appendix A and B, respectively. Appendix
C provides details of the implementation of the estimators in the simulation study, while
table and figures are found in Appendix D.

2. ASYMPTOTIC PROPERTIES

Let Pθ denote the family of probability measures induced by the data-generating model
evaluated at θ ∈ Θ, and θ0 ∈ Θ the true, data-generating parameter value. We will write
P = Pθ0 . Also, let Φ (t) and φ (t) denote the cumulative distribution function (cdf) and
density of a N (0, Id) distribution.



INDIRECT LIKELIHOOD INFERENCE 4

To conduct the asymptotic analysis of the IL estimators, we need to establish limit
results for the indirect likelihood. This is done by making assumptions about the as-
ymptotic behaviour of the chosen statistic, Zn ∈ R

d. Specifically, we restrict our atten-
tion to statistics that are asymptotically normally distributed around a limit Z (θ) ∈ R

d,√
n (Zn − Z (θ)) →d N (0, Ω (θ)) under Pθ where Ω (θ) ∈ R

d×d is the asymptotic co-
variance matrix. This assumption covers most known statistics in regular, stationary (in
particular, cross-sectional) models by appealing to an appropriate version of the Central
Limit Theorem (CLT). For convenience, we introduce the normalized statistic,

Tn = T (Zn|θ) :=
√

nΩ−1/2 (θ) (Zn − Z (θ)) ,

which then satisfies Pθ (Tn ≤ t) → Φ (t) as n → ∞. In terms of the cdf of Zn, Fn (z|θ) :=
Pθ (Zn ≤ z), this implies that

(4) Fn (z|θ) = Pθ (Tn ≤ Tn (z|θ)) = Φ (Tn (z|θ)) + o (1) .

This in turn implies that fn(Zn|θ) =
√

n/ |Ω (θ)| fTn (Tn (Zn|θ) |θ) is well-approximated
by the following sequence of Gaussian densities,

(5) φ∗
n (z|θ) :=

√

n/ |Ω (θ)|φ (Tn (z|θ)) .

Since − log φ∗
n (Zn|θ) /n is first-order (i.e., up to order 1/

√
n) equivalent to the quadratic

loss function in eq. (1), we expect the IL estimators to be asymptotically first-order equiv-
alent to θ̂CU .

For the higher-order analysis, a better large-sample approximation of fn(Zn|θ) is needed.
To this end, we assume that Tn satisfies an Edgeworth expansion of order r ≥ 0 under Pθ,

(6) fTn (t|θ) = f ∗Tn
(t|θ) + Rn (t|θ) ,

where the remainder term, Rn (t|θ) , vanishes sufficiently fast and

(7) f ∗Tn
(t|θ) = φ (t)

[

1 +
r

∑
i=1

n−i/2ai (t|θ)
]

,

with t → ai (t|θ) being a polynomial of order 3i, i = 1, ..., r. The polynomial terms capture
finite-sample deviations from the normal approximation; their specific forms depend on
the model and the choice of Zn. That Tn satisfies an Edgeworth expansion holds un-
der great generality. Suppose first that the sample is i.i.d. and Zn is a sample average,
Zn = ∑

n
i=1 g (yi) /n. Then eq. (6) holds under weak regularity conditions if g (yi) has

a continuous distribution; see Hall (1992, Section 2.8). This can be extended to the case
where g (yi) is discretely distributed; see, for example, Bhattacharya and Rao, 1976). If Zn

is a (sufficiently regular) estimator, the delta method can be applied in combination with
the above Edgeworth expansion of sample averages to obtain that the normalized esti-
mator, Tn, satisfies eq. (6); see, for example, Bhattacharya and Ghosh (1978), Fuh (2006),
Hall and Horowitz (1996). Finally, amongst others, Phillips (1977) and Skovgaard (1981)
give general conditions under which transformations of Edgeworth expandable statistics
themselves have Edgeworth expansions. Thus, eq. (6) holds for a wide range of relevant
statistics.
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Eq. (6) implies that fn (z|θ) should be well-approximated by

(8) f ∗n (z|θ) =
√

n

|Ω (θ)| f ∗Tn
(Tn (z|θ) |θ) = φ∗

n (z|θ)
[

1 +
r

∑
i=1

n−i/2ai (Tn (z|θ) |θ)
]

.

We wish to replace fn (z|θ) by f ∗n (z|θ) in the asymptotic analysis of the IL estimators. For
this to be allowed, we need to control the error

LRn (θ) :=
1
n

log ( fn (Zn|θ) / f ∗n (Zn|θ)) =
1
n

log (1 + Rn (T (Zn|θ) |θ) / fTn (T (Zn|θ) |θ)) .

In particular, the tail behaviour of Rn (t|θ) / fTn (t|θ) has to be well-behaved. Most results
on Edgeworth expansion normally provide results of the type supt Rn (t|θ) = o

(

n−r/2
)

,
but this does not suffice for our purposes and we will instead assume:

Assumption 1. For some r ≥ 0, supθ∈Θ Eθ

[

‖Zn‖r+2
]

< ∞ and eq. (6) holds with LRn (θ)

satisfying for any c > 0:

(9) sup
θ∈Θ

1
n
|LRn (θ)| = oP (1) ,

(10)
√

n
∂LRn (θ0)

∂θ
= oP (1) , sup

θ∈Θ

∥

∥

∥

∥

∂2LRn (θ0)

∂θ∂θ′

∥

∥

∥

∥

= oP (1) ,

(11) sup√
n‖θ−θ0‖≤c

1
n
|LRn (θ)| = oP

(

1/
√

n
)

.

Eqs. (9) and (10) are used in the first-order analysis of the estimators while eq. (11) is
employed in the higher-order analysis. Assumption 1 is quite high-level. However, we
expect that it is satisfied under great generality. In particular, Lemma 1 in Appendix B
provides a set of more primitive conditions for Assumption 1 to hold. These conditions
are satisfied, for example, when Zn is a sample average. Finally, we impose the following
regularity conditions on the prior and the limiting first and second moment of Zn:

Assumption 2. Assume that: (i) the parameter space Θ ⊂ R
k is compact of which the true,

data-generating value θ0 is an interior point; (ii) π(θ) is a continuous density with support Θ.

Assumption 2 is completely standard. It should be noted that (ii) is only needed to
develop theory for the BIL estimator.

Assumption 3. The limit functions θ 7→ Z (θ) and θ 7→ Ω (θ) are continuously differentiable

and satisfy: (i) Z (θ) = Z (θ0) if and only if θ = θ0, and (ii) I (θ0) := Ż (θ0)
′
Ω−1 (θ0) Ż (θ0)

has full rank where Ż (θ) = ∂Z (θ) / (∂θ′) ∈ R
d×k.

Assumption 3 ensures that the parameter θ0 is identified through the statistic in the
population and is similar to identification conditions for GMM-type estimators. The first
part (i) ensures consistency, while the second part (ii) is used to show asymptotic nor-
mality. In particular, I−1 (θ0) is the asymptotic variance of the IL estimators with Ż (θ0)

capturing the information content of Zn and Ω (θ0) the finite sample variation of it.
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The first-order asymptotic analysis of the IL estimator now proceeds as follows: First,
Assumption 1 allows us to replace the exact indirect likelihood by its first-order Edge-
worth expansion. Second, for MIL, we employ standard arguments for extremum esti-
mators in conjunction with Assumptions 2-3, to show that the maximizer of φ∗

n (Zn|θ),
and thereby f n (Zn|θ), is consistent and asymptotically normally distributed. For the
BIL estimator, we verify that the general results of Chernozhukov and Hong (2003) are
satisfied.

Proposition 1. Suppose that Assumptions 1-3 hold with r ≥ 1. Then, the CU, MIL and BIL

estimators are consistent and first-order equivalent,
√

n(θ̂ − θ0) →d N
(

0, I−1 (θ0)
)

, where θ̂ is

either the CU, MIL or BIL version of the II estimator, and I (θ0) is defined in Assumption 3.

The above result allows one to draw inference regarding the parameter. For exam-
ple, confidence intervals can be computed in the standard way given an estimator of the
asymptotic variance, I−1 (θ0). One estimator would be to utilize the sandwich form of
I (θ0) as given in Assumption 3 and obtain estimates of Ż (θ0) and Ω (θ0). Since these are

not readily available in general, one could alternatively use Î = 1
n

∂2 log fn(Zn|θ)
∂θ∂θ′

∣

∣

∣

θ=θ̂
, where

θ̂ is a consistent estimator of θ0 such as either the MIL or BIL. This can be obtained by com-
puting the second order derivatives of the simulated log-indirect likelihood proposed in
the next section; these are available on closed form. Finally, consistent confidence bands
can also be computed using the posterior quantiles. An application of Theorem 3 of
Chernozhukov and Hong (2003) shows that these are valid.

For the higher-order analysis, we derive Edgeworth expansions of the three estima-
tors and use these to show that the mean-square error (MSE) of any of the three estima-
tors take the form MSE

(√
n(θ̂ − θ0)

)

≃ I−1 (θ0) + Ξ (θ0) /n + B (θ0) B (θ0)
′ /n2, where

I−1 (θ0) is the leading variance term (common to all three estimators), while B (θ0) is
the leading bias term and Ξ (θ0) the second-order variance component; these are spe-
cific to the particular estimator. After suitable bias adjustment, the MIL and BIL esti-
mators will dominate the CU estimator in terms of higher-order variance in the sense
that ΞCU (θ0) ≥ ΞMIL (θ0) = ΞBIL (θ0). In general, the inequality will be strict since, as
demonstrated in the proof of Proposition 2 below, the higher-order terms of the MIL and
BIL, as reflected by the polynomial terms of their Edgeworth expansions, differ from the
ones of the CU estimator. While this is an asymptotic result, we expect that this find-
ing translates into MIL and BIL being superior to the CU in terms of variance in finite
samples.

The proof of higher-order efficiency proceeds in three steps: We first develop a higher-
order stochastic expansion of each of the three estimators in terms of Zn similar to the
one in Newey and Smith (2004, Sec. 3). This in turn is used to show the distributions of
the estimators satisfy Edgeworth expansions. The arguments used for the Edgeworth ex-
pansion differ from the ones usually found in the existing literature which has mainly fo-
cused on expansions under random sampling; see, for example, Bhattacharya and Ghosh
(1978). In our case, we can in general not write log fn (Zn|θ) as a sample average of i.i.d.
variables and so the standard proof does not directly carry over to our setting. How-
ever, for the all three estimators, the higher-order expansion is a smooth function of Tn.
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Since Tn satisfies an Edgeworth expansion by assumption, we can then apply the general
results of Skovgaard (1981) on transformations of random sequences having an Edge-
worth expansion. It now follows by standard results for likelihood-based estimators (see
e.g. Pfanzagl and Wefelmeyer, 1978; Takeuchi and Akahira, 1979) that the bias-adjusted
MIL and BIL estimators are second-order efficient amongst all estimators relying on the
statistic Zn, in particular, the CU estimator.

Proposition 2. Suppose that Assumptions 2-1 hold for r ≥ 4 with supn E
[

|Zn|4
]

< ∞, and

P

(

|Zn − Z (θ0)| > c1

√

log (n) /n

)

= o
(

n−3/2
)

.

Then, the distributions of the CU-II, MIL and BIL estimators satisfy second-order Edgeworth

expansions over all Borel sets A:

sup
A

∣

∣

∣

∣

∣

P
(√

nI (θ0)
(

θ̂ − θ0
)

∈ A
)

−
∫

A
φ (x)

[

1 +
2

∑
i=1

n−i/2ãi (x)

]

dx

∣

∣

∣

∣

∣

= o
(

n−1
)

,

where ãi (x) is a polynomial of order 3i, i = 1, 2, whose coefficients depend on the particular

estimator. In particular, the bias-adjusted versions of the MIL and BIL are second-order equivalent

and efficient relative to any other estimator based on Zn, including the CU-II.

This shows that MIL and BIL estimators are second-order equivalent when adjusted
for their leading bias terms. That is, the polynomial terms corresponding to the variance
terms are identical for the two estimators. If the first-order derivative of the polynomial
a1 (t|θ) appearing in the Edgeworth expansion in eq. (6) is equal to zero then we find
that the CU estimator will be second-order equivalent to the IL estimators. However, in
general, the CU estimator will in general have a different variance component and so not
enjoy second-order efficiency.

Expressions of the leading bias term, B(θ0), for each of the three estimators are pro-
vided in Lemma 2 in Appendix B. From these expressions, we see that the three esti-
mators share a common bias component, BI (θ), which corresponds to the one of the
empirical likelihood estimator reported in Newey and Smith (2004, Theorem 4.6). Each
of the three estimators has an additional bias component: The MIL estimator has BMIL (θ)

which is caused by the higher-order curvature of the indirect log-likelihood as captured
by the second-order derivative of a1 (t|θ). The CU estimator contains an additional bias
component due to curvature of the covariance matrix while the bias of the additional
bias of the BIL estimator are partially caused by the prior. Note that the bias component
induced by the prior vanishes if the prior is chosen as a uniform density. In the just-
identified case (dim (Zn) = dim (θ)), Ω−1 (θ) can be chosen as the identity matrix and
some of the bias terms drop out. Gouriéroux, Renault and Touzi (2000) and Gouriéroux,
Phillips and Yu (2010) have advocated using II for bias adjustment: Given an initial, po-
tentially biased, estimator θ̃, we choose Zn = θ̃ with the resulting II estimator having
reduced bias. In this case, Z̈ (θ) = 0 and so θ̂CU has no first-order bias while the MIL and
BIL estimators maintain some biases due to higher-order curvature of the log-likeliood
and the prior. However, through extensive simulations reported in the working paper
version (Creel and Kristensen, 2011), we found that when II is used for bias adjustment,
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MIL and BIL performed just as well, and most of the time better, compared to the tradi-
tional CU version.

3. SIMULATED VERSIONS OF MIL AND BIL

In most situations, the likelihood fn(Zn|θ) will not be available, and one has to resort to
numerical approximations instead. We here propose easy-to-compute simulated versions
of the MIL and BIL. Since the model is simulable and the mapping Zn (θ) ≡ Zn(Yn (θ))

is known, we can draw S independent samples, Ys
n (θ) for s = 1, ..., S, from the model

evaluated at the trial value θ, and compute the associated statistic, Zs
n (θ) ≡ Zn(Ys

n (θ)),
s = 1, ...., S. These simulated versions of the statistic are then fed into a kernel density
estimator (see e.g. Li and Racine, 2007, Ch. 1 for an introduction):

(12) f̂n,S(Zn|θ) =
1
S

S

∑
s=1

Kh (Z
s
n (θ)− Zn) ,

where Kh (z) = K (z/h) /h, K (z) is a kernel function and h > 0 is a bandwidth. We
embed the simulated density inside (2) yielding a simulated MIL (SMIL) estimator. For
proof technical reasons, we have to trim the tails of the simulated likelihood and so the
formal definition of the SMIL takes the form

(13) θ̂SMIL = arg max
θ∈Θ

τ̂a (Zn|θ) log f̂n,S(Zn|θ),

where τ̂a (z|θ) is a trimming function satisfying τ̂a (z|θ) = 1 for f̂n,S(z|θ) > a and τ̂a (z|θ) =
0 for f̂n,S(z|θ) < a/2, for some trimming parameter a > 0. The introduction of trimming
is only used to establish certain theoretical properties of the simulated MIL estimator; in
practice, for reasonable large number of simulations, trimming can be left out; this is the
case for our simulation study. The simulated MIL estimator is akin to the nonparamet-
ric simulated maximum-likelihood estimator (NPSMLE) of Fermanian and Salanié (2004)
and Kristensen and Shin (2012).

For the computation of the BIL estimator, we also combine simulations and nonpara-
metric techniques: Make i.i.d. draws θs, s = 1, ..., S, from the pseudo-prior density π(θ),
for each draw generate a sample Yn(θs) from the model at this parameter value, and then
compute the corresponding statistic Zs

n = Z(Yn(θs)), s = 1, ..., S. Given the i.i.d. draws
(θs, Zs

n), s = 1, ...S, we can obtain a simulated version of the BIL (SBIL) through nonpara-
metric regression techniques. One such is the kernel estimator (see Li and Racine, 2007,
Ch. 2),

(14) θ̂SBIL = ÊS [θ|Zn] =
∑

S
s=1 θsKh (Z

s
n − Zn)

∑
S
s=1 Kh (Zs

n − Zn)
.

Alternatively, the k-nearest neighbor (KNN) estimator (see Li and Racine, 2007, Ch. 14)
can be used. This takes the form above but now the bandwidth is chosen as h = dk(Zn)

with dk(Zn) denoting the Euclidean distance between Zn and the k-th nearest neighbor
among the simulated values. The idea of combining simulations with kernel regressions
also appears in Creel and Kristensen (2012).
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For both the SMIL and SBIL, there are two additional sources of error relative to the
exact MIL and BIL estimators: Randomness is added due to the use of simulations, and
there is additional biases due to kernel smoothing. However, as h → 0 and Shd → ∞, the
nonparametric density and regression estimators converge towards the exact likelihood
and posterior mean, respectively, for any given sample size. Thus, using standard band-
width selection rules, both errors can be controlled for by choosing S sufficiently large.
Note that the use of kernel regression and simulations in the computation of BIL is com-
putationally feasible because dim (Zn) is fixed and relatively small. In contrast, it would
be computationally infeasible to use similar techniques to compute the full Bayesian pos-
terior mean E(θ|Yn) since dim (Yn) in most applications is prohibitively large.

In the ABC literature, as discussed in the introduction, similar methods for computing
the BIL estimator have been suggested. Some of these employ more advanced samplers
such as Markov chain Monte Carlo, sequential Monte Carlo and importance sampling
(the survey by Marin et al., 2012, provides references). The resulting simulated estimators
should in principle be computationally more efficient compared to the one in equation
(14). But these on the other hand require more careful implementation; otherwise, they
might perform poorly and even fail to converge (see, e.g., Kormiltsina and Nekipelov,
2009). To avoid any such issues, we focus on the basic sampler proposed above in the
simulation study.

For the analysis of the simulated versions, we impose the following additional as-
sumptions on the model and the chosen statistic:

Assumption 4. For all n ≥ 1 and θ ∈ Θ, z 7→ fn (z|θ) is a density with respect to the

Lebesgue measure, twice continuously continuously differentiable in z, and is bounded away from

zero on any compact set. Moreover, Zn (θ) is continuously differentiable w.r.t. θ and satisfies

supn≥2 E
[

supθ∈Θ ‖Zn (θ)‖q]
< ∞ for some q > 0.

This assumption should be satisfied for most regular models that are smooth in θ, and
for standard choices of statistics. We restrict the kernel to satisfy:

Assumption 5. The kernel K (z) is differentiable with supz |K′ (z)| < ∞ and, for some a > 1,

|K(z)| ≤ C ‖z‖−a for ‖z‖ > L. Moreover,
∫

K (z) dz = 1,
∫

zK (z) dz = 0,
∫

z2K (z) dz = 1.

Under these assumptions on the kernel and the model, the following result holds:

Proposition 3. Assume that Assumptions 2-5 hold. Then the SMIL and SMIL are equivalent to

the MIL and BIL, respectively, up to order n−r/2, r ≥ 1, if, with d = dim (Zn), and q > 0 given

in Assumption 4,

SMIL : a−1nr−1/2h2 → 0 a−2n2r−d−1 log S/
(

Shd
)

→ 0 and nr−1 (n/a)−(q−1)/(2nq) → 0.

SBIL : nr+1h2 → 0 and n2r+d/
(

Shd
)

→ 0.

The requirements on the bandwidth and number of simulations are used to control
additional biases and variances due to simulations and kernel smoothing as sample size
grows. They are somewhat different compared to the ones found in, for example, Kris-
tensen and Shin (2012). The reason for this is that the target density, fn (z|θ), asymptoti-
cally has a pole at z = Z (θ) which leads to non-standard behaviour of f̂n,S (z|θ) in large
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samples. However, for fixed sample size, the bias and variances of f̂n,S (z|θ) are com-
pletely standard as known from the literature on kernel estimation. In particular, both
SMIL and SBIL suffer from the usual curse of dimensionality associated with nonpara-
metric methods. This appears explicitly in the conditions on S and h given in Proposition
3 where as d (which must be at least that of θ, and which is larger in most of the applica-
tions below) increases, we have to use a large number of simulations in order to control
the stochastic approximation error.

The bandwidth should be chosen differently depending on whether the SMIL or SBIL
estimators are employed. For SBIL, one can use standard bandwidth selection methods
for kernel regression estimators such as cross-validation or plug-in methods. For SMIL,
log-likelihood based likelihood-based cross-validation (Hall, 1987) could be used or, in
large samples where fn (z|θ) is well-approximated by a normal density, Silverman’s Rule
of Thumb.

In practice, we choose the number of simulations S so large, that the additional vari-
ance due to simulations is negligible. However, for completeness, we note that the
simulated version of the BIL estimator satisfies θ̂SBIL = θ̂BIL + ES [Zn], for a stochastic
function ES (z) which only depends on the simulations. In the case of kernel regression,√

ShdES (Zn) →d N
(

0, ‖K‖2 σ2
n (Zn) / fn (Zn)

)

, as Shd → ∞, where ‖K‖2 =
∫

K2 (z) dz,

and σ2
n (Zn) = Var [θ|Zn]. Thus, the variance estimator of the kernel-smoothed version

of SBIL could be adjusted by adding ‖K‖2 σ2
n(Zn)

fn(Zn)
/
(

Shd
)

to J−1 (θ0). Similar results hold
for the nearest-neighbor version. Using the arguments of Kristensen and Salanié (2010),
standard errors of SMIL can be adjusted in a similar fashion.

4. MONTE CARLO RESULTS

In this section we explore the finite sample performance of the SMIL and SBIL estima-
tors in the context of a structural auction model and a DSGE model. Creel and Kristensen
(2011) contains additional examples, including simple time series models, dynamic and
nonlinear panel data models. Due to space constraints, precise details of the implemen-
tation, including choice of prior and auxiliary statistics, are provided in Appendix C. All
software used to compute the results is free, and complete code and all software required
to replicate all results reported in this paper is available from the authors.

4.1. Auction Model. Li (2010) proposes to use II for estimation of structural econometric
models, and illustrates with a Monte Carlo example of estimation of the parameters of
a Dutch auction, where only the winning bid is observed. We observe n i.i.d. auctions.
At each auction i = 1, 2, ..., n, the quality, xi, of the item being auctioned is observed;
this follows a uniform (0, 1) distribution. Given this signal, N agents make a bid based
on their private value of the item. Their privates values are mutually independent and
come from a common exponential distribution with mean exp(θ0 + θ1xi). The equilib-
rium strategy for the winning bid is then b∗i = v∗i −

∫ v∗i
0 FN−1(u|xi)du/FN−1(v∗i |xi) where

v∗i is the highest private valuation, and F(·|xi) is the exponential distribution function.
For a given value of N, symbolic computation software can be used to obtain an analytic
solution for the winning bid, so simulations can be generated very quickly. The observed



INDIRECT LIKELIHOOD INFERENCE 11

data are the n values of {xi, b∗i }, and we seek to estimate θ0 and θ1. We set N = 6 and the
true parameter values to θ0 = 0.5 and θ1 = 0.5. For BIL, we choose the prior as uniform
over (−1, 3)× (0, 2). We introduce an auxiliary model log b∗i = β0 + β1xi + ǫi, and choose
Zn as the OLS estimates of (β0, β1) together with the log-residual variance and the first
three central moments of the logarithm of the winning bid. Thus, we have six statistics
to identify the two parameters. Given the experimental design, the chosen statistics are
notably non-normally distributed, so we can expect to see differences between the IL and
CU-II estimators.

Table 1 contains the results for 5000 Monte Carlo replications, comparing SMIL, SBIL
and CU-II. For samples of size 80, for which we have results for all three estimators, we
see that the SBIL estimator obtains lower RMSEs for both parameters than does SMIL.
Based on this, and on additional results in Creel and Kristensen (2011) where the SBIL es-
timator performs as well or better than SMIL, we focus henceforth on the SBIL estimator,
which is computationally considerably more convenient. Comparing the SBIL estimator
to CU-II, we see that SBIL has a low bias for all sample sizes, while the CU-II estima-
tor has a more notable bias for the smallest sample size. Comparing RMSEs, SBIL has a
considerable advantage, though the gap narrows somewhat as the sample size increases,
in line with the first order asymptotic equivalence of the two estimators. This example
shows that there can be considerable gains over CU-II, due to the ability of the SBIL esti-
mator to take into account the small sample features of the statistic’s distribution.

4.2. DSGE Model. Next, we report results for estimation of a simple DSGE model. Full
likelihood-based estimation is complicated by two issues: First, DSGE models often con-
tain unobserved state variables that have to be filtered out in the computation of the
likelihood. In a linearized version, the Kalman filter can be employed while for higher-
order solutions, nonlinear filtering methods can be computationally challenging. Second,
standard models as a rule contain fewer shocks than state variables, which leads to sto-
chastic singularities. This can be resolved in two ways: First, by adding on measurement
errors to the observable variables, but this solution involves integrating out additional
variables and the artificially introduced noise leads to less precise inference. Second, by
using at most as many observable variables as structural shocks, but this will in general
impart an efficiency loss. These two challenges complicate full likelihood-based estima-
tion and inference considerably; see, amongst others, Fernández-Villaverde and Rubio-
Ramírez (2005), An and Schorfheide (2006), Fernández-Villaverde (2010) and Winschel
and Krätzig (2010) for recent discussions.

As we shall see, IL avoids the above issues. First of all, there is no need for filter-
ing; we only need to simulate the chosen statistic. Second, stochastic singularities can be
avoided by choosing individual statistics that are not perfectly multicollinear. In particu-
lar, it is possible to find independent moments that incorporate information about more
variables than those that are linearly independent. This makes it an attractive alternative
both from a computational and statistical perspective. Our approach is related to Ruge-
Murcia (2012) who employs simulated method of moments (SMM) for the estimation of a
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DSGE model. Recall that SMM is a special case of the CU-II estimator, and so, in compar-
ison with IL, his method requires numerical optimization, which can be computationally
demanding when the parameter space is large, and is expected to be less efficient in finite
samples. In a simulation study, Ruge-Murcia (2012) treats a number of the parameters as
known; in contrast, we here estimate all parameters entering the model.

The model that we consider is as follows: A single good can be consumed or used for
investment, and a single competitive firm maximizes profits. The states variables are: y

output; c consumption; k capital; i investment, n labor; w real wages; r return to capital.
The household maximizes expected discounted utility

Et

∞

∑
s=0

βs

(

c
1−γ
t+s

1 − γ
+ (1 − nt+s)ηtψ

)

subject to the budget constraint ct + it = rtkt + wtnt and the accumulation of capital
kt+1 = it + (1 − δkt). There is a preference shock, ηt, that affects the desirability of
leisure. The shock evolves according to ln ηt = ρη ln ηt−1 + σηǫt. The competitive firm
produces the good yt using the technology yt = kα

t n1−α
t zt. Technology shocks zt also

follow an AR(1) process in logarithms: ln zt = ρz ln zt−1 + σzut. The innovations to
the preference and technology shocks, ǫt and ut, are mutually independent i.i.d. stan-
dard normally distributed. The good yt can be allocated by the consumer to consump-
tion or investment: yt = ct + it. The consumer provides capital and labor to the firm,
and is paid at the rates rt and wt, respectively. The unknown parameters are collected
in θ =

(

α, β, δ, γ, ψ, ρz, ρη , σz, ση

)

. In total, we have seven state variables and only two
shocks.

In the estimation, we treat capital stock k as unobserved while the remaing state vari-
ables are observed. Two sample sizes are used: n = 40 and n = 160, which mimic 10
and 40 years of quarterly data, respectively. We explore two different designs for the true
parameters, which are given in the second columns of Tables 3 and 4. Both designs set
true steady state hours to 1/3 of the time endowment. Apart from that, the first design
sets the parameters to values that are intended to be typical of the DSGE literature, while
the second design uses less typical values to check the ability of the SBIL estimator to
detect departures from the usually encountered values. For example, the discount rate is
somewhat low, and the depreciation of capital is somewhat high. The shocks are more
volatile in the second design.

Traditionally, DSGE models are estimated by linearizing the model and assuming
Gaussian shocks such that the Kalman filter can be employed; see, e.g., Smets and Wouters
(2007). As a first step, we therefore attempted to estimate θ in a linearized version of the
model using full likelihood methods. This was done by computing the Bayesian poste-
rior using MCMC and Kalman filtering within the Dynare software package (Adjemian
et al., 2011). Due to the stochastic singularities, we used only two variables, c and n, to
compute the likelihood. However, estimation in this manner was not possible since no
posterior mode existed. This is consistent with previous findings of weak identification
in linearized models (Canova and Sala, 2009; Fernández-Villaverde and Rubio-Ramírez,
2005; Iskrev, 2010).
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We therefore in the following focus on a third-order perturbation solution, that com-
bines good accuracy with moderate computational demands (Aruoba, Fernández-Villaverde
and Rúbio-Ramírez, 2006), and SBIL. For both designs, the prior for SBIL is the same. Our
pseudo-prior π(θ) is a uniform distribution over the hypercube defined by the bounds of
the parameter space, which are found in Table 2. The chosen bounds cause the pseudo-
prior means to be biased for the true parameter values, as one may note in Figure 1,
which is discussed further below. The bounds are intended to be broad, in comparison to
the fairly strongly informative priors that are often used when estimating DSGE models
(Fernández-Villaverde, 2010, discusses use of strongly informative priors).

We use two versions of the SBIL estimator. The first version is the one presented and
analyzed in Sections 2-4. It contains d = 24 elements, composed of coefficients of aux-
iliary regressions, sample means, sample autocovariances, etc (details arg given in Ap-
pendix C and in the example code). While the asymptotic tells us that the BIL using the
entire vector of statistics will yield the best estimates, we also know that the simulated
version will suffer from a curse of dimentionality, necessitating use of a large number of
simulations. To explore the possibility of obtaining accurate results without using an ex-
ceptionally large number of simulations, we also report results where the posterior mean
for each parameter is computed using only a subset of the full set of sample statistics (de-
tails of this “targeting” approach are given in Appendix C). Developing an asymptotic
theory of this “targeting” version of the IL estimator is left for future research.

Tables 3 and 4 give the SBIL estimation results, for the two designs, respectively. All
parameters are estimated with good precision, especially for the larger sample size. We
see that the targeted SBIL estimator always gives more precise results than does the sim-
ple estimator that uses the same auxiliary statistic for all parameters, except in the case of
ρz, ρη , for the small sample size. Comparing across sample sizes, RMSE roughly halves
when the sample size quadruples, in line with the first order asymptotic theory. When
there is a non-negligible bias for the small sample size (for example, the parameters ρz, ρη

and ψ), it declines notably when the sample size increases. The combination of bias re-
duction compared to the prior and contraction of RMSE illustrates that all parameters
of the model are well-identified by the chosen auxiliary statistics. Figure 1 shows the
pseudo-prior densities, true parameter values, and a kernel density estimate of the sam-
pling density of the targeted SBIL estimator, fit using the 5000 Monte Carlo replications,
for each parameter of the first design. We see that the density of the SBIL estimator
moves toward and concentrates about the true parameter value, even for a pseudo-prior
distribution that is biased (the true parameter values are not in the center of the plots)
and quite uninformative (the pseudo-priors take low values compared to the peak of the
density of the SBIL estimator).

Given the simplicity and good performance of the SBIL for estimation of the DSGE
model, we believe that it provides an interesting alternative to the considerably more
complex and computationally demanding methodology of MCMC combined with parti-
cle filtering, which can probably be described as the current state of the art for estimation
of DSGE models. Our results are suggestive that inference though a statistic may not (de-
pending on the statistic, of course) be subject to identification problems when the model
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is solved using a more accurate higher order solution method, rather than linearized.
Moreover, possible stochastic singularities do not cause any difficulties for SBIL estima-
tion, except that one might need to choose auxiliary statistics with some care to avoid
inflating the dimension of the auxiliary statistic with additional elements that add no
new information. A measure of the practicality of estimation of a DSGE model using
SBIL is the simple fact that we have been able to perform 20,000 Monte Carlo replica-
tions of SBIL: 5000 replications for each of two designs and for each of two sample sizes.
We are aware of no similar Monte Carlo exploration of the MCMC/SMC and particle
filtering combination for estimation of DSGE models.

5. CONCLUSIONS

This paper has introduced IL (also known as ABC) estimators to the econometric lit-
erature. We analyzed the asymptotic properties of the estimators and showed that they
are higher-order efficient relative to the corresponding standard CU-II estimator. Simu-
lation studies showed that indeed the IL estimators enjoy good properties in finite sam-
ples, with small biases and variances. From a methodological point of view, a number
of extensions would be of interest: For example, developing tools for selection of a suit-
able statistic Zn for a given model; see Fearnhead and Prangle (2012) for some results
in this direction. In addition, developing and analyzing inferential tools using the in-
direct likelihood, such as likelihood ratio tests, would be useful. There is also scope
for improvements in terms of numerical implementation. We have focused on the basic
sampler as given in eq. (14) choosing the number of neighbors k through the simple rule
k = a × S0.25. More sophisticated rules, such as cross-validation, or different kernels,
could lead to better performance. Similarly, more complicated samplers using impor-
tance sampling methods could be used to improve on the computation time.
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APPENDIX A: PROOFS

Proof. [Proposition 1] We first show consistency of the MIL estimator. Due to eq. (9), we
can treat 1

n logφ∗
n (Zn|θ) as the actual log-likelihood. This satisfies, uniformly in θ ∈ Θ,

1
n

logφ∗
n (Zn|θ) = − 1

2n
log (|Ω (θ) |)− 1

2n
(Zn − Z (θ))

′
Ω−1 (θ) (Zn − Z (θ)) + oP (1)

= −1
2
(Z (θ0)− Z (θ))

′
Ω−1 (θ) (Z (θ0)− Z (θ)) + oP (1) .(15)

The limit is a continuous function w.r.t. θ with a unique minimum at θ = θ0 by Assump-
tion 3. It now follows by standard results (see e.g. Newey and McFadden, 1994, Theorem
2.1), that the MILE is consistent. Next, observe that

1√
n

∂log fn (Zn|θ)
∂θ

∣

∣

∣

∣

θ=θ0

=
1√
n

∂logφ∗
n (Zn|θ)
∂θ

∣

∣

∣

∣

θ=θ0

+ oP (1)

= Ż (θ0)
′
Ω−1 (θ0)

√
n (Zn − Z (θ0))

′
+ oP (1) →d N

(

0, I−1 (θ0)
)

while, uniformly in θ,

1
n

∂2log fn (Zn|θ)
∂θ∂θ′

=
1
n

∂2logφ∗
n (Zn|θ)

∂θ∂θ′
+ oP (1) = Z̈ (θ)′ Ω−1 (θ0) (Zn − Z (θ))

′
+ I (θ) + oP (1)

= Z̈ (θ)′ Ω−1 (θ0) (Z (θ0)− Z (θ))
′
+ I (θ) + oP (1) .

Asymptotic normality of the MIL estimator now follows by standard arguments for ex-
tremum estimators (see e.g. Newey and McFadden, 1994, Theorem 2.1).

The first-order properties of the BIL are established by verifying Assumptions 1-4 in
Chernozhukov and Hong (2003), CH henceforth. First note that CH’s Assumptions 1-2
are satisfied by our Assumption 2. What remains is to verify their Assumption 3-4. But
by combining their Lemmas 1-2 with the above derivations, these are easily verified. We
can now appeal to CH’s Theorem 2 which yields the desired result.

Finally, using that Eθ [Zn] = Z (θ) + o (1/n) and Ωn (θ) = Ω (θ) + o (1/n), the proper-
ties of the CU version follows along the same lines as for the MIL estimator. �

Proof. [Proposition 2] First consider the MIL estimator. Lemma 4 together Assumption 1
imply that we can treat the higher-order Edgeworth expansion as the actual log-likelihood.
We then employ Lemma 3 with mn (θ) := 1

n ∂log f ∗n (Zn|θ) / (∂θ) and

(16) Dm (θ) := −I (θ) , D2m (θ) := −3Ż (θ)′
{

Ω−1 (θ) Z̈ (θ) +
∂Ω−1 (θ)

∂θ
Ż (θ)

}

,

to obtain a higher-order expansion of the MIL estimator. Write log f ∗n (Zn|θ) = logφ∗
n (Zn|θ)+

loggn (Zn|θ) where gn (Zn|θ) := 1 + ∑
r
i=1 n−i/2ai (Tn (θ) |θ) . contains the higher-order

terms. The Gaussian component of the score satisfies, with ∆n (θ) =
√

n(Zn − Z (θ)) =

Ω1/2 (θ) Tn (θ),

1√
n

∂logφ∗
n (Zn|θ)
∂θ

= Ż (θ)′ Ω−1/2 (θ) Tn (θ) +
1

2
√

n

∂ log
∣

∣Ω−1 (θ)
∣

∣

∂θ

− 1
2
√

n
Tn (θ)

′
Ω1/2 (θ)

∂Ω−1 (θ)

∂θ
Ω1/2 (θ) Tn (θ)
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while the one of the Hessian satisfies

1√
n

{

∂2logφ∗
n (Zn|θ)

∂θ∂θ′
− Dm (θ)

}

=

[

Z̈ (θ)′ Ω−1/2 (θ) + 2Ż (θ)′
∂Ω−1 (θ)

∂θ
Ω1/2 (θ)

]

Tn (θ)

+
1

2
√

n
Tn (θ)

′
Ω1/2 (θ)

∂2Ω−1 (θ)

∂θ2 Ω1/2 (θ) Tn (θ)

+
1

2
√

n

∂2 log
∣

∣Ω−1 (θ)
∣

∣

∂θ2

and similarly for the third derivative. The higher-order component of the score satisfies

∂ log gn (Zn|θ)
∂θ

=
∑

r
i=0 n−i/2a1,i (Tn (θ) |θ)

gn (Zn|θ)
,

where a1,i (t|θ) is a polynomial; in particular, a1,0 (t|θ) := −a
(1)
1 (t|θ) Ω−1/2 (θ) Ż (θ) . Sim-

ilarly, again by collecting polynomials with the same order,

∂2 log gn (Zn|θ)
∂θ∂θ′

=
√

n
∑

2r−1
i=0 n−i/2a2,i (Tn (θ) |θ)

gn (Zn|θ)
,

where a2,i (t|θ), i = 0, 1, ..., 2r − 1 are polynomials. In particular,

a2,0 (t|θ) := Ż (θ)′ Ω−1/2a
(2)
1 (t|θ) Ω−1/2 (θ) Ż (θ) ,

which is a first-order polynomial. Similarly, we find that ∂3 log gn (Zn|θ) / (∂θ∂θ′∂θi), i =

1, ..., q, can be expressed as a sum of ratios of polynomials of Tn (θ). Combining the above
expressions, we see that Un,k, k = 1, 2, 3, as defined in Lemma 3 are smooth functions of
Tn which in turn implies that −Un,1 +

1√
n

Q1 (Un,1, Un,2) +
1
n Q2 (Un,1, Un,2, Un,3) = fn (Tn)

for a smooth function fn. It is easily checked that fn satisfies the assumptions of Skov-
gaard (1981, Theorem 3.2) and so the distribution of fn (Tn) is well-approximated by a
second-order Edgeworth expansion. This combined with the arguments of, for example,
Taniguchi (1987, Lemma 4) in turn implies that the distribution of

√
n(θ̂ − θ0) is well-

approximated by a second-order Edgeworth expansion.
Next, we expand the BIL estimator around the MIL estimator. We here follow the

strategy of Johnson (1970) who provides such an expansion in the case of the posterior
mean based on the likelihood of a random sample. The arguments are almost identical
to his given that, as shown above, we can control the errors when expanding the indirect
likelihood. We therefore only sketch the proof and for notational simplicity only consider
the case of a scalar parameter. First, for any given δ,

(17) π
(

θ̂MIL + n−1/2δ
)

= 1 +
4

∑
i=1

n−i/2 1
i!

∂iπ
(

θ̂MIL

)

∂θi
δi +OP

(

n−2) ,

(18) log fn

(

θ̂MIL + n−1/2δ
)

= log fn

(

θ̂MIL

)

+
4

∑
i=2

n−i/2 1
i!

ln,i
(

θ̂MIL

)

δi + OP

(

n−2) ,

where ln,i (θ) = 1
n ∂ log fn (θ) / (∂θ) . In particular, ln,2

(

θ̂MIL

)

= −I (θ) + OP

(

1/
√

n
)

.
Combining these two expansions, we obtain an expansion of the posterior density of
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δ̂n =
√

n(θ − θ̂MIL),

fδ̂n
(δ|Zn) =

exp
(

log fn

(

θ̂MIL + n−1/2δ
)

− log fn

(

θ̂MIL

))

π
(

θ̂MIL + n−1/2δ
)

∫

exp
(

log fn

(

θ̂MIL + n−1/2δ
)

− log fn

(

θ̂MIL

))

π
(

θ̂MIL + n−1/2δ
)

dδ
;

see Johnson (1970) for details on this expansion. Next, using that θ = θ̂MIL + δ̂n/
√

n,
observe that the posterior mean can be expressed in terms of fn (δ|Zn),

θ̂BIL =
∫

Θ
θ fn (θ|Zn) dθ = θ̂MIL +

1
n

∫

Θ
δ fδ̂n

(δ|Zn) dδ.

Substituting the expansion of fn (δ|Zn) into the last integral we obtain after some manip-
ulations that

(19) θ̂BIL = θ̂MIL +

[

1
2
I−1 (θ) D2mI−1 (θ) + I−1 (θ)

π̇ (θ)

π (θ)

]

1
n
+

1
n2 RBIL,n,

where, for some ρn satisfying ρn → 0 and ρn
√

n → ∞, P
(

‖RBIL,n‖ > ρn
√

n
)

= o
(

n−1
)

.
In conclusion, the BIL estimator is equivalent to the MIL estimator up to a bias term of
order 1/n and a stochastic term of order 1/n2. In particular, as claimed, the bias-adjusted
BIL will enjoy the same properties as the bias-adjusted MIL, including second and third-
order efficiency.

Finally, the CU-II estimator also falls within the framework of Lemma 3 with

mn (θ) = Ėθ [Zn]
′
Ω−1 (θ) ∆n (θ)−

1
2
√

n
∆n (θ)

′ ∂Ω−1 (θ)

∂θ
∆n (θ) ,

where we have redefined Tn (θ) =
√

nΩ1/2 (θ) (Zn −Eθ [Zn]) and ∆n (θ) = Ω1/2 (θ) Tn (θ).
In particular, compared to the MIL, Z (θ) has been replaced by Eθ [Zn] ≃ Z (θ)+ BZ (θ) /n.
Otherwise, we can follow the same arguments as for MIL to obtain that

Q1 (Un,1 (θ) , Un,2 (θ)) = n (Dm (θ))−2
{

mn (θ) [Dmn (θ)− Dm (θ)] +
1
2

D2m (θ)

}

,

where Dm (θ) and D2m (θ) are the same as for the MIL. It holds that
√

nmn (θ) = Ėθ [Zn]
′
Ω−1/2 (θ) Tn (θ) +OP

(

1/
√

n
)

= Ż (θ)′ Ω−1/2 (θ) Tn (θ) +OP

(

1/
√

n
)

,

and
√

n [Dmn (θ)− Dm (θ)] =

[

Ëθ [Zn]
′
Ω−1/2 (θ) + 2Ėθ [Zn]

′ ∂Ω−1 (θ)

∂θ
Ω1/2 (θ)

]

Tn (θ) +OP

(

1/
√

n
)

=

[

Z̈ (θ)′ Ω−1/2 (θ) + 2Ż (θ)′
∂Ω−1 (θ)

∂θ
Ω1/2 (θ)

]

Tn (θ) +OP

(

1/
√

n
)

,

where we have used that Ėθ [Zn] = Ż (θ) + O (1/n) and similar for the second-order
derivative. Thus, the CU-II estimator can also be expressed as a polynomial of Tn and
so, by the same arguments as for the MIL estimator, its distribution satisfy an Edgeworth
expansion. �

Proof. [Proposition 3] Observe that f̂n(Zn|θ) =
√

n/ |Ω (θ)| f̂Tn (Tn (Zn|θ) |θ), where T (Zn|θ) :=√
nΩ−1/2 (θ) (Zn − Z (θ)) and, with Ts

n (θ) =
√

nΩ−1/2 (θ) (Zs
n (θ)− Z (θ)) and B = Ω−1/2 (θ)

√
nh,

f̂Tn(t|θ) = 1
S ∑

S
s=1 KB (T

s
n (θ)− t). Given that fTn (t|θ) is suitably bounded uniformly in n
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and θ, we can employ the results of Kristensen (2009) to obtain that

sup
n≥1

sup
θ∈Θ

∣

∣

∣
f̂Tn (Tn (Zn|θ) |θ)− fTn (Tn (Zn|θ) |θ)

∣

∣

∣
= OP

(

nh2)+OP

(

√

log S/
(

S
(√

nh
)d
)

)

.

This in turn implies that

I

{

f̂n,S(Zn|θ) > a
}

= I

{

f̂Tn (Tn (Zn|θ) |θ) > a |Ω (θ)| /
√

n
}

≃ I
{

fTn (Tn (Zn|θ) |θ) > a |Ω (θ)| /
√

n
}

= I { fn(Zn|θ) > a} .

Thus, by the mean value theorem, uniformly over n ≥ 1 and θ ∈ Θ,

τ̂a (Zn|θ)
1
n

∣

∣

∣log f̂n(Zn|θ)− log fn(Zn|θ)
∣

∣

∣ ≃ I
{

fTn (Tn (Zn|θ) |θ) > a |Ω (θ)| /
√

n
}

n fTn (Tn (Zn|θ) |θ)
∣

∣

∣ f̂Tn (Tn (Zn|θ) |θ)− fT

≤ C

a
√

n

∣

∣

∣
f̂Tn (Tn (Zn|θ) |θ)− fTn (Tn (Zn|θ) |θ)

∣

∣

∣

= OP

(

a−1n−1/2h2
)

+ OP

(

a−1
√

log S/ (Snd+1hd)

)

.

Finally, using that P
(

‖Zn − Z (θ0)‖2 /n < w
)

→ F (w) uniformly in w, where F is the

cdf of a scaled χ2
d-distribution,

P

(

sup
θ∈Θ

fn(Zn|θ) > an

)

≃ P

(

sup
θ∈Θ

exp
(

−1
2
(Zn − Z (θ))′ Ω (θ) (Zn − Z (θ))

)

> can/
√

n

)

= P

(

‖Zn − Z (θ0)‖2 /n <
log (n/an) + c

n

)

≃ F

(

log (n/an)

n

)

≃ exp
(

− log (n/an)

2n

)

= exp
(

log
(

(n/an)
−1/(2n)

))

= (n/an)
−1/(2n) ,

for some constant c > 0. With q > 0 given in Assumption 4, choose p > 0 such that
1/p + 1/q = 1. We then obtain

1
n

E

[

sup
θ∈Θ

|τ̂a (Zn|θ)− 1| |log fn(Zn|θ)|
]

≤ 1
n

P

(

sup
θ∈Θ

fn(Zn|θ) > 2an

)1/p

E

[

sup
θ∈Θ

|log fn(Zn|θ)|q
]1/q

≃ 1
n
(n/an)

−1/(2np) .

In total, uniformly over θ ∈ Θ,

1
n

∣

∣

∣τ̂a (Zn|θ) log f̂n(Zn|θ)− log fn(Zn|θ)
∣

∣

∣

= OP

(

a−1n−1/2h2
)

+ OP

(

a−1
√

log S/ (Snd+1hd)

)

+OP

(

1
n
(n/an)

−1/(2np)
)

.

The result now follows from Lemma 4.



INDIRECT LIKELIHOOD INFERENCE 21

By standard arguments for kernel regression estimators, see Li and Racine (2007, Sec.
2.1),

θ̂SBIL ≃ θ̂BIL + h2BBIL (Zn) +

√

‖VBIL (Zn)‖
Shd

,

where, with fn (Zn) =
∫

Θ
fn (Zn|θ) π (θ) dθ,

BBIL (Zn) =
1

2 fn (Zn)

d

∑
i,j=1

{

∂2Eθ [θ|Zn]

∂Zn,i∂Zn,j
fn (Zn) + 2

∂Eθ [θ|Zn]

∂Zn,i

∂ fn (Zn)

∂Zn,j

}

= OP (n) ,

VBIL (Zn) =
∫

K2 (z) dz × Varθ [θ|Zn]

fn (Zn)
= OP

(

nd/2
)

.

�

APPENDIX B: LEMMAS

Lemma 1. Suppose that the remainder term Rn (t|θ) in eq. (6) satisfies for some c ≥ 0 and

q ≥ 1,

sup
θ

|Rn (t|θ)| ≤
c

n(r+1)/2

1
1 + |t|q .

Then Assumption 1(i) and (iii) are satisfied. If, furthermore, we are allowed to differentiate on

both sides of eq. (6) w.r.t. θ, and the derivatives of Rn (t|θ) satisfies the above bound, then 1(ii)

holds.

Proof. Observe that, using change of variable, t =
√

nΩ−1/2 (θ0) (z − Z (θ0)) ⇔ z =

Ω1/2 (θ0) t/
√

n + Z (θ0) such that

T (z|θ) :=
√

nΩ−1/2 (θ)
(

Ω1/2 (θ0) z/
√

n + Z (θ0)− Z (θ)
)

= V (θ) z +
√

nδ (θ)

where V (θ) = Ω−1/2 (θ) Ω1/2 (θ0) and δ (θ) = Ω−1/2 (θ) [Z (θ0)− Z (θ)]. Using this
transformation,

E

[

sup
θ∈Θ

|LR (θ)|
]

=
1
n

∫

fn (z|θ0) sup
θ

|log fn (z|θ)− log f ∗n (z|θ)| dz(20)

=
1
n

∫

fTn (t|θ0) sup
θ

∣

∣log fTn

(

V (θ) t +
√

nδ (θ) |θ
)

− log f ∗Tn

(

V (θ) t +
√

nδ (θ) |θ
)∣

∣ dt

≤ 2
n

∫

φ (t) sup
θ

∣

∣

∣

∣

∣

log

(

1 + 2
Rn

(

V (θ) t +
√

nδ (θ) |θ
)

φ
(

V (θ) t +
√

nδ (θ) |θ
)

)∣

∣

∣

∣

∣

dt,(21)

where we have used that φ (t) /2 ≤ fTn (t|θ) ≤ 2φ (t) for n large enough. Observe that
for some c1, c2 > 0,

1
n

sup
θ∈Θ

∣

∣

∣

∣

∣

log

(

1 + 2
Rn

(

V (θ) t +
√

nδ (θ) |θ
)

φ
(

V (θ) t +
√

nδ (θ) |θ
)

)∣

∣

∣

∣

∣

≤ log



1 +
c

n(r+1)/2n

exp
(

c1 + c2 |t|21 /n
)

1 + c1nq + c2 |t|q



→ 0.

Since the function on the right hand side of the above inequality is also integrable w.r.t.
φ (t), it follows by the dominated convergence theorem that the bound in eq. (21) goes to
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zero. That is, Assumption 1(i) is satisfied. For Assumption 1(iii), define θn = θ0 + τ/
√

n

and use the mean-value theorem to obtain δ (θn) ≃ Ż (θ0) τ/
√

n. Substituting this into
the integral bound in eq. (21), we obtain

E

[

sup
θn

|LR (θn)|
]

≤ 2
n

∫

φ (t) sup
τ

∣

∣

∣

∣

∣

log

(

1 + 2
Rn

(

V (θn) t + Ż (θ0) τ|θ0 + τ/
√

n
)

φ
(

V (θn) t + Ż (θ0) τ|θ0 + τ/
√

n
)

)∣

∣

∣

∣

∣

dt

≤ 2
n

∫

φ (t)

∣

∣

∣

∣

∣

∣

log



1 +
c

n(r+1)/2

exp
(

c1 + c2 |t|21
)

1 + c1 + c2 |t|q





∣

∣

∣

∣

∣

∣

dt,

For any t,

log



1 +
c

n(r+1)/2

exp
(

c1 + c2 |t|21
)

1 + c1 + c2 |t|q



 = O
(

n(r+1)/2
)

,

and so Assumption 1(iii) holds by the dominated convergence theorem. Assumption 1(ii)
is shown along the same lines, and so the proof is left out. �

Lemma 2. Under the assumptions of Proposition 2, the leading bias terms of the MIL, BIL and

CU estimators are:

Eθ[θ̂MIL] ≃ θ + 1
n BI (θ) +

1
n

BMIL (θ) , Eθ[θ̂BIL] ≃ θ +
1
n

BI (θ) +
1
n

BMIL (θ) +
1
n

BBIL (θ) ,

Eθ[θ̂CU ] ≃ θ + 1
n BI (θ) +

1
n

BCU (θ) ,

where, with a
(2)
1 (t|θ) = ∂2a1 (t|θ) / (∂t∂t),

BI (θ) =
1
2
I−2 (θ) Ż (θ)′

{

Ω−1 (θ) Z̈ (θ)− ∂Ω−1 (θ)

∂θ
Ż (θ)

}

BCU (θ) = 2tr

{

∂Ω−1 (θ)

∂θ
Ω (θ)

}

,

BMIL (θ) = I−2 (θ) Ż (θ)′ Ω−1/2 (θ) Eθ

[

Tn (θ) Ż (θ)′ Ω−1/2 (θ) a
(2)
1 (Tn (θ) |θ)

]

Ω−1/2 (θ) Ż (θ) ,

BBIL (θ) =
3
2
I−2 (θ) Ż (θ)′

{

Ω−1 (θ) Z̈ (θ) +
∂Ω−1 (θ)

∂θ
Ż (θ)

}

+ I−1 (θ)
π̇ (θ)

π (θ)
.

Proof. The leading bias of θ̂MIL could in principle be found by writing up the Edge-
worth expansion of

√
n(θ̂ − θ0) explicitly. We here instead directly analyze the mean

of Q1 (Un,1, Un,2) /n as defined in the proof of Proposition 2. First,

Q1 (Un,1 (θ) , Un,2 (θ)) = n (Dm (θ))−2
{

mn (θ) [Dmn (θ)− Dm (θ)] +
1
2

D2m (θ)

}

,

where
√

nmn (θ) = Ż (θ)′ Ω−1/2 (θ) Tn (θ) +OP

(

1/
√

n
)

,

√
n [Dmn (θ)− Dm (θ)] =

[

Z̈ (θ)′ Ω−1/2 (θ) + 2Ż (θ)′
∂Ω−1 (θ)

∂θ
Ω1/2 (θ)

]

Tn (θ)

+Ż (θ)′ Ω−1/2 (θ) a
(2)
1 (Tn (θ) |θ) Ω−1/2 (θ) Ż (θ) + OP

(

1/
√

n
)

.



INDIRECT LIKELIHOOD INFERENCE 23

Substituting the leading terms into the above expression for Q1 (Un,1, Un,2) yields

Eθ [Q1 (Un,1 (θ) , Un,2 (θ))] ≃ J−2 (θ)

{

Ż (θ)′ Ω−1 (θ) Z̈ (θ) + 2Ż (θ)′
∂Ω−1 (θ)

∂θ
Ż (θ)

}

+ BMIL (θ)

−3
2

J−2 (θ)

{

Ż (θ)′ Ω−1 (θ) Z̈ (θ) + Ż (θ)′
∂Ω−1 (θ)

∂θ
Ż (θ)

}

=
1
2

J−2 (θ) Ż (θ)′
{

Ω−1 (θ) Z̈ (θ)− ∂Ω−1 (θ)

∂θ
Ż (θ)

}

+ BMIL (θ) ,

where

BMIL (θ) := J−2 (θ) Ż (θ)′ Ω−1/2 (θ) E
[

Tn (θ) Ż (θ)′ Ω−1/2 (θ) a
(2)
1 (Tn (θ) |θ)

]

Ω−1/2 (θ) Ż (θ)

Thus, using that Eθ [Un,1 (θ)] = 0,

Eθ[θ̂MIL]− θ ≃ 1
n

Eθ [Q1 (Un,1 (θ) , Un,2 (θ))]

≃ 1
2n

J−2 (θ)

{

Ż (θ)′ Ω−1 (θ) Z̈ (θ)− Ż (θ)′
∂Ω−1 (θ)

∂θ
Ż (θ)

}

+
1
n

BMIL (θ) .

The leading bias of the BIL estimators is obtained by combining eq. (19) with the ex-
pression of the bias for the MIL estimator. Finally, observe that the first-order condition

defining the CU estimator satisfies Eθ [mn (θ)] =
1

2
√

n
tr
{

∂Ω−1(θ)
∂θ Ω (θ)

}

, and so

Eθ [θ̂CU ]− θ ≃ 1√
n

E [mn (θ)] +
1
n

E [Q1 (Un,1 (θ) , Un,2 (θ))]

≃ 1
2

J−2 (θ)

{

Ż (θ)′ Ω−1 (θ) Z̈ (θ)− Ż (θ)′
∂Ω−1 (θ)

∂θ
Ż (θ)

}

+
1
n

BCU (θ) .

�

Consider some
√

n-consistent estimator θ̂ ∈ R
q,
√

n
(

θ̂ − θ0
)

= OP (1), characterized
as the root of a random function mn (θ) ∈ R

q:

0 = mn

(

θ̂
)

.

We wish to analyze higher-order properties of θ̂. For that purpose we introduce the fol-
lowing sequences:

Un,1 = −
√

nDm−1mn (θ0) , Un,2 =
√

n

{

∂mn (θ0)

∂θ
− Dm

}

, Un,3,i =
√

n

{

∂2mn (θ0)

∂θ∂θi
− D2mi

}

,

for i = 1, ..., q, where Dm ∈ R
q×q, D2mi ∈ R

q×q and D3mij ∈ R
q×q; in the leading case,

these will be moments.

Lemma 3. Suppose that the stochastic function θ 7→ mn (θ) is three times differentiable with its

derivatives satisfying Un,k = OP (1) for k = 1, 2, 3 and the matrix Dm ∈ R
q×q is non-singular.

Moreover, for some sequence Dn = OP (1),
∣

∣

∣

∣

∂3mn (θ)

∂θ∂θi∂θj
− ∂3mn (θ0)

∂θ∂θi∂θj

∣

∣

∣

∣

≤ Dn |θ − θ0| ,
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in a neighbourhood of θ0. Then the estimator satisfies

√
n(̂θ − θ0) = Un,1 +

1√
n

Q1 (Un,1, Un,2) +
1
n

Q2 (Un,1, Un,2, Un,3) +
1

n3/2 Rn,

where Rn = OP (1) and

Q1 (Un,1, Un,2) = −Dm−1

{

Un,2Un,1 +
1
2

q

∑
i=1

Un,1D2miUn,1

}

,

Q2 (Un,1, Un,2, Un,3)

= −Dm−1Un,2Q1 (Un,1, Un,2)−
1
6

Dm−1
q

∑
i,j=1

Un,1,iUn,1,jDmijUn,1

−Dm−1 1
2

q

∑
i=1

{

Un,1,iD
2miQ1 (Un,1, Un,2) + Q1,i (Un,1, Un,2) D2miUn,1 + Un,1,iUn,3,iUn,1

}

.

If, in addition, for each α > 0 there exists d > 0 such that

P (‖mn (θ0)‖ > dnα) = o
(

n−1
)

, P (‖Bn,i‖ > dnα) = o
(

n−1
)

, P
(∥

∥Cn,ij
∥

∥ > dnα
)

= o
(

n−1
)

,

P

(

supθ

∥

∥

∥

∥

∂3mn (θ)

∂θ∂θi∂θj
− ∂3mn (θ0)

∂θ∂θi∂θj

∥

∥

∥

∥

> dnα |θ − θ0|
)

= o
(

n−1
)

,

then, for some ρn satisfying ρn → 0 and ρn
√

n → ∞, P
(

‖Rn‖ > ρn
√

n
)

= o
(

n−1
)

.

Proof. We proceed as in Newey and Smith (2004): First, by a third order Taylor expansion,

0 = mn (θ0) +
∂mn (θ0)

∂θ

(

θ̂ − θ0
)

+
1
2

q

∑
i=1

(

θ̂i − θ0,i
) ∂2mn (θ0)

∂θ∂θi

(

θ̂ − θ0
)

+
1
6

q

∑
i,j=1

(

θ̂i − θ0,i
) (

θ̂j − θ0,j
) ∂3mn

(

θ̄
)

∂θ∂θi∂θj

(

θ̂ − θ0
)

,

where θ̄ lies on the line between θ0 and θ̂. Since the third order derivative satisfies
∣

∣

∣

∣

∣

∂3mn

(

θ̄
)

∂θ∂θi∂θj
− D3mij

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∂3mn

(

θ̄
)

∂θ∂θi∂θj
− ∂3mn (θ0)

∂θ∂θi∂θj

∣

∣

∣

∣

∣

+OP

(

1/
√

n
)

= OP

(

1/
√

n
)

,

we obtain

0 =
√

nmn (θ0) +
√

nDm
(

θ̂ − θ0
)

+ Un,2
(

θ̂ − θ0
)

+

√
n

2

q

∑
i=1

(

θ̂i − θ0,i
)

D2mi

(

θ̂ − θ0
)

+
1
2

q

∑
i=1

(

θ̂i − θ0,i
)

Un,3,i
(

θ̂ − θ0
)

+

√
n

6

q

∑
i,j=1

(

θ̂i − θ0,i
) (

θ̂j − θ0,j
)

D3mij

(

θ̂ − θ0
)

+OP

(

1/n3/2
)

.

Next, using that Un,1 = OP (1) and Un,2 = OP (1), the result now follows by the same ar-
guments as in Newey and Smith (2004, Proof of Lemma A4). The second part stating that
P
(

‖Rn‖ > ρn
√

n
)

= o
(

n−1
)

follows by standard arguments for Edgeworth expansions
of estimators; see e.g. Taniguchi (1987, p. 8-10). �
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Lemma 4. Let θ̂ = arg minθ∈Θ Ln (θ) and θ̃ = arg minθ∈Θ Qn (θ) satisfy: (i) θ̂ →P θ0 and

θ̃ →P θ0; (ii) Ln (θ) is twice differentiable with sup‖θ−θ0‖<δ

∥

∥∂2Ln (θ) / (∂θ∂θ′)− H (θ)
∥

∥ →P

0; (iii) H (θ) is continuous with H (θ0) > 0. Then

∥

∥θ̂ − θ̃
∥

∥ = OP

(

√

sup
‖θ−θ0‖<δ

|Ln (θ)− Qn (θ)|
)

.

Let θ̂ and θ̃ solve Sn(θ̂) = 0 and Tn(θ̃) = 0, respectively, such that: (i) θ̂ →P θ0 and

θ̃ →P θ0; (ii) Sn (θ) is differentiable with sup‖θ−θ0‖<δ ‖∂Sn (θ) /∂θ − H (θ)‖ →P 0; (iii) H (θ)

is continuous with H (θ0) > 0. Then

∥

∥θ̂ − θ̃
∥

∥ = OP

(

sup
‖θ−θ0‖<δ

|Sn (θ)− Tn (θ)|
)

.
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APPENDIX C: IMPLEMENTATION OF SMIL AND SBIL

To compute both SMIL and SBIL, we use the k nearest neighbors approach (see Li and
Racine, 2007, Chapter 14). The number of neighbors used for nonparametric fits is set to
k = a × S0.25, rounded down to the nearest integer, where S is the number of simulations
drawn from the pseudo-prior. For the auction model, which is very fast to simulate, we
use S = 2 × 106, while for the DSGE model we use S = 106 . For the auction model,
which has a fairly low dimensional auxiliary statistic, we use a = 1.5, while for the DSGE
model, which uses a higher dimensional auxiliary statistic, we set a = 1. More careful
choice using methods such as cross validation might improve the results somewhat, but
we do not explore this possibility in this paper. For all applications the pseudo-prior
π(θ) is a uniform distribution over the parameter space Θ, so the only remaining issue is
specifying the bounds of parameter space.

We compute the SBIL estimator as the posterior mean. Similar results are obtained if
the posterior median is used instead - these are not reported to save space. To compute
the SMIL estimator, we maximize the joint density of (Zn, θ) with respect to θ, where the
joint density is estimated using a k−nearest neighbors nonparametric density fit com-
puted using the same S simulations (θs, Zs

n), s = 1, ...S that are used to compute the SBIL
estimator. Given that our prior is uniform, the joint density of (Zn, θ) is maximized at the
same value of θ as is the likelihood function. We use this strategy to take advantage of the
simulations that have already been done for SBIL, rather than using the method outlined
in equation 13, which would require new simulations at each trial value of θ. For a simple
nearest neighbors density fit (Li and Racine, 2007, equation 14.2), maximizing the density
is equivalent to minimizing the distance of the k-th neighbor to the observed Zn. The ob-
jective function is not convex, so a global minimization algorithm (simulated annealing)
is used. This is quite time-consuming compared to SBIL, which can be computed in less
than a minute after the simulations have been done. In all cases we compute 5000 Monte
Carlo replications of the estimators. All software used to compute the results is free, and
complete code and all software required to replicate all results reported in this paper is
available from the authors.

DSGE Model. The implementation of the SBIL estimator for this model proceeds as fol-
lows: Given a draw θs from the parameter space, first, the model is solved using Dynare
(Adjemian et al., 2011), using a third order perturbation about the steady state. Then a
simulation of length n+ 100 is done, initialized at the steady state. We drop the initial 100
observations, retaining the last n observations, where n is either 40 or 160. The selection
of observable variables is in line with much empirical work (e.g., Smets and Wouters,
2007, also see Guerrón-Quintana, 2010, for discussion). Given the sample of observed
variables, we compute the auxiliary statistic Zs

n.
Our pseudo-prior π(θ) is chosen as a uniform distribution over the hypercube defined

by the bounds of the parameter space, which are found in Table 2. Following Ruge-
Murcia (2012), rather than set a prior for ψ and estimate this parameter directly, we in-
stead treat steady state hours n̄ as a parameter to estimate, along with the other param-
eters, excepting ψ. Then ψ is recovered using the equation ψ = c̄−γ (1 − α) k̄αn̄−α, where
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overbars indicate the steady state value of a variable (the steady state solution is given
in the Dynare code for the model). The advantage of this is that it is comparatively easy
to set priors on n̄, which guarantees that we will not be wasting time generating many
unrealistic solutions where the average number of hours worked is far away from the as-
sumed true value, which is 1/3 of the time endowment (8 hours a day), for both designs.
The chosen limits cause the pseudo-prior means to be biased for the true parameter val-
ues. The chosen limits are intended to be broad, in comparison to the fairly strongly infor-
mative priors that are often used when estimating DSGE models (Fernández-Villaverde,
2010, discusses use of strongly informative priors).

The elements of the auxiliary statistic are chosen with an eye to their ability to identify
the parameters of the model, and include variable means, standard deviations, autocor-
relations, and some statistics resulting from regressions between variables. We imple-
ment two versions of SBIL, a first that uses all statistics to estimate all parameters, and
a targeted version, where specific statistics are used for each parameter, to reduce the
dimension when doing the nonparametric regression. The first version exactly follows
the theoretical presentation. The targeted version may be thought of as a collection of
SBIL estimators, each of which follows the theory individually, and from which we select
out estimators of the parameters that are targeted by the respective vector of statistics.
The advantage of the targeting is that it allows for reduction of the dimension of the
conditioning information in the nonparmametric estimation of E(θj|Zn), as Zn is chosen
specifically for each parameter θj, j = 1, 2, ..., k. This results in more accurate nonpara-
metric estimation, for a given number of simulations, S.

We now discuss the targeted statistics, as the overall statistic is simply the union of
the targeted statistics. For each of the parameters α, β, δ and n̄, the targeted auxiliary
statistics are the sample means of the five observable variables. Some of the other auxil-
iary statistics are more complicated. For example, the model implies that w = ψηcγ, so
log w = log ψ+γ log c+ log η, where log η follows an AR(1) process. Because w and c are
observable, this equation can be estimated. We use a generalized instrumental variables
estimator (GIV), using the lags of the logarithms of the observable variables as instru-
ments. The GIV estimation results give a statistic γ̂ which is used as one of the targeted
auxiliary statistics for the parameter γ. Other statistics used for γ are sample correlations
between consumption and the other observable variables. The residuals from the GIV es-
timation can be used to fit the regression l̂og ηt = ρη

̂log ηt−1 + ǫt, which leads to statistics
that are informative for the parameters ρη and ση . For IL estimation of ρη , we supplement
this statistic with the sample first order autocovariances of consumption with the full set
of observable variables. The auxiliary statistics used for ρz and σz use a similar auxiliary
regression, along with autocovariances between output and the other variables, in the
case of ρz. The exact details of all of the auxiliary statistics used are given in the provided
code, in the files aux_stat.m, which computes all auxiliary statistics from the simulated
data, and in the body of the main file DSGE_SBIL_Simple.m, following the comment line
“select statistics for each parameter”.

Given that the SBIL estimator is simulation-based, experimentation can be done to
identify what statistics are informative for each parameter. A systematic approach to
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how to use experimentation to choose targeted statistics may be an interesting topic for
further research.
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APPENDIX D: TABLES AND FIGURES

TABLE 1. Auction model. Monte Carlo results (5000 replications).

θ0 = 0.5 θ1 = 0.5
Estimator Bias RMSE Bias RMSE

CU-II, n = 20 -0.025 0.102 0.042 0.181
SBIL, n = 20 -0.004 0.060 0.009 0.113
CU-II, n = 80 -0.006 0.052 0.013 0.101
SBIL, n = 80 0.001 0.036 -0.003 0.069
SMIL, n = 80 0.003 0.046 -0.006 0.088

CU-II, n = 320 .0.003 0.027 -0.004 0.055
SBIL, n = 320 0.002 0.022 -0.002 0.042

TABLE 2. DSGE models, support of uniform priors.

Parameter Lower bound Upper bound
α 0.2 0.4
β 0.9 0.999
δ 0.005 0.1
γ 0.0 3.0
ρz 0.0 0.999
σz 0.001 0.1
ρη 0.0 0.999
ση 0.001 0.1
n̄ 1/4 1/2

TABLE 3. DSGE model, first design. Monte Carlo results (5000 replications).

Bias RMSE
Standard IL Targeted IL Standard IL Targeted IL

Parameter True value 40 160 40 160 40 160 40 160
α 0.330 0.003 0.014 -0.002 -0.002 0.013 0.0171 0.003 0.002
β 0.990 -0.009 -0.005 -0.001 -0.001 0.010 0.006 0.001 0.001
δ 0.025 0.004 0.005 0.000 -0.000 0.006 0.006 0.002 0.001
γ 2.000 -0.039 -0.091 -0.020 -0.015 0.264 0.199 0.198 0.096
ρz 0.900 -0.063 -0.033 -0.128 -0.018 0.086 0.044 0.173 0.038
σz 0.010 0.055 0.048 0.000 0.000 0.056 0.048 0.004 0.003
ρη 0.700 -0.060 -0.034 -0.058 -0.016 0.138 0.075 0.145 0.072
ση 0.005 0.027 0.016 0.001 0.000 0.030 0.017 0.007 0.000
n̄ 1/3 0.013 0.000 -0.002 0.000 0.021 0.008 0.008 0.003
ψ 3.417 -0.143 -0.074 0.045 -0.005 0.353 0.206 0.206 0.086



INDIRECT LIKELIHOOD INFERENCE 30

TABLE 4. DSGE model, second design. Monte Carlo results (5000 replications).

Bias RMSE
Standard IL Targeted IL Standard IL Targeted IL

Parameter True value 40 160 40 160 40 160 40 160
α 0.250 0.014 0.012 -0.002 -0.004 0.020 0.014 0.007 0.005
β 0.970 -0.003 0.000 -0.001 -0.002 0.006 0.005 0.002 0.002
δ 0.040 0.003 0.004 -0.000 -0.001 0.007 0.008 0.002 0.001
γ 1.000 0.137 0.021 0.077 0.014 0.237 0.093 0.140 0.055
ρz 0.800 -0.080 -0.025 -0.084 -0.008 0.117 0.038 0.121 0.056
σz 0.020 0.042 0.037 0.002 -0.004 0.043 0.038 0.008 0.005
ρη 0.600 0.018 0.006 0.034 0.021 0.117 0.050 0.112 0.056
ση 0.010 0.018 0.015 0.002 0.001 0.021 0.016 0.003 0.001
n̄ 0.333 -0.001 -0.001 0.003 -0.002 0.009 0.005 0.006 0.002
ψ 2.619 0.319 0.069 0.156 0.039 0.565 0.240 0.312 0.127
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FIGURE 1. DSGE model, first design, n=160. Pseudo-priors (dotted
curve), true parameter values (vertical line), and Monte Carlo density of
SBIL (solid curve)
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(D) γ (E) ρz (F) ρη
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