EFEITO RECESSIVO DA DEPRECAÇÃO CAMBIAL: EXISTE UMA TIPOLOGIA?

Pedro de Figueiredo Saud
No. de matrícula 0114435

Orientador: Dionísio Dias Carneiro

Dezembro de 2004
EFEITO RECESSIVO DA DEPRECIAÇÃO CAMBIAL: EXISTE UMA TIPOLOGIA?

Pedro de Figueiredo Saud

No. de matrícula 0114435

Orientador: Dionísio Dias Carneiro

Dezembro de 2004

Declaro que o presente trabalho é de minha autoria e que não recorri, para realizá-lo, a nenhuma forma de ajuda externa, exceto quando autorizado pelo professor tutor

Pedro de Figueiredo Saud
As opiniões expressas neste trabalho são de responsabilidade única e exclusiva do autor.
Agradecimentos

Ao Professor Dionísio Dias Carneiro, pelo estímulo na realização deste trabalho.

A Thomas Yen Hon Wu, pelos valiosos auxílio e sugestões dados ao longo do trabalho.

A meus pais.
Índice

1. Introdução ..6
2. Aspectos Macroeconômicos da Depreciação Cambial ...7
 2.1. Depreciação Cambial, Preços Relativos e Exportações Líquidas ..8
 2.2. Depreciação Cambial, Distribuição de Renda e Consumo ..10
 2.3. Pecado Original, Imperfeições do Mercado de Crédito, Depreciação Cambial e Investimento ...13
3. O Efeito da Depreciação sobre o Nível de Atividade: análise empírica16
 3.1. O Modelo: Curva IS ...16
 3.2. Base de dados e amostra ...21
 3.3. Identificação da especificação da equação de cada país ...21
 3.4. Método de Estimação: Regressões Aparentemente Não Correlacionadas23
 3.5. Resultados e interpretação ..27
4. Explicando os efeitos encontrados: existe uma tipologia? ..32
 4.1. Variáveis que podem explicar o efeito da depreciação sobre o nível de atividade32
 4.2. Modelo estimado e cuidados com estimação ..33
 4.3. Base de dados ..34
 4.4. Resultados e interpretação ..34
5. Considerações Finais ...37
6. Referências Bibliográficas ...39
Anexo: Séries de dados utilizadas ...41
Lista de Tabelas e Figuras

Figura 3.1: Série hipotética de PIB, sem variações sazonais, e tendência gerada pelo filtro HP...19
Tabela 3.1: Especificação da curva IS de cada país..22
Tabela 3.2: Resultados da estimação das curvas IS..28
Tabela 3.3: Divisão dos países segundo o sinal do coeficiente β_4 da curva estimada...29
Tabela 3.4: Desvio-padrão da desvalorização cambial trimestral e significância do coeficiente da desvalorização na curva IS.................................30
Tabela 4.1: Resultado da estimação..35
Tabela 3.3: Divisão dos países segundo o sinal do coeficiente β_4 da curva estimada (reapresentação da tabela)..37
1. Introdução

Os modelos macroeconômicos mais simples representam a taxa de câmbio real como uma variável positivamente correlacionada com o nível de atividade: depreciações no câmbio estimulariam a demanda agregada, pelo efeito sobre as exportações líquidas. A experiência da desvalorização brasileira, no entanto, registra queda do nível de atividade ao mesmo tempo em que a moeda perdia valor. Isso parece indicar que, enquanto o câmbio desvalorizado oferece um estímulo direto, via preços relativos, para a melhoria das exportações líquidas, ele também parece atuar através de outros canais, com efeito recessivo. A depreciação ter efeitos positivos sobre o crescimento de alguns países enquanto leva outros à recessão é um indício de que o efeito mais forte varia de país para país.

No caso do Brasil, acredita-se que este fenômeno esteja relacionado a certas características da economia\(^1\). Os efeitos contracionistas da desvalorização atuariam, por exemplo, pelo aumento do valor em reais da dívida privada denominada em dólares. Esta, ao diminuir o patrimônio das firmas, reduziria sua capacidade de oferecer colateral a novos empréstimos, diminuindo sua capacidade de endividamento e, consequentemente, de investimento. Outro canal poderia atuar por meio da dívida pública indexada ao dólar, cujo crescimento reforçaria o problema de dominância fiscal. Uma questão importante é se essas são características associadas à depreciação contra-cíclica unicamente no Brasil ou se permitem delinear uma tipologia dos países em que a depreciação tem efeitos recessivos.

Esta monografia buscará comparar empiricamente os efeitos da depreciação cambial sobre o crescimento em um grupo de países emergentes e identificar fatores que explicuem a resposta do crescimento à depreciação, buscando na teoria possíveis fatores.

No segundo capítulo, serão examinados teoricamente alguns mecanismos de transmissão da depreciação cambial para o nível de atividade. No terceiro, será verificado empiricamente o efeito da depreciação sobre o crescimento de um conjunto de países. No quarto, se tentará utilizar os resultados do terceiro capítulo e a teoria vista no segundo para definir uma tipologia dos países que apresentam efeito recessivo da depreciação cambial. O quinto capítulo apresenta as considerações finais.

\(^1\) Carneiro, Salles e Wu, 2004.
2. Aspectos Macroeconômicos da Depreciação Cambial

Neste capítulo serão examinados alguns mecanismos por meio de que a depreciação cambial atua sobre o nível de atividade. Para isso, convém utilizar a identidade da renda nacional dada abaixo para distinguir entre efeitos sobre Consumo das Famílias (C), Investimento (I), Consumo do Governo (G) e Exportações Líquidas (NX).

\[Y = C + I + G + NX \] \hspace{1cm} (1)

Os livros de macroeconomia utilizados em cursos de graduação se concentram principalmente sobre o efeito sobre as Exportações Líquidas\(^2\). Os efeitos sobre as outras componentes da renda são, no entanto, igualmente importantes. Diferentes modelos e óticas permitem ver mecanismos distintos de ação da depreciação cambial sobre o nível de atividade.

O mais evidente age, pela mudança de preços relativos que a depreciação induz, sobre as Exportações Líquidas. Mas também se pode apontar efeitos sobre as outras componentes. Carlos Díaz-Alejandro (1963) mostra que a depreciação pode alterar a distribuição da renda entre segmentos da população com padrões de consumo distintos, afetando o Consumo das Famílias. Paul Krugman e Lance Taylor (1978) chegam à mesma conclusão. Ambos subordinam os efeitos sobre o nível de atividade aos impactos da depreciação cambial sobre a distribuição funcional da renda.

Mais recentemente, o debate sobre taxas de câmbio tem se concentrado sobre as questões referentes à fragilidade financeira que expõe alguns países a choques financeiros externos. Uma das hipóteses que explicariam esta fragilidade financeira, a hipótese do “pecado original” (Eichengreen e Hausmann, 1999), a atribui à inexistência (ou irrelevância) de um mercado de títulos de longo prazo em moeda nacional nos países financeiramente frágeis. O “pecado original”, associado à prática no mercado de crédito de exigir garantias patrimoniais dos demandantes de empréstimos, levaria à diminuição do Investimento após uma depreciação.

Ao longo deste capítulo, esses diferentes modelos para os efeitos da depreciação sobre cada componente serão explorados em maior detalhe.

2.1. Depreciação Cambial, Preços Relativos e Exportações Líquidas

Antes de estudar os efeitos da depreciação cambial sobre os padrões de comércio, é necessário estabelecer a distinção entre taxa nominal e taxa real de câmbio. A primeira se refere simplesmente à taxa a que se pode trocar uma moeda pela outra, enquanto a segunda mede o valor dos bens produzidos em um país em termos dos produzidos no outro. Assim, a taxa nominal e o nível de preços em cada um dos países determinam a taxa real de câmbio, definida pela expressão abaixo, com E simbolizando a taxa nominal de câmbio, P^* o nível de preços no exterior e P o nível doméstico de preços.

$$\varepsilon = \frac{E \cdot P^*}{P}$$

(2)

A taxa real de câmbio mede a razão entre os preços, cotados em moeda doméstica, dos bens produzidos externa e internamente: uma depreciação real do câmbio (um aumento em ε) significa que os bens estrangeiros estão relativamente mais caros do que os produzidos internamente. Como se vê diretamente na expressão (2), isso pode ocorrer após uma depreciação nominal ou após um aumento da razão entre preços externos e internos. Uma vez que é a taxa real, e não a nominal, que influencia a demanda por bens e serviços, sempre que se falar de depreciação cambial nesta seção se estará falando de depreciação real do câmbio.

A depreciação real do câmbio opera sobre as exportações líquidas através dos preços relativos de bens produzidos doméstica e externamente. Como visto, a mudança de preços relativos torna os bens importados mais caros em relação aos nacionais: uma maior quantidade de bens nacionais é necessária para obter a mesma quantidade de bens importados. O efeito

3 Tirando logaritmos e diferenciando a expressão para a taxa real de câmbio, obtemos:

$$\frac{\varepsilon}{E} = \frac{\dot{E}}{E} + \frac{\dot{P}^*}{P^*} - \frac{\dot{P}}{P}$$

(3)

Um ponto sobre uma variável indica sua derivada em relação ao tempo. Pela equação, a taxa de variação do câmbio real é a soma das taxas de variação do câmbio nominal e dos preços externos menos a taxa de variação dos preços domésticos. Uma depreciação real do câmbio ocorrerá sempre que o lado direito da equação for positivo. Exemplos de situações em que isso pode ocorrer são depreciações nominais não repassadas completamente aos preços domésticos (a situação mais comum) ou casos em que, ainda que o câmbio nominal permaneça estável, os preços externos cresçam mais rapidamente do que os preços internos, como em uma deflação dos preços domésticos.
sobre a balança comercial é em favor da produção do país que sofreu a depreciação, aumentando suas exportações e diminuindo o volume de suas importações. Como aumentam tanto o volume exportado quanto o preço unitário dos bens exportados, o valor total das exportações, em termos dos bens produzidos internamente, com certeza aumenta. Já o efeito sobre o valor das importações é, em princípio, ambíguo, uma vez que há redução do volume importado e aumento do custo unitário.

Como o efeito total sobre as Exportações Líquidas é a soma dos efeitos sobre o valor de importações e exportações, caso o valor das importações caia muito as exportações precisariam subir menos para garantir que as Exportações Líquidas aumentem. Da mesma forma, caso as importações caiam pouco, ou mesmo que seu valor chegue a aumentar, pode ser que as Exportações Líquidas ainda exibam melhora caso o valor das exportações aumente de forma significativa. Estas possibilidades estão descritas na Condição de Marshall-Lerner, que mostra que as Exportações Líquidas aumentarão após uma depreciação cambial real caso a soma dos valores absolutos das elasticidades-preço-relativo das importações e das exportações seja maior do que um (este resultado é válido no caso em que as Exportações Líquidas são inicialmente nulas). Se a soma dos valores absolutos das elasticidades for menor do que um, uma depreciação cambial será seguida de uma deterioração das Exportações Líquidas. Empiricamente, a Condição de Marshall-Lerner parece ser satisfeita para a maioria dos países: a depreciação cambial leva, de fato, ao aumento da componente Exportações Líquidas da renda nacional4.

Mas esse resultado ainda não conclui a questão da relação entre depreciação e Exportações Líquidas. Considerações sobre a reorganização de fluxos comerciais induzidas por mudanças de preços relativos apenas compararam diferentes estados de equilíbrio: a Condição de Marshall-Lerner garante que, em equilíbrio, a depreciação cambial levará ao aumento das Exportações Líquidas, mas nada diz quanto à dinâmica do ajuste. Como os fluxos comerciais se reorganizam lentamente (devido, por exemplo, ao fato de importações e exportações serem negociadas com antecedência), é provável que o efeito inicial da depreciação cambial se restrinja ao preço dos bens comercializados, sem modificar, num primeiro momento, as

4 Krugman e Obstfeld, 2003, p. 479.
quantidades envolvidas. Assim, a piora dos preços relativos inicialmente deterioraria as Exportações Líquidas, que apenas gradualmente se recuperariam.

É mais fácil enxergar isto lembrando que as Exportações Líquidas, para efeito de sua contribuição ao nível de atividade, são medidas em termos de unidades do produto doméstico. Para uma dada quantidade de bens importados e exportados, após uma depreciação real do câmbio as importações valem mais do que antes, em termos de bens produzidos internamente; o valor em termos de bens produzidos internamente dos bens exportados, obviamente, não muda. O saldo, portanto, tem que cair.

Este fenômeno é chamado de “Curva-J”, por causa do formato aproximado que o gráfico das Exportações Líquidas exibe ao longo do tempo.

O mecanismo através de que a depreciação cambial atua sobre as Exportações Líquidas costuma ter, portanto, um efeito positivo sobre o nível de atividade, ainda que apenas após um período de ajuste.

2.2. Depreciação Cambial, Distribuição de Renda e Consumo

A componente Consumo das Famílias da renda nacional é composta pela agregação do consumo de todos os habitantes do país, sendo determinada, portanto, pela renda disponível desses habitantes e pela propensão marginal a consumir de cada um deles. Logo, mecanismos de redistribuição da renda terão impacto sobre o Consumo das Famílias desde que afetem grupos com diferentes propensões marginais a consumir. A depreciação cambial é um desses mecanismos de redistribuição: em geral, ganham os produtores de bens exportáveis, que vêem seus produtos valendo mais em termos dos produtos não exportáveis, e perdem os que são apenas consumidores de bens exportáveis. Caso os dois grupos tenham padrões de consumo distintos, a componente de Consumo das Famílias da renda nacional sofrerá um choque.

Carlos Díaz-Alejandro (1963) apresenta um modelo em que esse impacto distributivo da depreciação pode levá-la a ter efeito líquido negativo sobre a renda nacional. Uma vez que os agentes podem dirigir seu consumo tanto a bens produzidos internamente quanto a bens importados, o modelo se baseia no fato de que a classe em favor de que a renda é distribuída com a depreciação costuma apresentar uma propensão marginal a consumir bens domésticos
menor do que a classe que perde em termos distributivos. Assim, sob certas circunstâncias a demanda total pelos bens produzidos internamente pode chegar a cair.

O modelo de Díaz-Alejandro trata de uma pequena economia que encontra curvas de demanda por suas exportações e de oferta para suas importações perfeitamente elásticas. São considerados, inicialmente, três tipos de bens: importáveis, exportáveis, e não-comercializáveis ou domésticos (“H”). Os termos de troca são, por hipótese, dados exogenamente, de forma que os bens exportáveis e importáveis podem ser agregados em um único bem comercializável, “F”. Por hipótese, a curva de oferta do bem F é perfeitamente elástica para reduções da produção, e perfeitamente inelástica para aumentos da produção; a curva de oferta do bem H é perfeitamente elástica.

O país pode ser dividido em duas classes sociais: capitalistas e trabalhadores, com gostos idênticos e que consomem ambos os bens H e F. Os salários são determinados pela produção total interna e pelo salário em moeda, igual em ambos os setores e fixo.

Sejam:

\[F_s \] : produção inicial total do bem F
\[F_c \] : consumo inicial do bem F pelos capitalistas
\[F_w \] : consumo inicial do bem F pelos trabalhadores
\[m_{hc} \] : propensão marginal a consumir o bem H dos capitalistas
\[m_{hw} \] : propensão marginal a consumir o bem H dos trabalhadores
\[E_{Hf} \] : elasticidade cruzada da demanda por H com respeito ao preço de F, considerando apenas o efeito substituição, considerado igual para trabalhadores e capitalistas.

Todos os preços são inicialmente iguais à unidade.

A depreciação aumenta o preço de F em moeda doméstica, \(p_F \), em proporção ao aumento da taxa de câmbio. Assim, a depreciação aumenta a renda real dos capitalistas em \((F_s - F_c) \cdot dp_F \) e diminui a dos trabalhadores em \(F_w \cdot dp_F \), já que os salários são fixos.

Como a produção doméstica de F é perfeitamente inelástica com respeito a aumentos em \(p_F \), neste modelo o efeito sobre o produto total depende totalmente da variação da produção de H, determinada exclusivamente pela demanda doméstica. A depreciação altera a demanda por H de acordo com a expressão (4), que inclui o efeito renda para capitalistas e trabalhadores e o efeito substituição causado pelo aumento no preço do bem F:
$$dH = \left[m_{bw} (F_s - F_e) - m_{bw} F_w + HE_{ef} \right] dp_f$$ \hspace{1cm} (4)$$

Sob a hipótese adicional de que o comércio encontra-se inicialmente em equilíbrio, isto é, \((F_s - F_e) = F\), tem-se:

$$dH = \left[(m_{bw} - m_{bw}) F_w + HE_{ef} \right] dp_f$$ \hspace{1cm} (5)$$

Vale a pena examinar este resultado com atenção. Após o aumento do preço de F em moeda nacional, o efeito substituição \((HE_{ef})\) se encarrega de diminuir o consumo do bem F e aumentar o do bem H. Quanto ao efeito renda, é razoável supor que a propensão marginal a consumir o bem H dos trabalhadores seja maior do que a dos capitalistas. Neste caso, o efeito renda agregado da economia será negativo. Caso a diferença entre as propensões marginais a consumir o bem H seja grande, ou o efeito substituição não seja muito expressivo, a demanda total pelo bem H pode cair. Como, por hipótese, variações do produto desta economia são completamente devidas a variações na produção do bem H, isso levaria à diminuição do nível de atividade doméstico.

Para atingir esse resultado, o modelo utiliza-se da reduzida escala do efeito substituição entre bens produzidos interna e externamente e da inelasticidade da produção de F, hipóteses nem sempre realistas, mas não depende completamente delas. O relaxamento destas hipóteses não impossibilitaria que ocorresse o efeito contracionista da depreciação sobre o nível de atividade, apenas o tornaria mais difícil. De qualquer modo, o modelo indica uma situação em que é possível que a depreciação cambial diminua o nível de atividade interno apenas devido a seus efeitos sobre a distribuição de renda. Paul Krugman e Lance Taylor (1978) também utilizam diferenças nos padrões de consumo de capitalistas e trabalhadores em um modelo que verifica que a depreciação pode ter efeitos contracionistas caso leve a aumento da arrecadação do governo e a balança comercial seja inicialmente deficitária.
2.3. **Pecado Original, Imperfeições do Mercado de Crédito, Depreciação Cambial e Investimento**

Parte da literatura recente sobre regimes cambiais tem explorado o papel de determinadas imperfeições nos mercados de capitais e de crédito sobre a economia dos países que as exibem. Tem se concentrado, em particular, sobre a relação entre a exigência de colateral para concessão de empréstimos e a noção de pecado original.

Entre as práticas que o mercado de crédito apresenta visando a reduzir os riscos associados aos problemas de risco moral e seleção adversa a que se encontram naturalmente sujeitos, encontra-se a exigência de garantias para a concessão de crédito, sob a forma de colateral ou, de forma geral, de algum mecanismo que leve o tomador do empréstimo a participar do risco com parte de seu patrimônio\(^5\). Caso não fosse exigido colateral, um projeto mal-sucedido levaria à perda apenas do montante emprestado, o que geraria incentivos para a firma correr mais riscos do que os inicialmente previstos. Com a exigência de colateral, no entanto, o emprestador pode tomar parte do capital da firma como garantia, diminuindo os incentivos que esta encontra para correr riscos desnecessários: no caso de insucesso do investimento, parte do montante emprestado seria reavida pelo credor por meio de patrimônio do devedor. O aspecto interessante é que o colateral máximo que uma firma pode oferecer é o valor total de seu capital: o crédito que ela demandará será, portanto, um múltiplo desse valor.

Já o termo “pecado original”, cunhado por Barry Eichengreen e Ricardo Hausmann (1999), se refere à inexistência, nos países emergentes, de um mercado de capitais que negociie títulos de longo prazo denominados em moeda nacional. O crédito para financiar investimentos (que têm prazo de maturação tipicamente longo e geram fluxos em moeda doméstica) seria, então, ou de longo-prazo, mas denominado em moeda estrangeira, ou, quando denominado em moeda doméstica, de curto-prazo. Os investimentos possuiriam inevitavelmente, então, algum tipo de descasamento: ou de maturidade (investimentos de longo-prazo seriam financiados com empréstimos de curto prazo), ou de moeda (investimentos que geram moeda doméstica seriam financiados com moeda estrangeira). Com isso, as firmas estariam sujeitas a riscos relacionados à necessidade de periódica renovação dos empréstimos.

\(^5\) Mishkin, 2003, p. 192.
ao longo do período de maturação dos investimentos (no caso de descasamento de maturidade) ou à possibilidade de que uma depreciação cambial afete seu balanço patrimonial, aumentando o valor de seu passivo (no caso de descasamento de moeda).

A política cambial, na presença de pecado original e da exigência de colateral para empréstimos, apresenta consequências importantes⁶. A defesa do valor da moeda, com o aumento de juros e enxugamento de liquidez que pode acarretar, leva a uma restrição à oferta de crédito da economia. Como uma parcela dos empréstimos realizados não seria renovada, algumas firmas veriam seu crédito cessar sem que possam repagar o empréstimo tomado, devido ao descasamento de maturidade de seus investimentos. Isso poderia provocar uma crise bancária. Caso se permita que o câmbio flutue livremente, e este passe por amplas oscilações, as firmas com financiamento de longo prazo em moeda estrangeira veriam a deterioração de seus balanços patrimoniais, com o valor de seu passivo exigível aumentando sem correspondente aumento do ativo. A redução do patrimônio líquido das firmas levaria algumas delas à falência, mas, o que é mais importante para o conjunto da economia, levaria à redução da capacidade de endividamento de todas elas.

A interação do pecado original com a exigência de colateral para concessão de crédito faz com que a depreciação cambial leve à diminuição da demanda por crédito para investimentos na economia. Este efeito tende a ser ainda mais forte caso o país tenha passado por um período de câmbio fixo, já que este diminuiria a percepção dos riscos envolvidos no endividamento em moeda estrangeira. Com isto, tem-se um outro mecanismo de transmissão da depreciação cambial para o nível de atividade, que afetaria a componente de Investimento da renda nacional⁷.

⁶ Consequências apontadas em Eichengreen e Hausmann (1999).

⁷ Outra possível consequência do pecado original seria a relação entre pecado original e finanças públicas. Como um país sujeito ao pecado original não possui mercado internacional de crédito na sua moeda, o hedge cambial realizado por firmas endividadas em moeda estrangeira é apenas a transferência do risco entre agentes dentro do país. No caso do Brasil, o principal provedor desse “seguro cambial” é o governo, através de seus títulos indexados à variação da taxa de câmbio. Quando há forte depreciação cambial, o valor em reais do passivo que esses títulos representam aumenta muito, gerando dúvidas sobre a possibilidade de pagamento da dívida pública sem recurso à inflação. Assim, o governo pode ver-se forçado a aumentar suas metas de superávit primário para manter a dívida pública em uma trajetória sustentável. Nesse caso, embora o patrimônio das firmas se veja protegido, o que neutralizaria o mecanismo de transmissão que opera através da restrição ao crédito, a diminuição da componente de Gastos do Governo da renda nacional poderia levar, também, a um efeito recessivo, desta vez devido não à deterioração dos balanços patrimoniais das firmas, mas à deterioração do balanço do governo.
Carneiro, Salles e Wu (2004) investigam este mecanismo para o Brasil. Eles encontram uma relação negativa entre depreciação cambial e taxa de crescimento do investimento, em que uma depreciação cambial de 1% leva à diminuição da taxa de crescimento do investimento em 0,33%. Para verificar se a causa dessa relação é realmente o efeito da depreciação sobre o crédito, via balanço patrimonial, estimaram também uma equação de demanda por crédito contendo a depreciação cambial como variável explicativa. Como esperado, também aqui encontraram uma relação negativa, em que uma depreciação de 1% leva à queda da taxa de crescimento do crédito em 0,35%, e interpretam estes resultados como evidência empírica de que este mecanismo é relevante para o Brasil.

Os três mecanismos descritos neste capítulo não devem ser vistos como explicações alternativas do efeito da depreciação, mas como complementares. O mais provável é que atuem simultaneamente, sendo o efeito final da depreciação a agregação dos resultados de todos eles.
3. O Efeito da Depreciação sobre o Nível de Atividade: análise empírica

O estudo empírico da depreciação cambial sobre o nível de atividade será realizado em dois passos: neste capítulo, será determinado, em um conjunto de países, como cada um responde à depreciação cambial; no próximo, se procurará explicar a resposta encontrada para cada país por meio de variáveis que se acredita estarem correlacionadas com alguns dos mecanismos expostos no capítulo anterior.

Primeiramente será exposto o modelo estimado. Em seguida são descritos os dados utilizados. Na seção seguinte, é determinada a especificação da equação de cada país. Após, o método de estimação é exposto. Finalmente, os resultados e sua interpretação compõem a última seção.

3.1. O Modelo: Curva IS

No capítulo anterior, diversos mecanismos por meio de que a depreciação cambial pode afetar o nível de atividade foram expostos. Também foi visto que o efeito observado será a soma dos efeitos de cada um dos mecanismos. Isso sugere um modelo para a economia em que se representaria separadamente cada um dos mecanismos de transmissão lá discutidos. Embora esta abordagem seja potencialmente interessante, já que permitiria a análise detalhada dos mecanismos de transmissão, ela também traria inconvenientes ao ampliar a complexidade exigida do modelo para comportar os diferentes mecanismos de transmissão que atuam em cada país.

Ao invés disso, será estimada, para cada um dos países, uma curva IS incluindo a depreciação cambial como variável explicativa. A curva IS utiliza variáveis que se acredita influenciarem o nível de atividade para explicar sua variação, sem incorporar conjecturas quanto aos mecanismos através de que esta influência operaria. Em sua formulação mais simples, a curva relaciona o nível de atividade no período atual ao observado em períodos anteriores e à taxa de juros real defasada um determinado número de períodos. A curva que estaremos incluirá ainda, como variável explicativa, a depreciação cambial real (também
defasada um determinado número de períodos). Trata-se de uma equação na forma reduzida dos mecanismos de transmissão dos juros reais e da taxa de câmbio para o nível de atividade. O custo dessa abordagem simplificada é que a partir dos coeficientes estimados é impossível reconstruir a rede de mecanismos de transmissão que os gerou, mas isso é compensado pela garantia de que se está considerando e estimando a relação completa entre as variáveis. Essa estimação passa a não depender mais da correta identificação de cada um dos mecanismos de transmissão, como ocorreria no caso do sistema estrutural em que cada equação representa um mecanismo. Além disso, ela tem a vantagem da simplicidade, já que pequenas modificações sobre uma forma geral dão conta satisfatoriamente das diferenças entre os países.

Será estimada uma especificação linear para a curva IS, cuja forma geral é:

\[\text{crescimento}_t = \beta_0 + \beta_1 \text{crescimento}_{t-1} + \beta_2 \text{crescimento}_{t-2} + \beta_3 \text{juros reais}_{t-1} + \beta_4 \text{depreciação}_{t-j} + u_t \] (6)

Ela modela o crescimento da economia como função de um intercepto, das duas primeiras defasagens do próprio crescimento, da taxa de juros real defasada em \(i \) períodos, da depreciação cambial real defasada em \(j \) períodos e de um distúrbio estocástico \(u \). Para cada país na amostra será estimada uma especificação diferente da curva, podendo variar as defasagens de crescimento (pela imposição da restrição \(\beta_2 = 0 \)) e juros reais que entram na equação.

O crescimento em períodos anteriores é incluído na equação porque esta variável costuma exibir certa inércia: o valor atual do crescimento é correlacionado com o crescimento passado. A taxa de juros real é incluída porque a teoria econômica aponta uma correlação negativa entre esta variável e o nível de atividade, que opera por diversos mecanismos de transmissão\(^8\). Desta forma, espera-se que o coeficiente \(\beta_3 \) dos juros reais seja negativo nas equações estimadas para todos os países.

O coeficiente de principal interesse é o coeficiente \(\beta_4 \), da depreciação cambial. Um coeficiente \(\beta_4 \) positivo sugere que a depreciação cambial aumenta a taxa de crescimento do produto, após considerar-se a própria inércia da série e o efeito da taxa de juros sobre o nível

de atividade. Um coeficiente negativo teria a interpretação oposta. É esperado também que alguns países apresentem um coeficiente estatisticamente não diferente de zero (isto é, não significantes estatisticamente), o que deve ser interpretado como ausência de evidência de correlação entre depreciação cambial e crescimento do produto. Isso não quer dizer que nenhum dos mecanismos de transmissão do câmbio ao produto atue nestes países, mas apenas que, dado que estamos estimando a forma reduzida do modelo, o efeito agregado de todos os mecanismos se anula nos dados analisados.

Escolha das variáveis do modelo

Conforme dito, foi escolhido estimar a curva IS com o crescimento do PIB como variável dependente. Outras variáveis que refletem o nível de atividade da economia poderiam ter sido escolhidas, sendo mais habitualmente utilizadas a própria taxa de crescimento ou uma medida de folga da capacidade produtiva. A medida de folga mais comum é o hiato do PIB calculado como a diferença percentual (isto é, a razão entre as variáveis menos 1, também aproximada pela diferença entre os logaritmos das variáveis) entre uma estimativa de produto potencial e o produto efetivamente observado. A estimativa de produto potencial pode ser obtida por vários métodos, o mais popular sendo a aplicação do filtro Hodrick-Prescott sobre a série do PIB, obtendo-se a partir da série resultante a medida de folga ou superaquecimento do nível de atividade. O crescimento do PIB foi escolhido em razão de uma limitação do filtro Hodrick-Prescott ao ser aplicado a séries com certas características.

O problema com a aplicação dessa técnica encontra-se no fato de o filtro HP não captar muito bem “descontinuidades” na série do PIB, já que ele pressupõe certa suavidade na série para fornecer uma medida adequada de produto potencial. Ao situar o produto potencial na média do produto observado ao longo do tempo, a hipótese implícita é que as recessões ocorrem, como uma espécie de correção, após o produto ultrapassar o nível sustentável da economia. Se em algum ponto houver uma “descontinuidade” da série do produto, como a que pode ocorrer após uma recessão muito pronunciada deflagrada por uma crise financeira, a utilização do filtro HP tende a superestimar o nível de atividade nos anos imediatamente anteriores à quebra da série.

A figura 3.1, a seguir, ilustra esse efeito. Ela mostra uma série hipotética de PIB real, sem variações sazonais, e a série de PIB potencial criada pelo filtro HP. Entre os anos 1 e 4, o
produto cresce à taxa constante de 3,5% ao ano. Durante o quinto ano, cai 10%. Nos anos 6 e 7, cresce 9% ao ano, refletindo uma retomada com capacidade ociosa na economia e praticamente retornando à tendência em que a economia se encontrava antes da recessão, e entre os anos 8 e 11 volta à taxa inicial constante de 3,5% ao ano. A distância entre os gráficos é o hiato do produto calculado por este método. Embora o expressivo hiato positivo logo após a recessão do quinto ano seja realista sob a hipótese de a recessão ter sido causada por uma crise financeira, a mesma hipótese indica que antes da recessão o nível de atividade da economia provavelmente não se encontrava cerca de 5% acima do produto potencial, como a figura sugere. A utilização do filtro HP geraria, portanto, uma série de hiato do PIB que forneceria informações equivocadas sobre o estado de aquecimento da economia.

FIGURA 3.1: Série hipotética de PIB, sem variações sazonais, e tendência gerada pelo filtro HP

A utilização do filtro HP para estimar o produto potencial é indicada para países em que o produto não exibe grandes “saltos”, que é a situação típica de países desenvolvidos. Como esta análise inclui apenas economias emergentes (como se vê na próxima seção), e boa parte delas
passou por pelo menos uma grande crise de origem financeira durante o período da amostra, a aplicação do filtro HP não geraria uma medida de nível de atividade confiável.

Por causa dessa limitação, utilizou-se a taxa de crescimento do PIB. A medida escolhida para a taxa de crescimento em um dado trimestre foi a diferença percentual entre o índice de volume sem ajuste sazonal do PIB naquele trimestre e o índice de volume sem ajuste sazonal do PIB um ano antes (no mesmo trimestre do ano anterior). Ao contrário do hiato do produto calculado pelo filtro HP, a taxa de crescimento do PIB não superestima o nível de atividade nos anos anteriores a recessões pronunciadas.

Os juros reais utilizados na estimação foram calculados pela seguinte fórmula:

$$r_t = \left(\frac{1+i_t}{(P_t/P_{t-4})}\right)-1$$

(7)

Onde i_t é a taxa de juros nominal média no trimestre t, P_t o nível de preços ao final do trimestre t, e P_{t-4} o nível de preços um ano antes.

A depreciação cambial real é a diferença percentual entre as taxas de câmbio real de um trimestre e no trimestre anterior. A taxa de câmbio real, ϵ, é definida, para cada país, como:

$$\epsilon = \frac{(E \cdot P^{*})}{P}$$

(8)

Onde E é a taxa de câmbio nominal média no trimestre, P^{*} é o nível médio de preços no exterior, e P, o nível médio de preços domésticos. Ambos os índices de preços se referem ao trimestre corrente. O índice de preços externos utilizado variou de país para país. Para países que tomam o dolar americano por referência para sua política cambial foi utilizado o nível de preços nos Estados Unidos; para os que utilizam o marco alemão e, posteriormente, o Euro como referência utilizou-se os preços na Alemanha (entre 1995 e 1998) e na zona do Euro (entre 1999 e 2003). Da amostra utilizada (explicada na próxima seção) apenas República Tcheca e Turquia se encaixam nesse segundo caso. O câmbio real de todos os outros países foi calculado utilizando-se o nível de preços nos Estados Unidos.
3.2. Base de dados e amostra

A proposta inicial era estudar o efeito da depreciação cambial nos vinte e cinco países acompanhados pela revista inglesa *The Economist* como mercados emergentes ("Emerging Markets"). Estes são: África do Sul, Argentina, Brasil, Chile, China, Cingapura, Colômbia, Coréia do Sul, Egito, Filipinas, Hong-Kong, Hungria, Índia, Indonésia, Israel, Malásia, México, Peru, Polônia, República Tcheca, Rússia, Tailândia, Taiwan, Turquia e Venezuela.

Dos países inicialmente destacados, a base de dados não possuía dados de PIB real para Brasil, China, Cingapura, Egito, Índia, Rússia, Taiwan e Venezuela. Para o Brasil, utilizou-se a série de PIB real publicada pelo IBGE; os outros sete países foram retirados da amostra. É importante notar que esta deficiência da base de dados eliminou quase um terço da amostra inicial.

Mesmo os países que possuíam todas as séries não as possuíam ao longo do mesmo período. Como o método de estimação utilizado (discutido a seguir) exige que as observações de todos os países cubram o mesmo período, foi necessário descartar ainda Filipinas, Hungria, Indonésia e Polônia. Com isso, ficou-se, finalmente, com quatorze países: África do Sul, Argentina, Brasil, Chile, Colômbia, Coréia do Sul, Hong-Kong, Israel, Malásia, México, Peru, República Tcheca, Tailândia e Turquia. A amostra cobre o período entre o primeiro trimestre de 1995 e o terceiro trimestre de 2003, totalizando 35 observações de cada série (crescimento, juros reais e depreciação cambial real) para cada país.

3.3. Identificação da especificação da equação de cada país

Para cada país da amostra, foi identificada a especificação mais apropriada da forma geral da curva IS dada acima. Dois critérios foram seguidos: um número apropriado de defasagens da taxa de crescimento deveria entrar na equação, e a defasagem da taxa de juros com maior
poder explicativo das variações do produto deveria ser escolhida. A depreciação cambial entrou na equação de todos os países defasada em dois períodos. Isso foi feito para garantir certa homogeneidade no tratamento dos diferentes países, observando-se os efeitos da depreciação cambial sobre o produto um semestre após esta ocorrer. A tabela 3.1, abaixo, traz o número de componentes auto-regressivos da taxa de crescimento do produto e o número de trimestres em que os juros reais aparecem defasados na equação de cada país.

TABELA 3.1: Especificação da curva IS de cada país

<table>
<thead>
<tr>
<th>País</th>
<th>AR</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>África do Sul</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Argentina</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Brasil</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Colômbia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Coréia do Sul</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hong-Kong</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Israel</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Malásia</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>México</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peru</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>República Tcheca</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tailândia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Turquia</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

O número de defasagens da taxa de crescimento que deveria entrar em cada equação foi obtido pela análise do correlograma, com as funções de autocorrelação e autocorrelação parcial, da série de crescimento do PIB de cada país. Em alguns casos o correlograma exibia uma estrutura complexa. Para captar os principais elementos da dinâmica da taxa de crescimento de cada país ao mesmo tempo em que se evitava a escolha de um modelo excessivamente complexo para a taxa de crescimento, uma vez que o interesse principal da monografia reside no o efeito da depreciação cambial, limitou-se cada equação a, no máximo, dois componentes auto-regressivos (AR) da taxa de crescimento. Essa formulação mostrou-se adequada para incorporar a dinâmica da variável dependente às equações. Cinco países da amostra exigiram as duas componentes auto-regressivas na equação; os outros nove necessitaram de apenas uma.
O número de trimestres em que juros reais seriam defasados nas equações foi escolhido com base na significância. Assim, foram testadas diferentes especificações de cada equação, com juros reais defasados de 1 a 4 trimestres, e a defasagem mais significativa foi escolhida na equação de cada país.

3.4. Método de Estimação: Regressões Aparentemente Não Correlacionadas

Nesta seção será exposto o método de estimativa utilizado. Conforme se verá a seguir, o método de Mínimos Quadrados Ordinários poderia ser aplicado individualmente a cada uma das curvas IS especificadas, sendo um estimador não-viesado dos coeficientes das regressões. Mas características das séries que estamos modelando sugerem que os choques contemporâneos das diferentes equações são correlacionados. Sob esta hipótese, o estimador de Mínimos Quadrados Ordinários permanece não-viesado, mas o estimador de Mínimos Quadrados Generalizados para todas as equações estimadas conjuntamente passa a exibir menor variância, sendo o estimador eficiente. O “empilhamento” das quatorze equações em uma única equação a ser estimada por Mínimos Quadrados Generalizados é o método de Regressões Aparentemente Não Correlacionadas, apresentado no restante desta seção.

Temos que estimar quatorze equações, uma para cada país, que seguem a forma geral dada na equação (6). Em forma matricial, temos 14 equações da forma

$$y_i = X_i \beta_i + u_i \quad i = 1, 2, ..., 14$$

onde y_i é um vetor de observações da taxa de crescimento para o país i com n_i componentes; X_i, uma matriz $n_i \times k_i$ de observações das variáveis explicativas; β_i é um vetor de k_i coeficientes, e u_i um vetor de n_i distúrbios. O número k_i de colunas da matriz X_i e de linhas do vetor β_i (o número de coeficientes estimados) varia entre as equações: países que têm duas defasagens do crescimento como variáveis explicativas têm $k_i = 5$ (estima-se o intercepto vertical, os coeficientes das duas defasagens do crescimento, um coeficiente para juros reais e outro para desvalorização cambial), e países com apenas uma defasagem têm $k_i = 4$ (apenas

um coeficiente para o crescimento, na primeira defasagem). O número \(n \) de observações utilizadas na estimação inicialmente também pode variar entre os países, sendo definido pelo número total de observações (35 trimestres, em nossa amostra) menos o número máximo de defasagens empregado entre as variáveis explicativas que entram na equação do país. No caso do Brasil, por exemplo, a máxima defasagem é a segunda, então para estimar os coeficientes da curva IS do Brasil seriam utilizadas 33 observações. Já a equação da África do Sul tem a terceira defasagem da taxa de juros reais em sua equação; ela seria estimada, portanto, com 32 observações. Porém, como se verá adiante, todas as equações deverão ser estimadas utilizando o mesmo número de defasagens.

O estimador de Mínimos Quadrados Ordinários é não-viesado caso os distúrbios e as variáveis explicativas de cada equação sejam não correlacionados\(^{10}\). Essa é uma hipótese plausível, supondo que as equações estejam bem especificadas. Com isso, em princípio parece que se devem estimar as quatorze equações separadamente, por Mínimos Quadrados Ordinários.

O exame da natureza das variáveis com que estamos trabalhando sugere, no entanto, que há uma relação que a utilização de Mínimos Quadrados Ordinários desprezaria. Devem ser estimadas equações para a taxa de crescimento de quatorze economias ao longo de uma amostra coincidente para todos os países. Parece natural supor que os choques que atingem essas economias exibam correlação entre si, refletindo certo grau de sincronia do crescimento entre os países. Isso sugere a estimação conjunta dessas equações por um método que leve a correlação entre os distúrbios em consideração. O método escolhido é o de Regressões Aparentemente Não Relacionadas (SUR na sigla em inglês – *Seemingly Unrelated Regressions*), de estimação conjunta de um sistema de equações ligadas apenas pelos distúrbios, e não pelas variáveis exógenas ou endógenas. Como este método trabalha com as correlações contemporâneas entre os distúrbios das variáveis, ele utiliza o mesmo número de observações para estimar os coeficientes de todas as equações. Assim, o número de observações de todas as equações passa a ser determinado pela equação com o menor número \(n_i \) de observações. Como a defasagem máxima utilizada entre todas as equações é a terceira,

\(^{10}\) Cf. Greene, 1993, pp. 182-183.
para juros reais nas equações de África do Sul, Coreia do Sul e Hong-Kong, são utilizadas 32 observações para estimar os coeficientes pelo método SUR: temos $n_i = n = 32$ $i = 1, 2, \ldots, 14$.

Agora, ao invés de quatorze equações diferentes, será estimada apenas uma, escrita em notação matricial da forma abaixo. Esta nova equação é composta pelo “empilhamento” das quatorze equações que havia anteriormente. É importante notar que os elementos das matrizes são agora outras matrizes e vetores, e não mais números. A nova equação é dada abaixo:

\[
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_{14}
\end{bmatrix} = \begin{bmatrix} X_1 & 0 & \cdots & 0 \\
0 & X_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & X_{14}
\end{bmatrix} \begin{bmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_{14}
\end{bmatrix} + \begin{bmatrix}
u_1 \\
u_2 \\
\vdots \\
u_{14}
\end{bmatrix}
\]

ou, simplesmente,

\[y = X\beta + u\]

A matriz de variância-covariância de u é:

\[\Sigma = E(u'u) = \begin{bmatrix}
E(u_1'u_1) & E(u_1'u_2') & \cdots & E(u_1'u_{14}') \\
E(u_2'u_1') & E(u_2'u_2') & \cdots & E(u_2'u_{14}') \\
\vdots & \vdots & \ddots & \vdots \\
E(u_{14}'u_1') & E(u_{14}'u_2') & \cdots & E(u_{14}'u_{14}')
\end{bmatrix}\]

onde cada elemento é, também, uma matriz de variância-covariância nxn entre os distúrbios das equações i e j. Os distúrbios das diferentes observações da mesma equação são, por hipótese, não autocorrelacionados. Se também for feita a hipótese de homocedasticidade dos distúrbios de cada equação, tem-se $E(u_i'u_i') = \sigma_i I$ $i = 1, 2, \ldots, 14$; os elementos da diagonal principal da matriz Σ são matrizes diagonais nxn compostas pela variância dos distúrbios de cada equação.

Os outros elementos da matriz Σ, $E(u_i'u_j')$ $i \neq j$, dão a covariância entre os distúrbios das equações i e j. Impondo também $E(u_i'u_j') = \sigma_j I$, é assumido que a covariância entre distúrbios contemporâneos de equações diferentes é constante, e que a covariância entre
distúrbios de períodos distintos é zero. Com mais essas hipóteses, tem-se a equação abaixo, em que o símbolo \otimes denota a multiplicação de cada elemento da matriz Σ_e pela matriz I:

$$
\Sigma = \begin{bmatrix}
\sigma_{11}I & \sigma_{12}I & \cdots & \sigma_{114}I \\
\sigma_{21}I & \sigma_{22}I & \cdots & \sigma_{214}I \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{141}I & \sigma_{142}I & \cdots & \sigma_{1414}I
\end{bmatrix} = \begin{bmatrix}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{114} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{214} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{141} & \sigma_{142} & \cdots & \sigma_{1414}
\end{bmatrix} \otimes I = \Sigma_e \otimes I
$$

Assim, a matriz de variância-covariância para a equação que agrega as quatorze equações não reflete distúrbios esféricos, como exigem as hipóteses sob as quais o estimador de Mínimos Quadrados Ordinários é o estimador linear não-viesado de menor variância. Com uma matriz Σ como a acima, o melhor estimador linear não-viesado é o estimador de Mínimos Quadrados Generalizados\(^\text{11}\). A expressão para o vetor dos coeficientes deste estimador é

$$
b_{\text{mg}} = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}Y
$$

e a expressão para a matriz de variância-covariância dos coeficientes é dada pela expressão (15):

$$
\text{var}(b_{\text{mg}}) = (X'\Sigma^{-1}X)^{-1}
$$

Nas duas expressões, a matriz Σ^{-1} é dada por:

$$
\Sigma^{-1} = \Sigma_e^{-1} \otimes I = \begin{bmatrix}
\sigma_{11}I & \sigma_{12}I & \cdots & \sigma_{114}I \\
\sigma_{21}I & \sigma_{22}I & \cdots & \sigma_{214}I \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{141}I & \sigma_{142}I & \cdots & \sigma_{1414}I
\end{bmatrix}
$$

Como a matriz Σ é irremediavelmente desconhecida, já que relaciona os distúrbios não observados das equações, a técnica sugerida em Johnston & Dinardo (1996) para estimar os parâmetros b_{mg} e $\text{var}(b_{\text{mg}})$, e que será seguida aqui, é estimar a matriz Σ a partir dos resíduos das regressões das quatorze equações por Mínimos Quadrados Ordinários, e utilizar a matriz Σ

estimada nas expressões dadas para obter o vetor de coeficientes e a matriz de variância-covariância dos coeficientes.

Caso fosse estimada apenas uma curva IS para um único país, a estimação poderia ser feita por Mínimos Quadrados Ordinários de forma consistente e eficiente – não é uma violação das hipóteses do Modelo Clássico para nenhuma das equações, vistas individualmente, que motiva a estimação por Mínimos Quadrados Generalizados. A correlação entre os distúrbios das equações não atrapalha as propriedades habituais de Mínimos Quadrados Ordinários; ela não implica em correlação entre regressores e distúrbios ou em heterocedasticidade dos distúrbios nas curvas IS. A motivação para utilizar Mínimos Quadrados Generalizados é que, com correlação entre os distúrbios das equações, agregá-las em uma única equação como faz o SUR faz com que esta exiba distúrbios não-esféricos, e sob estas condições o estimador de Mínimos Quadrados Generalizados usado no SUR tem menor variância que o de Mínimos Quadrados Ordinários.

3.5. Resultados e interpretação

A tabela 3.2 traz os resultados da estimação das 14 curvas IS. Na primeira coluna, os países da amostra são ordenados alfabeticamente. Entre a segunda e a sexta coluna, são apresentados os coeficientes estimados. Essas colunas trazem, respectivamente, o intercepto vertical estimado, o coeficiente da primeira defasagem do crescimento do PIB, o da segunda defasagem, o coeficiente da taxa de juros reais, e o coeficiente da depreciação cambial. Sob cada coeficiente encontra-se, entre parênteses, seu desvio-padrão estimado. A sétima coluna traz o p-valor da estatística t associada ao coeficiente da depreciação cambial de cada equação. Para facilitar a visualização, foram destacados em vermelho os coeficientes não-significativos ao nível de 5%.

As equações de Chile, Israel e Peru não tiveram coeficientes significativos nem para juros reais nem para depreciação cambial. Além destas três, as equações da República Tcheca e da Colômbia não tiveram o coeficiente da depreciação significativo, embora tenham tido o coeficiente da taxa de juros reais significativo. As outras nove equações tiveram todos os coeficientes estimados significativos. Conforme esperado, os coeficientes da taxa de juros reais foram negativos em todas as equações. Também conforme esperado, encontrou-se
coeficientes positivos e negativos para a depreciação cambial, assim como alguns não significativos. A tabela 3.3 classifica os quatorze países em três grupos: no primeiro, estão os países que apresentam o coeficiente \(\beta_4 \) da curva IS com o sinal positivo; no segundo, os que apresentam coeficiente não significante estatisticamente; e no terceiro, aqueles que apresentam coeficiente negativo.

TABELA 3.2: Resultados da Estimação das curvas IS
Variável Dependente: Crescimento do PIB \((t/t-4)\)
Método: Seemingly Unrelated Regressions
Amostra: 1995.4 a 2003.3 (32 observações)

<table>
<thead>
<tr>
<th>País</th>
<th>(\beta_0)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>(\beta_3)</th>
<th>(\beta_4)</th>
<th>P-valor de (\beta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>África do Sul</td>
<td>1,054</td>
<td>1,429</td>
<td>-0,714</td>
<td>-0,059</td>
<td>0,022</td>
<td>0,30%</td>
</tr>
<tr>
<td></td>
<td>(0,229)</td>
<td>(0,085)</td>
<td>(0,090)</td>
<td>(0,024)</td>
<td>(0,007)</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>1,581</td>
<td>1,047</td>
<td>-0,329</td>
<td>-0,164</td>
<td>0,040</td>
<td>4,46%</td>
</tr>
<tr>
<td></td>
<td>(0,455)</td>
<td>(0,120)</td>
<td>(0,117)</td>
<td>(0,031)</td>
<td>(0,020)</td>
<td></td>
</tr>
<tr>
<td>Brasil</td>
<td>2,011</td>
<td>0,983</td>
<td>-0,565</td>
<td>-0,052</td>
<td>-0,041</td>
<td>1,87%</td>
</tr>
<tr>
<td></td>
<td>(0,503)</td>
<td>(0,094)</td>
<td>(0,088)</td>
<td>(0,026)</td>
<td>(0,017)</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>1,316</td>
<td>0,680</td>
<td>--</td>
<td>-0,030</td>
<td>-0,088</td>
<td>24,21%</td>
</tr>
<tr>
<td></td>
<td>(0,573)</td>
<td>(0,087)</td>
<td>--</td>
<td>(0,065)</td>
<td>(0,075)</td>
<td></td>
</tr>
<tr>
<td>Colômbia</td>
<td>2,847</td>
<td>0,721</td>
<td>--</td>
<td>-0,206</td>
<td>-0,053</td>
<td>7,64%</td>
</tr>
<tr>
<td></td>
<td>(0,536)</td>
<td>(0,063)</td>
<td>--</td>
<td>(0,038)</td>
<td>(0,030)</td>
<td></td>
</tr>
<tr>
<td>Coréia do Sul</td>
<td>3,151</td>
<td>0,971</td>
<td>-0,388</td>
<td>-0,223</td>
<td>-0,060</td>
<td>4,84%</td>
</tr>
<tr>
<td></td>
<td>(0,768)</td>
<td>(0,099)</td>
<td>(0,092)</td>
<td>(0,090)</td>
<td>(0,030)</td>
<td></td>
</tr>
<tr>
<td>Hong-Kong</td>
<td>2,402</td>
<td>0,754</td>
<td>--</td>
<td>-0,728</td>
<td>3,788</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>(0,520)</td>
<td>(0,059)</td>
<td>--</td>
<td>(0,128)</td>
<td>(0,540)</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>1,530</td>
<td>0,650</td>
<td>--</td>
<td>-0,148</td>
<td>-0,052</td>
<td>61,96%</td>
</tr>
<tr>
<td></td>
<td>(0,838)</td>
<td>(0,091)</td>
<td>--</td>
<td>(0,152)</td>
<td>(0,105)</td>
<td></td>
</tr>
<tr>
<td>Malásia</td>
<td>2,822</td>
<td>0,720</td>
<td>--</td>
<td>-0,656</td>
<td>-0,182</td>
<td>0,67%</td>
</tr>
<tr>
<td></td>
<td>(0,729)</td>
<td>(0,063)</td>
<td>--</td>
<td>(0,242)</td>
<td>(0,067)</td>
<td></td>
</tr>
<tr>
<td>México</td>
<td>2,000</td>
<td>0,739</td>
<td>--</td>
<td>-0,188</td>
<td>0,121</td>
<td>0,61%</td>
</tr>
<tr>
<td></td>
<td>(0,414)</td>
<td>(0,050)</td>
<td>--</td>
<td>(0,052)</td>
<td>(0,044)</td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>1,957</td>
<td>0,516</td>
<td>--</td>
<td>-0,077</td>
<td>0,203</td>
<td>20,37%</td>
</tr>
<tr>
<td></td>
<td>(0,843)</td>
<td>(0,110)</td>
<td>--</td>
<td>(0,054)</td>
<td>(0,159)</td>
<td></td>
</tr>
<tr>
<td>República Tcheca</td>
<td>2,396</td>
<td>0,454</td>
<td>--</td>
<td>-0,545</td>
<td>0,056</td>
<td>16,51%</td>
</tr>
<tr>
<td></td>
<td>(0,441)</td>
<td>(0,089)</td>
<td>--</td>
<td>(0,105)</td>
<td>(0,041)</td>
<td></td>
</tr>
<tr>
<td>Tailândia</td>
<td>2,303</td>
<td>0,835</td>
<td>-0,193</td>
<td>-0,518</td>
<td>-0,124</td>
<td>0,02%</td>
</tr>
<tr>
<td></td>
<td>(0,345)</td>
<td>(0,088)</td>
<td>(0,082)</td>
<td>(0,074)</td>
<td>(0,033)</td>
<td></td>
</tr>
<tr>
<td>Turquia</td>
<td>1,896</td>
<td>0,523</td>
<td>--</td>
<td>-0,123</td>
<td>-0,204</td>
<td>0,07%</td>
</tr>
<tr>
<td></td>
<td>(0,667)</td>
<td>(0,080)</td>
<td>--</td>
<td>(0,021)</td>
<td>(0,080)</td>
<td></td>
</tr>
</tbody>
</table>

A interpretação dos coeficientes significativos é direta. Pelos resultados encontrados, uma depreciação real de 1% da moeda brasileira desaceleraria o PIB em 0,04 ponto percentual, tendo praticamente o mesmo efeito de um aumento de 1 p.p. na taxa de juros reais (queda de
0,05 p.p. da taxa de crescimento). Já na Argentina, por exemplo, um aumento de 1 p.p. nos juros reais desaceleraria o crescimento em 0,16 p.p., enquanto uma depreciação real de 1% levaria à aceleração do crescimento em 0,03 p.p.. A interpretação dos coeficientes dos outros países é análoga.

TABELA 3.3: Classificação dos países segundo o sinal do coeficiente \(\beta_4 \) da curva IS estimada

<table>
<thead>
<tr>
<th>(\beta_4 > 0)</th>
<th>(\beta_4) não significativo</th>
<th>(\beta_4 < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>África do Sul</td>
<td>Chile</td>
<td>Brasil</td>
</tr>
<tr>
<td>Argentina</td>
<td>Colômbia</td>
<td>Coréia do Sul</td>
</tr>
<tr>
<td>Hong-Kong</td>
<td>Israel</td>
<td>Malásia</td>
</tr>
<tr>
<td>México</td>
<td>Peru</td>
<td>Tailândia</td>
</tr>
<tr>
<td>República Tcheca</td>
<td></td>
<td>Turquia</td>
</tr>
</tbody>
</table>

A interpretação dos coeficientes não significativos, no entanto, é menos direta. A tabela 3.4 traz os países ordenados segundo o desvio padrão da depreciação cambial real e, na coluna ao lado, a informação sobre a significância do coeficiente \(\beta_4 \) estimado. Como se vê, à exceção de Hong-Kong, os países que tiveram os coeficientes significantes foram aqueles cuja depreciação cambial apresentou maior variância.

O coeficiente estimado para Hong-Kong merece ser examinado com cuidado. Hong-Kong é o único país da amostra que teve sua taxa de câmbio nominal fixa ao longo de todo o período analisado. As variações do câmbio real foram, portanto, exclusivamente devidas ao diferencial de inflação entre este país e os Estados Unidos. Além disso, os preços em Hong-Kong se comportaram segundo dois períodos distintos e bem delimitados: no primeiro, inflação média trimestral entre o primeiro trimestre de 1995 e o segundo trimestre de 1998 de 1,47%, com inflação acumulada de 22%, desvio padrão de 0,60% e inflação positiva em todos os 14 trimestres; no segundo, inflação média trimestral entre os terceiros trimestres de 1998 e 2003 de –0,83%, com deflação acumulada de 16%, desvio padrão de 0,67% e deflação em 20 dos 21 trimestres. Há diversas explicações para este comportamento do nível de preços\(^{12}\), mas um de seus efeitos foi que a taxa de câmbio real sofreu contínua apreciação durante o primeiro período, e contínua depreciação durante o segundo. A volatilidade bastante baixa da depreciação real de Hong-Kong ao longo da amostra e o fato de o país operar sob câmbio

nominal fixo o colocam em uma situação diferente da dos outros treze países, o que dificulta a comparação entre seu coeficiente e os obtidos para os outros países. Embora o coeficiente estimado seja importante para explicar as variações do crescimento do PIB de Hong-Kong, os mecanismos que operam nesse país são potencialmente distintos dos que se observa no resto da amostra.

TABELA 3.4: Desvio padrão da depreciação cambial real trimestral e significância do coeficiente da desvalorização na curva IS

<table>
<thead>
<tr>
<th>País</th>
<th>Desvio Padrão</th>
<th>β_4 significativo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>17.27%</td>
<td>SIM</td>
</tr>
<tr>
<td>México</td>
<td>10.90%</td>
<td>SIM</td>
</tr>
<tr>
<td>Brasil</td>
<td>10.48%</td>
<td>SIM</td>
</tr>
<tr>
<td>Coréia do Sul</td>
<td>8.58%</td>
<td>SIM</td>
</tr>
<tr>
<td>Turquia</td>
<td>7.82%</td>
<td>SIM</td>
</tr>
<tr>
<td>África do Sul</td>
<td>7.35%</td>
<td>SIM</td>
</tr>
<tr>
<td>Tailândia</td>
<td>7.09%</td>
<td>SIM</td>
</tr>
<tr>
<td>Malásia</td>
<td>5.38%</td>
<td>SIM</td>
</tr>
<tr>
<td>República Tcheca</td>
<td>5.03%</td>
<td>NÃO</td>
</tr>
<tr>
<td>Colômbia</td>
<td>4.73%</td>
<td>NÃO</td>
</tr>
<tr>
<td>Chile</td>
<td>3.65%</td>
<td>NÃO</td>
</tr>
<tr>
<td>Israel</td>
<td>3.07%</td>
<td>NÃO</td>
</tr>
<tr>
<td>Peru</td>
<td>1.97%</td>
<td>NÃO</td>
</tr>
<tr>
<td>Hong-Kong</td>
<td>1.24%</td>
<td>SIM</td>
</tr>
</tbody>
</table>

Desconsiderando o resultado encontrado para Hong-Kong, há algumas possíveis razões para a relação que a tabela 3.4 mostra entre volatilidade da depreciação cambial trimestral e significância do coeficiente estimado desta variável na curva IS. À parte a possibilidade de o coeficiente “verdadeiro” ser realmente igual a zero, isto é, a depreciação cambial não ter nenhum papel explicativo em relação às variações da taxa de crescimento, a falta de significância do coeficiente estimado pode ser explicada por pelo menos dois motivos relacionados ao comportamento da depreciação na amostra.

Em primeiro lugar, se ela exibir pequena variância o coeficiente será estimado com baixa precisão. Com isso, ainda que a depreciação seja importante para explicar o crescimento, o desvio padrão do coeficiente será tão grande que não se poderá conclusivamente rejeitar a hipótese de seu verdadeiro valor ser nulo. Este é um problema de natureza estatística, relacionado à precisão da estimativa obtida: mesmo que a relação entre as variáveis exista e
 seja refletida nos dados, a pequena precisão do estimador impede que se chegue a essa conclusão.

A segunda possibilidade é que os efeitos da depreciação cambial sobre o crescimento podem se fazer sentir mais fortemente apenas quando o nível da taxa de câmbio mude de forma sensível. Essa hipótese é plausível, e é facilmente visto como atuaria tanto no caso de efeitos positivos, como os associados ao aumento das exportações líquidas, quanto no de efeitos negativos, como o mecanismo de transmissão exposto no capítulo dois que relacionava a depreciação cambial à diminuição do crédito e do nível de investimento na economia. No primeiro caso, apenas uma mudança expressiva dos termos de troca levaria os agentes a modificarem seu comportamento em relação ao comércio exterior; no segundo, é possível que a restrição ao endividamento das firmas só comece a ser sentida após uma depreciação mais forte. Se essa hipótese for verdadeira, uma economia pode ter uma resposta potencialmente expressiva à depreciação cambial, mas os dados não captarão esta relação a menos que haja uma depreciação de maior magnitude.

Na amostra utilizada, há uma forte correlação, de 88,9%, entre o desvio padrão da depreciação cambial e o módulo da média geométrica da depreciação ao longo do período (variável utilizada como proxy para a grandeza da mudança do valor real da moeda por que passou o país). De forma geral, os países que tiveram coeficientes significativos foram tanto os que tiveram maior variância quanto os que tiveram maior depreciação média. Assim, as três possibilidades para explicar os coeficientes não significantes permanecem em aberto: o estimador ser pouco preciso devido à baixa variabilidade da depreciação cambial na amostra, a depreciação impactar o crescimento apenas quando for de maior magnitude, e a depreciação não ter, de fato, nenhum impacto sobre a taxa de crescimento daqueles países.

Dessa forma, um coeficiente significante pode ser interpretado como medida do efeito da depreciação sobre o crescimento; um não significante permite que se diga, apenas, que na amostra em questão não se percebe nenhum efeito, mas não se pode afastar a possibilidade de que isso se deva à baixa precisão do estimador ou à conjuntura do período analisado, que teria poupado o país de flutuações cambiais mais expressivas.
4. Explicando os efeitos encontrados: existe uma tipologia?

Os coeficientes estimados no capítulo anterior mostram diferentes países com diferentes respostas do PIB à depreciação cambial. Neste capítulo se buscará definir os determinantes das respostas encontradas, estimando uma equação que explique os coeficientes por meio de certas variáveis.

4.1. Variáveis que podem explicar o efeito da depreciação sobre o nível de atividade

O capítulo dois trouxe alguns mecanismos por meio de que a depreciação cambial afeta o nível de atividade. Eles nos sugerem algumas variáveis que podem estar a eles correlacionadas, e que poderiam ser utilizadas para procurar explicar a diferença da resposta do crescimento à depreciação cambial.

Quando se examinou o impacto da depreciação cambial sobre as exportações líquidas, foi lembrado que, embora a depreciação leve à mudança dos padrões de comércio no longo prazo, seu impacto no curto prazo (e o horizonte de dois trimestres, utilizado para a estimação do coeficiente da depreciação cambial na curva IS, pode ser considerado curto-prazo neste contexto\(^\text{13}\) é principalmente sobre o preço dos bens importados em termos de bens produzidos internamente. Assim, se a piora da balança comercial decorrente da depreciação for um fator importante na determinação da resposta do PIB, as importações como proporção do PIB deverão ajudar a explicar o coeficiente estimado: quanto maiores as importações, maior a piora das exportações líquidas, e menor o coeficiente\(^\text{14}\).

O modelo de Díaz-Alejandro chega, por um caminho diferente, a uma conclusão semelhante. Em seu modelo, a depreciação cambial tem como efeito aumentar a demanda interna por meio do efeito substituição (que, como visto, costuma operar com uma defasagem mais longa do que a captada na estimação das curvas IS) e deprimi-la por meio da

\(^{13}\) Krugman e Obstfeld, 2003, pág. 479.

\(^{14}\) É importante enfatizar que isso só deve ser verdade para a estimação da curva IS com defasagens “curtas” da depreciação cambial. À medida que o horizonte temporal se alarga, o efeito sobre o preço dos produtos importados dá lugar à substituição das importações e ao aumento das exportações, cujo efeito deve ser de acelerar o crescimento.
redistribuição da renda entre diferentes grupos da população. Aqui, a razão entre importações e PIB pode ser vista como um indicativo da magnitude desta redistribuição de renda. O sinal esperado da correlação é o mesmo da anterior: maiores importações como proporção do PIB devem estar associadas a um coeficiente menor.

A relação entre as imperfeições do mercado de crédito e o pecado original, por outro lado, aponta para uma relação negativa entre o endividamento externo das firmas do país e o coeficiente da depreciação cambial na curva IS. Além disso, a presença de câmbio fixo seguido de flutuação cambial tende a exacerbar este mecanismo.

Desta forma, a discussão do capítulo dois indica três variáveis possivelmente associadas à magnitude do efeito da depreciação cambial sobre o crescimento: importações como proporção do PIB, a razão entre dívida externa e exportações (uma medida do endividamento externo do país que leva em conta sua “capacidade de pagar-la”), e uma variável dummy que indique se o país teve, ao longo da amostra, câmbio fixo seguido de flutuação cambial.

As duas primeiras variáveis serão utilizadas tomando seu valor médio ao longo da amostra. A variável dummy toma valor um para os países que tiveram câmbio fixo seguido de câmbio flutuante ao longo da amostra, e valor zero para os outros. A classificação foi feita com base em Reinhart e Rogoff (2002), e os países que tiveram valor um para a variável dummy foram Argentina, Brasil, Coréia do Sul, Malásia, Tailândia e Turquia. O México não foi incluído porque sua experiência com câmbio fixo terminou logo no primeiro trimestre da amostra. Com isso, suas outras variáveis (juros, depreciação cambial e crescimento) tiveram comportamento bem diferente das dos países que liberaram o câmbio fixo dentro da amostra.

4.2. Modelo estimado e cuidados com estimação

Para explicar os diferentes coeficientes para a depreciação cambial estimados no capítulo três, será estimado um modelo que inclua estes coeficientes como variável dependente. Como exposto no final capítulo três, o coeficiente estimado para Hong-Kong será desprezado na análise comparativa, tanto por argumentos econométricos (trata-se de um outlier do ponto de vista dos dados) quanto por argumentos econômicos (a realidade institucional deste país o coloca sob um conjunto de forças e mecanismos distinto dos outros países da amostra). Com isso, a variável dependente passa a contar com apenas treze observações. Com uma amostra
tão pequena, qualquer resultado encontrado deve ser visto com cautela, já que a inferência fica seriamente comprometida devido ao reduzido número de observações utilizadas na estimação.

Serão estimados sete modelos, que esgotam as combinações entre as três variáveis explicativas selecionadas.

4.3. Base de dados

A variável dependente do modelo é o conjunto de coeficientes β_4 estimados na equação da curva IS no capítulo três. Como já foi visto, os dados de Hong-Kong não foram incluídos em nenhuma das variáveis.

4.4. Resultados e interpretação

A tabela 4.1 traz os resultados da estimação das equações. Como se vê, a melhor equação, pelos critérios do R^2 e da significância conjunta dos coeficientes estimados, é a quarta, que explica a variação dos coeficientes pela razão entre a dívida externa e as exportações do país e a variável *dummy* para transição do câmbio fixo para câmbio flutuante.

A equação quatro tem os coeficientes de ambas as variáveis significativos, e explica 55,62% da variação da variável dependente na amostra. A interpretação dos coeficientes deve ser feita com cuidado. O coeficiente da variável *dummy* tem o sinal negativo esperado, e sua magnitude deve ser interpretada como indicando que, em países que passaram do câmbio fixo para o flutuante, uma depreciação cambial de 1% desacelera o crescimento 0,12 ponto percentual a mais do que em países que não sofreram essa mudança de regime cambial. Já o coeficiente da razão entre dívida e exportações tem sinal positivo, que é o oposto do esperado. A equação 6 mostra que esta variável, tomada isoladamente, tem muito pouco poder para
explicar os coeficientes estimados. É possível que seu valor estimado seja devido apenas ao erro amostral: uma amostra tão pequena aumenta o risco de os coeficientes estarem sofrendo a influência de observações da amostra que não sejam representativas do universo de países que essa amostra supostamente representa. Assim, provavelmente é mais seguro desconsiderar este coeficiente positivo estimado.

TABELA 4.1: Resultados da estimação
Variável Dependente: coeficientes β, estimados no capítulo 3
Método de estimação: Mínimos Quadrados Ordinários
Observações: 13 (coeficiente de Hong-Kong excluído da amostra)

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>Intercepto</th>
<th>Importações / PIB</th>
<th>Dívida / Exportações</th>
<th>Dummy Câmbio Fixo</th>
<th>R^2</th>
<th>R^2 ajustado</th>
<th>Estatística F</th>
<th>P-Valor estat. F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desvio Padrão</td>
<td>-0,107</td>
<td>0,002</td>
<td>0,063</td>
<td>-0,162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-valor</td>
<td>36,12%</td>
<td>45,16%</td>
<td>6,20%</td>
<td>1,03%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,154</td>
<td>0,003</td>
<td>0,040</td>
<td>10,22%</td>
<td>-7,74%</td>
<td>0,5689</td>
<td>58,35%</td>
<td></td>
</tr>
<tr>
<td>P-valor</td>
<td>50,51%</td>
<td>80,75%</td>
<td>39,34%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coeficiente</td>
<td>0,089</td>
<td>-0,002</td>
<td>-0,131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,072</td>
<td>0,002</td>
<td>0,056</td>
<td>37,55%</td>
<td>25,06%</td>
<td>3,0059</td>
<td>9,50%</td>
<td></td>
</tr>
<tr>
<td>P-valor</td>
<td>24,25%</td>
<td>35,49%</td>
<td>4,07%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,040</td>
<td>0,020</td>
<td>0,049</td>
<td>55,62%</td>
<td>46,74%</td>
<td>6,2659</td>
<td>1,72%</td>
<td></td>
</tr>
<tr>
<td>P-valor</td>
<td>53,65%</td>
<td>4,26%</td>
<td>0,92%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coeficiente</td>
<td>0,013</td>
<td>-0,001</td>
<td>3,07%</td>
<td>-5,74%</td>
<td>0,3488</td>
<td>56,67%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,076</td>
<td>0,002</td>
<td>87,00%</td>
<td>56,67%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-valor</td>
<td>25,46%</td>
<td>56,62%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coeficiente</td>
<td>-0,025</td>
<td>0,046</td>
<td>-0,157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,051</td>
<td>0,026</td>
<td>9,65%</td>
<td>1,44%</td>
<td>1,1753</td>
<td>30,15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-valor</td>
<td>19,11%</td>
<td>30,15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coeficiente</td>
<td>0,030</td>
<td>-0,125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,038</td>
<td>0,055</td>
<td>31,67%</td>
<td>25,46%</td>
<td>5,0982</td>
<td>4,53%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-valor</td>
<td>44,31%</td>
<td>4,53%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dessa forma, os dados examinados permitem enxergar apenas uma correlação entre transição do câmbio fixo para câmbio flutuante e o efeito da depreciação cambial sobre a taxa de crescimento. Isso não equivale a uma prova da irrelevância das outras variáveis, ou dos mecanismos de transmissão que representam, para a determinação da taxa de crescimento, mas apenas que a reduzida amostra utilizada não foi capaz de demonstrar essa relevância. Isso é verdade também no caso do coeficiente para a relação entre importações e PIB: o fato de nenhuma das equações ter estimado um coeficiente significante não é razão suficiente para descartar sua influência sobre o crescimento.

O “pecado original”, associado à prática de exigência de colateral para a obtenção de crédito, explicaria o coeficiente negativo para a variável dummy principalmente se associado a
um coeficiente para a relação entre dívida externa e exportações também negativo. A variável dummy explicar a variação na amostra do coeficiente para depreciação cambial na curva IS sem estar articulada ao endividamento externo dos países indica que a correlação captada nos dados provavelmente não foi devida à relação entre exigência de colateral e “pecado original”. Ao invés disso, o coeficiente negativo e significativo pode indicar que a própria mudança de regime cambial traz uma desorganização para a economia que leva à redução de seu crescimento.

Uma outra relação pode ser vista com relação à variável dummy para transição do câmbio fixo para câmbio flutuante. Os seis países da amostra que tiveram atribuído valor 1 para a variável – Argentina, Brasil, Coréia do Sul, Malásia, Tailândia e Turquia – fizeram essa transição em meio a uma crise maior de suas economias, em que se viram forçados a elevar fortemente as taxas de juros e tiveram sensível desaceleração de seu crescimento no mesmo período. Assim, a variável dummy para transição do câmbio fixo para o flutuante pode ser considerada, também, como uma variável dummy para presença de grave crise financeira. A implicação disso para a interpretação do coeficiente é importante, e pode levar a mais duas diferentes explicações para o coeficiente encontrado.

A primeira hipótese é que o coeficiente pode indicar que não foi a depreciação cambial ou a mudança de regime que reduziu o crescimento nesses países, mas sim a desorganização generalizada da economia durante a crise. Esta hipótese é consistente com a interpretação de que os países mais sujeitos a crises financeiras podem ter seu crescimento afetado por elas. A segunda, um argumento a favor da hipótese levantada no capítulo três de que flutuações cambiais expressivas têm um maior efeito sobre o crescimento do que flutuações moderadas. Todos os seis países tiveram pelo menos um trimestre de depreciação real de 25% ou mais. Os outros dois países (excluindo-se Hong-Kong) que tiveram o coeficiente da depreciação cambial significativo na estimação da curva IS tiveram pelo menos um trimestre de depreciação real de 20% ou maior. Os cinco países que tiveram coeficiente não significativo (Chile, Colômbia, Israel, Peru e República Tcheca), por outro lado, não tiveram em nenhum mês uma depreciação maior do que 15%.
5. Considerações Finais

Nesta monografia, procurou-se evidência empírica de uma tipologia que caracterize os países que apresentam a depreciação cambial com efeito recessivo. Num primeiro momento, foi estimado o efeito da depreciação em um grupo de países, representado pelo coeficiente β_4 da curva IS desses países. A tabela 3.3, apresentada anteriormente e reproduzida abaixo, traz o efeito encontrado em cada país da amostra. Foi encontrada também uma relação entre a significância do coeficiente e a variância da depreciação cambial na amostra, que pode ser devida a razões econométricas (maior variância do regressor leva a coeficientes mais “precisos”, aumentando a significância dos valores encontrados) ou econômicas (é possível que apenas grandes depreciações tenham efeito sobre o crescimento).

TABELA 3.3: Classificação dos países segundo o sinal do coeficiente β_4 da curva IS estimada

<table>
<thead>
<tr>
<th>$\beta_4 > 0$</th>
<th>β_4 não significativo</th>
<th>$\beta_4 < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>África do Sul</td>
<td>Chile</td>
<td>Brasil</td>
</tr>
<tr>
<td>Argentina</td>
<td>Colômbia</td>
<td>Coréia do Sul</td>
</tr>
<tr>
<td>Hong-Kong</td>
<td>Israel</td>
<td>Malásia</td>
</tr>
<tr>
<td>México</td>
<td>Peru</td>
<td>Tailândia</td>
</tr>
<tr>
<td></td>
<td>República Tcheca</td>
<td>Turquia</td>
</tr>
</tbody>
</table>

Após este primeiro passo, procurou-se explicar os coeficientes estimados por meio de algumas variáveis que se acredita terem papel na determinação do efeito da depreciação sobre o nível de atividade. As variáveis escolhidas foram a razão entre importações e PIB, a razão entre dívida externa e exportações, e uma variável dummy para a transição do regime de câmbio controlado para o regime de câmbio flutuante durante o período da amostra.

A equação estimada trouxe evidência apenas para a importância da variável dummy para explicar os coeficientes encontrados. Esse resultado é consistente com a expectativa de que a presença de câmbio fixo torne as economias mais vulneráveis a choques de origem financeira. Os resultados diferentes dos esperados para as outras variáveis possivelmente podem ser explicados pelo reduzido tamanho da amostra (nessa segunda etapa, havia apenas 13 observações da variável dependente, após desconsiderar-se o coeficiente estimado para Hong-Kong), de forma que só se pode afirmar que a amostra utilizada não mostrou relação entre o crescimento do PIB e estas variáveis. O reduzido tamanho da amostra, causado pela baixa
disponibilidade de dados em frequência trimestral nas bases de dados utilizadas, pode ter comprometido a precisão dos coeficientes estimados e a possibilidade de interpretação destes coeficientes.

Como foi visto, a variável dummy também pode ter interpretações alternativas, indicando presença de grave crise financeira ao longo da amostra. Com isso, o coeficiente estimado pode ser interpretado como indicador de que o efeito recessivo encontrado associado à depreciação cambial seja devido, na verdade, à crise financeira por que esses países passaram. Outra interpretação alternativa, dado que os países que sofreram a transição de um regime cambial controlado para um regime de flutuação também foram os que tiveram as maiores flutuações cambiais, é que este coeficiente é evidência favorável à hipótese de que apenas flutuações importantes da taxa de câmbio afetem o crescimento.

Desta forma, o propósito de estabelecer conclusivamente uma tipologia que caracterize os países em que a depreciação cambial tem efeito recessivo não foi atingido. Mas conseguiu-se determinar o sinal da resposta do crescimento à depreciação cambial em uma série de países, e a análise dos determinantes dessa resposta forneceu algumas interessantes interpretações sobre a relação entre vulnerabilidade financeira e efeito recessivo.
6. Referências Bibliográficas

EICHENGREEN, B. e HAUSMANN, R. Exchange Rates and Financial Fragility, in New Challenges for Monetary Policy. Federal Reserve Bank of Kansas City. 1999

Anexo: Séries de dados utilizadas

Do *International Financial Statistics*, edição de março de 2004:

Séries trimestrais:

<table>
<thead>
<tr>
<th>País</th>
<th>Juros</th>
<th>Câmbio</th>
<th>PIB</th>
<th>Índice de Preços</th>
</tr>
</thead>
<tbody>
<tr>
<td>África do Sul</td>
<td>19960B.ZF...</td>
<td>199...RF.ZF...</td>
<td>19999BVRZF...</td>
<td>19964...ZF...</td>
</tr>
<tr>
<td>Argentina</td>
<td>21360B.ZF...</td>
<td>213...RF.ZF...</td>
<td>21399BVPZF...</td>
<td>21364...ZF...</td>
</tr>
<tr>
<td>Brasil</td>
<td>22360B.ZF...</td>
<td>223...RF.ZF...</td>
<td>Série do IBGE</td>
<td>22364...ZF...</td>
</tr>
<tr>
<td>Chile</td>
<td>22860RF.ZF...</td>
<td>228...RF.ZF...</td>
<td>22899BVPZF...</td>
<td>22864...ZF...</td>
</tr>
<tr>
<td>Colômbia</td>
<td>23360RF.ZF...</td>
<td>233...RF.ZF...</td>
<td>23399BVPZF...</td>
<td>23364...ZF...</td>
</tr>
<tr>
<td>Coréia</td>
<td>54260B.ZF...</td>
<td>542...RF.ZF...</td>
<td>54299BVPZF...</td>
<td>54264...ZF...</td>
</tr>
<tr>
<td>Hong-Kong</td>
<td>53260RF.ZF...</td>
<td>532...RF.ZF...</td>
<td>53299BVPZF...</td>
<td>53264...ZF...</td>
</tr>
<tr>
<td>Israel</td>
<td>43660RF.ZF...</td>
<td>436...RF.ZF...</td>
<td>43699BVPZF...</td>
<td>43664...ZF...</td>
</tr>
<tr>
<td>Malásia</td>
<td>54860B.ZF...</td>
<td>548...RF.ZF...</td>
<td>54899BVPZF...</td>
<td>54864...ZF...</td>
</tr>
<tr>
<td>México</td>
<td>27360B.ZF...</td>
<td>273...RF.ZF...</td>
<td>27399BVRZF...</td>
<td>27364...ZF...</td>
</tr>
<tr>
<td>Peru</td>
<td>29360RF.ZF...</td>
<td>293...RF.ZF...</td>
<td>29399BVPZF...</td>
<td>29364...ZF...</td>
</tr>
<tr>
<td>República Tcheca</td>
<td>93560RF.ZF...</td>
<td>935...RF.ZF...</td>
<td>93599BVPZF...</td>
<td>93564...ZF...</td>
</tr>
<tr>
<td>Tailândia</td>
<td>57860B.ZF...</td>
<td>578...RF.ZF...</td>
<td>57899BVPZF...</td>
<td>57864...ZF...</td>
</tr>
<tr>
<td>Turquia</td>
<td>18660B.ZF...</td>
<td>186...RF.ZF...</td>
<td>18699BVPZF...</td>
<td>18664...ZF...</td>
</tr>
</tbody>
</table>

Séries anuais

<table>
<thead>
<tr>
<th>Exportações de bens e serviços</th>
<th>Importações de bens e serviços</th>
</tr>
</thead>
<tbody>
<tr>
<td>21378AADZF...</td>
<td>21378ABDZF...</td>
</tr>
<tr>
<td>21378ADDZF...</td>
<td>21378AEDZF...</td>
</tr>
<tr>
<td>22378AADZF...</td>
<td>22378ABDZF...</td>
</tr>
<tr>
<td>22378ADDZF...</td>
<td>22378AEDZF...</td>
</tr>
<tr>
<td>22878AADZF...</td>
<td>22878ABDZF...</td>
</tr>
<tr>
<td>22878ADDZF...</td>
<td>22878AEDZF...</td>
</tr>
<tr>
<td>30378AADZF...</td>
<td>30378ABDZF...</td>
</tr>
<tr>
<td>30378ADDZF...</td>
<td>30378AEDZF...</td>
</tr>
<tr>
<td>23378AADZF...</td>
<td>23378ABDZF...</td>
</tr>
<tr>
<td>23378ADDZF...</td>
<td>23378AEDZF...</td>
</tr>
<tr>
<td>43678AADZF...</td>
<td>93578ABDZF...</td>
</tr>
<tr>
<td>43678ADDZF...</td>
<td>93578AEDZF...</td>
</tr>
<tr>
<td>54278AADZF...</td>
<td>43678ABDZF...</td>
</tr>
<tr>
<td>54278ADDZF...</td>
<td>43678AEDZF...</td>
</tr>
<tr>
<td>54878AADZF...</td>
<td>54278ABDZF...</td>
</tr>
<tr>
<td>54878ADDZF...</td>
<td>54278AEDZF...</td>
</tr>
<tr>
<td>27378AADZF...</td>
<td>54878ABDZF...</td>
</tr>
<tr>
<td>27378ADDZF...</td>
<td>54878AEDZF...</td>
</tr>
<tr>
<td>29378AADZF...</td>
<td>27378ABDZF...</td>
</tr>
<tr>
<td>29378ADDZF...</td>
<td>27378AEDZF...</td>
</tr>
<tr>
<td>19978AADZF...</td>
<td>29378ABDZF...</td>
</tr>
<tr>
<td>19978ADDZF...</td>
<td>29378AEDZF...</td>
</tr>
<tr>
<td>57878AADZF...</td>
<td>19978ABDZF...</td>
</tr>
<tr>
<td>57878ADDZF...</td>
<td>19978AEDZF...</td>
</tr>
<tr>
<td>18678AADZF...</td>
<td>57878ABDZF...</td>
</tr>
<tr>
<td>18678ADDZF...</td>
<td>57878AEDZF...</td>
</tr>
<tr>
<td>93578AADZF...</td>
<td>18678ABDZF...</td>
</tr>
<tr>
<td>93578ADDZF...</td>
<td>18678AEDZF...</td>
</tr>
</tbody>
</table>
Além dessas séries, foram utilizadas as séries de índices de preços na Alemanha, na Zona do Euro e nos Estados Unidos: 13464...ZF..., 16364H..ZF... e 11164...ZF....

Do BIS: foi utilizado o arquivo completo disponível no endereço eletrônico da base de dados, que não discrimina as séries individualmente. O arquivo utilizado estava disponível no dia 1º de dezembro de 2004.

Do *World Development Indicators*: a série de PIB annual em dólares utilizada foi a de código NY.GDP.MKTP.CD, para cada um dos países (África do Sul, Argentina, Brasil, Chile, Colômbia, Coréia do Sul, Hong-Kong, Israel, Malásia, México, Peru, República Tcheca, Tailândia e Turquia).