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1. Introduction 
 

1.1 Motivation 
 
 

Ordinal voting systems have been the focus of economists since Kenneth Arrow 

first rigorously developed Social Choice Theory in his seminal monograph, Social 

Choice and Individual Values (1951). Although ordinal voting systems, such as Majority 

Rule, have become widespread for their simplicity and effectiveness, MR and other 

ordinal mechanisms do not account for the different intensities with which distinct 

individuals value the same issue. Considering all votes equal, insofar as preferences are 

concerned, has a troubling corollary: it is not possible to identify what the social 

optimum is, nor can we ever be sure that it will be implemented. 

 

In order to achieve the social optimum, it is necessary to consider not the 

choice that is valued by most, but simply the choice that is most valued (by all). In 

upholding society’s desire of equality, it is unfair to treat ardent and apathetic voters 

alike. It is impossible, however, to rely on a simple “truth-telling” mechanism, where 

heterogeneous individuals are asked their preference intensity over some range. Such a 

mechanism would clearly not be strategy-proof, since any non-indifferent voter would 

have an incentive to overstate the intensity of his preference. In this case, the results 

obtained by Majority Rule would be replicated. 

 

A strategy-proof mechanism that aggregates preferences with different values 

must satisfy a set of properties, including compatibility and participation constraints. 

Moreover, so that one may satisfy the principles of equality and fairness held by modern 

democratic societies, no money transfers should be allowed to compensate for utility 

transfers. Although VCG mechanisms have been adapted to voting systems, such as in 

Tideman and Tullock (1976), and could appropriately capture voting intensity, they do 

not satisfy the fairness condition set above and are thus inapplicable to our problem.    

 

In a setting where agents vote on N issues throughout time, the mechanism 

developed herein – Budget Voting (BV) – attempts to comply with these constraints by 

granting all agents an initial budget with K votes that is never replenished. Since any 

vote “spent” on a given issue decreases the vote-budget, agents can no longer overstate 

their preferences without consequence.  
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Budget Voting is by no means an optimal mechanism insofar as ex-ante and ex-

post efficiency are concerned, but it does improve upon Majority Rule and some other 

voting mechanisms in particular settings. BV also provides us with a clear, implementable 

rule to determine preference intensity that carries no political stigma and does not rely on 

monetary transfers. 

 

1.2 Related Literature 
 

Our mechanism pertains to a set of models that have multidimensional settings 

with non-homogeneous preferences and non-transferable utility, since strategy-proof 

mechanisms that aggregate preference intensities, that are deemed fair and that are able 

to create Pareto improvements are contingent on these characteristics. Three papers 

which develop such models and closely resemble ours are Casella (2005), Jackson and 

Sonnenschein (2007) and Hortala-Vallve (2011). 

 

Casella (2005) proposes a system of Storable Votes, where throughout time 

agents can choose to vote on an issue or abstain. When opting for the latter the agent 

“saves” a vote, which can be used to decide on other issues throughout time. Formally, 

Casella proposes a system in which I agents meet throughout T periods to take binary 

decisions – either maintaining the status quo or changing it in some manner. In every 

time period, each individual has his preference indexed by a parameter 𝑣𝑖𝑡 ≤ |1| chosen 

from a continuous distribution F(v) symmetric around zero, and upon observing it, 

decides if to cast a vote on the the issue at hand. Whenever the vote is not used, it is 

“stored”, and thus agents are able to accumulate votes that may be used on those matters 

that they regard as most important.   

 

Our mechanism differs slightly from Casella’s, since it does not allow individuals 

to develop an inventory of votes (it instead gives them a fixed budget that they can use 

throughout their “voting lives”). Furthermore, we initially assume only that agents’ 

preference distribution has median zero, such that the probability of any agent being for 

or against any issue ex-ante is always the same. Nonetheless, BV shares Storable Votes’ 

restriction to binary decisions and both mechanisms explore decisions over a time-

dimension; agents do not know their full preference profile at the time of voting.   

 

Jackson and Sonnenschein (2007) demonstrate that in a setting where agents 
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are required to take several decisions (simultaneously or over time), linking these 

decisions by restricting agents from declaring preference intensities that do not reflect 

their preference distribution leads to Pareto improvements. This occurs because, as the 

number of decisions made increases, agents match their voting profiles with the 

frequency of preferences generated by their prior distribution. Truth telling, therefore, 

becomes a dominant strategy.  

 

Our mechanism differs greatly from Jackson’s and Sonnenschein’s, since it does 

not require that the prior distribution of preferences be known. Moreover, whereas they 

create a rule that rations preference intensity declarations based on their frequency, 

addressing settings with a large number of issues (where issues N  ∞), BV focuses on 

a simpler rule that does not rely on the law of large numbers. Since each of these two 

mechanisms is designed to deal with a distinct facet of a common problem, it is 

impractical to compare their efficiency. 

 

Hortala-Vallve (2011) develops a system of “Qualitative Voting”, where in a 

setting with a closed agenda each agent is supplied with a budget to vote on a number 

of issues that must be accepted or dismissed. Since all votes are cast simultaneously on 

all issues and by all agents, an individual disperses of his whole budget on the issues that 

he feels are relatively more important. Formally, in a setting with I voters and N binary 

decisions, QV compels agents to cast votes from their budget in a way that maximizes 

their expected utility. This mechanism Pareto dominates Majority Rule in its setting.  

 

Qualitative Voting is descriptively and practically quite similar to our 

mechanism, differing only temporally; Budget Voting is essentially a dynamic extension 

of QV. Nonetheless, the implications on agents’ actions of not knowing the prior 

distribution of preferences are not trivial, and the consequences of this dimensional 

extension are the object of this monograph.   

 

2. Model 
 

2.1 Setting 

 

In this model, a game is a setting where I agents approve or refute N changes 

over T periods, with any one decision occurring exclusively over one period. Agents are 

each provided with a budget at the beginning of the game containing K votes, and at the 



8 
 

 

end of each turn, their remaining budget is defined as 𝐾𝑖𝑛 = 𝐾 − ∑ 𝑘𝑖𝑡
𝑛−1
𝑡=1 , 𝑛 ∈ 𝑁.  

 

At the beginning of each period, all agents privately observe their preference 

profile 𝜃𝑖𝑡 drawn from a commonly known class of probability distributions with median 

zero and finite average. Furthermore, all agents observe their constant and commonly 

known discount rate 𝛿 ∈ (0,1] before deciding simultaneously how many discrete votes 

𝑘𝑖𝑡 ∈ 𝐾𝑖𝑛 to allocate, if any, for or against a given change. All agents are assumed to be 

rational utility maximizers who are risk-neutral across time.  

 

If an agent values change positively, each vote cast by him will be tallied as {+1} 

on a vote counter, while votes from agents who value change negatively will be tallied 

as {-1} on that same vote counter. After the end of each period, the value on the vote 

counter is observed and the choice c made over an issue assumes one of two values – 𝑐 ∈

{0,1} – where zero maintains the status quo, and one enacts change. In case of a tie, 

Majority Rule is used as tiebreak criteria and, if a tie is still at hand, a coin-toss is then 

used to determine whether change is enacted or not. Formally:  

 

𝑐 = {
1,    𝑖𝑓 ∑ 𝑘𝑖𝑡 > 0𝐼

𝑖=1

0,   𝑖𝑓 ∑ 𝑘𝑖𝑡 < 0𝐼
𝑖=1

  

 

Agent i's utility in each period t can be represented by the function 𝑈(𝑐, 𝜃𝑖𝑡) =

𝑐𝑢(𝜃𝑖𝑡), where 𝑢(∙) is a well-behaved utility function that is constant over time and 

strictly increasing in 𝜃, with 𝑢(0) = 0.  If agent 𝑖 ∈ {1, … , 𝐼} has a preference profile 

𝜃𝑖𝑡 > 0, he would prefer that c = 1 at period t and that change be enacted, while if 𝜃𝑖𝑡 <

0, he would prefer c = 0 and that the status quo be maintained. Since agent i can only 

choose how many votes to cast, he can only affect p(c), which we may interpret as the 

probability of change. Therefore, agent i' constrained maximization problem is:  

 

max
𝑘𝑡

𝑖  ∀ 𝑡 ∈ 𝑇
𝑝(𝑘𝑖1, 𝑘−𝑖1) max{𝑢(𝜃𝑖𝑡), 0} + (1 − 𝑝(𝑘𝑖1, 𝑘−𝑖1)) min{𝑢(𝜃𝑖𝑡), 0}

+ ∑ 𝑝(𝑘𝑖𝑡, 𝑘−𝑖𝑡)max {𝐸[𝑢(𝜃𝑖𝑡)], 0}

𝑇

𝑡=2

𝛿𝑡−1

+ ∑(1 − 𝑝(𝑘𝑖𝑡, 𝑘−𝑖𝑡))min {𝐸[𝑢(𝜃𝑖𝑡)], 0}𝛿𝑡−1

𝑇

𝑡=2

 𝑠. 𝑡. ∑ 𝑘𝑖𝑡 = 𝐾

𝑇

𝑡=1
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  At the beginning of each new turn t, every agent i renews his maximization 

problem with his new preference profile 𝜃𝑖𝑡, and decides how many votes to allocate on 

the issue at hand by comparing the utility of voting on present change vis-à-vis to the 

utility of storing votes for the future. An agent will vote on an issue if the marginal 

expected utility of an extra vote on that issue is larger than the marginal expected utility 

of saving said vote. Notice that this occurs only over T – 1 periods, as in the last period – 

upon observing their preference profiles – all agents will dispense of all of their 

remaining votes.   

 

2.2 Comparative Statics 

 

To understand how Budget Voting works, it is pertinent to analyze how the 

mechanism functions in its simplest setting and how it reacts to small changes in its 

parameters. Consider, for the purpose of concreteness, an anecdotal situation in which a 

couple – i and j – distraught by its inability to resolve disagreements concerning the 

household, decides to implement Budget Voting. Suppose that they are currently 

concerned with whether or not to change their drapes, and assume initially that they wish 

to implement BV only through two periods with a budget endowment of two votes. 

Assume, initially, that agent i values change positively in t = 1, and that the expected 

utility of change is positive. Under these circumstances, the ex-ante expected utility in t 

=1 under each possible voting pattern is: 

 

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
3

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

3

4
𝑝𝑗1(0) + 𝑝𝑗1(1) + 𝑝𝑗1(2)) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) +
3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) + 𝑝𝑗1(2)) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) + 𝑝𝑗1(1) +
3

4
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2)) 

 

where 𝑝𝑗𝑡(𝑥) is the probability that agent j will cast x votes in period t. Since we are 

only considering a two-period vote, 𝑝𝑗1(𝑥) is sufficient information to understand agent 

j’s voting strategy through all periods. Notice that we are not concerned with whether 

agent j votes for or against change, but only with the number of votes he uses.    

 

It is simple to compare these three functions and find the players’ optimal 
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strategies. Notice that 𝐸[𝑢(𝜃𝑖2)]𝛿 > 𝑢(𝜃𝑖1) → 𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(1)] > 𝐸[𝑈𝑖1(2)] and, 

similarly, 𝐸[𝑢(𝜃𝑖2)]𝛿 < 𝑢(𝜃𝑖1) → 𝐸[𝑈𝑖1(0)] < 𝐸[𝑈𝑖1(1)] < 𝐸[𝑈𝑖1(2)]. This 

demonstrates that when BV is applied under this specific set of assumptions, the 

allocation of agent i's votes is independent of agent j’s voting pattern. Additionally, it is 

shown that under these restrictive hypotheses 𝐸[𝑈𝑖1(1)] is a weakly dominated strategy 

and is therefore unlikely to be played. It is natural to consider that an analogous situation 

would arise if 𝑢(𝜃𝑖1) < 0, and the expected utility of change were negative. In this case, 

the ex-ante utilities would be:    

  

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

4
𝑝𝑗1(0)) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) 

 

and, as expected, all that matters for voting decisions to be made is the relative value of 

current change vis-à-vis the expected utility of future change. We now have 

𝐸[𝑢(𝜃𝑖2)]𝛿 > 𝑢(𝜃𝑖1) → 𝐸[𝑈𝑖1(0)] < 𝐸[𝑈𝑖1(1)] < 𝐸[𝑈𝑖1(2)] while, on the other hand, 

𝐸[𝑢(𝜃𝑖2)]𝛿 < 𝑢(𝜃𝑖1) → 𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(1)] > 𝐸[𝑈𝑖1(2)]. Consequently, whenever 

the utility of current and future change have the same sign – that is, both are seen as 

concomitantly good or bad – frontier solutions will ensue and the results of Majority 

Rule will be replicated. This will surprisingly also be the case if the utility of current 

change and the expected utility of future change have different signs. The ex-ante 

expected utilities when 𝑢(𝜃𝑖1) < 0 and 𝐸[𝑢(𝜃𝑖2)] > 0 are: 

 

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

3

4
𝑝𝑗1(0) + 𝑝𝑗1(1) + 𝑝𝑗1(2)) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) + 𝑝𝑗1(2)) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2)) 

 

while, when 𝑢(𝜃𝑖1) > 0 and 𝐸[𝑢(𝜃𝑖2)] < 0, they are: 

  

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
3

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

4
𝑝𝑗1(0)) 
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𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) +
3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) + 𝑝𝑗1(1) +
3

4
𝑝𝑗1(2)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) 

 

 By solving for the equations above and comparing the results to those found 

previously, we find that in a simple, two-person, two-vote setting, BV always replicates 

MR, since: |𝐸[𝑢(𝜃𝑖2)]|𝛿 > |𝑢(𝜃𝑖1)| → 𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(1)] > 𝐸[𝑈𝑖1(2)] and, 

similarly, |𝐸[𝑢(𝜃𝑖2)]|𝛿 < |𝑢(𝜃𝑖1)| → 𝐸[𝑈𝑖1(0)] < 𝐸[𝑈𝑖1(1)] < 𝐸[𝑈𝑖1(2)]. As is quite 

clear, this means that in its base scenario Budget Voting fully captures preference 

intensity and agents vote truthfully, since they always have a positive probability of 

affecting the result. 

      

To further investigate Budget Voting, it is logical to look at how the 

mechanism’s results change in extensions of the simple scenario studied above. Firstly, 

let us look at what happens when we increase agents’ budgets to contain three votes, 

instead of the initial two, and when current and expected future change are valued 

positively. In this two-period, two-person, three-vote setting, the ex-ante expected 

utilities are: 

 

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
3

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

3

4
𝑝𝑗1(0) + 𝑝𝑗1(1) + 𝑝𝑗1(2) + 𝑝𝑗1(3)) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) +
3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) + 𝑝𝑗1(2) + 𝑝𝑗1(3)) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) + 𝑝𝑗1(1) +
3

4
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2) + 𝑝𝑗1(3)) 

𝐸[𝑈𝑖1(3)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) + 𝑝𝑗1(1) + 𝑝𝑗1(2) +
3

4
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

3

4
𝑝𝑗1(3)) 

 

whereas, when current change is valued negatively, yet the expected utility of 

future change is still positive, we shall have: 

 

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

3

4
𝑝𝑗1(0) + 𝑝𝑗1(1) + 𝑝𝑗1(2) + 𝑝𝑗1(3)) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) + 𝑝𝑗1(2) + 𝑝𝑗1(3)) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2) + 𝑝𝑗1(3)) 

𝐸[𝑈𝑖1(3)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

3

4
𝑝𝑗1(3)) 

 

When both current and expected future change are negative: 
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𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

4
𝑝𝑗1(0)) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) 

𝐸[𝑈𝑖1(3)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

4
𝑝𝑗1(3)) 

 

and finally, when current change is positive and expected future change is valued 

negatively: 

 

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
3

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

4
𝑝𝑗1(0)) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) +
3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) + 𝑝𝑗1(1) +
3

4
𝑝𝑗1(2) +

1

2
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) 

𝐸[𝑈𝑖1(3)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) + 𝑝𝑗1(1) + 𝑝𝑗1(2) +
3

4
𝑝𝑗1(3)) + 𝐸[𝑢(𝜃𝑖2)]𝛿 (

1

2
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2) +

1

4
𝑝𝑗1(3)) 

 

Once having compared the expected utilities above in each of the four possible 

variants of a two-person, two-period, three-vote setting, it becomes quite clear that the 

additional votes available in agents’ budgets to do not alter the results found previously. 

In this scenario agents’ votes depend only upon the relation between the absolute value 

of the current utility of change and the discounted expected utility of future change. 

Once again, we shall have the rather simple result: |𝐸[𝑢(𝜃𝑖2)]|𝛿 > |𝑢(𝜃𝑖1)| →

𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(1)] > 𝐸[𝑈𝑖1(2)] > 𝐸[𝑈𝑖1(3)] and |𝐸[𝑢(𝜃𝑖2)]|𝛿 < |𝑢(𝜃𝑖1)| →

𝐸[𝑈𝑖1(0)] < 𝐸[𝑈𝑖1(1)] < 𝐸[𝑈𝑖1(2)] < 𝐸[𝑈𝑖1(3)]. In fact, no matter the amount by 

which we increase agents’ budgets in a two-person, two-period scenario, BV replicates 

the results of Majority Rule.  

 

Although strategic voting does not occur in the base scenarios analyzed above, it 

may happen in Budget Voting when the environment becomes more complex. When a 

new agent enters the game, for example, the likelihood of any given vote being pivotal is 

reduced, and the cost of frontier solutions – in which all votes are cast in a single period 

– increases. Consider a scenario in which we have three agents, two periods and two 

votes. Once again, assume that agent i values change positively in the future. In this 

case, agent i's ex-ante expected utility for each of his possible choices when the utility of 
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current change is positive is:      

    

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
3

4
∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

2

𝑥=𝑦

𝑝𝑘1(0) +
1

2
∑ ∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

𝑦≠𝑥

2

𝑥=0

)

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2))

+ 𝑝𝑘1(1) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) + 𝑝𝑗1(2)) + 𝑝𝑘1(2) (

3

4
𝑝𝑗1(0) + 𝑝𝑗1(1) + 𝑝𝑗1(2))) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (𝑝𝑘1(0) (𝑝𝑗1(0) +
3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

2
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝑝𝑘1(1) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2)) + 𝑝𝑘1(2) (

1

2
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) + 𝑝𝑗1(2))) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (𝑝𝑘1(0) (𝑝𝑗1(0) + 𝑝𝑗1(1) +
3

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (
3

4
∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

2

𝑥=𝑦

𝑝𝑘1(0) +
1

2
∑ ∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

𝑦≠𝑥

2

𝑥=0

) 

 

 In this particular setting, the results of BV are: 

 

𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(1)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(1)))

< 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1))) 

𝐸[𝑈𝑖1(1)] > 𝐸[𝑈𝑖1(2)] → 
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𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(0)))

< 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))) 

𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(2)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)))

< 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))) 

 

 By comparing each of the possible voting patterns above it becomes clear that 

Budget Voting may induce strategic voting. A player may choose to vote on a given issue 

(current or future) not because it is what he most values, but because he believes the 

likelihood of his vote being pivotal is sufficiently high for the issue at hand. Since 

preference intensity is no longer the only factor to which agents look before deciding how 

to vote, part (or all) of the welfare gains of Budget Voting over MR may be extinguished 

as the possibility of strategic voting rises. 

 

 Although an increase in the number of players in our model introduces the 

possibility of strategic voting, it also causes players to have greater incentives to spread 

out their votes: 𝐸[𝑈𝑖1(1)] is no longer a weakly dominated strategy. In fact, as the number 

of agents in the environment increases, “spreading the vote” becomes increasingly 

attractive (albeit not necessarily monotonically, since tie-break rules for even and odd 

numbers of players are applied somewhat differently. This result is upheld regardless of 

how present and expected future change are valued. Let us look first at the ex-ante 

expected utility when 𝑢(𝜃𝑖1) < 0; 𝐸[𝑢(𝜃𝑖2)] < 0:    
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𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
1

4
∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

2

𝑥=𝑦

𝑝𝑘1(0) +
1

2
∑ ∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

𝑦≠𝑥

2

𝑥=0

)

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(1) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(0))) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝑝𝑘1(1) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(2) (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1))) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (
1

4
∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

2

𝑥=𝑦

𝑝𝑘1(0) +
1

2
∑ ∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

𝑦≠𝑥

2

𝑥=0

) 

        

The results are:  

 

𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(1)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(1)))

> 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1))) 

𝐸[𝑈𝑖1(1)] > 𝐸[𝑈𝑖1(2)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(0)))

> 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))) 
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𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(2)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)))

> 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))) 

 

 Quite clearly, we have the familiar result that when maintaining the status quo is 

preferred both in the present and in the future, the result is – in absolute value – the same 

as that when change is preferred in both periods. Let us now analyze what happens when 

stability is preferred in the present, but is expected to be negative in other periods: 

 

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
1

4
∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

2

𝑥=𝑦

𝑝𝑘1(0) +
1

2
∑ ∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

𝑦≠𝑥

2

𝑥=0

)

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2))

+ 𝑝𝑘1(1) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) + 𝑝𝑗1(2)) + 𝑝𝑘1(2) (

3

4
𝑝𝑗1(0) + 𝑝𝑗1(1) + 𝑝𝑗1(2))) 

𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝑝𝑘1(1) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2)) + 𝑝𝑘1(2) (

1

2
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) + 𝑝𝑗1(2))) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (
3

4
∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

2

𝑥=𝑦

𝑝𝑘1(0) +
1

2
∑ ∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

𝑦≠𝑥

2

𝑥=0

) 

    The results are: 
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𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(1)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(1)))

> −𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1))) 

𝐸[𝑈𝑖1(1)] > 𝐸[𝑈𝑖1(2)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(0)))

> −𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))) 

𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(2)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)))

> −𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))) 

 

 And finally, when 𝑢(𝜃𝑖1) > 0; 𝐸[𝑢(𝜃𝑖2)] < 0, the ex-ante expected utilities are: 

 

𝐸[𝑈𝑖1(0)] = 𝑢(𝜃𝑖1) (
3

4
∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

2

𝑥=𝑦

𝑝𝑘1(0) +
1

2
∑ ∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

𝑦≠𝑥

2

𝑥=0

)

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(1) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(0))) 
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𝐸[𝑈𝑖1(1)] = 𝑢(𝜃𝑖1) (𝑝𝑘1(0) (𝑝𝑗1(0) +
3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

2
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝑝𝑘1(1) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(2) (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1))) 

𝐸[𝑈𝑖1(2)] = 𝑢(𝜃𝑖1) (𝑝𝑘1(0) (𝑝𝑗1(0) + 𝑝𝑗1(1) +
3

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
3

4
𝑝𝑗1(0) +

3

4
𝑝𝑗1(1) +

3

4
𝑝𝑗1(2)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (
1

4
∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

2

𝑥=𝑦

𝑝𝑘1(0) +
1

2
∑ ∑ 𝑝𝑘1(𝑥)𝑝𝑗1(𝑦)

𝑦≠𝑥

2

𝑥=0

) 

Whose results are: 

 

𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(1)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(1)))

< −𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1))) 

𝐸[𝑈𝑖1(1)] > 𝐸[𝑈𝑖1(2)] → 

𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0)) + 𝑝𝑘1(2) (

1

4
𝑝𝑗1(0)))

< −𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))) 

𝐸[𝑈𝑖1(0)] > 𝐸[𝑈𝑖1(2)] → 
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𝑢(𝜃𝑖1) (𝑝𝑘1(0) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

2
𝑝𝑗1(0) +

1

4
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

4
𝑝𝑗1(1)))

< −𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑘1(0) (
1

4
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2)) + 𝑝𝑘1(1) (

1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(2))

+ 𝑝𝑘1(2) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

4
𝑝𝑗1(2))) 

 

 Alas, it is quite clear that regardless of how current and future change are valued, 

in a three-person, two-period setting, Budget Voting sets incentives for strategic voting 

and reduces the odds of agents pooling all of their votes in one single period. Moreover, 

it is interesting to consider that in this setting, if agents were to be risk-averse throughout 

time, they would be more likely to cast all of their votes on one single period. 

 

 The final development of the base scenario that we will study is that of a temporal 

extension. When Budget Voting is applied to more than two periods, agents are faced 

with a higher opportunity cost when casting a vote, and are therefore more likely to store 

votes for the future. It is also interesting to note that within a three-period setting, players 

will be required to solve two optimization problems (although we are primarily concerned 

with the one that occurs in t = 1). From now on, let us always consider that the expected 

utility of change is positive. In a two-person, three-period, two-vote scenario in which 

𝑢(𝜃𝑖1) > 0, the ex-ante expected utility for each possible voting pattern is: 

 

𝐸[𝑈𝑖1(0,0)] = 𝑢(𝜃𝑖1) (
3

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (
3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

1

2
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
3

4
𝑝𝑗2(0) + 𝑝𝑗2(1) + 𝑝𝑗2(2)) + 𝑝𝑗1(1) (𝑝𝑗2(0) + 𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0))) 
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𝐸[𝑈𝑖1(0,1)] = 𝑢(𝜃𝑖1) (
3

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (𝑝𝑗2(0) +
3

4
𝑝𝑗2(1) +

1

2
𝑝𝑗2(2)) + 𝑝𝑗1(1) (𝑝𝑗2(0) +

3

4
𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1) + 𝑝𝑗2(2)) + 𝑝𝑗1(1) (

3

4
𝑝𝑗2(0) + 𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0))) 

𝐸[𝑈𝑖1(0,2)] = 𝑢(𝜃𝑖1) (
3

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (𝑝𝑗2(0) + 𝑝𝑗2(1) +
3

4
𝑝𝑗2(2)) + 𝑝𝑗1(1) (𝑝𝑗2(0) + 𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

3

4
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0))) 

𝐸[𝑈𝑖1(1,0)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) +
3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (
3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

1

2
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1) + 𝑝𝑗2(2)) + 𝑝𝑗1(1) (

3

4
𝑝𝑗2(0) + 𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0))) 
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𝐸[𝑈𝑖1(1,1)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) +
3

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (𝑝𝑗2(0) +
3

4
𝑝𝑗2(1) +

1

2
𝑝𝑗2(2)) + 𝑝𝑗1(1) (𝑝𝑗2(0) +

3

4
𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

3

4
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0))) 

𝐸[𝑈𝑖1(2,0)] = 𝑢(𝜃𝑖1) (𝑝𝑗1(0) + 𝑝𝑗1(1) +
3

4
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (
3

4
𝑝𝑗2(0) +

1

2
(1) +

1

2
𝑝𝑗2(2)) + 𝑝𝑗1(1) (

3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1))

+ 𝑝𝑗1(2) (
3

4
𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

3

4
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0))) 

 

 Clearly, as with when we have more than two agents, an extension over more than 

two periods gives players incentives to vote on more than one issue. Observe that votes 

may be cast in the third period, even though the utility of casting votes then is always 

inferior to that of casting votes in the second period (since the expected utility of change 

is the same, and the discount factor 𝛿 ∈ (0,1)). Let us now look at the ex-ante expected 

utilities of agent i when the utility of current change is negative: 

 

𝐸[𝑈𝑖1(0,0)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (
3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

1

2
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
3

4
𝑝𝑗2(0) + 𝑝𝑗2(1) + 𝑝𝑗2(2)) + 𝑝𝑗1(1) (𝑝𝑗2(0) + 𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0))) 



22 
 

 

𝐸[𝑈𝑖1(0,1)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (𝑝𝑗2(0) +
3

4
𝑝𝑗2(1) +

1

2
𝑝𝑗2(2)) + 𝑝𝑗1(1) (𝑝𝑗2(0) +

3

4
𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1) + 𝑝𝑗2(2)) + 𝑝𝑗1(1) (

3

4
𝑝𝑗2(0) + 𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0))) 

𝐸[𝑈𝑖1(0,2)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(0) +

1

2
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (𝑝𝑗2(0) + 𝑝𝑗2(1) +
3

4
𝑝𝑗2(2)) + 𝑝𝑗1(1) (𝑝𝑗2(0) + 𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

3

4
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0))) 

𝐸[𝑈𝑖1(1,0)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (
3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

1

2
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1) + 𝑝𝑗2(2)) + 𝑝𝑗1(1) (

3

4
𝑝𝑗2(0) + 𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0))) 
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𝐸[𝑈𝑖1(1,1)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(1) +

1

2
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (𝑝𝑗2(0) +
3

4
𝑝𝑗2(1) +

1

2
𝑝𝑗2(2)) + 𝑝𝑗1(1) (𝑝𝑗2(0) +

3

4
𝑝𝑗2(1))

+ 𝑝𝑗1(2) (𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

3

4
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0))) 

𝐸[𝑈𝑖1(2,0)] = 𝑢(𝜃𝑖1) (
1

4
𝑝𝑗1(2))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿 (𝑝𝑗1(0) (
3

4
𝑝𝑗2(0) +

1

2
(1) +

1

2
𝑝𝑗2(2)) + 𝑝𝑗1(1) (

3

4
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1))

+ 𝑝𝑗1(2) (
3

4
𝑝𝑗2(0)))

+ 𝐸[𝑢(𝜃𝑖2)]𝛿
2

(𝑝𝑗1(0) (
1

2
𝑝𝑗2(0) +

1

2
𝑝𝑗2(1) +

3

4
𝑝𝑗2(2))

+ 𝑝𝑗1(1) (
1

2
𝑝𝑗2(0) +

3

4
𝑝𝑗2(1)) + 𝑝𝑗1(2) (

3

4
𝑝𝑗2(0))) 

 

 Once again, the results that originate from a temporal extension demonstrate that 

Budget Voting is susceptible to “interior” solutions, in which votes are cast on more than 

one issue. This does not occur due to a diminishing probability of being pivotal – as when 

we increase the number of players in the game – but due to the rising opportunity cost of 

casting a vote on any given period, and the effects of this are not necessarily negative. 

Clearly, as the number of periods increases, agents will have greater incentives to store 

votes. Therefore, as they progress through the game, they become more propense to spend 

their votes at each given turn. This culminates – in the next-to-last period – in sincere 

voting and frontier solutions (if there are only two agents) or in one of the prior 

investigated extensions of the mechanism.          

  

3. Conclusion 

 

This monograph has sought to understand a very simple voting mechanism that seeks 

to capture preference intensity for groups of people that meet repeatedly over time. 

Agents are given an initial budget of votes to be used along a certain period throughout 
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which numerous decisions with binary outcomes are made. This results in voters casting 

a greater portion of their budget on issues whose outcomes are more strongly felt by them, 

while also producing incentives for voters not to overstate their preferences. Since agents 

now have the possibility of transferring votes from periods of weak preference intensity 

to periods of strong preference intensity, ex-ante welfare should increase. 

 

Although agents are always more likely to vote on issues that are felt as being 

relatively more important to them than others, as the number of voters and periods 

increases, incentives to spread votes through different issues rise. While an increase in 

the number of voting periods increases the opportunity cost of votes – which is not a 

negative trait in and of itself – the increase in the number of voters makes players’ votes 

less likely to be pivotal, and henceforth augments the probability of strategic voting. It is 

suggested, both by our analysis as that of other papers concerning cardinal voting 

mechanisms, that the likelihood of strategic voting is diminished as the number of voting 

periods increases and as the variance of preferences is held to a certain limit. 

 

However simple the description of Budget Voting may be, the mechanism is quite 

prone to becoming extremely complicated as the number of agents and periods increases, 

and a practical issue surges as to whether individuals would be able to find the equilibrium 

strategies that would allow it to increase welfare over ordinal voting mechanisms 

(especially Majority Rule). It is thus the object of the author to pursue the practical and 

theoretical efficiency gains of BV over other mechanisms in the future, especially seeing 

as Budget Voting provides us with a simple, implementable voting mechanism that seems 

likely to increase general welfare.  
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