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Abstract

Gandour, Clarissa Costalonga e; Assunção, Juliano
Junqueira (Advisor). Forest Wars: A Trilogy on Combating
Deforestation in the Brazilian Amazon. Rio de Janeiro, 2018.
120p. Tese de doutorado – Departamento de Economia, Pontifícia
Universidade Católica do Rio de Janeiro.

This dissertation assesses policy effects of conservation efforts adopted
within the scope of the federal action plan to combat Amazon deforestation
in Brazil. Chapter 1 provides a description of key policy changes and surveys
the associated effectiveness literature. It finds evidence that supports the
action plan’s efficacy in reducing aggregate deforestation levels, but notes
that indirect impacts of conservation policies have received little attention.
The remaining chapters explore direct and indirect impacts of action plan
policies using a georeferenced ten-year panel dataset to account for spatial
dynamics. Chapter 2 tests whether legal territorial protection grants actual
protection against advancing deforestation. Using a measure of neighboring
clearing activity to capture local deforestation risk, the analysis compares
forest clearing outcomes in unprotected and protected territory under
equivalent deforestation pressures. The empirical strategy draws on the
dataset’s raster structure to mitigate concerns of potentially confounding
unobservables via the use of raster cell fixed effects. Results document
protection’s efficacy in a high-risk context, with significantly less forest being
cleared in protected cells than in unprotected ones. Yet, although protected
territory effectively shields vegetation under its domain from advancing
deforestation, it appears to deflect clearings to unprotected areas. Protection
therefore affects regional forest clearing dynamics, but not the overall level of
deforestation. Chapter 3 investigates whether changes in tropical
regeneration constituted a spillover effect from law enforcement targeting
forest loss. Secondary vegetation was vulnerable during the first decade of the
action plan, which neither promoted tropical regeneration nor sought to
conserve existing secondary vegetation. Moreover, regeneration remained
undetected in satellite-based forest monitoring systems. Still, during this
period, the extent of Amazon secondary vegetation increased by nearly 7
million hectares. The final part of this dissertation examines whether law
enforcement contributed to this growth, albeit unintentionally. The empirical
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strategy uses a ten-year cross-sectional difference in observed regeneration
outcomes to address the intrinsically time-consuming nature of this
phenomenon. Results are shown to be robust to the inclusion of a host of
raster cell-level controls, mitigating concerns about omitted variable bias.
Findings indicate that the intensity of enforcement in a location’s close
surroundings is associated with both increased probability of secondary
vegetation expansion and increased area of secondary vegetation in that
location. This lends support to the hypothesis that environmental offenders,
once faced with a higher perceived cost of engaging in illegal deforestation,
abandoned the area they were operating in and thereby allowed a natural
process of forest regrowth to occur. The spillover effect of enforcement on
regeneration appears largest in places that have undergone neither too much
nor too little deforestation: in the former, forest clearings and non-forest land
use are probably more consolidated, and regrowth is therefore less likely; in
the latter, there is still relatively little area for the forest to grow back in.
Counterfactual exercises shed light on the magnitude of this effect. An
enhanced satellite-based monitoring system for targeting enforcement would
have resulted in nearly 300 thousand additional hectares of secondary
vegetation.

Keywords
Deforestation; Regeneration; Monitoring and Law Enforcement;

Protected Areas; Spillovers.
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Resumo

Gandour, Clarissa Costalonga e; Assunção, Juliano Junqueira.
Guerra na Floresta: Uma Trilogia sobre o Combate do
Desmatamento na Amazônia. Rio de Janeiro, 2018. 120p.
Tese de Doutorado – Departamento de Economia, Pontifícia
Universidade Católica do Rio de Janeiro.

Esta tese avalia políticas de conservação adotadas no âmbito do plano
de ação federal para combate ao desmatamento na Amazônia brasileira. O
Capítulo 1 descreve as principais mudanças institucionais e discute suas
avaliações de efetividade. A revisão de literatura corrobora a eficácia das
medidas para a redução do desmatamento, mas indica também que efeitos
indiretos das políticas de conservação foram pouco estudados. Os demais
capítulos conduzem análises empíricas sobre efeitos diretos e indiretos dessas
políticas, utilizando um painel de dez anos de dados georreferenciados para
contemplar dinâmicas espaciais ao longo do tempo. O Capítulo 2 testa se
proteção territorial legal confere real proteção contra desmatamento.
Tomando a intensidade do desmatamento no entorno de uma área como uma
medida do risco de desmatamento local, o estudo compara a perda florestal
em territórios protegidos e não protegidos sujeitos a riscos de desmatamento
equivalentes. Aproveitando o formato raster dos dados, a estratégia empírica
inclui efeitos fixos de célula para mitigar preocupações sobre possível viés
oriundo de não-observáveis. Os resultados documentam a eficácia da
proteção: células protegidas tiveram significativamente menos perda florestal
do que células não protegidas, mesmo quando expostas ao mesmo risco de
desmatamento. Contudo, ainda que o território protegido sirva como um
escudo contra o avanço do desmatamento, a perda florestal por ele desviada
parece seguir para áreas não protegidas. A proteção, portanto, afeta a
dinâmica regional do desmatamento, mas não seu nível agregado. O Capítulo
3 investiga se variações na regeneração tropical configuram uma
externalidade de medidas de aplicação da lei voltadas para o desmatamento.
A vegetação secundária esteve vulnerável durante a primeira década do plano
de ação, que não direcionou esforços para a promoção da regeneração tropical
e tampouco para a conservação de vegetação secundária existente. Além
disso, a regeneração permaneceu invisível ao sistema de monitoramento da
floresta. Mesmo assim, a área de vegetação secundária na Amazônia
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aumentou em 7 milhões de hectares durante esse período. A última parte
desta tese averigua se a aplicação da lei contribuiu para esse fenômeno, ainda
que não intencionalmente. Os resultados são robustos à inclusão de uma série
de controles em nível da célula, que mitigam preocupações sobre viés de
variável omitida. A análise indica que uma maior intensidade de aplicação da
lei no entorno de um local está associada a maior probabilidade de expansão
da vegetação secundária e também maior área por ela coberta naquele local.
Isso apoia a hipótese de que infratores ambientais, diante dos maiores custos
associados à atividade ilegal, abandonaram as regiões onde operavam e,
assim, permitiram que ocorresse um processo natural de regeneração. A força
dessa externalidade varia conforme o grau de desmatamento local: regiões
mais desmatadas provavelmente abrigam atividades não florestais mais
consolidadas, dificultando o ressurgimento da floresta; regiões menos
desmatadas ainda oferecem uma área relativamente pequena para
regeneração em escala. Exercícios contrafatuais ilustram a magnitude desse
efeito, mostrando que melhorias no sistema de monitoramento do
desmatamento resultariam em quase 300 mil hectares adicionais de vegetação
secundária.

Palavras-chave
Desmatamento; Regeneração; Monitoramento e Aplicação da Lei;

Áreas Protegidas; Externalidades.
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Introduction

Climate change is a topic of global relevance. Greenhouse gas emissions,
the leading driver of rising temperatures, are not constrained by national
borders, and are therefore a stark example of global externalities (Stern,
2008; Greenstone and Jack, 2015). With most of the increase in greenhouse
gas emissions over the coming decades projected to originate in developing
countries, Greenstone and Hanna (2014) state that “the planet’s well-being
rests on the ability of these countries to successfully enact and enforce
environmental policies”. Yet, they also note that weak institutional and
regulatory frameworks in these same developing countries often hinder the
effective implementation and enforcement of policies. Moreover, with the
bulk of research on climate change and environmental policy focused on
developed economies, little is actually known about effects and workings of
climate policy where it currently matters most (Burke et al., 2016).

Brazil’s action plan to combat Amazon forest clearings is an
environmental policy that was both enacted in and entirely enforced by a
developing country with large potential to contribute to global greenhouse
gas emissions reductions. At the beginning of the 21st century, the forestry
sector accounted for nearly a fifth of total worldwide greenhouse gas
emissions, mostly due to tropical deforestation (IPCC, 2007). The clearing of
Amazon forest in Brazil played a large role in this (Hansen and DeFries,
2004; Hansen et al., 2008). Home to nearly two thirds of the Amazon Forest,
the planet’s largest standing tropical forest tract, the Brazilian Amazon
originally extended over 400 million hectares. By the mid-2000s, Brazil had
lost more than 15% of its Amazon forest area. Around this time, growing
awareness that tropical forests play a fundamental role in conserving
biodiversity, protecting hydrological resources, and stocking carbon pushed
the fight against tropical clearings to the top of the global policy agenda
(Stern, 2008; Burgess et al., 2012). Hence, in a context of historically high
deforestation rates (Inpe, 2017) and mounting international pressure, Brazil
launched an innovative action plan that proposed a new approach towards
combating forest clearings. The plan inaugurated integrated action across
government spheres and institutions, and introduced novel procedures for
monitoring, environmental control, and territorial management.

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Introduction 15

With this dissertation, I aim to take stock of action plan efficacy
assessments, and propose new empirical evidence regarding policy
effectiveness and spillovers. Chapter 1 provides a detailed description of the
plan’s main policy efforts, followed by a comprehensive survey of their
empirical evaluation. This literature review offers ample evidence to support
the action plan’s effectiveness in reducing aggregate deforestation levels, but
also reveals that the indirect impacts of action plan policies have received
little attention. Chapter 2 investigates the effectiveness of protected territory,
presenting empirical evidence that protection served as a shield against forest
clearing pressures. Chapter 3 looks at regeneration as a spillover effect of
enforcement that targeted deforestation, showing that it contributed to
tropical regrowth. These findings yield relevant policy implications that could
strengthen Brazil’s ongoing effort to further reduce Amazon forest loss and
boost tropical conservation.
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Chapter 1
A New Plan

1.1
Amazon Deforestation and the Action Plan

By 2004, nearly 62 million hectares of Brazilian Amazon forest had been
cleared (Inpe, 2017) (see Figure 1.1). Although Brazil had been responsible
for a large share of the loss of tropical vegetation observed globally through
the beginning of the 21st century (Hansen and DeFries, 2004; Hansen et al.,
2008), Amazon deforestation was not only a thing of the past. The early 2000s
bore witness to intense forest clearing activity, with the annual deforestation
rate rising through 2004 (see Figure 1.2). During this period, Brazil stood out
as the country that cleared most tropical forest, both in absolute area and as
share of year-2000 forest cover (Hansen et al., 2008). Nationally, deforestation
also took its toll, with forest conversion and land use change accounting for
about 70% of Brazil’s total annual CO2-equivalent emissions (MCTI, 2013).

Within a context of escalating deforestation rates and mounting
international pressure, the Brazilian federal government sought a new
approach towards combating Amazon deforestation. Thirteen key ministries
were brought together under the coordination of the Presidential Chief of
Staff Office to propose actions aimed at reducing tropical clearings. In
mid-2004, the group presented the operational project for the Action Plan for
the Prevention and Control of Deforestation in the Legal Amazon
(PPCDAm).1 Comprising a large set of strategic conservation measures, the
plan operated along three main pillars: territorial management and land use;
monitoring and law enforcement; and promotion of sustainable practices
(Casa Civil, 2004).2 These measures were to be executed as part of a
collaborative effort between federal, state, and municipal governments.
Although integration across numerous ministries and government spheres to
combat deforestation was innovative in and of itself, the decade that followed

1The Brazilian Legal Amazon is a geopolitical administrative subdivision of the country
covering Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins
states, as well as the western part of Maranhão state.

2The PPCDAm 2016–2020 operational plan added economic instruments as a fourth
pillar (MMA, 2016).
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Chapter 1. A New Plan 17

Figure 1.1: Brazilian Amazon Deforestation, Historical Through 2004

Notes: The map shows accumulated deforestation through 2004. Data sources: PRODES/Inpe
(deforestation); IBGE (Legal Amazon).

the launch of the action plan saw the adoption of several novel conservation
policies. Section 1.2 discusses these.

When the action plan was adopted, the economic literature had already
established empirical associations between tropical deforestation and a variety
of its drivers. These included, but were not limited to, population pressures,
economic growth, local biophysical characteristics, infrastructure development,
and agricultural prices (Cropper and Griffiths, 1994; Chomitz and Gray, 1996;
Chomitz and Thomas, 2003; Foster and Rosenzweig, 2003).3 Among studies
that looked specifically at the Brazilian Amazon, Pfaff (1999) was the first to
assess tropical clearings by building on a theoretical microeconomic framework
and using remote sensing data to empirically estimate the relative effects of
different determinants of clearing activity. Yet, by the mid-2000s, existing
empirical evidence remained largely centered around natural and economic
drivers of tropical deforestation, with relatively little attention being given to
policy’s potential to curb clearings.

3See Angelsen and Kaimowitz (1999) and Barbier and Burgess (2001) for surveys of
the literature through the early 2000s, and Busch and Ferretti-Gallon (2017) for a recent
meta-analysis.
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Figure 1.2: Brazilian Amazon Deforestation, Annual Rate 2000–2014
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The sharp downturn in Amazon deforestation rates observed in the years
following the launch of the action plan prompted a shift in research focus. Over
the course of a decade, Brazilian Amazon clearing rates rapidly fell from 2.8
million hectares to about 600 thousand hectares per year (see Figure 1.2). The
timing of this deforestation slowdown, which started immediately after the
onset of the action plan, strongly hints at policy having played an important
role. In face of such stark visual correlation, a (still) growing part of the
literature started to investigate if and how policy efforts adopted within the
scope of the PPCDAm contributed to the acute reduction in clearing rates.
Hargrave and Kis-Katos (2013) and Assunção et al. (2015) were among the first
to empirically test the action plan’s impact on Amazon deforestation. Using
municipality-level data, the studies document that variations in agricultural
commodity prices drove observed variations in forest clearings during the early
years of the PPCDAm; but both also find that conservation policy adopted
from 2004 onwards significantly contributed to the deforestation slowdown.
Specifically, Hargrave and Kis-Katos (2013) indicate that environmental law
enforcement activity had a strong negative impact on forest clearings, while
Assunção et al. (2015) assess the action plan’s overall effectiveness. In the
latter, the authors estimate that total Amazon deforested area through the
end of the decade would have been more than twice as large had it not
been for PPCDAm conservation policies. More recently, Burgess et al. (2018)
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Chapter 1. A New Plan 19

explore spatially explicit data in a regression discontinuity design to show
that stricter conservation policies contained deforestation even along Brazil’s
remote international Amazon borders. This, the authors argue, serves as
evidence of both the action plan’s role in reducing forest clearings, and the
Brazilian state’s capacity to influence environmental conservation in remote
parts of its national territory.

1.2
The Action Plan’s Main Policies

This section describes key policies adopted under the PPCDAm and
surveys the associated effectiveness literature. It does not intend to be fully
exhaustive, but rather to cover the efforts that garnered most attention from
policymakers and/or academics within the first decade of the action plan.

1.2.1
Monitoring and Law Enforcement

Amazon deforestation can be legal if the clearing of a specific area has
been duly authorized or licensed by subnational (usually state) environmental
authorities in accordance with the area’s land tenure regulations.4 However,
the vast majority of forest areas cleared in the mid-2000s — and, in fact, still
today — are done so under illegal circumstances (Börner et al., 2014; Schmitt,
2015).5 Tackling illegal clearings was thus a priority for the PPCDAm, and
monitoring and law enforcement became one of the plan’s three main pillars.
In the plan’s official evaluation, Maia et al. (2011) argue that this was, in
fact, the most successful pillar from both implementation and effectiveness
viewpoints through the early 2010s.

The action plan sought to strengthen monitoring and enforcement
capacity in both institutional and technical spheres. From a legal standpoint,
the PPCDAm promoted regulatory change. Brazil’s Law of Environmental
Crimes had, in 1998, already set criminal charges and applicable penalties for
illegal clearings (Brasil, 1998). Yet, it was only with the passing of

4See Section 2.2.1 for a detailed description of conditions under which Amazon
deforestation is legal.

5Despite a general consensus among scholars, policymakers, and members of the civil
society that most Amazon deforestation activity is illegal, there is no official figure for legal
versus illegal clearings. In informal conversations, law enforcement personnel have estimated
that less than 10% of deforested areas in the Amazon are legal. Several ongoing efforts are
expected to contribute to refining this figure in the near future. Most notably, the soon-
to-be universal and compulsory adoption of the Rural Environmental Registry (CAR, see
Section 1.2.5) is regarded as a powerful instrument for the identification of environmental
irregularities inside rural properties. The construction of the National Public Forest Registry
(CNFP) by the Brazilian Forest Service (SFB) will likely also help detect irregularities in
public lands.
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Presidential Decree 6,514 ten years later that directives for the
administrative investigation and punishment of environmental infractions
were defined in greater detail than had been previously incorporated in
legislation (Brasil, 2008a). Aiming at increasing both clarity and speed of
administrative processes, the decree regulated the use of penalties including
fines, embargoes, and seizure and destruction of production goods, tools, and
materials. It also established the public release of a list identifying
landowners of areas under environmental embargo. Overall, these measures
brought greater robustness and regulatory stability to administrative
processes regarding environmental infractions.

Yet, it was technological innovation that enabled the major leap forward
in monitoring and law enforcement capacity within the scope of the action
plan: high-frequency remote sensing-based monitoring of recent forest clearing
activity. Developed by Brazil’s National Institute for Space Research (Inpe),
the System for Real-Time Detection of Deforestation (DETER) is a satellite-
based system used to locate recent deforestation hot spots. DETER uses
satellite imagery to regularly scan the full extent of the Brazilian Amazon,
looking for changes in land cover. Upon detection, forest disturbances map onto
georeferenced alerts signaling areas in need of attention. Inpe forwards these
alerts to the Brazilian Institute for the Environment and Renewable Natural
Resources (Ibama), which operates as the national environmental police and
law enforcement authority. Ibama then uses these alerts to target Amazon law
enforcement activities.

When adopted in 2004, DETER produced biweekly maps of
deforestation alerts. Since 2011, Inpe processes satellite imagery on a daily
basis, providing Ibama with updated information on recent forest clearing
activity every weekday. Prior to the implementation of DETER, intelligence
regarding recent deforestation hot spots largely depended on voluntary and
anonymous reports of threatened areas, seldom allowing law enforcers to
locate and reach these spots in a timely manner. In Brazil’s institutional
setup, timing is fundamental. Law enforcers can more easily punish offenders
for illegal forest clearings when catching them red-handed, as offenders can
thereby be held directly accountable for the crime.6 DETER therefore
represented a major improvement in Amazon environmental enforcement
capacity, allowing authorities to better identify, more closely monitor, and
more quickly act upon areas being illegally cleared. Throughout the first
decade of the PPCDAm, the system served as the main tool for targeting

6Brazilian environmental legislation allows for punishment of past deforestation, but
effective sanctioning of past clearings in the Amazon, where land and production property
rights are knowingly unclear (Mueller et al., 1994; Alston et al., 2000), is far less feasible.
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Amazon enforcement efforts and thereby became the cornerstone of tropical
deforestation monitoring and law enforcement.

The main challenge in empirically assessing the impact of law
enforcement on Amazon forest clearings is to adequately address endogeneity
between police presence and illegal activity. Hargrave and Kis-Katos (2013)
offer a first attempt at estimating enforcement effectiveness using panel data
at the municipality level. The authors use a state-level measure of
environmental fine intensity to instrument for the municipal intensity of law
enforcement, and further test whether effects hold in a generalized method of
moments estimation framework. Results indicate that municipalities with
more intense law enforcement saw a significant reduction in deforestation.
Using satellite cloud cover as an arguably more exogenous instrument for the
local presence of law enforcers, Assunção et al. (2017b) corroborate this
finding for the post-DETER period. They estimate that, from 2006 through
2011, monitoring and law enforcement helped avoid an average of about 2.2
million hectares of Amazon forest clearings per year, making it the policy
effort that most contributed to the observed post-PPCDAm deforestation
slowdown. In an analysis restricted to the 2009 through 2011 time period,
Börner et al. (2015) recover heterogeneous impacts for law enforcement. The
authors assess sub-municipal effects of enforcement using spatially explicit
data on field inspections and matching to address endogeneity. They
conclude that enforcement curbed large-scale clearings, but was ineffective in
containing small ones. Combined, these results indicate that monitoring and
law enforcement were effective in combating Amazon deforestation within the
scope of the action plan.

1.2.2
Priority Municipalities

The creation of the priority municipalities list was one of the most
innovative policies proposed by the PPCDAm. In late 2007, Brazil
established the legal basis for singling out municipalities with intense recent
deforestation activity and taking differentiated action towards them (Brasil,
2007). These municipalities are classified as in need of priority action to
prevent, monitor, and combat deforestation — in practice, they are
blacklisted. Differential action taken in priority municipalities largely consists
of more rigorous environmental monitoring and law enforcement. In addition
to concentrating a large share of Ibama’s attention and monitoring efforts,
priority municipalities anecdotally became subject to a series of additional
non-policy penalties, including economic sanctions applied by commodity
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supply chains and compromised political reputations for mayors. An updated
list of municipalities has been announced annually since 2008. Exiting the list
is conditioned upon significantly reducing deforestation. As of mid-2018, a
total of fifty-two Amazon municipalities have received priority status, and
only eleven of these have been unlisted.

Among PPCDAm policies, priority municipality listing appears to have
received most attention in the evaluation literature. Arima et al. (2014)
provide one of the earliest assessments of the policy’s direct impact. Using
municipality-level matching and a difference-in-differences design, the authors
estimate that priority municipalities saw a significant reduction in forest
clearings. This finding is corroborated by Assunção and Rocha (2014) in a
panel analysis that controls for municipal fixed effects. To explore potential
mechanisms through which priority status led to falling deforestation, the
authors test whether the policy influenced agricultural production, credit
concessions, and environmental fines. Results indicate that only fines were
significantly affected by priority status and that, when adequately controlling
for law enforcement, the priority municipalities policy had no significant impact
on deforestation. This, the authors argue, suggests that the policy’s effect
can be fully explained by stricter monitoring and law enforcement. Cisneros
et al. (2015) challenge this conclusion based on results from municipality-level
matching and net average treatment analysis. They, too, find that priority
status had a negative impact on deforestation, but estimate a relatively small
contribution from environmental fines. The authors interpret this as evidence
that non-enforcement mechanisms, such as jeopardized political reputation
and supply chain penalties, account for the impact of priority municipalities.
Abman (2015) further supports the role played by reputational risk with
evidence that, after the adoption of the priority municipalities policy, voters
punished local politicians. By exploring binding term limits, the author shows
that deforestation did not differ across municipalities with mayors eligible
versus ineligible for reelection prior to the existence of the priority list. After
2008, however, forest clearings saw a greater decline in municipalities where
mayors could be reelected, and voters penalized incumbent candidates at the
ballot at a higher rate in priority municipalities.

Beyond measuring direct effectiveness, the literature has also
investigated potential policy spillovers. Although Cisneros et al. (2015) find
no significant impact of priority status on neighboring municipalities,
Andrade (2016) documents a significant and economically large reduction in
forest clearings in non-priority municipalities around priority ones. Using a
spatial difference-in-differences estimator, the author shows that this
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deterrent spillover effect decreases as the distance to the priority municipality
increases. Assunção et al. (2018b) also explore spillovers, but within a
context of optimal policy design. To allow for heterogeneous treatment effects
in this optimization framework, the authors estimate both direct and
spillover effects of the priority municipality policy via a changes-in-changes
model. Again, results indicate a strong causal reduction in deforestation in
priority municipalities, as well as a significant (but smaller) influence on
non-priority ones. Finally, Koch et al. (2018) address spillovers from a
different perspective, focusing on the policy’s impact on agricultural
production. Although the negative effect of priority status on forest clearings
remains significant, neither matching difference-in-differences nor synthetic
control estimators point to a decrease in agricultural measures. This suggests
that priority municipalities did not face a trade-off between agricultural
production and forest conservation.

1.2.3
Conditional Rural Credit

In an attempt to restrict financial resources to agricultural producers
who did not abide by conservation policy, the Brazilian Central Bank
conditioned the concession of rural credit for agricultural activities in the
Amazon upon proof of borrowers’ compliance with legal titling procedures
and environmental regulation (Brasil, 2008b). The condition applied to all
activities in rural establishments inside the Amazon biome as of mid-2008,
and was compulsory across public banks, private banks, and credit
cooperatives. Requirements included property registration in federal
registries and state-issued documentation attesting the rural establishment’s
environmental regularity. Exemptions were immediately granted to
small-scale producers and, over time, were extended to additional groups of
allegedly vulnerable borrowers. Following its adoption, the policy was subject
to a series of qualifications that eased conditions for credit concession
targeting specific groups, who were henceforth allowed to present
self-declaratory environmental documentation instead of state-issued ones.

Restricting financial resources does not unambiguously favor forest
conservation (Angelsen and Kaimowitz, 1999). If resources are used to
promote clearings, deforestation might decrease in response to the restriction.
However, if resources fund land-sparing agricultural practices or provide
borrowers with an alternative to clearing forest, a policy that reduces the
availability of these resources might contribute to increased deforestation.
Which of these mechanisms prevails in practice is a matter of empirical
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investigation. To the best of my knowledge, the only study to directly
measure the impact of the 2008 Amazon credit policy is that of Assunção
et al. (2018a). The authors explore the policy’s inherent discontinuity along
the biome border to create arguably comparable treatment and control
groups composed of municipalities within a set distance on either side of this
border. Using exclusive panel contract-level data and difference-in-differences
methodology, they find a significant post-policy reduction in the concession
of rural credit inside the Amazon biome. Estimated effects are only
significant for large- and medium-sized loans, which is consistent with the
exemptions granted to small-scale producers. Moreover, Assunção et al.
(2018a) argue that the policy-induced restriction serves as an exogenous
source of variation in credit and, using it as an instrument for credit
concession, show that the policy helped contain deforestation. Its impact is
particularly relevant in municipalities where cattle ranching is the leading
economic activity, indicating that rural credit in these municipalities had
been used in forest clearing activities.

1.2.4
Protected Territory

Brazilian protected territory consists of protected areas and indigenous
lands.7 Forest clearing inside these areas is typically strictly prohibited, though
some deforestation may be permitted if duly licensed and/or associated with
native people’s traditional way of life. The PPCDAm promoted the expansion
of protection, which covered about 38% of Amazon biome territory in 2004, and
more than 50% six years later. Yet, the novelty in the action plan’s protected
territory policy was not in extending protection, but in targeting it with the
explicit goal of containing deforestation pressures. Before the plan, although
protected territory spread throughout the Amazon, much of it was located in
remote hinterland, far from actual forest clearing threats (DeFries et al., 2005;
Joppa et al., 2008; Joppa and Pfaff, 2011). In contrast, under the PPCDAm,
protection was allocated based not only on biological and ecological factors,
but also on strategic ones — these areas were to serve as shields that stood in
the way of advancing deforestation.

The literature documents mixed results regarding protection impacts.
Part of it, although recent, focuses on protection assigned prior to the action
plan. These analyses often use matching to build a comparable control group
for protected territories, and find that protection effectiveness varies across
the Amazon landscape, typically with proximity to deforestation pressures

7See Section 2.2.3 for a detailed explanation of Amazon protected territory policy.
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like cities and roads (Pfaff et al., 2014, 2015b). The relationship between
protection and regional development is further explored by Herrera (2015).
After documenting reduced deforestation in the immediate vicinities of
protected territory, the author proposes and empirically investigates potential
mechanisms through which these local spillovers might depend on local
development dynamics. Findings point towards increased outmigration from
and decreased infrastructure development in regions under more extensive
protection.

In one of the first assessments of PPCDAms-specific protection,
Soares-Filho et al. (2010) model deforestation trajectories and find that forest
clearings inhibited by protection accounted for large share of the observed
reduction in deforestation through 2006. Nolte et al. (2013) also look at the
action plan’s earliest phase. They use matching techniques to estimate
impacts on deforestation through 2010, distinguishing across protection types
and assignment periods. Results indicate that indigenous lands were
systematically effective in containing forest clearings, but that strictly
protected areas created in the first half of the 2000s were more effective than
their sustainable use counterparts. The authors suggest this might have been
driven by the creation of a few strictly protected areas in particularly
high-pressure areas. These effects contrast with those estimated by Anderson
et al. (2016), who apply a spatial regression discontinuity technique to
evaluate protected territory created from 2004 through 2010. Their analysis
finds no significant impact of protection on forest clearing. Although there is
less deforestation in protected versus unprotected territories, the authors
argue these differences were already in place before the assignment of
protection. Again, this suggests that protection is often granted in areas that
are intrinsically subject to less deforestation pressure. Anderson et al. (2016)
corroborate this interpretation by presenting null difference-in-differences
estimates, alongside empirical evidence that protection is assigned to areas
with comparatively low agricultural profitability.

1.2.5
Environmental Registry

The Rural Environmental Registry (CAR) is a public, electronic, and
(once completed) universal registry of rural properties throughout Brazil. It
aims at integrating key administrative and environmental data about each
property in a single platform for use in monitoring and law enforcement
efforts, territorial management, and environmental and economic planning. In
addition to administrative data on landholders and land titling documentation,
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registered properties must also inform georeferenced boundaries for property
limits and within-property areas of native vegetation. The latter include
Legal Reserves and Areas of Permanent Protection, both of which are legal
obligations of private landholders as per the Brazilian Forest Code (Brasil,
2012). Registration starts with self-reported data, granting landholders a
temporary CAR. State-level authorities are then responsible for verifying
compliance with environmental regulation, typically by cross-checking these
data against relevant documentation, other existing databases, and satellite
imagery; landholders only receive a permanent CAR after due verification.

The CAR is currently a centralized federal system, but it draws on
previously existing state systems that date back to the mid-2000s.8 With
the passing of the new Brazilian Forest Code in 2012, registration in the
federal CAR system became compulsory for all rural properties in the country.
Landholders were originally given until mid-2015 to complete registration; this
deadline has been repeatedly postponed and is now set for late 2018.

Originally conceived as an instrument for environmental regularization
of rural properties, the CAR also serves to promote tenure security. Property
rights insecurity is a serious problem throughout Brazil, but it is particularly
salient in the Amazon. The region is marked by a long history of irregular
occupations, land grabbing, and squatting, all of which appear to foster tenure-
related rural conflict (Mueller et al., 1994; Alston et al., 2000; Pacheco, 2009;
Chiavari et al., 2016; Fetzer and Marden, 2017). Although the CAR as a policy
tool is not unique to the PPCDAm, its development has been so intertwined
with the fight against deforestation in the Amazon that I consider it a policy
effort within the scope of the action plan.

Empirical assessments of property registration on deforestation
practices must tackle selection bias, as properties that registered early are
likely intrinsically different to those that either registered later or remain
unregistered. As such, most analyses to date are only descriptive (Richards
and VanWey, 2016; Assunção et al., 2017a). Two recent attempts to
document causal effects of registration are provided by L’Roe et al. (2016)
and Alix-Garcia et al. (2017). For Pará state, L’Roe et al. (2016) find no
significant impact of CAR registration on forest clearing inside properties,
but note that their empirical strategy, which includes property-level fixed
effects, is not fit to capture aggregate program impacts. Additionally, they
argue that the null effect might be expected in the early registry phase, as
the state’s use of CAR data during their sample period was largely oriented

8Some states still run state-level systems that feed into the federal system, while others
have no intermediary system of their own. Requirements at the federal level are homogeneous
across states.
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towards data collection for future monitoring and enforcement efforts. In
contrast, looking at Pará and the Amazon biome portion of Mato Grosso
state, Alix-Garcia et al. (2017) find that CAR registration significantly
reduced deforestation. They restrict their analysis to forested areas that
eventually enrolled properties in the CAR, but explore variation in the
timing of registration to estimate impacts.

1.2.6
Other Contributions

Since its inauguration, the PPCDAm became an overarching backdrop
for Amazon conservation action. Yet, not all efforts to combat tropical forest
clearings during the (still ongoing) action plan period were actual components
of the federal policy. This section surveys empirical assessments of such efforts,
but is restricted to those that look at Amazon deforestation outcomes in the
post-plan period.

One of the most high-profile local initiatives was implemented by
Paragominas, a municipality in Pará state included in the first priority
municipalities listing. In the same year it was blacklisted, Paragominas
launched the Green Municipalities Program (PMV) to orchestrate local
stakeholders in an effort to reduce deforestation. Two years later, it was the
first municipality to be removed from the list. Sills et al. (2015) estimate the
impact of PMV conditional on having been blacklisted using a synthetic
control method to separate the effect of local governance efforts from those of
being targeted as a priority municipality. They provide empirical evidence
that PMV reduced deforestation, but only starting in 2012. This lag, the
authors argue, is consistent with the finding in Assunção and Rocha (2014)
that stricter monitoring and law enforcement were the main drivers of the
priority municipality policy impact, leaving little room for other effects.
Today, under coordination of the State Secretariat for the Environment, the
PMV has extended over more than 100 municipalities in Pará.

Although payment for environmental services schemes (PES) have been
widely used in conservation policy throughout the world, they are relatively
new in the Brazilian Amazon.9 Amazonas state implemented one such
scheme in 2007 with the Forest Transfer (BF) program. Payments are made
to families living inside protected areas for sustainable use conditional upon
compliance with stricter conservation requirements than would typically
apply within the protected area. Cisneros (2017) provides one of the first

9Examples of PES in other countries include Mexico (Alix-Garcia et al., 2013), Costa
Rica (Robalino et al., 2015), and Uganda (Jayachandran et al., 2017).
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assessments of BF, using spatial matching to test for the program’s impact
on forest loss, degradation, and fires. The author does not find a significant
average conservation effect for BF, but notes that significance varies across
combinations of deforestation pressures inside and outside protected areas.

While the post-PPCDAm deforestation slowdown helped draw the
attention of the impact evaluation literature to tropical conservation policy
effectiveness, several studies that look at deforestation outcomes during this
period focus on non-policy contributions. Commodity markets present
themselves as key influences on Amazon forest clearing. Hargrave and
Kis-Katos (2013) and Assunção et al. (2015) show that, even when
accounting for PPCDAm policy impacts, agricultural and timber prices
significantly affect deforestation. While logging of high-value timber has been
associated with deforestation in the Brazilian Amazon (Chimelli and Soares,
2017), cleared areas are largely used for agricultural production, specifically
pasture — from 2004 through 2014, pasture covered about 70% of deforested
area, and cropland only 5% (Inpe and Embrapa, 2016a). In light of this, the
role of prices as determinants of deforestation is an intuitive result, as
commodity prices directly affect the expected profitability of expanding
production over previously forested areas. Despite being relatively small in
comparison to pasture, cropland can be regionally relevant, and the
interaction between commodity prices can affect land use. Exploring
exogenous variation in crop-to-beef prices, Bragança (2018) finds that a
relative increase in crop prices promotes an expansion in farmland for
soybean production alongside reductions in cattle ranching and deforestation.
The author interprets this pasture-to-cropland conversion as evidence that
land use changes that are input-intensive from an agricultural perspective
can have local environmental externalities.

Supply-chain conservation initiatives have also sparked much debate.10

Two such initiatives stand out in the Amazon. First, the 2006 soy moratorium,
which formalized a zero-deforestation agreement for soybean production among
retailers, traders, and the civil society. Compliance with the agreement, which
is still in place, has been monitored via satellite imagery since 2009. The
moratorium is often lauded as one of the main conservation efforts of the
2000s, but the empirical evidence on its effectiveness remains only descriptive.
Although the literature documents that direct clearing for soybean production
declined following the moratorium, causality has not been established, and
there is still uncertainty regarding both indirect impacts inside the Amazon
and potential leakage into other soy-producing biomes (Rudorff et al., 2011;

10See Lambin et al. (2018) for an overview of supply-chain conservation initiatives.
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Macedo et al., 2012; Gibbs et al., 2015; Gollnow et al., 2018). Second, legal- and
zero-deforestation agreements also exist for Amazon meatpacking companies,
but their impacts are only starting to be analyzed. Alix-Garcia and Gibbs
(2017) combine property-level data from CAR and acquisitions of Amazon
slaughterhouses bought by signatories of these agreements to quantify their
effect. They estimate a null average impact on forest cover by 2014, but find
that the agreements had a significant reduction in deforestation in properties
that registered early in the CAR. The authors conclude that leakage and
strategic responses from producers and companies might undermine avoided
deforestation from the agreements.

Finally, a growing number of studies is starting to look at forest clearings
as a means for local politicians to extract rents.11 Cisneros et al. (2013) explore
randomized public fiscal audits unrelated to deforestation outcomes to test the
association between corruption and forest clearing. Results suggest that, after
learning that audits do not target deforestation, corrupt politicians shift their
rent-seeking activities towards segments that are less likely to be detected
in these audits and thereby contribute to increased clearings. Pailler (2018)
corroborates these findings with empirical evidence that municipalities with
corrupt mayors running for reelection see more deforestation in election years
than those where mayors are not eligible for reelection.

1.3
Policy and Academic Challenges

Today, the PPCDAm is widely regarded as having successfully met its
goal of combating Amazon deforestation. The evaluation literature supports
this view, providing ample empirical evidence for the effectiveness of Brazil’s
conservation policy efforts within the scope of the PPCDAm. Yet, important
hurdles stand in the path of further reductions in Amazon deforestation and
sustainable practices.

From a policy perspective, the action plan must tackle known limitations
in both technological and institutional spheres. Brazil’s DETER-based tropical
monitoring technology, although regarded as the most advanced in the world
(Tyukavina et al., 2017), cannot detect deforested areas smaller than 25 ha,
due to the spatial resolution in the satellite imagery it uses. In the early
2000s, less than a quarter of total forest area lost per year was cut down
in these small patches; ten year later, more than half of annually deforested
area occurred in small increments (Inpe, 2017). Several studies document this

11Burgess et al. (2012) provide one of the first systematized empirical assessments of the
political economy of tropical deforestation, but in the context of Indonesia.

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 1. A New Plan 30

change in forest clearing composition, and some suggest it might have been
a strategic response of potential offenders seeking to evade monitoring and
law enforcement (Rosa et al., 2012; Godar et al., 2012, 2014; Assunção et al.,
2017a). In acknowledgment of this, Inpe launched DETER-B in the mid-2010s.
The new system also serves to issue alerts for recent forest clearings, but it
detects changes in land cover in patches larger than 1 ha, albeit at lower
temporal frequency (Diniz et al., 2015). While this is a welcome improvement,
overcoming existing institutional barriers is also a challenge in the continuing
fight against illegal Amazon deforestation. Enforcement capacity, although
substantially enhanced within the PPCDAm, is still hindered by very low fine
collection rates, long legal procedures, high execution costs, and insufficient
financial and human resources (Börner et al., 2014, 2015; Schmitt, 2015).
Furthermore, new empirical evidence should be incorporated into the design
of future policy actions. Efforts that were once effective in reducing aggregate
deforestation across the Amazon now need to be tailored to regional and local
needs to best target location-specific goals (Godar et al., 2014; Richards and
VanWey, 2016; Assunção et al., 2017a), and forest degradation, which has
become increasingly relevant as compared to clear-cut deforestation, must be
directly accounted for and combated (Souza Jr. et al., 2013; Rappaport et al.,
2018).

From an academic perspective, policy design could greatly benefit from
research that directly addresses spatial dynamics of land use phenomena and
associated socioeconomic processes. Empirical evidence has shown that
ignoring this spatial dimension can severely influence estimation results,
introducing bias (Nelson and Chomitz, 2011; Robalino and Pfaff, 2012; Pfaff
et al., 2015a; Miranda et al., 2016) and limiting the understanding of
underlying causal mechanisms for policy impact (Herrera, 2015; Pellegrina,
2015). Moreover, until recently, computational capacity was an important
limiting factor for empirical analysis, restricting researchers to the use of
aggregate units of observation that often concealed relevant sub-unit spatial
dynamics (Avelino et al., 2016; Donaldson and Storeygard, 2016). With
recent improvements in data processing power and the increasing availability
of high-resolution georeferenced data, a growing number of scholars now
highlight the need to take a closer look at spatially explicit deforestation
processes at the sub-municipal level (Avelino et al., 2016; Busch and
Ferretti-Gallon, 2017; Pfaff and Robalino, 2017).

Furthermore, in a recent review of the conservation program effectiveness
literature, Pfaff and Robalino (2017) document that evaluation efforts are
largely focused on estimating only direct impacts. As most of the PPCDAm-

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 1. A New Plan 31

related literature surveyed in this chapter falls into this category, little is
currently known about the action plan’s indirect impacts.12 Baylis et al. (2016)
argue that indirect impacts are part of the actual treatment effect and should
therefore be incorporated into empirical evaluations. Existing research provides
useful examples of what can be learned from these impacts, including, but
not limited to: how the interaction between overlapping policies can either
enhance or limit individual policy impacts (Robalino et al., 2015; Sims and
Alix-Garcia, 2017); how conservation spillovers vary across the landscape and
how this can be used to shed light on underlying policy mechanisms (Robalino
et al., 2017); and how optimal policy design and allocation are influenced
by spillovers and complementarities across policies (Assunção et al., 2018b).
Finally, accounting for externalities is key for cost-effectiveness analysis, which,
in turn, is a valuable tool for policymaking.13

Efforts that address these research gaps could contribute to inform
policymakers and thereby improve policy design. The remaining chapters aim
at taking a step in this direction by exploring direct and indirect impacts of
action plan policies using a georeferenced ten-year panel dataset to account
for spatial dynamics.

12Evaluations of the priority municipalities policy are a notable exception to the extent
that many consider policy spillovers, though typically at the municipality level.

13Souza-Rodrigues (2018) provides an example of one such policy- and cost-effectiveness
assessment framework, demonstrating how it could be used to inform policy.
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Chapter 2
The Deforestation Menace

2.1
Introduction

Territorial protection is one of the leading conservation policies worldwide
(Nolte et al., 2013; Pfaff and Robalino, 2017). It has long been used in the
Brazilian Amazon, well before the onset of the PPCDAm. By 2004, nearly two
fifths of Amazon biome territory were already under protection. Yet, the action
plan introduced a novel siting strategy for protection. Henceforth, although
biological and ecological factors remained important allocation criteria, current
and future deforestation risks were to be taken into account when granting
protection. In addition to their original goals of conserving biodiversity and
protecting natural habitats, Amazon protected territories in high-risk zones
were also meant to serve as shields against advancing forest clearings.

In theory, protection’s shielding capacity stems from its ability to deter
environmental offenders. Amazon protected territory is under greater scrutiny
and monitoring attention, which increases an offender’s chance of getting
caught. Moreover, Brazil’s regulatory framework allows for harsher punishment
of environmental infractions committed within protected territory. As such,
because there is a higher cost of clearing protected versus unprotected forest,
legal protection could grant actual protection against deforestation to the
extent that offenders refrain from acting within protected territory. However,
shielding is only effective if the forest under protection faces an actual threat of
deforestation — areas that are not under forest clearing pressure are unlikely to
see deforestation with or without protection. This is one of the main challenges
in evaluating protection effectiveness, since protected territory is often located
in remote areas (DeFries et al., 2005; Joppa et al., 2008; Joppa and Pfaff, 2011).
In light of this, the empirical setting of the post-PPCDAm Brazilian Amazon,
in which protection was intentionally allocated in high-risk areas, offers a
unique opportunity to assess protection effectiveness against deforestation.

This chapter uses a spatially explicit panel dataset to empirically test
the shielding capacity of protected territory. It starts by establishing a means
of capturing areas under greater deforestation pressure. The satellite-based
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monitoring system adopted under the PPCDAm issued alerts for recent
changes in forest cover, such that regions with greater alert intensity
typically held more intense clearing activity. As forest clearings exhibit
spatial persistence, it seems reasonable to posit that areas close to
deforestation are under greater threat of being themselves deforested.
Drawing on the dataset’s raster structure to mitigate concerns of potentially
confounding unobservables via the use of cell fixed effects, the analysis shows
that this relationship indeed holds in the data. For a given cell and year,
greater alert intensity within 50km of the cell is associated with increased
forest clearings inside the cell the following year. Thus, neighborhood alert
intensities serve as a measure of local deforestation risk.

The empirical strategy then builds on this measure of exposure to
compare forest clearing outcomes in unprotected and protected territory under
equivalent deforestation pressures. Results document protection’s efficacy in a
high-risk context, with significantly less forest being cleared in protected cells
than in unprotected ones. Estimates indicate that, under an increase of one
standard deviation in the intensity of neighborhood alerts, the difference in
clearings for unprotected and protected cells amounts to 3% of the sample
standard deviation, or 26% of the sample mean. Findings therefore corroborate
protected territories’ effectiveness in shielding vegetation within their domain
from deforestation activity.

To shed light on the economic significance of this effect, observed
aggregate forest clearing trends are compared to counterfactual ones in which
protection has been revoked. Annual deforestation trends for cells that lose
protection in the hypothetical scenarios are significantly affected. Particularly
in high-pressure periods, protected cells saw less forest clearings than if they
had not been granted legal protection. This pattern holds across protection
types, but is weaker for indigenous lands than for protected areas. Yet,
counterfactual exercises that estimate deforestation outcomes across both
protected and unprotected cells reveal that aggregate deforested area does
not change when protection is revoked. Protected territory therefore seems to
affect spatial forest clearing dynamics, but not the overall level of
deforestation. I interpret this as evidence that, although protected territories
effectively shield forests under their domain, they essentially deflect
deforestation to unprotected regions.

This chapter is closely related to the literature that assesses the
effectiveness of protected territory. Being one of the most widely used
conservation policies in the world, protection has long been the subject of
empirical impact evaluation. Cross-country assessments typically find that
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protected areas see less deforestation than unprotected ones, but highlight
that protection is often located in remote areas that are not subject to high
deforestation pressures (DeFries et al., 2005; Joppa and Pfaff, 2011; Nelson
and Chomitz, 2011; Abman, 2018). Similar results are found in
country-specific analyses, many of which try to account for varying forest
clearing pressures to mitigate bias when estimating protection impact.
Examples include studies for protected territory in Chile (Arriagada et al.,
2016), Costa Rica (Andam et al., 2008; Pfaff et al., 2009), Indonesia (Gaveau
et al., 2012; Shah and Baylis, 2015), Mexico (Honey-Rosés et al., 2011), Peru
(Miranda et al., 2016), and Thailand (Sims, 2010, 2014).

Several works have looked specifically at protection in the Brazilian
Amazon, albeit not necessarily within the scope of the PPCDAm. Protection is
typically shown to work as a means of conserving forest cover, though authors
have found relevant variations in effectiveness across time and space (Nepstad
et al., 2006; Nolte et al., 2013; Pfaff et al., 2014, 2015b). Anderson et al. (2016)
is an exception to the extent that it finds no significant impact of protection
on forest preservation in the Amazon. The authors speculate that this null
average effect might result from protection being assigned mostly to remote
areas that are not under significant deforestation pressure. This study advances
the literature on protection effectiveness by proposing an empirical approach
that focuses on assessing protected territory’s shielding capacity specifically in
areas that face actual threats of suffering forest loss.

The chapter proceeds as follows: Section 2.2 describes the institutional
context for environmental monitoring and protection in the Amazon;
Section 2.3 details the empirical strategy; Section 2.4 presents dataset and
variable construction procedures; Section 2.5 reports and discusses estimation
results and counterfactual simulations; and Section 2.6 concludes with policy
implications.

2.2
Institutional Context

This section provides background information on the legality of Amazon
deforestation, the satellite-based monitoring system, and protected territory
policy. It closes with a discussion on how this institutional context might
influence a potential offender’s land use decision-making process.
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2.2.1
Amazon Deforestation as an Illegal Activity

Brazil’s 1988 Federal Constitution determined that offenders who engage
in actions that are harmful to the environment can be held thrice responsible,
being subject to legal penalties in civil, administrative, and criminal spheres
(Brasil, 1988). These penalties need not be mutually exclusive and accumulate
across spheres. The illegal clearing of native vegetation is thus punishable by
law.

Regulations setting the legality of forest clearing in the Amazon vary
across private and public lands. Inside private properties, deforestation is only
legal if the clearing of a specific area has been duly authorized or licensed by
subnational (usually state-level) environmental authorities. Landholders must
also comply with the Brazilian Forest Code, which sets legal guidelines for land
cover conversion and protection of native vegetation inside private properties.1

For properties inside the Amazon biome, the Forest Code is particularly
restrictive. It requires landholders to preserve at least 80% of their property
as native vegetation, and determines areas of permanent protection, such as
riparian forests, which cannot be cleared in any circumstance (Brasil, 2012).
Public lands in the Amazon are largely composed of protected territory or
undesignated lands. In the former, forest clearing is either fully prohibited or
is permitted only under strict licensing; in the latter, it is always prohibited.

Existing data on Amazon deforestation do not allow legal clearings to
be distinguished from illegal ones. There is compelling, albeit only anecdotal
or localized, evidence that the vast majority of areas deforested since the
launch of the PPCDAm were cleared under illegal circumstances. The Brazilian
Amazon biome extends over more than 420 million hectares. By 2014, protected
territory, where forest clearing practices are mostly illegal, covered nearly
half of this area. The remaining unprotected territory is a combination of
as-of-yet undesignated public lands and private properties. Clearing in the
former is also illegal. Recent estimates for the extent of private property in the
Amazon biome set total private land area at approximately 180 million hectares
(SFB, 2017). While clearings inside these properties could be legal if both
duly authorized/licensed and in accordance with Forest Code requirements,
property-level assessments indicate compliance with the Forest Code in the
Amazon is generally very poor (Michalski et al., 2010; Godar et al., 2012;
Börner et al., 2014). Because forest clearings in non-compliant properties
are carried out in irregular circumstances from an environmental legislation
standpoint, they are deemed illegal. In light of this, although some deforested

1See Chiavari and Lopes (2015) for an explanation of the Brazilian Forest Code.
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areas captured in this analysis may refer to legal clearings, I assume that they
represent only a small fraction of total sample deforestation.2 Hence, forest
clearings detected by the monitoring system most likely capture illegal activity
punishable by law.

2.2.2
Monitoring and Law Enforcement

Since its implementation in the mid-2000s, DETER has served as the
main tool for targeting law enforcement efforts in the Amazon. The system
regularly scans the full extent of the Brazilian Amazon for signs of tropical
degradation or deforestation, which, when detected, generate georeferenced
alerts. Law enforcers visit alert locations and, upon finding evidence of illegal
clearing activity, charge offenders. Criminal charges are later processed via the
public prosecution system, but on-site law enforcement personnel can apply
administrative penalties.

Although law enforcement operations need not be exclusively based on
DETER alerts, the system is the official cornerstone of Amazon deforestation
monitoring (Börner et al., 2015; Schmitt, 2015). In addition to providing fast,
frequent, and spatially far-reaching information on recent degradation and
deforestation activity, DETER also increased law enforcers’ capacity of
catching offenders red-handed and, thus, of punishing them.3 Anecdotal
evidence provided by Ibama personnel support the idea that the new
monitoring system effectively captured recent forest clearing hot spots and
allowed for more efficient targeting of enforcement operations. It is therefore
plausible to argue that areas with greater intensity of DETER deforestation
alerts are also areas that are currently undergoing more intense forest
clearing activity.

2.2.3
Protected Territory

Brazilian protected territory is composed of protected areas and
indigenous lands. Although both categories fall into the larger public lands
domain, protected areas and indigenous lands are governed by separate

2In informal conversations, law enforcement personnel have suggested that less than 10%
of deforested areas are actually legal. Souza-Rodrigues (2018) reports a similar estimate,
also based on informal interactions.

3Catching offenders red-handed enhances punishment capacity to the extent that it
enables law enforcers to hold someone accountable for the illegal activity. This is particularly
relevant in the Amazon’s context of unclear and insecure property rights (Mueller et al., 1994;
Alston et al., 2000), and for a subset of sanctioning instruments — namely the establishment
of embargoes and seizure of machinery, tools, and production goods — whose use essentially
depends on law enforcers having access to seizable items and/or offenders’ identities.
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Figure 2.1: Extent of Protected Territory, 2004–2014

0

20

40

60

80

100

120

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

to
ta

l 
a

re
a

 (
1

,0
0

0
,0

0
0

 h
e

c
ta

re
s
)

Protected Territory, Amazon Biome

indigenous lands strict protection sustainable use

Notes: The graph presents total area under type-specific protection in the Amazon biome. Data sources:
FUNAI and ISA (indigenous lands); MMA (protected areas).

authorities and are subject to different regulations. Protected areas can be
either strictly protected, where no deforestation of any form is legal, or of
sustainable use, where forest clearing may be legal if duly licensed and in
accordance with the area’s management plan. Deforestation licensing
requirements are stricter inside areas of sustainable use than in private
properties. Following a period of technical assessment and public
consultation, protected areas are created via laws or decrees. They can be
managed at federal, state, or municipal levels, but federal and state areas are
far more common in the Amazon. In contrast, indigenous lands cannot be
created, only recognized. Typically, this means that areas assigned as
indigenous lands have traditionally been occupied by indigenous peoples. Full
recognition is only granted after the area completes a multi-stage
administrative process. The recognition process can be roughly broken into
the following stages: assessment, physical demarcation, declaration,
presidential ratification, and registry. Clearing of native vegetation in
indigenous lands is only legal if performed by indigenous peoples as part of
their traditional way of life.

When the PPCDAm was launched in 2004, about 38% of Amazon biome
territory was under protection as protected areas (61 million hectares) or
indigenous lands (98 million hectares). Over the next decade, the extent of
protected areas nearly doubled to 113 million hectares, and indigenous lands
expanded to a total of 107 million hectares (see Figure 2.1). By 2014, more

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 2. The Deforestation Menace 38

than half of the Amazon biome was under protection. In addition to promoting
expansion, the action plan also inaugurated a novel siting strategy for protected
territory. Through the mid-2000s, protection had been granted based on an
area’s biological and ecological characteristics, with the intent of conserving
biodiversity and protecting natural habitats. While these criteria still played
an important role in allocating protection under the PPCDAm, protected
territory was henceforth assigned with an additional explicit goal — block
advancing deforestation. Current and future deforestation risks were to be
taken into account when granting protection, such that protected territories in
high-risk zones were meant to serve as shields against forest clearing pressures.

Prior to the PPCDAm, tropical clearings concentrated along the so-called
Deforestation Arc, a region that historically captured the agricultural frontier
pushing into the forest (see Figure 2.2). Protected territory spread throughout
the Amazon, but much of it was located in the Amazon hinterland.4 Yet, under
the action plan, almost 35 million hectares of protected territory were allocated
in regions under high risk of deforestation, as captured by their proximity
to the Deforestation Arc (see Figure 2.3). Newly protected territory in these
high-pressure zones largely consisted of protected areas for sustainable use and
strictly protected areas, which could be more easily created by the government
as compared to indigenous lands.

In practice, how is protection implemented? From a legal standpoint,
an offender who engages in illegal forest clearing activity in protected
territory is subject to harsher criminal and/or administrative penalties.
Someone occupying territory in public domain, which includes both protected
areas and indigenous lands, can be criminally charged and sentenced to three
years of jail time (Brasil, 1966). Because Brazil’s Federal Constitution
assigned special preservation status to the Amazon biome, illegal
deforestation in all public lands inside the biome is already subject to harsher
penalties than outside it (Brasil, 1988, 1998). The country’s Law of
Environmental Crimes reinforces this by determining that illegal
deforestation and/or degradation in all public areas of the Amazon biome are
punishable with fines and two to four years of imprisonment (Brasil, 1998).
Moreover, all direct and indirect harm caused to protected areas are further
subject to one to five years of imprisonment (Brasil, 1998).5

4Several studies empirically document that protection in tropical forests, including the
Amazon, is often located in remote areas far from deforestation pressures (DeFries et al.,
2005; Joppa et al., 2008; Joppa and Pfaff, 2011).

5Although protected areas for sustainable use are often mistakenly thought to be
laxer in terms of environmental regulation, this view has no legal support; if not duly
licensed/authorized, deforestation in these areas is legally equivalent to forest clearing in
strictly protected areas.

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 2. The Deforestation Menace 39

Figure 2.2: Deforestation and Protection Before the Action Plan

indigenous lands deforested area

strict protection sample for analysis

sustainable use

Notes: The map shows accumulated deforestation through 2004 and protected territory status in 2004, before
the action plan was launched. Dimmed regions are non-sample areas (see Section 2.4.3 for sample definition).
Data sources: PRODES/Inpe (deforestation); FUNAI and ISA (indigenous lands); MMA (protected areas);
IBGE (Legal Amazon, Amazon biome).

Alongside criminal penalties, offenders also face administrative penalties.
Illegal clearings in all public areas of the Amazon biome are subject to a fine
of USD 3,000 per cleared hectare; in protected areas, this fine increases to
USD 3,800 per cleared hectare.6 Protection status also allows enforcers to
apply an additional penalty that doubles the total amount offenders must
pay (Brasil, 2008a). In addition to the direct financial cost imposed by fines,
criminal and administrative processes also carry large processing fees and
legal costs. As such, even in a context of knowingly low collection rates for
fines (Barreto et al., 2009; Börner et al., 2014; Schmitt, 2015), criminal and
administrative charges carry a large financial burden. Fines are also typically
accompanied by administrative measures aimed at further increasing this

6US dollar values calculated from Brazilian currency using the exchange rate from the
period during which the associated regulations were passed.
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burden. These measures include, but are not limited to, seizure of illegally
produced goods, seizure and/or destruction of machinery used for forest
clearings, and production embargoes (Brasil, 2008a). Combined, criminal and
administrative penalties significantly increase the expected cost of clearing
Amazon forest under protection.

Beyond the existing legal framework for more severely punishing illegal
deforestation inside protected territory, forest clearings in these areas are
also subject to considerably greater public scrutiny. In addition to Ibama,
which monitors the full extent of the Amazon, the Chico Mendes Institute
for Biodiversity Conservation (ICMBio) and the Brazilian Native Peoples
Foundation (FUNAI) also perform monitoring of federal protected areas and
indigenous lands, respectively. Deforestation in protected territory also attracts
much attention from both national and international medias, as well as from
the civil society. Finally, native peoples in indigenous lands are anecdotally
known to defend their territory from invasions and predatory use by third
parties. Although this sort of dedicated monitoring by government agencies
and local stakeholders cannot be directly quantified, it is likely that they, too,
contribute to the overall sense that illegal clearings in protected territories are
being more closely watched than those in their unprotected counterparts.

2.2.4
Rationale for Individual Land Use Decision

Since the seminal work of Becker (1968), an individual’s decision to
engage in an illegal activity has been modeled as an optimization problem in
which the individual compares the expected gain of that activity with the
expected cost of getting caught and punished. Bearing this in mind, consider
an environmental offender who practices illegal deforestation in a given
region that holds both protected and unprotected forests. When deciding
where to deforest, the cost-minimizing offender will select the area perceived
as less likely to result in his getting caught and punished. Because protected
territory is under greater scrutiny, offenders clearing protected forests have a
higher chance of getting caught. Moreover, when caught, these offenders face
more severe criminal and administrative charges, including heavier financial
penalties. It is therefore reasonable to posit that the expected cost of clearing
forest in protected territory would be perceived as significantly higher,
ultimately inhibiting offenders from operating in these territories. As such,
legal protection would grant actual protection, serving as a shield against
advancing deforestation.
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Figure 2.3: Targeted Expansion of Protected Territory

(a) 2004 (b) 2006

(c) 2008 (d) 2010

(e) 2012 (f) 2014

indigenous lands sustainable use

strict protection sample for analysis

Notes: The maps show type-specific protection status in select years. Dimmed regions are non-sample areas
(see Section 2.4.3 for sample definition). Data sources: FUNAI and ISA (indigenous lands); MMA (protected
areas); IBGE (Legal Amazon, Amazon biome).
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2.3
Empirical Strategy

The proposed empirical strategy aims at assessing protected territory’s
capacity to shield against deforestation by comparing forest clearing
outcomes in protected versus unprotected localities under equivalent
deforestation pressures. Because deforestation exhibits spatial persistence,
areas close to clearing activity are likely under greater risk of being
themselves deforested. In light of this, the starting point for the analysis is a
test of whether the intensity of alerts in a cell’s neighborhood in a given year
is associated with forest clearings inside that cell the following year. A
positive association indicates that neighborhood alert intensity serves as a
measure of cell-level deforestation pressure. The analysis then builds on this
using variation in protection status both across cells and over time to
evaluate if forest clearings advance over protected versus unprotected cells
differently. The benchmark estimation equation is:

deforesti,t =
∑
n∈∂i

{αnalertsn,i,t−1 + βn(alertsn,i,t−1 ∗ protecti,t−1)}

+X ′i,t−1θ + γi + δt + εi,t

(2-1)

where deforesti,t is the deforested area in cell i and year t; for each of cell i’s n
neighborhoods, alertsn,i,t−1 is a neighborhood-specific measure of deforestation
pressure in year t−1, as measured by neighborhood alert intensity; protecti,t−1

is an indicator that equals 1 when cell i is protected in year t − 1, and
0 otherwise; Xi,t−1 is a vector of cell-level controls for geography (cloud-
based satellite visibility, weather) and observed conservation policy (local law
enforcement, priority municipality status); γi and δt are, respectively, cell
and year fixed effects; and εi,t is the cell-year idiosyncratic error. Estimates
are robust to heteroskedasticity, and standard errors are clustered at the
municipality level in all specifications, making them robust to intra-municipal
serial correlation (Bertrand et al., 2004). For each cell, multiple neighborhoods
are formed by concentric rings of increasing diameter around it. Dataset
construction is such that each of the cell’s neighborhood rings contains neither
the cell itself nor any of the smaller concentric rings (see Appendix A.1).
Coefficients αn therefore capture whether forest clearings happening in a cell’s
neighboring region are associated with the risk of deforestation happening
inside the cell; αn > 0 indicates that cells facing more intense clearing
activity in their surroundings are under greater deforestation pressure. In turn,
interaction coefficients βn capture a differential effect for protected cells; βn < 0
indicates that deforestation was effectively diverted from protected cells.
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The identification of protected territory’s shielding capacity
fundamentally comes from the comparison of deforestation outcomes in
protected versus unprotected cells exposed to equivalent deforestation
pressures. This is particularly relevant in light of the discussion in the
literature that the variation in deforestation pressures across the landscape
have important implications for the evaluation of average protection
effectiveness in the Amazon (Nepstad et al., 2006; Nolte et al., 2013; Pfaff
et al., 2014, 2015b). The use of cell fixed effects controls for potentially
confounding time-invariant cell characteristics, such that coefficients are
estimated using within-cell variation across time. Equation 2-1 also includes
year fixed effects to recover impacts net of sample-wide annual shocks, as well
as a host of cell-level controls to mitigate omitted variable bias. The first set
of controls focuses on geographic variables. Remote sensing data are limited
by visual obstructions that block the Earth’s surface from view in imagery.
Satellite visibility can affect not only recorded cell deforestation, but also
alerts issued inside the cell (see Appendices B.1.1 and B.1.2). The benchmark
specification accounts for these effects using information on unobservable
areas in satellite imagery for both forest clearing and alert data. Local
weather might also be correlated with local deforestation and neighborhood
alert intensity. Certain weather conditions could favor clearings by
facilitating access to forested areas, enabling the use of fires, or even
influencing the expected productivity and thereby the expected value of
deforested land. Rainfall and temperature could also correlate with cloud
coverage limiting satellite visibility. All specifications therefore include
controls for average annual temperature and total annual rainfall. The second
set of controls accounts for other policies aimed at combating deforestation.
These are admittedly more endogenous, but serve as a robustness test for the
stability of estimated coefficients. Policy controls include the indicator for cell
protection status protecti, an indicator variable flagging whether the cell
belong to a priority municipality, and a measure for the intensity of alerts
issued inside the cell.

The timing of the deforestation response is also a relevant component of
the identification strategy. When choosing where to deforest, an offender
plausibly uses observational data collected in the past to inform his present
decision. Moreover, moving across Amazon forest sites, where transport
infrastructure is knowingly very poor (Weinhold and Reis, 2008; Börner
et al., 2014, 2015), is a time-consuming process. As such, the response in
deforestation is not expected to be concurrent, but rather lagged.
Equation 2-1 sets a one-year lag for most independent variables, the only
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exception being satellite visibility for deforestation outcome data.

2.4
Data

The analysis is entirely based on spatial data that are publicly available
from a variety of sources. This section provides a brief description of
variables and presents descriptive statistics. The appendices contain detailed
information on the empirical spatial setup (Appendix A) and data sources
(Appendix B).

2.4.1
Main Variables

Cell-level deforestation is built from georeferenced data on Amazon-wide
annual deforestation increments from PRODES/Inpe (see Appendix B.1.1).
The outcome of interest is deforestation increment as a share of cell area. It
is calculated using vector deforestation data rasterized at the 30m resolution
and total minicell count for each cell.

Forest clearing alert data come from DETER/Inpe (see Appendix B.1.2).
Monthly vector data on georeferenced alerts are rasterized at the 900m
resolution, such that a cell will take on a value of 1 if it contains an alert and
a value of 0 otherwise.7,8 Neighborhood intensity is calculated as the annual
number of alert cells in each neighborhood as a share of total neighborhood
cell count.9

Spatial data on protection history for strictly protected areas and
protected areas for sustainable use are provided by the MMA. Analogous
data for indigenous lands are compiled from FUNAI and the
non-governmental Socioenvironmental Institute (ISA) (see Appendix B.2).
Annual protection status indicators are constructed from type-specific
protected territory cover rasterized at the 900m resolution, which are then
used to build a general protection indicator that annually flags whether a cell
was under protection of any kind.

7In practice, the rasterization algorithm assigns value 1 to a cell only if its centroid is
contained within a polygon in the vector data. Because deforestation alerts can be as small
as 25ha and the raster cells have an area of 81ha, running the algorithm on the raw vector
resulted in the loss of a large amount of alerts. I therefore created a 1km buffer around all
alerts and only then rasterized the alert-plus-buffer vector data, thereby ensuring that if a cell
fell within 1km of an alert, it would be assigned value 1 during rasterization. For simplicity,
I refer to this alert-plus-buffer area simply as the alert area throughout the analysis.

8There are a few occurrences of biweekly data, particularly in earlier DETER years. For
a month with two deforestation alert datasets, I overlay the biweekly data to calculate total
alert area for that month, as per Inpe’s recommendation.

9Missing months in vector data indicate that no alerts were issued by DETER in that
month.
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2.4.2
Controls

The benchmark specification in Equation 2-1 includes two sets of cell-
level controls, in addition to cell and year fixed effects. First, geography controls
account for natural phenomena. Clouds, shadows cast by clouds, and smoke
from forest fires can all affect visibility in satellite imagery. Inpe releases
spatial data on land areas blocked from view for both PRODES and DETER.
Satellite visibility controls for PRODES indicate the annual share of cell area
suffering from visual obstructions, as captured by rasterizing vector data on
unobservable areas at the 30m resolution. As DETER offers monthly data, its
satellite visibility control is a cell-level measure of time spent blocked from
view during one year.10 Monthly data compiled by Matsuura and Willmott
(2015) serve as the basis for building weather controls. The authors use multiple
sources of global weather data and apply geographic extrapolations to calculate
a regular georeferenced world grid of estimated temperature and rainfall over
land.11 Data points in the original dataset refer to grid nodes, not cells, such
that average annual temperature and total annual rainfall are calculated from
the monthly data for each Amazon grid node. Because the spatial resolution
for this dataset is much lower than 900m, cell weather values are based on the
average values for all grid node values within 180km of each cell to ensure all
sample cells had non-missing weather data.

Second, observed policy controls address relevant conservation efforts
that could affect deforestation pressures and local clearings. Two of these
controls come from dataset that have already been described: the cell indicators
for protection status and DETER alert area. The latter is an indicator variable
if the cell itself contained a DETER alert in a given year. The last control
refers to the cell being in a priority municipality. It is built from information
contained in each of the MMA’s annual listings of municipalities that were
attributed priority status or removed from the blacklist. The 2007 Brazilian
municipal division from the Brazilian Institute for Geography and Statistics
(IBGE) is rasterized at the 900m resolution and is used to assign each cell to
a single municipality.

10As with DETER alerts, there are some months for which Inpe releases biweekly cloud
coverage vector data. For these months, I intersect the biweekly data to identify areas that
were blocked from view throughout the whole month. Note that this is different to the
overlay method used for alerts — the procedure is performed as per Inpe’s recommendation.

11This database has been extensively used in the economic literature both to evaluate
the impact of climate variables on economic outcomes and to provide relevant rainfall and
temperature controls (Dell et al., 2014).
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Figure 2.4: Amazon Spatial Boundaries and Sample Definition

Legal Amazon border Amazon biome border sample for analysis

Notes: The map shows spatial boundaries for the Brazilian Legal Amazon and the Amazon biome, as well as
for the analysis’ spatial sample, which is defined as the area inside the Amazon biome that is within 750km
from its southeast border. Data sources: IBGE (Legal Amazon, Amazon biome).

Table 2.1: Sample Protection and Deforestation by Year

year protected territory (ha) deforestation
(ha)

deforestation in protected territory (ha)

strict sustainable indigenous strict sustainable indigenous

2006 14,390,361 29,187,312 43,760,741 957,654 9,845 33,993 16,925
2007 14,390,361 31,468,158 44,439,699 993,454 7,813 91,605 19,935
2008 16,908,733 34,646,834 44,602,169 1,082,954 11,311 65,311 30,395
2009 17,348,376 36,233,997 44,891,184 521,516 4,572 47,442 26,731
2010 17,354,740 36,235,850 44,912,771 481,134 3,144 38,771 12,718
2011 17,420,710 36,238,266 45,103,968 465,216 2,319 28,457 15,589
2012 17,420,710 36,238,347 45,104,613 359,672 2,793 27,550 11,302
2013 17,420,710 36,238,508 45,104,613 464,327 2,363 36,618 11,946
2014 17,420,710 36,238,508 45,120,562 409,924 1,364 38,156 5,743

Notes: The table reports annual protected territory coverage by protection type, deforestation increment,
and deforestation increment inside protected territory for the sample region. Data sources: FUNAI and ISA
(indigenous lands); MMA (protected areas); PRODES/Inpe (deforestation).

2.4.3
Descriptive Statistics

At the 900m resolution, the Amazon biome raster contains 5.2 million
cells. As this implies a very high number of observations, limited computational
capacity for calculating cell-level fixed effects estimators imposed a sample
restriction. Figure 2.4 illustrates the spatial sample, defined as the region inside
the Amazon biome that is within 750km from its southeast border.12

The spatial sample contains 2,880,663 cells. It extends over 55% of the
12Although the PPCDAm applied to the entire Brazilian Legal Amazon, over 90% of

tropical deforestation over the past two decades was located inside the biome.
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Figure 2.5: Sample Protection and Deforestation

indigenous lands deforested area

strict protection sample for analysis

sustainable use

Notes: The map shows protected territory status by protection type in 2014, and total area deforested from
2007 through 2014. Dimmed regions are non-sample areas (see Section 2.4.3 for sample definition). Data
sources: FUNAI and ISA (indigenous lands); MMA (protected areas); PRODES/Inpe (deforestation); IBGE
(Legal Amazon, Amazon biome).

Amazon biome, and captures 45% of its protected territory (see Figure 2.5).
The distribution of protection inside the sample is broadly representative of
the Amazon, with protected areas for sustainable use and indigenous lands
each covering about a fifth of the sample region, and strictly protected areas
accounting for less than 10% of it. Table 2.1 presents protection coverage totals
by type and year, showing that sample protected areas expanded by 20–25%
from 2006 through 2014, while indigenous lands only grew by 3%. This is
consistent with Brazil’s institutional framework, which allows for the creation
of protected areas, but not of indigenous lands.

In contrast, deforestation during the sample period was greatly
concentrated inside the sample region (see Figure 2.5). It held more than
95% of total DETER alert area, and saw over 5.7 million hectares of cleared

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 2. The Deforestation Menace 48

Table 2.2: Descriptive Statistics for Regression Variables

sample years

2006 2007 2008 2009 2010 2011 2012 2013 2014

deforestation increment (% cell area)
mean 0.0041 0.0043 0.0047 0.0022 0.0021 0.0020 0.0016 0.0020 0.0018
standard deviation 0.0378 0.0377 0.0377 0.0244 0.0215 0.0219 0.0202 0.0241 0.0228

alerts 50km ring (% ring area)
mean 0.0196 0.0099 0.0198 0.0118 0.0076 0.0086 0.0062 0.0073 0.0085
standard deviation 0.0323 0.0153 0.0285 0.0173 0.0113 0.0139 0.0108 0.0130 0.0150

alerts 100km ring (% ring area)
mean 0.0188 0.0098 0.0189 0.0117 0.0076 0.0086 0.0061 0.0072 0.0084
standard deviation 0.0234 0.0107 0.0214 0.0114 0.0077 0.0098 0.0078 0.0094 0.0109

d=1 if protected cell
mean 0.3668 0.3796 0.4021 0.4120 0.4122 0.4124 0.4124 0.4124 0.4125
standard deviation 0.4819 0.4853 0.4903 0.4922 0.4922 0.4923 0.4923 0.4923 0.4923

unobservable PRODES (% cell area)
mean 0.0362 0.0268 0.0221 0.0346 0.0364 0.0271 0.0285 0.0467 0.0470
standard deviation 0.1554 0.1259 0.1182 0.1506 0.1558 0.1318 0.1319 0.1727 0.1724

unobservable DETER (% cell area)
mean 0.3601 0.5842 0.4614 0.5468 0.4336 0.4650 0.3191 0.3257 0.4270
standard deviation 0.0848 0.1317 0.2187 0.2106 0.2090 0.1687 0.1951 0.1972 0.2402

rainfall (mm)
mean 2,254 2,135 2,162 2,223 2,015 2,157 2,080 2,215 2,181
standard deviation 426 447 402 383 309 349 418 423 398

temperature (Celsius)
mean 26.05 26.22 25.90 26.14 26.73 26.45 26.22 26.24 26.07
standard deviation 1.04 1.04 1.21 1.20 1.33 1.23 1.22 1.16 1.26

d=1 if DETER alert in cell
mean 0.0198 0.0100 0.0202 0.0118 0.0076 0.0087 0.0062 0.0073 0.0085
standard deviation 0.1394 0.0997 0.1407 0.1081 0.0870 0.0931 0.0785 0.0850 0.0917

d=1 if priority municipality
mean 0.0000 0.0000 0.3142 0.3142 0.3479 0.3396 0.3506 0.3486 0.3294
standard deviation 0.0000 0.0000 0.4642 0.4642 0.4763 0.4736 0.4772 0.4765 0.4700

Notes: The table presents mean and standard deviations for variables used in the empirical analysis. Units
are shown in parentheses; indicator variables are identified with “d=1”.

forest. As protection effectiveness crucially depends on local deforestation
pressures, the sample region was intentionally designed to capture high-risk
areas and, in doing so, assess protection’s shielding capacity when faced with
an actual threat. Table 2.1 provides annual areas cleared in the sample as a
whole, as well as inside protected territory of each type.

Finally, Table 2.2 reports annual summary statistics for regression
variables, showing that both the outcome of interest and key regressors
exhibited cell-level variation across years.

2.5
Results

This section starts by empirically testing whether the intensity of
neighborhood forest clearing alerts is associated with cell-level deforestation
outcomes, and then builds on this to assess whether protection serves as a
shield against forest loss. It follows with robustness checks, an investigation
of heterogeneity across different types of protection and proximity to
transport infrastructure, and closes with counterfactual exercises that
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hypothetically revoke protection.

2.5.1
Main Results: Pressure and Protection

In the current empirical setting, if neighboring forest clearing activity
serves as a measure of local deforestation pressures, alert intensity in a cell’s
surroundings should have a non-null association with that cell’s deforestation
outcome. Table 2.3 presents estimated coefficients that test for the existence
and reach of this association. Columns 1 through 3 only control for cell and
year fixed effects, but gradually increase maximum neighborhood size in
50km ring increments from 50km through 150km; columns 4 and 5 hold
maximum neighborhood size fixed, but gradually include cell-level geography
and observed policy controls. Coefficients remain positive, statistically
significant, and largely stable across specifications for the 50km
neighborhood, indicating that current clearing activity within 50km of a cell
are associated with increased future clearings inside that cell. Deforestation
activity happening further away, beyond the 50km neighborhood, does not
appear to be associated with local clearing pressure. This is consistent with
the idea that transportation within the Amazon is costly. As the region’s vast
dimensions are poorly connected by transport infrastructure, it is likely that
deforestation operations are at least partially constrained by the feasibility of
moving personnel, machinery, and goods across large distances. I therefore
restrict the benchmark specification to a maximum ring distance of 100km,
but only expect to see a shielding effect for protection through 50km. The
negative, albeit less significant, coefficient for the 150km neighborhood
suggests a different effect might be in place for distant clearing activities, but
offers little information as to what this effect might be. Because I use
deforestation pressure as a tool through which to asses protected territory’s
shielding capacity, I delve no further into this negative effect, but conduct
robustness checks to test whether it affects the analysis’ key findings.

Having shown that forest clearing alerts within 50km of a cell serve as
a measure of local deforestation pressure, I now inspect whether protected
and unprotected cells are equally affected by this pressure. If expected costs
of engaging in forest clearing practices inside protected territory are higher,
cell-level legal protection status should mitigate the positive relationship
seen in Table 2.3. Unprotected territory is therefore expected to be more
severely affected by advancing deforestation than protected territory. In light
of this, Table 2.4 reports estimated coefficients for both neighborhood alert
intensities and interaction terms between these intensities and cell protection
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Table 2.3: Neighborhood Clearing Activity and Local Deforestation Outcomes

deforestation increment in cell (t)

(1) (2) (3) (4) (5)

alerts 50km (t-1) 0.0338** 0.0339** 0.0332** 0.0334** 0.0306**
(0.0133) (0.0165) (0.0162) (0.0158) (0.0154)

alerts 100km (t-1) -0.0002 0.0098 0.0083 0.0071
(0.0117) (0.0102) (0.0100) (0.0098)

alerts 150km (t-1) -0.0160 -0.0185 -0.0203*
(0.0122) (0.0121) (0.0122)

R-squared 0.0024 0.0024 0.0024 0.0033 0.0036
number of observations 23,045,304 23,045,304 23,045,304 23,045,304 23,045,304
number of cells 2,880,663 2,880,663 2,880,663 2,880,663 2,880,663

controls
cell fixed effects yes yes yes yes yes
year fixed effects yes yes yes yes yes
geography no no no yes yes
observed policy no no no no yes

Notes: The table reports fixed effects coefficients for Equation 2-1 (Section 2.3). The dependent variable
is the cell-level deforestation increment (deforested area in cell i and year t as a share of total cell area).
Reported independent variables are neighborhood alert intensities in year t − 1 (total alert area as a share
of total neighborhood area). Maximum neighborhood size increases from 50km (column 1) through 150km
(columns 2 through 3), and controls are added gradually to the specification with the maximum neighborhood
(columns 4 and 5). The no/yes markers in bottom rows indicate the inclusion of the following sets of cell-
level controls: (i) cell and year fixed effects; (ii) geography: measuring and monitoring satellite visibility,
precipitation, and temperature; and (iii) observed policy: alert intensity, protection status, and priority
municipality status. The cell-by-year panel includes 2,880,663 cells located within 750km from the Brazilian
Amazon biome southeast border and covers the 2006 through 2014 period. Standard errors are robust and
clustered at the municipality level. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.

status. Controls are included gradually to test the sensibility of results. The
benchmark specification containing the full set of controls is presented in
Table 2.4, column 3. Results show that, when exposed to the threat of
deforestation, protected cells see significantly less forest clearings that similarly
threatened unprotected ones. Again, estimated coefficients remain stable across
the inclusion of controls, and clearing activity in the more distant neighborhood
ring appears to have no significant effect on either protected or unprotected
cells. Estimates indicate that the shielding effect is sizable. Under an increase
of one standard deviation in the intensity of neighborhood alerts, the difference
in clearings for unprotected and protected cells amounts to 3% of the sample
standard deviation, or 26% of the sample mean.

Hence, at the cell level, legal protection seems to grant actual protection
by serving as a shield against advancing forest clearings. This finding is
consistent with Brazil’s institutional framework, which implies a higher cost for
clearing Amazon forest under protection due to both a greater chance of getting
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Table 2.4: Protected Territory as a Shield to Advancing Deforestation

deforestation increment in cell (t)

(1) (2) (3)

alerts 50km (t-1) 0.0376* 0.0376* 0.0347*
(0.0204) (0.0197) (0.0191)

alerts 50km * protected (t-1) -0.0385* -0.0376* -0.0371**
(0.0201) (0.0193) (0.0185)

alerts 100km (t-1) 0.0039 0.0021 0.0003
(0.0161) (0.0150) (0.0147)

alerts 100km * protected (t-1) -0.0079 -0.0102 -0.0117
(0.0179) (0.0170) (0.0170)

R-squared 0.0025 0.0034 0.0036
number of observations 23,045,304 23,045,304 23,045,304
number of cells 2,880,663 2,880,663 2,880,663

controls
cell fixed effects yes yes yes
year fixed effects yes yes yes
geography no yes yes
observed policy no no yes

Notes: The table reports fixed effects coefficients for Equation 2-1 (Section 2.3). The dependent variable
is the cell-level deforestation increment (deforested area in cell i and year t as a share of total cell area).
Reported independent variables are neighborhood alert intensities in year t−1 (total alert area as a share of
total neighborhood area), and interaction terms between neighborhood alert intensities and cell protection
status in year t− 1 (d=1 if cell i protected). All specifications contain both 50km and 100km neighborhood
rings. The no/yes markers in bottom rows indicate the inclusion of the following sets of cell-level controls:
(i) cell and year fixed effects; (ii) geography: measuring and monitoring satellite visibility, precipitation, and
temperature; and (iii) observed policy: alert intensity, protection status, and priority municipality status.
The cell-by-year panel includes 2,880,663 cells located within 750km from the Brazilian Amazon biome
southeast border and covers the 2006 through 2014 period. Standard errors are robust and clustered at the
municipality level. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.

caught and heavier penalties. Moreover, the evidence lends support to the
action plan’s novel siting strategy — protection effectively blocked advancing
deforestation from moving into protected forests.

2.5.2
Robustness: Extended Neighborhoods

Results from Table 2.3 revealed that the relationship between
neighborhood forest clearing activities and local deforestation pressures is not
stable across increasingly distant neighborhoods. As a robustness check, I
test whether the main finding that protection serves as a shield against
advancing deforestation holds when accounting for alert intensity through
extended neighborhoods. Even columns in Table 2.5 report results for
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Table 2.5: Robustness – Extended Neighborhoods

deforestation increment in cell (t)

(1) (2) (3) (4) (5) (6)

alerts 50km (t-1) 0.0376* 0.0373* 0.0376* 0.0372* 0.0347* 0.0343*
(0.0204) (0.0202) (0.0197) (0.0195) (0.0191) (0.0189)

alerts 50km * protected (t-1) -0.0385* -0.0401** -0.0376* -0.0395** -0.0371** -0.0393**
(0.0201) (0.0201) (0.0193) (0.0194) (0.0185) (0.0187)

alerts 100km (t-1) 0.0039 0.0120 0.0021 0.0112 0.0003 0.0098
(0.0161) (0.0148) (0.0150) (0.0142) (0.0147) (0.0140)

alerts 100km * protected (t-1) -0.0079 -0.0022 -0.0102 -0.0043 -0.0117 -0.0035
(0.0179) (0.0179) (0.0170) (0.0178) (0.0170) (0.0179)

alerts 150km (t-1) -0.0142 -0.0164 -0.0172
(0.0182) (0.0176) (0.0172)

alerts 150km * protected (t-1) -0.0050 -0.0049 -0.0078
(0.0168) (0.0161) (0.0148)

R-squared 0.0025 0.0025 0.0034 0.0034 0.0036 0.0036
number of observations 23,045,304 23,045,304 23,045,304 23,045,304 23,045,304 23,045,304
number of cells 2,880,663 2,880,663 2,880,663 2,880,663 2,880,663 2,880,663

controls
cell fixed effects yes yes yes yes yes yes
year fixed effects yes yes yes yes yes yes
geography no no yes yes yes yes
observed policy no no no no yes yes

Notes: The table reports fixed effects coefficients for Equation 2-1 (Section 2.3). The dependent variable
is the cell-level deforestation increment (deforested area in cell i and year t as a share of total cell area).
Reported independent variables are neighborhood alert intensities in year t−1 (total alert area as a share of
total neighborhood area), and interaction terms between neighborhood alert intensities and cell protection
status in year t − 1 (d=1 if cell i protected). Odd columns replicate the gradual inclusion of controls in
the benchmark specification from Table 2.4; even columns perform the same gradual inclusion of controls
with an extended maximum neighborhood ring of 150km. The no/yes markers in bottom rows indicate the
inclusion of the following sets of cell-level controls: (i) cell and year fixed effects; (ii) geography: measuring
and monitoring satellite visibility, precipitation, and temperature; and (iii) observed policy: alert intensity,
protection status, and priority municipality status. The cell-by-year panel includes 2,880,663 cells located
within 750km from the Brazilian Amazon biome southeast border and covers the 2006 through 2014 period.
Standard errors are robust and clustered at the municipality level. Significance levels: *** p<0.01, ** p<0.05,
* p<0.10.

specifications that use 150km as the maximum neighborhood ring and
gradually include the sets of controls. For comparison purposes, the table also
reproduces coefficients from Table 2.3 in odd columns. Reassuringly,
estimated coefficients remain largely robust both in magnitude and
significance across specifications. Thus, accounting for clearing activities in
more distant regions does not affect the finding that legal protection
effectively protects territory within its domain from deforestation threats.

2.5.3
Heterogeneity: Protection Type and Transportation Infrastructure

This section individually explores two different dimensions of
heterogeneity: protection type and proximity to transport infrastructure. So
far, the analysis has treated protected territory as a single, uniform group.
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Table 2.6: Heterogeneity – Protection Types

deforestation increment in cell (t)

(1) (2) (3)

alerts 50km (t-1) 0.0368* 0.0369* 0.0341*
(0.0200) (0.0193) (0.0187)

alerts 50km * protected indigenous (t-1) -0.0239 -0.0222 -0.0207
(0.0205) (0.0198) (0.0189)

alerts 50km * protected strict (t-1) -0.0328* -0.0299 -0.0331*
(0.0197) (0.0193) (0.0190)

alerts 50km * protected sustainable (t-1) -0.0622*** -0.0655*** -0.0660***
(0.0196) (0.0186) (0.0184)

alerts 100km (t-1) 0.0049 0.0030 0.0009
(0.0155) (0.0145) (0.0142)

alerts 100km * protected indigenous (t-1) -0.0258* -0.0303** -0.0333**
(0.0140) (0.0132) (0.0136)

alerts 100km * protected strict (t-1) -0.0048 -0.0044 0.0017
(0.0138) (0.0136) (0.0139)

alerts 100km * protected sustainable (t-1) 0.0417 0.0470 0.0491
(0.0369) (0.0363) (0.0347)

R-squared 0.0025 0.0034 0.0037
number of observations 23,045,304 23,045,304 23,045,304
number of cells 2,880,663 2,880,663 2,880,663

controls
cell fixed effects yes yes yes
year fixed effects yes yes yes
geography no yes yes
observed policy no no yes

Notes: The table reports fixed effects coefficients for Equation 2-1 (Section 2.3). The dependent variable
is the cell-level deforestation increment (deforested area in cell i and year t as a share of total cell area).
Reported independent variables are neighborhood alert intensities in year t−1 (total alert area as a share of
total neighborhood area), and interaction terms between neighborhood alert intensities and type-specific cell
protection status in year t− 1 (d=1 if cell i protected). Protection types are indigenous lands (indigenous),
strictly protected areas (strict), and protected areas for sustainable use (sustainable). The no/yes markers in
bottom rows indicate the inclusion of the following sets of cell-level controls: (i) cell and year fixed effects; (ii)
geography: measuring and monitoring satellite visibility, precipitation, and temperature; and (iii) observed
policy: alert intensity, protection status, and priority municipality status. The cell-by-year panel includes
2,880,663 cells located within 750km from the Brazilian Amazon biome southeast border and covers the
2006 through 2014 period. Standard errors are robust and clustered at the municipality level. Significance
levels: *** p<0.01, ** p<0.05, * p<0.10.

Yet, Amazon protected territory is divided into three distinct categories:
indigenous lands, strictly protected areas, and protected areas for sustainable
use. These categories have been found to differ in terms of their impact on
local deforestation outcomes, arguably due to their being allocated in regions
under systematically lower or greater deforestation pressures (Nepstad et al.,
2006; Nolte et al., 2013; Pfaff et al., 2014, 2015b). If a specific type of
protected territory is located in a less risky area, its actual contribution to
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avoid deforestation in that area might be relatively smaller. Moreover,
because each protection type has its own set of regulations regarding illegal
forest conversion and associated punishments (see Section 2.2.3), the
estimated shielding capacity for the full set of protected cells need not be
homogeneous across protection types.

In light of this, I re-estimate protection shielding capacity, but now
distinguish between the type of protection in each cell. Table 2.6 presents
estimated coefficients under the gradual inclusion of controls. Shielding
capacity varies across protection types. Although point estimates for this
neighborhood’s interaction coefficients are all negative, the shielding effect is
stronger in magnitude and significance in protected areas for sustainable use.
Strict protection provides some shielding, albeit at lower statistical
significance, and indigenous lands do not appear to significantly block
advancing clearings. Differences in regulation might explain the variation in
shielding capacity across protection types, but the actual details of how
different institutional settings influence shielding are yet to be understood.
Finally, the significantly negative coefficient for the interaction between
enforcement intensity in the outer 100km ring and indigenous lands is a clear
deviation from the pattern observed thus far. There is no evidence to suggest
that a specific protection type was systematically assigned to more or less
risky regions in the sample, so potential underlying reasons for this are still
under investigation.

The second set of heterogeneity exercises assesses if shielding capacity
varies according to the cell-level distance to transport infrastructure. As
transportation within the Amazon is predominantly terrestrial, proximity to
roads has been shown to be strongly correlated with deforestation outcomes
and to drive relevant heterogeneity across the landscape (Angelsen and
Kaimowitz, 1999; Chomitz and Thomas, 2003; Pfaff et al., 2007; Herrera,
2015; Pfaff et al., 2015b; Busch and Ferretti-Gallon, 2017). Data on road
networks in the Brazilian Amazon come from the Brazilian National
Department for Transport Infrastructure (DNIT) and are only available as a
2010 spatial cross-section. Table 2.7 presents estimated coefficients for
specifications that include double and triple interactions with the cell-level
distance to the nearest road. Results indicate that proximity to roads tends
to nullify protection’s shielding effect. This is more easily seen in Figure 2.6,
which plots the difference in forest clearing outcomes between protected and
unprotected cells under the same level of deforestation pressure along select
percentiles of the distance to roads distribution. For cells that are very close
to roads, protection seems to be incapable of holding back deforestation; as
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Table 2.7: Heterogeneity – Distance to Transport Infrastructure

deforestation increment in cell (t)

(1) (2)
roads, all roads, paved

alerts 50km (t-1) -0.0097 0.0260
(0.0148) (0.0210)

alerts 50km * protected (t-1) -0.0106 -0.0099
(0.0202) (0.0226)

alerts 50km * distance to road (t-1) 0.1548*** 0.0099
(0.0435) (0.0110)

alerts 50km * protected * distance to road (t-1) -0.1211** -0.0239*
(0.0508) (0.0127)

alerts 100km (t-1) 0.0164 0.0274
(0.0144) (0.0209)

alerts 100km * protected (t-1) -0.0028 -0.0302
(0.0245) (0.0318)

alerts 100km * distance to road (t-1) -0.0304 -0.0357**
(0.0276) (0.0158)

alerts 100km * protected * distance to road (t-1) -0.0108 0.0276
(0.0351) (0.0202)

d=1 if protected * distance to road (t-1) 0.0021** -0.0024**
(0.0009) (0.0011)

d=1 if alert issued (t-1) 0.0004 0.0005
(0.0007) (0.0007)

d=1 if priority (t-1) -0.0016** -0.0017**
(0.0006) (0.0007)

d=1 if protected (t-1) -0.0005 0.0034***
(0.0010) (0.0009)

R-squared 0.0040 0.0037
number of observations 23,045,304 23,045,304
number of cells 2,880,663 2,880,663

controls
cell fixed effects yes yes
year fixed effects yes yes
geography yes yes
observed policy yes yes

Notes: The table reports fixed effects coefficients for Equation 2-1 (Section 2.3). The dependent variable
is the cell-level deforestation increment (deforested area in cell i and year t as a share of total cell area).
Reported independent variables are neighborhood alert intensities in year t − 1 (total alert area as a share
of total neighborhood area), and double and triple interaction terms between neighborhood alert intensities,
cell protection status in year t−1 (d=1 if cell i protected) and cell-level distance to nearest road (in 100km).
Column headers indicate if specification refers to all roads (column 1) or only paved roads (column 2)
The no/yes markers in bottom rows indicate the inclusion of the following sets of cell-level controls: (i)
cell and year fixed effects; (ii) geography: measuring and monitoring satellite visibility, precipitation, and
temperature; and (iii) observed policy: alert intensity, protection status, and priority municipality status.
The cell-by-year panel includes 2,880,663 cells located within 750km from the Brazilian Amazon biome
southeast border and covers the 2006 through 2014 period. Standard errors are robust and clustered at the
municipality level. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Figure 2.6: Impact Accounting for Distance to Transport Infrastructure

0.00

0.05

0.10

0.15

0.20

0.25

1% 10% 25% 50% 75% 90% 99%

e
s
ti
m

a
te

d
 i
m

p
a
c
t

percentile in distance to road distribution

Effect Difference Between Unprotected and Protected Cells (Given Level of 50km Alerts)

roads roads, paved

Notes: The graph plots the difference in forest clearing outcomes between protected and unprotected cells
under the same level of deforestation pressure along select percentiles of the distance to roads distribution.

cells become more isolated from transport infrastructure, protection’s
shielding effect becomes increasingly more accentuated. This is an intuitive
result considering that roads facilitate access to forest areas and might
thereby increase deforestation risk. Figure 2.6 also shows that the influence of
roads is not restricted solely to paved ones, corroborating the perception that
the network of unpaved roads in the Amazon plays a relevant role in regional
mobility.

2.5.4
Counterfactual Exercises: Aggregate Deforested Area

The cell-level analysis provides empirical evidence that protected
territory serves as a local shield against deforestation pressures. Yet, to gain
insight into the economic relevance of these cell-level effects, I conduct
counterfactual exercises that explore deforestation trends under hypothetical
scenarios that revoke protection. These exercises build on the benchmark
specification (Table 2.4, column 3) to estimate cell-level forest clearing
outcomes had protection never been assigned. In practice, this is performed
by setting protection status variables to 0 across cells and years.

Figure 2.7 compares the total deforestation increment observed in sample
protected territory with that estimated in the counterfactual scenario that
revokes all Amazon protection. Counterfactual deforestation is systematically
larger, indicating that these regions would have seen more forest clearings in
the absence of protection’s shielding effect. The difference between observed
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Figure 2.7: Counterfactual Exercise – No Protection
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Notes: The graph plots annual deforestation in counterfactual and observed scenarios. The counterfactual
scenario revokes all protected territory. Totals are calculated by adding the cell-level deforestation increment
across sample cells that were under protection during part or all of the sample period.

Figure 2.8: Counterfactual Exercise – No Protection, by Type
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Notes: The graph plots annual deforestation in counterfactual and observed scenarios. The counterfactual
scenarios revoke type-specific protected territory. Totals are calculated by adding the cell-level deforestation
increment across sample cells that were under type-specific protection during part or all of the sample period.

and counterfactual deforestation is most significant in years of more intense
deforestation activity, a finding that is consistent with the idea that protection
serves as an effective shield insofar as areas under its domain face an actual
threat.

To explore heterogeneity, this exercise is repeated for type-specific
protection. Plots in Figure 2.8 are analogous to that of Figure 2.7, but each
refers to a separate hypothetical scenario in which only type-specific
protection is revoked. Again, protected areas exhibit stronger shielding
capacity than indigenous lands, with counterfactual deforestation being
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Table 2.8: Counterfactual Exercise – No Protection, Full Sample Impact

year deforested area (in hectares)

observed counterfactual:
no protection

2007 1,001,963 1,010,052
2008 1,088,463 1,083,634
2009 524,428 535,353
2010 483,821 481,643
2011 467,814 454,895
2012 361,680 351,589
2013 466,920 447,774
2014 412,213 398,559

total 4,807,300 4,763,499

Notes: The table reports annual deforestation in observed and counterfactual scenarios. The counterfactual
scenario revokes all protected territory. Totals are calculated by adding the cell-level deforestation increment
across all sample cells.

systematically and significantly larger than that observed across sample
years. Thus, forests within the domain of strictly protected areas or protected
areas for sustainable use would have suffered greater losses had it not been
for legal protection. Indigenous lands, in contrast, appear to have benefited
from shielding only in the very high-pressure years following the adoption of
the PPCDAm. Although counterfactual deforestation under revoked
indigenous lands is larger than observed, the difference between them is not
statistically significant for most of the sample period.

Thus far, results corroborate protected territory’s capacity to locally
shield forest areas from deforestation pressures. Moreover, they serve as
evidence that assigning protection to a given area influences the spatial
dynamics of forest clearings in that area. This does not imply, however, that
protection reduces aggregate deforestation levels. Table 2.8 reports annual
deforested area in the sample, totaling deforestation outcomes in both
protected and unprotected territories. There is remarkably little difference in
forest loss between observed and hypothetical scenarios. As such, protection
does not appear to reduce deforestation. Rather, it stands in the way of
advancing clearings, which, instead of pushing forward into protected forest,
then relocate to unprotected territory. Overall, these findings suggest that
protection effectively deflects harm and thereby conserves the integrity of
whatever lies under its domain — deflected deforestation, however, seems to
finds its way to unshielded territory.
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2.6
Final Remarks

This analysis yields important policy implications that can potentially
contribute to Brazil’s goal of further reducing Amazon deforestation. The
evidence that protected territories effectively shield forests within their
domain from forest clearings attests to protection’s effectiveness, and
corroborates the action plan’s use of these territories as a means of blocking
advancing deforestation. Additionally, protected territories have been shown
to influence regional deforestation dynamics. However, the finding that
protection deflects clearings elsewhere points towards the need for policy
interaction, as the strategic targeting of protected territory should be
accompanied by complementary conservation efforts that effectively reduce
deforestation. Exploring potential interactions could improve policy design,
allowing policymakers to strengthen conservation by building on
complementarities across interventions, eliminating redundancies, and
mitigating potentially harmful impacts (Robalino et al., 2015; Pfaff and
Robalino, 2017; Sims and Alix-Garcia, 2017).
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Chapter 3
The Forest Awakens

3.1
Introduction

In the decade following the launch of the PPCDAm, Amazon
conservation efforts were synonymous with fighting deforestation. These
efforts were largely successful, directly contributing to a reduction in clearing
rates of more than 80%.1 While this remarkable deforestation slowdown drew
vast attention from policymakers, academics, and the civil society, another —
no less remarkable — phenomenon occurred quietly (see Figure 3.1). The
area covered by secondary vegetation in the Amazon increased by nearly
70%, rising from less than 10 million hectares in 2004 to more than 17 million
hectares ten years later (Inpe and Embrapa, 2016a). Secondary vegetation,
defined as vegetation that grows in areas that have seen clear-cut
deforestation, is a measure of regeneration. Thus, by 2014, nearly a quarter
of the area historically cleared in the Brazilian Amazon already contained
tropical forest regrowth.

That a phenomenon of this magnitude remained unnoticed seems
unlikely; yet it is not an overstatement to claim that secondary vegetation
was invisible from both policy and empirical perspectives. In its first decade,
there were no policy efforts within the scope of the PPCDAm aimed at either
promoting regeneration or protecting existing secondary vegetation. Remote
sensing data on Amazon-wide regeneration was not available until the early
2010s, and — most importantly — Brazil’s world-renowned satellite-based
tropical forest monitoring systems, the key tools for effectively targeting
Amazon law enforcement efforts, completely overlooked tropical regrowth.

This chapter explores the unique empirical setting of Amazon
regeneration, particularly its invisibility to monitoring systems, to assess the
existence of policy spillovers. In light of the improvement in law enforcement
capacity brought about by the adoption of satellite-based high-frequency
monitoring of deforestation activity, it proposes two alternative mechanisms

1See Chapter 1 for detailed descriptions of action plan policies and a survey of the
associated evaluation literature.
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Figure 3.1: Brazilian Amazon Deforestation and Regeneration, 2000–2014
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Notes: The graph plots the Brazilian Amazon annual deforestation rate and total secondary vegetation cover,
and marks the year the action plan was launched. Secondary vegetation is defined as that which grows in
deforested areas. Data sources: PRODES/Inpe (deforestation), TerraClass/Inpe and Embrapa (secondary
vegetation).

for how environmental law enforcement targeting the clearing of primary
(never deforested) vegetation might affect tropical regrowth. Both
mechanisms relate the perceived risk of engaging in an illegal activity and the
demand for deforested area. Clearing tropical forest without due
licensing/authorization is illegal in the Brazilian Amazon, but so is using the
land in areas that have been illegally deforested.2 As such, if stricter law
enforcement increases the perceived risk of getting caught and punished for
an environmental infraction, potential offenders might respond by altering
both forest clearing and land use practices. On the one hand, offenders might
seek to evade enforcement by shifting their activities to areas that are less
likely to be targeted. In this scenario, instead of clearing primary forest and
thereby risk getting caught by the monitoring system, offenders cut
secondary forest and use these areas for production instead. Consequently,
demand for previously deforested areas increases, and the extent of secondary
vegetation decreases. On the other hand, enforcement might have a broad
deterrence effect, causing offenders to give up on using deforested land
altogether. With decreased demand for previously deforested areas, these
areas are eventually abandoned, allowing a natural process of regeneration to
take place and thereby increasing the extent of secondary vegetation.
Hypothesized effects on regeneration in both displacement (the former) and

2See Section 2.2 for further details on deforestation as an illegal activity and associated
criminal and administrative sanctioning.
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deterrence (the latter) scenarios constitute policy spillovers, as enforcement
exclusively targeted the loss of primary vegetation and was not aimed at
influencing forest regrowth. Yet, which mechanism dominates and, in fact,
whether enforcement affected regeneration at all remain to be answered
empirically.

I investigate the potential relationship between law enforcement and
secondary vegetation using a spatially explicit dataset covering the full extent
of the Brazilian Amazon. Although satellite-based panel data on regeneration
serve as the basis for dataset construction, I argue that the long-term cross-
sectional difference in secondary vegetation area is less prone to measurement
error than the time-series variation and is, thus, a preferable measure of
the extent of regeneration. Because data on secondary vegetation are built
from interpretation of satellite imagery, forest regrowth must be visible in the
image. Yet, as imagery is inherently limited by the satellite’s spatial resolution,
it is plausible to expect that any given deforested area must accumulate
sufficient natural biomass to be classified as secondary vegetation. Tropical
regeneration is a time-consuming process that may take decades to occur in
abandoned deforested areas (Alves et al., 1997; Aide et al., 2000; Guariguata
and Ostertag, 2001), but data for secondary vegetation in the Amazon is only
available for select years in the 2004 through 2014 period. Hence, to avoid
noise from the time-series variation, I collapse the panel data into a cross-
sectional ten-year difference in secondary vegetation coverage. However, I still
use information on the persistence of secondary vegetation to build an arguably
more robust measure of regeneration and thereby mitigate concerns regarding
misclassification of degraded forest.

Based on this spatial cross-sectional setup, and using georeferenced
deforestation alerts to capture law enforcement, the analysis tests whether
cell-level changes in the extent of secondary vegetation are associated with
the intensity of environmental enforcement in a cell’s surroundings. Results
support the existence of both policy and spatial spillovers — enforcement
activity happening within 20km of a cell had a significant impact on
regeneration outcomes inside that cell. The spillover effect is sizable. An
increase of one standard deviation in the intensity of neighborhood
enforcement is estimated to increase the probability of cell-level expansion in
secondary vegetation coverage by 11% of the sample mean, and to increase
the area of secondary vegetation inside the cell by 6% of the sample mean.
Counterfactual exercises show that feasible improvements to Brazil’s tropical
forest monitoring system could contribute to increase secondary vegetation
cover by nearly 300 thousand hectares. The overall stability of estimated
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coefficients across the inclusion of controls for spatially explicit observables
suggests that the proposed strategy adequately addresses concerns regarding
omitted variable bias. I interpret these findings as evidence that
deforestation-oriented enforcement affected regeneration via the deterrence
mechanism, in which environmental offenders, once faced with a higher
perceived risk of illegal activity, abandon the region they are operating in
and thereby allow a natural process of forest regrowth to occur.

The analysis also documents important heterogeneity across proximity
to local remaining primary forest cover. The spillover effect of law enforcement
on regeneration appears to be largest in places that have undergone neither too
much nor too little deforestation: in the former, forest clearings and non-forest
land use are probably more consolidated, making abandonment and subsequent
regrowth less likely; in the latter, there is still relatively little area for the forest
to grow back in.

Chapter 1 makes the case for the growing relevance of accounting for
spillovers in the context of conservation policy impact evaluation (Baylis et al.,
2016; Pfaff and Robalino, 2017). Several studies provide empirical evidence
for the existence of conservation policy spillovers, but typically in contexts
other than law enforcement. The most common examples are assessments of
externalities from PES programs (Alix-Garcia et al., 2012, 2013; Jayachandran
et al., 2017), and leakage or halo effects from protected territory (Herrera, 2015;
Robalino et al., 2017). The literature assessing law enforcement under the
PPCDAm has largely focused on the policy’s direct impacts on deforestation.
Although stricter enforcement has been shown to have significantly reduced
Amazon forest clearings (Hargrave and Kis-Katos, 2013; Assunção et al.,
2017b), it is the priority municipalities policy that, among all action plan
efforts, has received most attention in the enforcement spillover literature.
Results are mixed, with Cisneros et al. (2015) finding no evidence of the policy’s
deterrent effect on priority municipalities’ neighbors, but both Andrade (2016)
and Assunção et al. (2018b) documenting significant reductions in non-priority
municipalities located near priority ones. To the best of my knowledge, this is
the first assessment of tropical regeneration as a spillover of PPCDAm policies,
and of law enforcement specifically, as well as the first study in the economic
literature to explore the rich spatial data recently released on land use in
Amazon deforested areas.

This analysis also speaks to a growing literature on the importance
of tropical regeneration. The environmental services provided by secondary
vegetation have been widely documented. These include, but are not limited to,
carbon sequestration, reestablishment of hydrological services, soil protection,
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and creation of ecological corridors for fauna and flora (Almeida et al., 2010;
Caviglia-Harris et al., 2015; Uriarte and Chazdon, 2016; Crouzeilles et al.,
2017; Tyukavina et al., 2017). This chapter contributes to this literature by
shedding light on how policy influences regeneration in an empirical setting
where this phenomenon is happening at scale.

Finally, an important disclaimer is in order: this work in no way claims
that primary and secondary forests are biologically or ecologically equivalent,
nor does it mean to argue that regeneration makes up for the devastation
caused to the Brazilian Amazon over years of predatory deforestation. Rather,
its goal is to shed light upon a phenomenon which is sizable, ongoing, and
largely unknown. A better understanding of the remarkable growth in tropical
regeneration could help inform decision-makers, shape future policy, and
ultimately contribute to ongoing efforts for conserving the Amazon forest while
promoting regional development.

The chapter proceeds as follows: Section 3.2 describes the institutional
context and proposes mechanisms through which, given this context, law
enforcement could influence regeneration; Section 3.3 details the empirical
strategy; Section 3.4 presents dataset and variable construction procedures;
Section 3.5 reports and discusses estimation results and counterfactual
simulations; and Section 3.6 concludes with policy implications.

3.2
Institutional Context

Through 2014, tropical forest regrowth in the Amazon was largely
invisible to conservation policy. This was partly due to a lack of available data.
Indeed, through the early 2010s, Brazil had no system to track or measure
Amazon-wide regeneration. The first map of tropical secondary vegetation,
referring to land use in 2008, was only produced in 2012; it took another four
years for data on 2004 and 2014 secondary vegetation cover to be released
(see Appendix B.1.3). More importantly, perhaps, was the fact that, in its first
decade, the PPCDAm neither promoted regeneration, nor explicitly sought
to protect existing secondary vegetation. Rather, it focused exclusively on
combating the clearing of primary vegetation. Considering the historically
high rates of Amazon deforestation observed in the early 2000s, targeting
primary forest loss seemed reasonable. Efforts undertaken within the scope
of the conservation action plan were therefore built around containing primary
forest clearings.

In light of this, and in a context of mostly illegal deforestation, improving
environmental monitoring and law enforcement was a priority under the
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PPCDAm. The cornerstone of enforcement policy was DETER, the new
satellite monitoring system.3 The adoption of DETER introduced near-real-
time monitoring of forest disturbances, allowing Amazon clearings to be
detected and acted upon in a more timely manner. By providing regular
and high-frequency information on deforestation hot spots, it became the
central tool for targeting law enforcement. However, the loss of secondary
vegetation remained entirely invisible to DETER and, thus, to environmental
authorities. Appendices B.1.1 and B.1.2 provide detailed explanations of the
workings of Brazil’s satellite-based systems to monitor and measure Amazon
deforestation, but, crucial to this analysis, is the fact that the systems were
built to detect solely the loss of primary vegetation. The country first started
mapping Amazon deforestation the late 1980s. Since then, once an area of
primary forest has been cleared, it is not revisited in future satellite imagery
and becomes part of what is known as an accumulated deforestation mask.
When introduced in the mid-2000s, DETER was designed to scan for signs
of forest disturbance strictly outside this mask. Consequently, the loss of
secondary vegetation is not accounted for in Amazon deforestation figures,
nor does it trigger any forest clearing alerts in the DETER system.

This institutional setting suggests two alternative mechanisms for a
potential effect of deforestation-oriented law enforcement on regeneration.
On the one hand, stricter monitoring and enforcement enabled by DETER
might have displaced demand for cleared areas towards secondary forest — I
henceforth refer to this as the displacement channel. Because the system used
to target enforcement does not detect secondary deforestation, there is a lower
chance of an offender getting caught and punished if clearing secondary versus
primary vegetation. Hence, a potential offender seeking to use cleared land in
the Amazon could attempt to elude monitoring by shifting his deforestation
activities to regenerated areas. In this scenario, one would expect to see a
decrease in the extent of secondary vegetation.

Three elements arguably favored this change in forest clearing behavior.
First, the extent of secondary vegetation was already sizable in the mid-
2000s (see Figure 3.1), providing ample supply of regenerated areas that were
invisible to the monitoring system. Second, because secondary vegetation is
typically sparser than primary forest, clearing these areas is likely easier and
less costly. Finally, it could be argued that poorer soil quality in areas covered
by secondary forest would limit displacement towards previously cleared areas,
due to lower expected gains from land use. This, however, is most relevant to

3See Section 2.2 for a discussion about the predominantly illegal nature of Amazon forest
clearings and a detailed description of the novel monitoring system.

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 3. The Forest Awakens 66

crop farming, which covered less than 6% of the area historically cleared in the
Brazilian Amazon through 2014 (Inpe and Embrapa, 2016a). With over two
thirds of Amazon deforested areas being used as pasture, which demands less
nutrients from the soil, it seems reasonable to expect that potential offenders
would seek to minimize their chance of getting caught, even if at a relatively
minor cost to production.4

On the other hand, because using illegally cleared areas in the Amazon is
illegal in and of itself, stricter monitoring and enforcement might have broadly
inhibited illegal activity and thereby lowered the demand for deforested areas
— I henceforth refer to this as the deterrence channel. Cleared areas that are
no longer in use are often abandoned. This reduces human interference in these
areas and allows a natural process of regeneration to occur. In this case, one
would expect to see an increase in the extent of secondary vegetation.

The strong deterrent effect of law enforcement on aggregate primary
deforestation documented in the literature (Hargrave and Kis-Katos, 2013;
Assunção et al., 2017b) is consistent with either channel. If forest clearings
displaced towards unmonitored areas to evade satellite-based law
enforcement, Amazon secondary vegetation could have suffered significant
losses after the introduction of the PPCDAm. Instead, tropical regeneration
actually flourished in the action plan’s first decade, increasing by about 7
million hectares (see Figure 3.1). This increase points towards a prevalence of
the deterrence mechanism, but aggregate figures might hide underlying
regional heterogeneity. Whether law enforcement influenced secondary
vegetation at all and through which mechanisms remain to be answered by
empirical assessments. As law enforcement exclusively targeted the clearing
of primary vegetation, any significant effect of it on secondary vegetation —
regardless of the effect’s sign — can be taken as evidence of policy spillovers.

3.3
Empirical Strategy

A key empirical challenge when looking at secondary vegetation as an
outcome of interest is to account for the time it takes for a forest to regenerate.
Tropical regrowth is a time-consuming phenomenon. The literature indicates
that natural regeneration following the abandonment of once agricultural lands

4The case of Zona Bragantina, in eastern Pará state, indicates that the conversion of
secondary forests into agricultural lands is not only a theoretical possibility, but a practical
one. Vieira (2013) documents that, through 2008, the region saw reductions in both primary
and secondary forest areas, alongside an increase in pasture areas in the 2000s. While not
necessarily a response to enforcement activities, this anecdotal evidence supports the idea
that the clearing of secondary forest areas can offer economically viable alternatives for
agricultural production in the Brazilian Amazon.
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extends over several decades before aboveground biomass, stem density, and
species richness are restored to mature forest levels, with estimates ranging
from 30 to 40 years (Aide et al., 2000; Chazdon, 2008). Although reestablishing
plant composition of old-growth forest is likely to take centuries (Guariguata
and Ostertag, 2001), empirical assessments of Brazilian Amazon regeneration
indicate that, 18 years after abandonment, secondary vegetation biomass was
roughly half that of primary forest (Alves et al., 1997).

This has important implications for the detection of secondary forests
in satellite imagery. Because clear-cut deforestation is a discrete process, it
can be easily detected by comparing land cover images that refer to a short
time difference, like a day. In contrast, regeneration is a continuous process
that will only change incrementally over short periods of time. As satellite
imagery is inherently limited by its spatial resolution, it is plausible to expect
that any given deforested area must accumulate sufficient natural biomass
to be classified as secondary vegetation during image interpretation. Short-
term time-series variation in regeneration data derived from remote sensing
is therefore prone to measurement error. The proposed empirical strategy
mitigates concerns about noisy time-series variation by using a long-term
cross-sectional difference in secondary vegetation coverage as the outcome of
interest. The section follows with a discussion of identification, and closes with
details on implementation of the empirical strategy in the context of Amazon
regeneration.

3.3.1
Identification

The empirical strategy aims at identifying if environmental law
enforcement influenced tropical regeneration in a context in which secondary
vegetation is invisible to monitoring systems used to target enforcement (see
Section 3.2). To empirically explore the aforementioned displacement or
deterrence mechanisms, the strategy tests if enforcement in a cell’s
neighborhood affected regeneration outcomes inside the cell. If found to be
significant, estimated impacts serve as evidence of policy spillovers to the
extent that enforcement during the period of interest was not aimed at either
promoting or protecting secondary vegetation. In addition, significant results
also point towards spatial spillovers, as they capture the effect of enforcement
in one locality on regeneration outcomes in another.

The benchmark estimation equation is:

∆regenerationi =
∑
n∈∂i

βnenforcementn,i +X ′iθ + εi (3-1)
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where ∆regenerationi is the variation in regenerated area in cell i over a
given time period; for each of cell i’s n neighborhoods, enforcementn,i is a
measure of law enforcement intensity during the same time period; Xi is a
vector of cell-level controls for location, weather, satellite visibility, baseline
deforested area, and observed conservation policy; and εi is the cell-level
idiosyncratic error. Estimates are robust to heteroskedasticity. For each cell,
multiple neighborhoods are formed by concentric rings of increasing diameter
around it. Coefficients βn therefore capture the average cell-level response of
regeneration to enforcement occurring increasingly further away. If significant,
βn < 0 indicates that spillovers occur via the displacement channel, in which
demand for cleared land shifts towards regenerated areas, while βn > 0
lends support to the deterrence channel, in which previously cleared areas
are abandoned and left to regenerate.

The validity of the identification strategy hinges on it adequately dealing
with possible endogeneity between a cell’s regeneration outcomes and law
enforcement in its surroundings. Dataset construction is such that each of
the cell’s neighborhood rings contains neither the cell itself nor any of the
smaller concentric rings (see Appendix A.1). The coefficients for neighborhood
regressors therefore estimate the impact of an event occurring in the region
outside a cell on an outcome observed inside that cell. The fact that Amazon
regeneration is invisible to the satellite monitoring system reinforces this point,
as it eliminates the risk of there being reverse causality between the outcome
of interest and the key independent variables. Tackling omitted variable bias
in this specification is less straightforward. As previously discussed, cross-
sectional time-difference data is more suitable to capture the response of a time-
consuming process like regeneration. This, however, prevents the use of fixed
effects to address the reflection problem (Manski, 1993), making estimation
more vulnerable to omitted variable bias. The proposed strategy mitigates
this by including a host of cell-level controls (see Section 3.3.2). Although I
cannot directly test whether potential sources of bias have been fully accounted
for in the benchmark specification, the stability of estimated coefficients across
the gradual inclusion of controls suggests that the analysis’ main findings do
not suffer from significant bias (see Section 3.5.1).

3.3.2
Implementation

The implementation of the proposed empirical strategy builds on the
empirical setting for remote sensing-based measurement of Amazon
regeneration. This setting drives the construction of two different outcome
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variables. First, as previously argued, the long-term cross-sectional difference
in secondary vegetation coverage is a preferable measure for the extent of
regeneration, as compared to potentially noisy short-term time-series
variation. Panel data on Amazon regeneration are only available for select
years from 2004 through 2014 (see Appendix B.1.3), such that outcome
variables are determined as the cross-sectional ten-year (2004–2014)
difference in cell-level secondary vegetation coverage. Yet, minor variations in
this long-term difference might still capture inaccuracies from the satellite
imagery interpretation procedure. To mitigate concerns about noisy
measurements, the first dependent variable of interest is an indicator that
flags whether expansion in regenerated area during the sample decade
exceeded a minimum threshold. In benchmark specifications, it is set to 10%
of cell area, equivalent to a sample average of 8.1ha. Given the binary nature
of this dependent variable, specifications that use it can be interpreted as
linear probability models. I henceforth refer to this indicator as the
probability-based dependent variable.

Second, the definition of secondary vegetation in the original data
affects the interpretation of results. Appendix C provides a detailed account
of the technical background to this discussion, but the logic can be
summarized as follows. By construction, the original land use data do not
distinguish between degraded primary forest and actual regeneration.
Consequently, areas that are recorded as containing secondary vegetation
might actually be covered by remaining primary vegetation, having seen no
tropical regrowth at all. This is aggravated by the fact that tropical
degradation is becoming increasingly relevant in the Brazilian Amazon
(Souza Jr. et al., 2013; Rappaport et al., 2018). As the probability-based
dependent variable does not distinguish between these two very different
phenomena, a second dependent variable is built to address it. The proposed
measure of non-decreasing secondary vegetation essentially sets a restrictive
criteria for regeneration: once an area has been classified as secondary
vegetation, it must remain as such throughout the remaining course of the
time series. This measure is therefore more likely to capture actual tropical
regrowth. The second dependent variables is the 2004 through 2014 cell-level
difference in area of non-decreasing secondary vegetation. I henceforth refer
to this indicator as the area-based dependent variable.

In practice, Equation 3-1 is estimated as:

∆regenerationi =
∑
n∈∂i

βnalertsn,i +X ′iθ + εi (3-2)

where ∆regenerationi is one of the two measures of secondary vegetation
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expansion in cell i from 2004 through 2014; for each of cell i’s n

neighborhoods, alertsn,i is a neighborhood-specific measure of forest clearing
alert intensity; Xi is the vector of cell-level controls for location
(municipality, longitude/latitude), weather (temperature, precipitation),
satellite visibility (visual obstructions in satellite imagery in 2004 and 2014),
baseline deforested area (accumulated deforested area through 2003), and
observed conservation policy (protected territory status, DETER alerts); and
εi is the cell-level idiosyncratic error.

The intensity of law enforcement in each neighborhood is calculated as
total DETER alert area from 2006 through 2013 as a share of neighborhood
area. A region with greater alert intensity is under greater deforestation
pressure, but also more likely to be targeted by enforcement personnel. While
the former pushes for broader clearing, the latter could deter activities that
entail forest loss. The proposed strategy does not determine that alerts should
exclusively capture one or the other; rather, it serves as an empirical test for
which of these opposing forces prevail in practice.

Controls are either time-invariant, accumulated over the sample decade,
or year-specific. Municipality indicators account for regional levels of
regeneration, as affected by municipal initiatives and economic structure. To
control for more specific geographic location and thereby for natural
characteristics like soil quality and proximity to water, the specification
includes a function of the cell’s latitude/longitude coordinates including
isolated, interaction, and quadratic terms. This saturated specification
further adjusts for local levels of regeneration, and also addresses spatial
dependence across cells in the same region. Weather variables account for
average conditions that might favor or hinder tropical regeneration, while
2004 and 2014 satellite visibility controls address errors caused by
obstructions blocking visual access to the Earth’s surface in satellite imagery.
The specification also includes total area cleared through 2003, as
regeneration can only grow in deforested areas. While it would arguably be
more intuitive to calculate the dependent variable as a share of deforested
cell area in sample start and endpoints, endogeneity concerns keep me from
doing so. Instead, dependent variables are stated as shares of cell area and
the control for the baseline extent of deforestation is included. The last set of
controls addresses conservation policies that might also contribute to
regeneration. Policy controls include an indicator flagging whether the cell
was protected at any point during the sample decade, as protection promotes
isolation from human interference, and the total number of times the cell
itself contained an alert, which serves as a measure of the intensity of local
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clearing activity.
Finally, implementation of the empirical strategy draws on one last

aspect of the Amazon setting. The literature on ecological and biophysical
determinants of regeneration shows that proximity to primary forest is a
key driver of tropical regeneration (Crouzeilles et al., 2016; Latawiec et al.,
2016; Uriarte and Chazdon, 2016). Although an in-depth assessment of the
underlying mechanisms behind this relationship are outside the scope of this
dissertation, the importance of primary forests can be broadly summarized by
their role as sources of seeds and as habitats for animals that disperse seeds,
pollinators, and predators of pathogens that threaten forest development. I
account for the relevance of proximity to primary vegetation by building the
benchmark sample from cells that contained at least 50% primary forest cover
in 2004 (see Section 3.4.3). Robustness checks explore the sensitivity of results
to variations in this primary forest cover threshold.

3.4
Data

The analysis is entirely based on spatial data that are publicly available
from a variety of sources. This section provides a brief description of
variables and presents descriptive statistics. The appendices contain detailed
information on the empirical spatial setup (Appendix A), data sources
(Appendix B), and data construction (Appendix C).

Particularly noteworthy for this chapter’s analysis is the fact that the
data for secondary vegetation cover in the Brazilian Amazon over the first
decade of the PPCDAm are fairly new. To the best of my knowledge, this is
the first empirical assessment that uses these data to explore how the action
plan influenced Amazon regeneration.

3.4.1
Main Variables

Both probability- and area-based dependent variables are built from
secondary vegetation data provided by Inpe’s and Embrapa’s TerraClass
Amazônia (see Appendix B.1.3). Original panel data are made available as
georeferenced rasters at the 30m resolution. Minicell counts are used to
calculate annual secondary vegetation coverage as a share of cell area and,
subsequently, the 2004 through 2014 difference in regenerated cell share. This
serves as the basis for the construction of an indicator variable that equals 1
if the ten-year difference is greater than or equal to 0.1, and 0 otherwise. The
indicator therefore signals whether secondary vegetation expanded over at least
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one tenth of the cell during the sample decade. The second outcome of interest
uses non-decreasing secondary vegetation minicell counts to calculate the 2004
through 2014 difference in non-decreasing secondary vegetation coverage as a
share of cell area (see Appendix C).

Although secondary vegetation might be maturing and growing in height
during the sample period, the available data do not capture these changes.
Fortunately, this does not pose a problem for identification. Because the
exercise aims at detecting whether law enforcement pushed forest clearing
into secondary vegetation or led to the abandonment of deforested areas and
thereby allowed them to regenerate, interest lies in changes in the extent of
regeneration, not its maturity or density.

The analysis uses spatial forest clearing alerts from Inpe’s DETER system
as a measure of the regional intensity of law enforcement (see Appendix B.1.2).5

As DETER alerts are used to target law enforcement, the greater the intensity
of alerts in a given area, the more likely it is that law enforcers will visit that
area. Monthly vector data on georeferenced alerts are rasterized at the 900m
resolution, such that a cell will take on a value of 1 if it contains an alert
and a value of 0 otherwise.6,7 Neighborhood intensity is calculated as the total
number of alert cells in each neighborhood over the 2006 through 2013 period
as a share of total neighborhood cell count.8

3.4.2
Controls

The benchmark specification in Equation 3-2 includes five different
sets of cell-level controls. First, it adds location controls for administrative
divisions and a function of cell-level latitude/longitude. The analysis uses the
2007 Brazilian municipal division from IBGE to assign each cell to a single
municipality. Latitude/longitude values refer to a cell’s centroid.

5To the best of my knowledge, there is no available georeferenced data on enforcement
deployment for the Brazilian Amazon.

6In practice, the rasterization algorithm assigns value 1 to a cell only if its centroid is
contained within a polygon in the vector data. Because deforestation alerts can be as small
as 25ha and the raster cells have an area of 81ha, running the algorithm on the raw vector
resulted in the loss of a large amount of alerts. I therefore created a 1km buffer around all
alerts and only then rasterized the alert-plus-buffer vector data, thereby ensuring that if a cell
fell within 1km of an alert, it would be assigned value 1 during rasterization. For simplicity,
I refer to this alert-plus-buffer area simply as the alert area throughout the chapter.

7There are a few occurrences of biweekly data, particularly in earlier DETER years. For
a month with two deforestation alert datasets, I overlay the biweekly data to calculate total
alert area for that month, as per Inpe’s recommendation.

8Missing months in vector data indicate that no alerts were issued by DETER in that
month.
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Second, monthly data compiled by Matsuura and Willmott (2015) serve
as the basis for building weather controls. The authors use multiple sources
of global weather data and apply geographic extrapolations to calculate a
regular georeferenced world grid of estimated temperature and rainfall over
land.9 Data points in the original dataset refer to grid nodes, not cells, such
that average annual temperature and total annual rainfall are calculated from
the monthly data for each Amazon grid node. Because the spatial resolution
for this dataset is much lower than 900m, cell weather values are the 2006
through 2013 averages of all grid node values within 180km of each cell.10

Third, clouds, shadows cast by clouds, and smoke from forest fires can
all affect visibility in satellite imagery and thereby introduce error in observed
land use. Inpe releases information on land areas blocked from view in the
30m raster TerraClass dataset (see Appendix B.1.3). Satellite visibility controls
indicate the share of cell area suffering from visual obstructions in 2004 and
2014.

Fourth, to account for the area where secondary forest could grow,
the 2004 PRODES mask is used to capture baseline cell-level accumulated
deforestation. This is calculated by adding across all 2004 TerraClass land use
categories (including unobservable cells) in the 30m raster, and is expressed as
a share of total cell area.

Finally, observed policy controls address other conservation efforts that
could affect local regeneration and regional law enforcement. Protected area
data come from the MMA and indigenous lands data from Funai and ISA
(see Appendix B.2). Protection status is captured by an indicator that flags
whether a cell was under protection of any kind (indigenous lands, strictly
protected areas, or protected areas for sustainable use) at any point from 2004
through 2014. The last control, the total number of DETER alerts issued in a
cell from 2006 through 2013, is a measure of local forest clearing activity built
from the same DETER dataset use to construct neighborhood enforcement
intensities.

3.4.3
Descriptive Statistics

By definition, secondary vegetation can only grow in areas that have
been deforested. The baseline sample therefore comprises all Amazon biome
cells that contained non-null deforestation through 2003. This is equivalent to

9This database has been extensively used in the economic literature both to evaluate the
impact of climate variables on economic outcomes and to provide relevant temperature and
rainfall controls (Dell et al., 2014).

10This distance ensured all sample cells had non-missing weather data.

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 3. The Forest Awakens 74

Table 3.1: Sample Deforestation and Regeneration

Brazilian Amazon baseline sample: benchmark sample:
primary forest ≥ 0 primary forest ≥ 0.5

raster cell count (900m resolution) — 1,157,648 403,191

deforested area, historical through 2003 (ha) 62,726,908 55,762,471 5,684,454
2004 secondary vegetation (ha) 9,671,861 9,307,164 1,995,152
2004 non-decreasing secondary vegetation (ha) — 4,632,612 1,126,561

deforested area, historical through 2013 (ha) 74,261,876 63,690,094 10,322,528
2014 secondary vegetation (ha) 17,305,640 14,320,640 3,445,083
2014 non-decreasing secondary vegetation (ha) — 9,607,376 2,399,001

Notes: The table reports total deforested and regenerated areas in the Brazilian Amazon, the baseline
sample, and the benchmark sample. The baseline sample comprises all Amazon biome cells that contained
non-null deforestation through 2003; the benchmark sample is a subset of this that is further restricted to
cells that contained at least 50% primary forest cover in 2004. Areas for the Brazilian Amazon are calculated
from vector data, while baseline and benchmark areas are calculated from the analysis’ raster dataset. Non-
decreasing secondary vegetation is a measure built for this empirical analysis (see Appendix C) and has
therefore not been computed for the full extent of the Brazilian Amazon. Data sources: PRODES/Inpe
(deforestation); TerraClass/Inpe and Embrapa (secondary vegetation).

selecting cells in the 2004 PRODES mask, which captures the area classified
under TerraClass in 2004. The occurrence of deforestation is determined at the
30m raster resolution, such that the sample includes all cells that contained at
least one deforested minicell by 2003. Cells that first saw deforestation in 2004
or later are not included in the analysis to mitigate both endogeneity concerns
and the chance of picking up on misclassified secondary vegetation. In light of
the role played by proximity to primary vegetation in the regeneration process
(see Section 3.3.2), the extent of remaining primary vegetation in the cell at
baseline is used as an additional selection criteria for the benchmark sample.
A cell that has seen little deforestation will likely contain more remaining
primary vegetation, which typically favors tropical regrowth, but will also
offer a relatively small area upon which secondary forest can grow. Because
these effects pull in opposite directions, the benchmark sample is a subset of
the baseline sample that is further restricted to cells containing at least 50%
primary forest cover in 2004. Primary forest cover data is also taken from the
TerraClass 30m raster dataset (see Appendix B.1.1).

Table 3.1 summarizes deforestation and regeneration areas across the
Brazilian Legal Amazon, the baseline sample, and the benchmark sample.
Observed differences in areas across samples result from a combination of the
following factors: (i) the Brazilian Legal Amazon is geographically larger than
the Amazon biome (see Appendix A.2); (ii) conversion from vector to raster
data might result in area discrepancies due to loss of overlapping areas and
spatial precision; and (iii) baseline and benchmark samples exclude cells that
contained null deforestation through 2003. The table also shows that the total
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Table 3.2: Descriptive Statistics for Regression Variables

Brazilian Amazon benchmark sample

mean std. dev. mean std. dev.

2004 secondary vegetation (% cell area) 0.0220 0.0865 0.0611 0.0862
2004 non-decreasing secondary vegetation (% cell area) 0.0109 0.0565 0.0345 0.0663
2014 secondary vegetation (% cell area) 0.0366 0.1167 0.1056 0.1274
2014 non-decreasing secondary vegetation (% cell area) 0.0243 0.0887 0.0735 0.1009

d=1 if 2004-2014 ∆ secondary vegetation ≥ 0.1 cell area 0.0630 0.2430 0.2031 0.4023
2004-2014 ∆ secondary vegetation 0.0146 0.0919 0.0445 0.1181
2004-2014 ∆ non-decreasing secondary vegetation (% cell area) 0.0133 0.0605 0.0390 0.0785

alerts 5km neighborhood ring (% ring area) 0.0590 0.1920 0.1809 0.3067
alerts 10km neighborhood ring (% ring area) 0.0590 0.1576 0.1608 0.2372
alerts 20km neighborhood ring (% ring area) 0.0589 0.1327 0.1429 0.1881
alerts 50km neighborhood ring (% ring area) 0.0583 0.1039 0.1173 0.1321
alerts 100km neighborhood ring(% ring area) 0.0572 0.0819 0.0962 0.0985

2004 primary forest (% cell area) 0.7656 0.3853 0.7958 0.1512

total annual rainfall (mm) 2326.69 448.39 2182.20 368.65
average annual temperature (Celsius) 26.41 0.98 26.28 1.06
2004 unobservable TerraClass (% cell area) 0.0108 0.0820 0.0137 0.0553
2014 unobservable TerraClass (% cell area) 0.0070 0.0581 0.0146 0.0682
baseline accumulated deforestation (% cell area) 0.1318 0.3040 0.1742 0.1435
alert intensity (year average) 0.0590 0.3152 0.2216 0.5766
d=1 if protected 0.4879 0.4999 0.1922 0.3941

Notes: The table presents mean and standard deviations for variables used in the empirical analysis. Units
are shown in parentheses; indicator variables are identified with “d=1”.

extent of non-decreasing secondary vegetation in the analytical sample is not
only sizable, but actually represents a relevant share of secondary vegetation
area recorded in TerraClass: in 2004, it amounted to 4.6 million hectares, or
about 50% of secondary vegetation observed in the baseline sample; in 2014,
it had increased to 9.6 million hectares, totaling 67% of secondary vegetation
observed in the baseline sample. Because the baseline sample excludes cells
that were first deforested in 2004 or later, secondary vegetation recorded in
TerraClass for the baseline sample in 2014 totals about 14.3 million hectares,
not the 17 million hectares observed for the entire Brazilian Amazon (see
Figure 3.1).

Table 3.2 presents mean and standard deviations for variables used
in the regression analysis, including statistics for the Amazon biome for
comparison with the benchmark sample. The sample selection criteria implies
higher average cell-level secondary vegetation coverage and neighborhood alert
intensities. This is to be expected considering that cells that have never
been deforested have, by definition, null secondary vegetation. Moreover,
statistics for the full Amazon make no distinction between high and low
deforestation pressure zones, whereas the benchmark selection of cells that
had seen some deforestation but still contained primary forest area at baseline
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likely captures high-risk areas. Hence, although the benchmark sample might
not be representative of the Brazilian Amazon as a whole from the perspective
of descriptive statistics, it ensures the analysis is focused on areas that were
actual candidates for seeing an impact of neighboring enforcement on local
regeneration. Table 3.2 also indicates that the sample exhibits relevant cross-
sectional variation.

Finally, descriptive statistics regarding changes in agricultural land use
from 2004 through 2014 shed light on where regeneration was happening. In
the baseline sample, 65% of cells where the expansion in secondary vegetation
was greater than 10% saw a reduction in pasture area, and 50% of cells where
non-decreasing secondary vegetation area grew saw this same reduction. In
the benchmark sample, the analogous figures are 45% and 35%, respectively.
Cropland, however, saw a reduction in only a tiny fraction of cells across
samples. These statistics are aligned with official Amazon-wide transitions
across TerraClass categories, which indicate that 33% of pasture and virtually
0% of cropland in 2004 contained regeneration in 2014 (Inpe and Embrapa,
2016b). Thus, the expansion of secondary vegetation appears to have occurred,
in its vast majority, over pasture areas.

3.5
Results

This section starts by empirically testing the existence and reach of
environmental law enforcement in a cell’s neighborhood on regeneration
outcomes inside the cell. It then follows with robustness checks that use
alternative thresholds for defining dependent variables and samples, as well
as tests for additional controls. To shed light on aggregate impacts, the
section closes with counterfactual exercises that explore variations in
monitoring technology.

3.5.1
Main Results: Policy Spillovers

If environmental law enforcement targeting primary deforestation
affects tropical regeneration via either displacement or deterrence
mechanisms, enforcement in one locality should significantly impact
regeneration elsewhere. Table 3.3 presents estimated coefficients under the
inclusion of increasingly distant neighborhoods to establish the catchment
area, or reach, of this potential spillover effect.11 Column 1 starts with only

11In the hot spot policing literature, an intervention’s catchment area is that within which
spillovers occur (Braga et al., 1999; Braga and Bond, 2008; Taylor et al., 2011; Blattman
et al., 2017). Although there are different ways to model spillovers, this literature often

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 3. The Forest Awakens 77

the nearest 5km neighborhood, and columns 2 through 5 gradually add
regressors for enforcement intensity in 10km, 20km, 50km, and 100km
neighborhoods, respectively. Coefficients in Panel A capture the impact of
enforcement on the indicator variable flagging whether the 2004 through 2014
difference in secondary vegetation area was equal to or greater than one
tenth of cell area, and can therefore be interpreted as differences in the
probability of seeing regeneration expand over a minimum cell area
threshold. Coefficients in Panel B capture the 2004 through 2014 difference in
non-decreasing secondary vegetation area as a share of cell area, and can
therefore be interpreted as actual area effects. All columns include the full set
of cell-level controls: location (municipality, saturated longitude/latitude),
weather (temperature, precipitation), satellite visibility (visual obstructions
in satellite imagery in 2004 and 2014), baseline deforested area (accumulated
deforestation through 2003), and observed conservation policy (protected
territory status, DETER alerts). Results indicate that cell regeneration is
significantly affected by enforcement activity located within 20km, but not
farther. This holds for both dependent variables, which also exhibit fairly
stable coefficients across columns.

Identification of the proposed empirical strategy ultimately depends on
adequately controlling for potential sources of bias (see Section 3.3.1). In light
of this, Table 3.4 reports estimated coefficients for an uncontrolled specification
(column 1), as well as for the gradual inclusion of five sets of controls:
location (column 2), weather (column 3), satellite visibility (column 4), baseline
deforested area (column 5), and observed conservation policy (column 6).
Results show that it is important to control for location, including both
municipality and a saturated function of cell centroid coordinates, as expected.
Reassuringly, coefficients are largely stable across the inclusion of additional
controls, lending support to the proposed identification strategy. Beyond
location controls, the baseline deforested area control is perhaps that which
affects estimated coefficients most markedly. This is consistent with the fact
that the extent of existing deforestation at baseline captures an important
aspect of potential regeneration.

Henceforth, the analysis focuses on the specification with the full set of
controls (Table 3.4, column 6). Estimated coefficients point towards
significant spillovers, with environmental law enforcement targeting loss of
primary vegetation having had a positive impact on tropical regeneration —
more intense enforcement activity in a cell’s neighborhood was associated

defines catchment areas as one fixed-width ring or several concentric rings (with increasing
radii) around a given region.
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Table 3.3: Catchment Area for Law Enforcement Spillover on Regeneration

(1) (2) (3) (4) (5)

Panel A: P(∆ secondary vegetation ≥ 0.1 cell area)

alerts 5km 0.0489*** 0.0203*** 0.0216*** 0.0216*** 0.0216***
(0.0032) (0.0041) (0.0041) (0.0041) (0.0041)

alerts 10km 0.0537*** 0.0271*** 0.0272*** 0.0272***
(0.0051) (0.0062) (0.0062) (0.0062)

alerts 20km 0.0532*** 0.0519*** 0.0519***
(0.0072) (0.0079) (0.0080)

alerts 50km 0.0042 0.0045
(0.0115) (0.0121)

alerts 100km -0.0018
(0.0188)

R-squared 0.1208 0.1211 0.1212 0.1212 0.1212

Panel B: ∆ non-decreasing secondary vegetation (% cell area)

alerts 5km 0.0035*** -0.0001 0.0001 0.0001 0.0001
(0.0006) (0.0008) (0.0008) (0.0008) (0.0008)

alerts 10km 0.0068*** 0.0030** 0.0030** 0.0030**
(0.0010) (0.0012) (0.0012) (0.0012)

alerts 20km 0.0076*** 0.0075*** 0.0077***
(0.0014) (0.0016) (0.0016)

alerts 50km 0.0002 -0.0004
(0.0022) (0.0023)

alerts 100km 0.0038
(0.0036)

R-squared 0.1403 0.1404 0.1404 0.1404 0.1405

number of observations 403,191 403,191 403,191 403,191 403,191
controls
municipality yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) yes yes yes yes yes
weather yes yes yes yes yes
satellite visibility yes yes yes yes yes
baseline accumulated deforestation yes yes yes yes yes
observed conservation policy yes yes yes yes yes

Notes: The table reports OLS coefficients for Equation 3-2 (Section 3.3.2). The dependent variable differs
across panels: an indicator for secondary vegetation expansion (d=1 if the 2004 through 2014 difference in
secondary vegetation coverage ≥ 0.1 of cell area) in Panel A; non-decreasing secondary vegetation expansion
(the 2004 through 2014 difference in non-decreasing secondary vegetation coverage as a share of cell area) in
Panel B. Reported independent variables are neighborhood alert intensities (2006 through 2013 total alert
area as a share of total neighborhood area). Maximum neighborhood size increases from 5km (column 1)
through 100km (column 5). The no/yes markers in bottom rows indicate the inclusion of the following sets
of cell-level controls: (i) location: municipality, saturated function of cell longitude/latitude; (ii) weather:
average annual temperature, total annual precipitation; (iii) satellite visibility: visual obstructions in satellite
imagery in 2004 and 2014; (iv) baseline deforested area: accumulated deforestation through 2003; and
(v) observed conservation policy: protected territory status, alert intensity. The cross-sectional sample is
built from 2004 through 2014 panel data. It includes all 403,191 Amazon biome cells that contained non-null
deforestation through 2003 and at least 50% primary forest cover in 2004. Standard errors are robust to
heteroskedasticity. Significance: *** p<0.01, ** p<0.05, * p<0.10.

with both a greater probability of seeing cell-level growth in secondary
vegetation coverage, and a larger expansion in non-decreasing secondary
vegetation at the cell level. The spillover effect is sizable. An increase of one
standard deviation in the intensity of neighborhood enforcement increases
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Table 3.4: Law Enforcement Spillover on Regeneration

(1) (2) (3) (4) (5) (6)

Panel A: P(∆ secondary vegetation ≥ 0.1 cell area)

alerts 5km 0.0034 0.0136*** 0.0136*** 0.0180*** 0.0282*** 0.0216***
(0.0035) (0.0035) (0.0035) (0.0035) (0.0035) (0.0041)

alerts 10km 0.0188*** 0.0246*** 0.0246*** 0.0252*** 0.0257*** 0.0272***
(0.0063) (0.0061) (0.0061) (0.0061) (0.0061) (0.0062)

alerts 20km 0.0540*** 0.0630*** 0.0628*** 0.0622*** 0.0540*** 0.0519***
(0.0080) (0.0080) (0.0080) (0.0080) (0.0079) (0.0080)

alerts 50km -0.0165 0.0250** 0.0241** 0.0294** 0.0077 0.0045
(0.0110) (0.0121) (0.0121) (0.0121) (0.0120) (0.0121)

alerts 100km 0.0105 0.0085 0.0092 0.0171 0.0024 -0.0018
(0.0108) (0.0189) (0.0191) (0.0190) (0.0188) (0.0188)

R-squared 0.0012 0.0679 0.0679 0.0975 0.1212 0.1212

Panel B: ∆ non-decreasing secondary vegetation (% cell area)

alerts 5km -0.0063*** -0.0058*** -0.0058*** -0.0041*** -0.0021*** 0.0001
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008)

alerts 10km 0.0026** 0.0036*** 0.0036*** 0.0037*** 0.0038*** 0.0030**
(0.0013) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012)

alerts 20km 0.0095*** 0.0095*** 0.0093*** 0.0091*** 0.0075*** 0.0077***
(0.0016) (0.0016) (0.0016) (0.0016) (0.0016) (0.0016)

alerts 50km -0.0012 0.0042* 0.0028 0.0037 -0.0005 -0.0004
(0.0021) (0.0023) (0.0023) (0.0023) (0.0023) (0.0023)

alerts 100km 0.0058*** 0.0039 0.0022 0.0064* 0.0035 0.0038
(0.0020) (0.0036) (0.0036) (0.0036) (0.0036) (0.0036)

R-squared 0.0005 0.0741 0.0744 0.1164 0.1404 0.1405

number of observations 403,191 403,191 403,191 403,191 403,191 403,191
controls
municipality no yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) no yes yes yes yes yes
weather no no yes yes yes yes
satellite visibility no no no yes yes yes
baseline accumulated deforestation no no no no yes yes
observed conservation policy no no no no no yes

Notes: The table reports OLS coefficients for Equation 3-2 (Section 3.3.2). The dependent variable differs
across panels: an indicator for secondary vegetation expansion (d=1 if the 2004 through 2014 difference in
secondary vegetation coverage ≥ 0.1 of cell area) in Panel A; non-decreasing secondary vegetation expansion
(the 2004 through 2014 difference in non-decreasing secondary vegetation coverage as a share of cell area) in
Panel B. Reported independent variables are neighborhood alert intensities (2006 through 2013 total alert
area as a share of total neighborhood area). The no/yes markers in bottom rows indicate the inclusion of the
following sets of cell-level controls: (i) location: municipality, saturated function of cell longitude/latitude; (ii)
weather: average annual temperature, total annual precipitation; (iii) satellite visibility: visual obstructions
in satellite imagery in 2004 and 2014; (iv) baseline deforested area: accumulated deforestation through 2003;
and (v) observed conservation policy: protected territory status, alert intensity. The cross-sectional sample is
built from 2004 through 2014 panel data. It includes all 403,191 Amazon biome cells that contained non-null
deforestation through 2003 and at least 50% primary forest cover in 2004. Standard errors are robust to
heteroskedasticity. Significance: *** p<0.01, ** p<0.05, * p<0.10.

the probability of cell-level regeneration expansion by 11% of the sample
mean, and increases the area of secondary vegetation inside the cell by 6% of
the sample mean.

Figure 3.2 provides graphical representations of estimated coefficients
for this benchmark specification: sub-figure (a) plots point estimates and the
associated 95% confidence interval for coefficients from Table 3.4, Panel A;
sub-figure (b) is analogous for Panel B. The graphs help illustrate that the
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Figure 3.2: Law Enforcement Spillover on Regeneration
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Neighboring Alerts and Cell Regeneration: Impact on Probability of Secondary Vegetation Expansion

(b) ∆ non-decreasing secondary vegetation (% cell area)
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Notes: The graph plots estimated OLS coefficients for the benchmark specification (Table 3.4, column 6).
The dependent variable differs across sub-figures: an indicator for secondary vegetation expansion (d=1 if
the 2004 through 2014 difference in secondary vegetation coverage ≥ 0.1 of cell area) in sub-figure (a); non-
decreasing secondary vegetation expansion (the 2004 through 2014 difference in non-decreasing secondary
vegetation coverage as a share of cell area) in sub-figure (b). The sample includes all 403,191 Amazon biome
cells that contained non-null deforestation through 2003 and at least 50% primary forest cover in 2004. Solid
lines indicate point estimates, and dashed lines indicate 95% confidence intervals.

estimated spillover effects are not linear in distance to law enforcement. For
both probability- and area-based dependent variables, the impact grows in
magnitude from the smallest 5km neighborhood through 20km, and then
drops back to insignificance. This pattern suggests that proximity to recent
forest clearing activity might play an important role in tropical regeneration.
Regions that are very close to deforestation alerts are probably more exposed
to human interference and are thus at greater risk of seeing forest disturbances.
Regrowth in these regions is less likely, as captured by the smaller coefficient
for the 5km neighborhood. As distance to intense clearing activity increases,
there is an increase in the probability of seeing secondary vegetation expansion
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and, notably, also an observed increase in the actual area of non-decreasing
secondary vegetation. This latter result is particularly important in the sense
that it mitigates concerns that probability-based specifications are erroneously
capturing an increase in degraded primary forest, which could arguably occur
at higher rates near recent forest clearing activity. Although it seems plausible
that very close proximity to deforestation hot spots would inhibit regeneration,
and that tropical regrowth would gradually increase as abandoned areas
are further away from human interference, results do not currently offer an
explanation for why this spillover effect suddenly disappears beyond 20km.
This finding merits further empirical investigation, both from the perspective
of understanding the underlying spatial dynamics and from that of identifying
specificities in the Amazon empirical setting that could explain the observed
phenomenon.

Overall, results support the existence of both policy and spatial spillovers.
Findings can be interpreted as evidence that the deterrence channel is driving
this effect. The presence of stricter enforcement regionally inhibits illegal
activity, leading potential offenders to reduce their demand for deforested
land. As cleared areas are abandoned, their exposure to human interference
decreases, and a natural process of regeneration takes place.

3.5.2
Robustness: Alternative Dependent Variables and Samples

Results presented thus far seem consistent with a regional deterrence
effect from law enforcement contributing to the abandonment and regeneration
of deforested lands. However, as the definition of the benchmark probability-
based dependent variable and sample are based on set cutoff values, this section
tests whether the findings are robust to variations in these thresholds. All
robustness specifications reproduce the benchmark specification (Table 3.4,
column 6) and always include the full set of controls. Estimated coefficients
are reported in both table and plot formats.

To mitigate potential noise in original data, the probability-based
dependent variable is built to capture a minimum mass of secondary
vegetation expansion. The benchmark cutoff value of 10% of cell area sets a
fairly stringent requirement for minimum regeneration expansion. Figure 3.3
portrays the density histogram for the 2004 through 2014 difference in
secondary vegetation extent as a share of cell area, alongside benchmark and
robustness cutoff values for dependent variable construction. The histogram
shows that this benchmark cutoff successfully excludes much of the minor —
but still positive — variations in area growth, which would otherwise count
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Figure 3.3: Density Histogram for Difference in Secondary Vegetation Area
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Descriptive Statistics: Distribution of Cell-level Secondary Vegetation Expansion

Notes: The figure plots the density histogram for the 2004 through 2014 difference in secondary vegetation
extent as a share of cell area. The vertical lines represent the five alternative cutoffs for constructing an
indicator that flags whether this difference met a minimum threshold. The bold red line indicates the
benchmark threshold of 10% of cell area; the regular blue lines indicate the different thresholds used in
robustness specifications (5%, 7.5%, 12.5%, and 15%).

as actual expansion. The first robustness test uses different cutoff values for
defining the probability-based dependent variable. Table 3.5 presents
estimated coefficients for cutoff values set at 5%, 7.5%, 10% (the benchmark
threshold), 12.5%, and 15%. For ease of comparison, Figure 3.4 plots point
estimates and associated 95% confidence intervals for each of these values.
Results are robust across alternative thresholds, with the intensity of law
enforcement significantly increasing the probability of cell-level secondary
vegetation expansion above these minimum thresholds throughout. The
non-linear relationship, with effects increasing through the 20km
neighborhood and disappearing for larger rings, also remains robust.

The second set of robustness checks restores the dependent variable cutoff
to its benchmark value and, instead, explores how results hold across different
cutoff values for sample definition. Proximity to remaining primary forest
typically favors tropical regrowth (see Section 3.3.2). At the same time, if a cell
has seen little deforestation, it actually has a relatively small area upon which
secondary forest can grow. Because these effects pull in opposite directions,
the benchmark sample comprises cells that had non-null deforestation through
2003 and contained at least 50% primary forest cover in 2004. Alternative
cutoff values for minimum primary forest cover at baseline could potentially
capture cells with different predominant effects. The tested values are 10%,
25%, 50% (the benchmark threshold), 75%, and 90%. Table 3.6 provides
descriptive statistics for deforestation and regeneration areas across benchmark
and robustness samples, as defined by minimum primary forest area at baseline.
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Table 3.5: Robustness – Alternative Dependent Variables

(1) (2) (3) (4) (5)
dependent variable cutoff: 5% 7.5% 10% 12.5% 15%

P(∆ secondary vegetation ≥ cell area cutoff value (in column headings)

alerts 5km 0.0285*** 0.0280*** 0.0216*** 0.0201*** 0.0167***
(0.0047) (0.0044) (0.0041) (0.0038) (0.0035)

alerts 10km 0.0278*** 0.0253*** 0.0272*** 0.0196*** 0.0216***
(0.0071) (0.0067) (0.0062) (0.0057) (0.0053)

alerts 20km 0.0636*** 0.0612*** 0.0519*** 0.0528*** 0.0419***
(0.0091) (0.0086) (0.0080) (0.0074) (0.0069)

alerts 50km 0.0015 0.0055 0.0045 -0.0027 0.0016
(0.0138) (0.0130) (0.0121) (0.0111) (0.0103)

alerts 100km 0.0251 0.0151 -0.0018 -0.0242 -0.0115
(0.0218) (0.0204) (0.0188) (0.0173) (0.0158)

R-squared 0.1163 0.1204 0.1212 0.1185 0.1141

number of observations 403,191 403,191 403,191 403,191 403,191
controls
municipality yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) yes yes yes yes yes
weather yes yes yes yes yes
satellite visibility yes yes yes yes yes
baseline accumulated deforestation yes yes yes yes yes
observed conservation policy yes yes yes yes yes

Notes: The table reports OLS coefficients for Equation 3-2 (Section 3.3.2). The dependent variable is
an indicator for secondary vegetation expansion (d=1 if the 2004 through 2014 difference in secondary
vegetation coverage ≥ a set cutoff value in terms of cell area). Each column refers to one such cutoff value:
5% in column 1; 7.5% in column 2; 10% in column 3 (benchmark); 12.5% in column 4; and 15% in column 5.
Reported independent variables are neighborhood alert intensities (2006 through 2013 total alert area as a
share of total neighborhood area). The no/yes markers in bottom rows indicate the inclusion of the following
sets of cell-level controls: (i) location: municipality, saturated function of cell longitude/latitude; (ii) weather:
average annual temperature, total annual precipitation; (iii) satellite visibility: visual obstructions in satellite
imagery in 2004 and 2014; (iv) baseline deforested area: accumulated deforestation through 2003; and
(v) observed conservation policy: protected territory status, alert intensity. The cross-sectional sample is
built from 2004 through 2014 panel data. It includes all 403,191 Amazon biome cells that contained non-null
deforestation through 2003 and at least 50% primary forest cover in 2004. Standard errors are robust to
heteroskedasticity. Significance: *** p<0.01, ** p<0.05, * p<0.10.

As expected, the lower the minimum primary forest requirement, the more
accumulated deforestation the sample has seen.

Table 3.7 presents estimated coefficients across alternative samples for
the probability-based dependent variable in Panel A, and the area-based
dependent variable in Panel B. Again, Figures 3.5 and 3.6 plot point estimates
and associated 95% confidence intervals for the five alternative cutoff values
using probability- and area-based dependent variables, respectively. Results are
generally robust across alternative thresholds for both dependent variables.
However, as the minimum primary forest area moves towards the extremes
of the distribution, there is variation in the shape of the distance-based
relationship between law enforcement and regeneration. This points towards
important heterogeneity across cells in the baseline sample. At the low end
of the distribution for remaining primary forest, cells that held less primary
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Figure 3.4: Robustness – Alternative Dependent Variables
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(c) cutoff = 10%
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(d) cutoff = 12.5%
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(e) cutoff = 15%
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Notes: The graphs plot estimated OLS coefficients for robustness specifications using alternative cutoff
values for the probability-based dependent variable (Table 3.5). The dependent variable is an indicator for
secondary vegetation expansion (d=1 if the 2004 through 2014 difference in secondary vegetation coverage ≥
a set cutoff value in terms of cell area). Each sub-figure refers to one such cutoff value: 5% in sub-figure (a);
7.5% in sub-figure (b); 10% in sub-figure (c) (benchmark); 12.5% in sub-figure (d); and 15% in sub-figure (e)
The sample includes all 403,191 Amazon biome cells that contained non-null deforestation through 2003 and
at least 50% primary forest cover in 2004. Solid lines indicate point estimates, and dashed lines indicate 95%
confidence intervals.

vegetation at baseline might have seen deforestation at earlier dates and
therefore have more consolidated land use in cleared areas. The significantly
negative coefficients for law enforcement in the 5km neighborhood for samples
that include these consolidated areas might indicate that, locally, potential
offenders do displace their demand for deforested land to areas containing
secondary vegetation. In contrast, at the high end of this distribution, cells

DBD
PUC-Rio - Certificação Digital Nº 1412614/CA



Chapter 3. The Forest Awakens 85

Table 3.6: Deforestation and Regeneration Across Alternative Samples

baseline primary forest minimum (share cell area)

10% 25% 50% 75% 90%

raster cell count (900m resolution) 666,563 556,833 403,191 250,122 135,225

deforested area, historical through 2003 (ha) 18,856,377 12,398,219 5,684,454 1,774,051 413,821
2004 secondary vegetation (ha) 4,828,339 3,595,704 1,995,152 772,163 214,229
2004 non-decreasing secondary vegetation (ha) 2,542,601 1,942,371 1,126,561 463,468 135,992

deforested area, historical through 2013 (ha) 26,055,487 18,766,705 10,322,528 4,361,201 1,590,435
2014 secondary vegetation (ha) 7,584,578 5,820,556 3,445,083 1,505,182 523,993
2014 non-decreasing secondary vegetation (ha) 5,245,999 4,045,630 2,399,001 1,037,194 346,579

Notes: The table summarizes deforestation and regeneration areas across alternative samples used in
robustness checks. The baseline sample includes all Amazon biome cells that contained non-null deforestation
in 2003; alternative samples are further restricted to cells that met a minimum threshold for primary forest
cover in 2004 (benchmark cutoff of 50%).

with very large primary forest cover in 2004 have a higher chance of being
located in the agricultural expansion frontier and thus of being intrinsically
different in terms of their potential for recent and future clearings. Despite this
heterogeneity, the overall patterns of estimated coefficients across alternative
samples generally follow the benchmark.

Overall, robustness checks corroborate the interpretation that, when
significant, law enforcement has a positive spillover effect on regeneration
in near vicinities — at least in areas that have seemingly not experienced
advanced consolidation in use of deforested lands.

3.5.3
Robustness: Additional Controls

The benchmark specification includes cell-level controls for location,
weather, satellite visibility, baseline deforested area, and observed conservation
policy. The set of robustness checks presented in Table 3.8 takes a closer look at
controls. It starts by assessing estimated coefficients for the most endogenous
set of benchmark controls, observed conservation policy (column 1), and
then tests the robustness of results to the inclusion of additional controls
that capture the cell’s distance (in 100 kilometers) to the following: nearest
road (column 2); nearest paved road (column 3); nearest municipality with
population ≥ 20,000 (column 4); and nearest waterway (column 5).

Results for the benchmark specification indicate that estimated
coefficients for the policy controls flip signs across Table 3.8 panels. While
protection reduces and local enforcement increases the probability of
secondary vegetation expansion in a cell, they have the opposite effect on the
extent of non-decreasing secondary vegetation. This can be explained by the
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Table 3.7: Robustness – Alternative Samples

(1) (2) (3) (4) (5)
sample selection cutoff: 10% 25% 50% 75% 90%

Panel A: P(∆ secondary vegetation ≥ 0.1 cell area)

alerts 5km 0.0039 0.0109*** 0.0216*** 0.0384*** 0.0591***
(0.0033) (0.0036) (0.0041) (0.0050) (0.0064)

alerts 10km 0.0214*** 0.0211*** 0.0272*** 0.0225*** 0.0158*
(0.0050) (0.0054) (0.0062) (0.0074) (0.0092)

alerts 20km 0.0434*** 0.0487*** 0.0519*** 0.0617*** 0.0572***
(0.0064) (0.0070) (0.0080) (0.0095) (0.0116)

alerts 50km -0.0089 -0.0067 0.0045 0.0084 0.0198
(0.0099) (0.0106) (0.0121) (0.0141) (0.0170)

alerts 100km 0.0287* 0.0244 -0.0018 -0.0215 -0.0600**
(0.0157) (0.0168) (0.0188) (0.0214) (0.0242)

R-squared 0.1140 0.1184 0.1212 0.1130 0.0924

Panel B: ∆ non-decreasing secondary vegetation (% cell area)

alerts 5km -0.0041*** -0.0030*** 0.0001 0.0046*** 0.0069***
(0.0007) (0.0007) (0.0008) (0.0010) (0.0013)

alerts 10km 0.0039*** 0.0033*** 0.0030** 0.0004 -0.0002
(0.0011) (0.0011) (0.0012) (0.0015) (0.0019)

alerts 20km 0.0072*** 0.0078*** 0.0077*** 0.0079*** 0.0064***
(0.0014) (0.0015) (0.0016) (0.0018) (0.0024)

alerts 50km -0.0041* -0.0028 -0.0004 0.0006 0.0023
(0.0021) (0.0022) (0.0023) (0.0026) (0.0033)

alerts 100km 0.0079** 0.0064* 0.0038 0.0017 -0.0036
(0.0033) (0.0034) (0.0036) (0.0039) (0.0048)

R-squared 0.1529 0.1534 0.1405 0.1092 0.0828

number of observations 666,563 556,833 403,191 250,122 135,225
controls
municipality yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) yes yes yes yes yes
weather yes yes yes yes yes
satellite visibility yes yes yes yes yes
baseline accumulated deforestation yes yes yes yes yes
observed conservation policy yes yes yes yes yes

Notes: The table reports OLS coefficients for Equation 3-2 (Section 3.3.2). The dependent variable differs
across panels: an indicator for secondary vegetation expansion (d=1 if the 2004 through 2014 difference in
secondary vegetation coverage ≥ 0.1 of cell area) in Panel A; non-decreasing secondary vegetation expansion
(the 2004 through 2014 difference in non-decreasing secondary vegetation coverage as a share of cell area)
in Panel B. The spatial samples are defined as Amazon biome cells that contained non-null deforestation
through 2003 and met a minimum cutoff value for primary forest cover in 2004. Each column refers to one
such cutoff value: 10% in column 1; 25% in column 2; 50% in column 3 (benchmark); 75% in column 4;
and 90% in column 5. Reported independent variables are neighborhood alert intensities (2006 through
2013 total alert area as a share of total neighborhood area). The no/yes markers in bottom rows indicate
the inclusion of the following sets of cell-level controls: (i) location: municipality, saturated function of
cell longitude/latitude; (ii) weather: average annual temperature, total annual precipitation; (iii) satellite
visibility: visual obstructions in satellite imagery in 2004 and 2014; (iv) baseline deforested area: accumulated
deforestation through 2003; and (v) observed conservation policy: protected territory status, alert intensity.
The cross-sectional sample is built from 2004 through 2014 panel data. Standard errors are robust to
heteroskedasticity. Significance: *** p<0.01, ** p<0.05, * p<0.10.
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Figure 3.5: Robustness – Alternative Samples, Probability-Based Outcome
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(b) cutoff = 25%
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(c) cutoff = 50%

-0.10

-0.05

0.00

0.05

0.10

es
tim

at
ed

 c
oe

ffi
ci

en
ts

5km 10km 20km 50km 100km

neighborhood rings

note: dashed lines indicate 95% confidence intervals

sample cutoff: 50%; depvar cutoff: 10%

Neighboring Alerts and Cell Regeneration: Impact on Probability of Secondary Vegetation Expansion

(d) cutoff = 75%
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(e) cutoff = 90%
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Notes: The graphs plot estimated OLS coefficients for robustness specifications using alternative cutoff values
for sample definition (Table 3.7, Panel A). The dependent variable is an indicator for secondary vegetation
expansion (d=1 if the 2004 through 2014 difference in secondary vegetation coverage ≥ 0.1 of cell area). The
samples are defined as Amazon biome cells that contained non-null deforestation through 2003 and met a
minimum cutoff value for primary forest cover in 2004. Each sub-figure refers to one such cutoff value: 10%
in sub-figure (a); 25% in sub-figure (b); 50% in sub-figure (c) (benchmark); 75% in sub-figure (d); and 90%
in sub-figure (e). Solid lines indicate point estimates, and dashed lines indicate 95% confidence intervals.

inherent difference between these two outcome variables. As the
probability-based dependent variable does not distinguish between remaining
primary vegetation and actual secondary vegetation (see Section 3.3.2),
estimated coefficients might mix effects that pull in opposite directions —
protection is expected to increase regeneration, but decrease degradation and
deforestation; greater alert intensity inside a cell indicates more intense
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Figure 3.6: Robustness – Alternative Samples, Area-Based Outcome
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(c) cutoff = 50%
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(d) cutoff = 75%
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(e) cutoff = 90%
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Notes: The graphs plot estimated OLS coefficients for robustness specifications using alternative cutoff values
for sample definition (Table 3.7, Panel B). The dependent variable is non-decreasing secondary vegetation
expansion (the 2004 through 2014 difference in non-decreasing secondary vegetation coverage as a share of
cell area). The samples are defined as Amazon biome cells that contained non-null deforestation through
2003 and met a minimum cutoff value for primary forest cover in 2004. Each sub-figure refers to one such
cutoff value: 10% in sub-figure (a); 25% in sub-figure (b); 50% in sub-figure (c) (benchmark); 75% in sub-
figure (d); and 90% in sub-figure (e). Solid lines indicate point estimates, and dashed lines indicate 95%
confidence intervals.

clearing activity at the local level, which is expected to limit regrowth
capacity but also capture a greater risk of degradation and deforestation.
Interpreting these coefficients for the probability-based dependent variable
can therefore be misleading. Thus, results for the area-based dependent
variable are expected to more accurately capture the impact of these
conservation policies on regeneration. Indeed, coefficients for protection are
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positive, although insignificant, and those for alert intensity are negative.
This reinforces the idea that isolation favors regeneration, and that close
proximity to deforestation activity significantly curbs regeneration.

The remaining columns of Table 3.8 include controls for the cell’s
distance to transport infrastructure, more populated municipalities, or
waterways. Each of these could be interpreted as a measure of the cell’s
exposure to human interference. Estimated coefficients for neighborhood
enforcement remain highly stable in magnitude and significance across
specifications for both dependent variables. These findings lend further
support to the benchmark specification, whose results do not appear to be
driven by omitted variables.

3.5.4
Counterfactual Exercises: Monitoring Capacity

The evidence shows that regional law enforcement significantly promoted
regeneration at the cell level. Yet, interpreting the magnitude of this effect
when looking at a raster cell is not straightforward. To shed light on how
these effects map onto aggregate sample impacts, if at all, this section presents
two counterfactual exercises. In each exercise, the benchmark specification
(Table 3.4, column 6) is re-estimated under a different hypothetical scenario,
and the total variation in non-decreasing secondary vegetation is calculated by
adding area outcomes across sample cells. Instead of looking at two outcomes of
interest, as in the regression analyses, counterfactual exercises are restricted to
areas of non-decreasing secondary vegetation. This implies that counterfactual
estimates are conservative to the extent that they only account for variation
in a subset of observed regeneration.

The first counterfactual scenario builds on the idea of enhanced
monitoring of forest clearing activity. Satellite-based measuring (PRODES)
and monitoring (DETER) systems have different spatial resolutions (see
Appendices B.1.1 and B.1.2). While DETER provides high-frequency
information with low resolution, PRODES only generates annual data but at
higher resolution. Thus, it is to be expected that the detected areas of forest
disturbance differ across systems, with PRODES systematically recording a
larger total area of forest loss.12 Table 3.9 shows that this was, in fact, the
case. Despite large variability across years (likely due to variation in satellite

12Another potential source of difference in observed areas across systems is that PRODES
only detects clear-cut deforestation, while DETER is capable of detecting forest degradation.
In isolation, this could result in a larger observed area of disturbance via DETER. However,
this potential advantage is likely undermined by DETER’s significantly poorer resolution —
during the sample period, DETER could only detect disturbances larger than 25ha, while
PRODES detected clearings larger than 6.25ha.
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Table 3.8: Robustness – Additional Controls

(1) (2) (3) (4) (5)
benchmark all roads paved roads large pop water

Panel A: P(secondary vegetation expansion >= 10% of cell area)

alerts 5km 0.0216*** 0.0218*** 0.0220*** 0.0216*** 0.0224***
(0.0041) (0.0041) (0.0041) (0.0041) (0.0041)

alerts 10km 0.0272*** 0.0276*** 0.0276*** 0.0272*** 0.0284***
(0.0062) (0.0062) (0.0062) (0.0062) (0.0062)

alerts 20km 0.0519*** 0.0523*** 0.0521*** 0.0519*** 0.0568***
(0.0080) (0.0080) (0.0080) (0.0080) (0.0080)

alerts 50km 0.0045 0.0004 0.0014 0.0049 0.0057
(0.0121) (0.0121) (0.0121) (0.0121) (0.0121)

alerts 100km -0.0018 -0.0119 -0.0132 -0.0020 0.0021
(0.0188) (0.0189) (0.0190) (0.0188) (0.0188)

d=1 if protected -0.0086*** -0.0070*** -0.0063*** -0.0085*** -0.0066***
(0.0018) (0.0019) (0.0019) (0.0018) (0.0018)

alert intensity 0.0041*** 0.0040*** 0.0041*** 0.0041*** 0.0040***
(0.0015) (0.0015) (0.0015) (0.0015) (0.0015)

distance to header variable -0.0131*** -0.0105*** -0.0070 -0.0352***
(0.0022) (0.0015) (0.0044) (0.0024)

R-squared 0.1212 0.1213 0.1213 0.1212 0.1217

Panel B: non-decreasing secondary vegetation expansion (cell share)

alerts 5km 0.0001 0.0002 0.0002 0.0001 0.0002
(0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

alerts 10km 0.0030** 0.0030** 0.0030** 0.0030** 0.0031**
(0.0012) (0.0012) (0.0012) (0.0012) (0.0012)

alerts 20km 0.0077*** 0.0078*** 0.0077*** 0.0077*** 0.0084***
(0.0016) (0.0016) (0.0016) (0.0016) (0.0016)

alerts 50km -0.0004 -0.0014 -0.0009 -0.0004 -0.0002
(0.0023) (0.0023) (0.0023) (0.0023) (0.0023)

alerts 100km 0.0038 0.0014 0.0019 0.0038 0.0044
(0.0036) (0.0036) (0.0036) (0.0036) (0.0036)

d=1 if protected 0.0002 0.0006 0.0006 0.0002 0.0005
(0.0003) (0.0004) (0.0004) (0.0003) (0.0004)

alert intensity -0.0015*** -0.0015*** -0.0015*** -0.0015*** -0.0015***
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

distance to header variable -0.0031*** -0.0018*** 0.0002 -0.0054***
(0.0004) (0.0003) (0.0009) (0.0005)

R-squared 0.1405 0.1405 0.1405 0.1405 0.1407

number of observations 403,191 403,191 403,191 403,191 403,191
controls
municipality yes yes yes yes yes
coordinates (lon, lat, lon2, lat2, lon*lat) yes yes yes yes yes
weather yes yes yes yes yes
satellite visibility yes yes yes yes yes
baseline accumulated deforestation yes yes yes yes yes

Notes: The table reports OLS coefficients for Equation 3-2 (Section 3.3.2). The dependent variable differs
across panels: an indicator for secondary vegetation expansion (d=1 if the 2004 through 2014 difference in
secondary vegetation coverage ≥ 0.1 of cell area) in Panel A; non-decreasing secondary vegetation expansion
(the 2004 through 2014 difference in non-decreasing secondary vegetation coverage as a share of cell area) in
Panel B. Reported independent variables are neighborhood alert intensities (2006 through 2013 total alert
area as a share of total neighborhood area) and select controls. The benchmark specification (column 1)
reproduces that of Table 3.4, column 6, but with reported coefficients for observed policy controls. Additional
controls capture distance (in 100 kilometers) to the following: nearest road (column 2); nearest paved road
(column 3); nearest municipality with population ≥ 20,000 (column 4); and nearest waterway (column 5),
as indicated in column headers. The no/yes markers in bottom rows indicate the inclusion of the following
sets of cell-level controls: (i) location: municipality, saturated function of cell longitude/latitude; (ii) weather:
average annual temperature, total annual precipitation; (iii) satellite visibility: visual obstructions in satellite
imagery in 2004 and 2014; and (iv) baseline deforested area: accumulated deforestation through 2003. The
cross-sectional sample is built from 2004 through 2014 panel data. It includes all 403,191 Amazon biome cells
that contained non-null deforestation through 2003 and at least 50% primary forest cover in 2004. Standard
errors are robust to heteroskedasticity. Significance: *** p<0.01, ** p<0.05, * p<0.10.
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Table 3.9: Recorded Areas in Monitoring and Measuring Systems

year detected area detected area detection share
DETER (ha) PRODES (ha) DETER/PRODES

2006 491,457 1,091,857 45%
2007 816,888 1,150,637 71%
2008 438,735 1,336,129 33%
2009 224,019 643,061 35%
2010 266,439 635,751 42%
2011 204,710 574,122 36%
2012 277,758 446,873 62%
2013 305,376 542,452 56%

total 3,025,380 6,420,882 47%

Notes: The table presents total area recorded for the Brazilian Legal Amazon in deforestation monitoring
(DETER) and measuring (PRODES) systems, as well as the ratio between these areas.

visibility), the area recorded as DETER alerts is, on average, less than half
that of PRODES. In light of this, the first hypothetical scenario boosts the
monitoring system by allowing it to detect every deforestation patch detected
in the measuring system. In practice, this means that every 900m raster cell
that had held non-null PRODES deforestation increment from 2006 through
2013 also held a DETER deforestation alert.13

Figure 3.7a plots the difference in the total area of non-decreasing
secondary vegetation in counterfactual and observed scenarios. Each data
point in the graph refers to a different sample, as defined by the minimum
baseline primary forest cover. Counterfactual totals are systematically
positive across samples, indicating that enhanced monitoring would have
increased the area of non-decreasing secondary vegetation in the Amazon.
For the benchmark sample, this increase totals about 280 thousand hectares
and is statistically significant. Samples with lower thresholds for primary
forest have roughly equal point estimates, but larger confidence intervals.
This suggests that the cells with greater primary forest cover at baseline in
these samples are driving the results. This finding appears to be aligned with
the discussion that greater sample heterogeneity contributes to greater
variability in outcomes under less stringent minimum primary forest
requirements. As these requirements increase, the counterfactual point
estimate decreases in size, although it remains substantial. To better
contextualize this magnitude, Figures 3.7b and 3.7c present counterfactual
area differences as shares of observed deforested and regenerated areas,

13PRODES deforestation increment raster data is at the 30m resolution, such that the
non-null deforestation increment is based on the presence of deforestation minicells.
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Figure 3.7: Counterfactual Exercise – Enhanced Monitoring System
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Notes: The figure illustrates the difference in total area of non-decreasing secondary vegetation in
the counterfactual and observed scenarios. The counterfactual is a hypothetical scenario in which the
deforestation monitoring system detected and issued alerts for all forest clearings that were recorded in
the deforestation measuring system (2006 through 2013 increment). Alternative samples, plotted along the
horizontal axis, are defined as Amazon biome cells that contained non-null deforestation through 2003 and
met a minimum cutoff (axis) value defined in terms of primary forest cover in 2004. Solid lines indicate
counterfactual estimates, and dashed lines indicate 95% confidence intervals. Results are shown as: total
sample area in sub-figure (a); share of observed 2014 sample deforestation in sub-figure (b); and share of
observed 2014 sample regeneration, as captured by the extent of non-decreasing secondary vegetation, in
sub-figure (c). Counterfactual scenarios are built using results from the benchmark specification (Table 3.4,
column 6) and setting the alert area equal to the observed deforested area (see Table 3.9).

respectively. Under the hypothetically enhanced monitoring system,
non-decreasing secondary vegetation in the benchmark sample would have
expanded over an additional 3% of total deforested area. This represents
growth of more than 10% of recorded non-decreasing secondary vegetation
area. For samples with greater minimum primary forest areas, these shares
increase substantially, but so do confidence intervals.

This exercise is particularly informative considering that Brazil recently
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Figure 3.8: Counterfactual Exercise – No Monitoring System
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Notes: The figure illustrates the difference in total area of non-decreasing secondary vegetation in the
observed and estimated counterfactual scenarios. The counterfactual is a hypothetical scenario in which
there was no deforestation monitoring system (no DETER alerts). Alternative samples, plotted along the
horizontal axis, are defined as Amazon biome cells that contained non-null deforestation through 2003 and
met a minimum cutoff value (axis value) defined in terms of primary forest cover in 2004. Solid lines indicate
counterfactual estimates, and dashed lines indicate 95% confidence intervals. Results are shown as total
sample area. Counterfactual scenarios are built using results from the benchmark specification (Table 3.4,
column 6) and setting the alert area equal to zero.

adopted a new monitoring system, DETER-B, which can detect areas of
forest disturbance as small as 1ha and provide more detailed information on
activity within these areas (Diniz et al., 2015) — an improvement that, by far,
outperforms the enhancement proposed in the counterfactual scenario. Results
suggest that this new system could make significant contributions to promote
Amazon regeneration.

The second, and last, counterfactual exercise proposes a diametrically
opposite hypothetical scenario. In it, there is no monitoring system to issue
alerts and target law enforcement, such that alert intensities in all
neighborhoods are set to zero. As before, Figure 3.8 plots the difference in
the total area of non-decreasing secondary vegetation, but now the
counterfactual estimate is deducted from observed totals. Although point
estimates are positive across all samples, suggesting that the existence of the
monitoring system promoted expansion in non-decreasing secondary
vegetation, they are also systematically insignificant. Little more can be said
about this result without further investigation.
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3.6
Final Remarks

This chapter’s analysis has policy implications that are both relevant and
timely. From an Amazon conservation perspective, it indicates that potentially
substantial policy impacts remained unaccounted for in PPCDAm effectiveness
evaluations. Incorporating these impacts into policy design could significantly
affect targeting and cost-benefit considerations.

Moreover, from a broader perspective, results are particularly salient in
light of growing awareness regarding the need for global action to reconcile
environmental and development goals. Central to this effort is the restoration
of ecological integrity in degraded and deforested areas, due to its potential
to mitigate climate change while improving human well-being. The
emergence of international initiatives like the Bonn Challenge, which aims to
restore 150 million hectares by 2020 and 350 million hectares by 2030
worldwide, attests to the mounting interest of the international community in
promoting restoration at scale. Governmental commitments undertaken in
the form of Nationally Determined Contributions (NDC) under the United
Nations Framework Convention on Climate Change (UNFCCC) signal
countries’ recognition of the part they play in the pursuit of a shared
interest. Brazil’s NDC sets a target of reducing greenhouse gas emissions to
more than 35% below its 2005 levels by 2030, partly by restoring/reforesting
12 million hectares of forest countrywide. As an endeavor of unprecedented
magnitude in the country, restoration at scale poses significant practical
challenges. Knowledge regarding what contributed to the remarkable
expansion of Amazon secondary vegetation, particularly in a context of
heightened vulnerability for regrowth, could catalyze regeneration and
thereby help Brazil achieve its environmental commitments.
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Appendix A
Spatial Setup

A.1
Georeferenced Raster Structure

A raster is a matrix data structure that represents a regular grid of cells.
For a given variable of interest taking on a range of possible values, each
raster cell can hold one, and only one, value. Georeferenced rasters contain
spatial information that associate it with a well defined region of the world’s
surface: (i) the coordinate reference system, which determines the origin and
set of spatial axes to be used with geographical coordinates; (ii) the spatial
extent, which defines the minimum and maximum limits of the area covered
by the raster; and (iii) the spatial resolution, which sets raster cell size and
thereby, given (i) and (ii), determines the number of rows/columns in a raster.
In georeferenced rasters, each cell holds a specific position in space, as marked
by the coordinates of that cell’s centroid. This enables the recovery of spatial
relationships, such as the distance between two cells. Moreover, it allows for
the tracking of the same cell across different rasters, as long as all share the
same coordinate reference system, extent, and spatial resolution.

The coordinate reference system used for dataset construction is the
unprojected 1969 South American Datum (SAD69). All mentions of metric
distances are metric equivalences of measures actually in degrees. The spatial
resolution is set at 900m, such that the raster unit is a square raster cell with
an area of 81ha. Construction of variables stated as shares of cell area are
based on georeferenced rasters with the higher 30m resolution. Typically, each
of the 900m cells contains 900 of the 30m minicells, though the existence of
spatial boundaries may result in lower minicell count in frontier cells. Shares are
always calculated in terms of total cell-specific minicell count. Each minicell
is associated with its respective parent cell using an indexation algorithm.
Figure A.1 depicts cells, minicells, and the relationship between them.

Cell neighborhoods refer to the areas covered by concentric rings of
increasing diameter around the cell. Larger neighborhoods do not contain
smaller ones, and the cell itself is excluded from the smallest neighborhood.
Figure A.2 illustrates raster cell neighborhoods. All cells within a given
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Figure A.1: Raster Grid, Cell, and Minicell

900m

900m

30m

30m

Notes: The figure illustrates the basic structure of the raster data used in the empirical analyses. The grid
is composed of 900m by 900m square cells, which, in turn, subdivides into 30m by 30m square minicells.
The cells and minicells in the figure are not drawn to scale.

Figure A.2: Raster Cell Neighborhoods

Notes: The figure illustrates raster cell neighborhoods, as determined by concentric rings of increasing
diameter around the cell. Larger neighborhoods do not contain smaller ones, and the cell itself is excluded
from the smallest neighborhood.

neighborhood are weighed equally, despite variation in distance to and
direction from the central cell.

A.2
Geographical Regions

The Brazilian Legal Amazon is a geopolitical administrative subdivision
that encompasses Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia,
Roraima, and Tocantins states, as well as the western part of Maranhão
state. The Amazon biome is entirely contained within the Legal Amazon,
but is defined based on biophysical and ecological criteria. Figure 2.4 maps
the Brazilian Legal Amazon and Amazon biome. IBGE provides vector data
indicating spatial boundaries for both. When rasterized at the 900m resolution,
the Brazilian Legal Amazon and Amazon biome territories contain about 6.3
and 5.2 million cells, respectively.
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Appendix B
Data Sources and Descriptions

B.1
Land Cover and Land Use

Brazil’s systems for detecting tropical forest loss are widely recognized as
being at the forefront of national efforts to combat deforestation (Tyukavina
et al., 2017). The country has used satellite imagery to map and quantify
Amazon deforested area since the late 1980s. Today, it operates three different
remote sensing-based programs for the Amazon. The programs interact, but
each serves a specific goal: (i) measure annual tropical deforestation; (ii)
monitor tropical forest disturbance; and (iii) classify land use in deforested
areas.

B.1.1
Measuring Deforestation

The Project for Monitoring Deforestation in the Legal Amazon
(PRODES), established by Inpe in 1988, provides georeferenced data on
annual tropical deforested area. The system detects forest clearings by
comparing, for any given area, satellite imagery from years t − 1 and t to
detect changes in land cover. When an area is identified as deforested in
satellite imagery, it is classified as part of that year’s deforestation increment;
as of the following year, it is taken as accumulated deforestation and is not
revisited. Accumulated deforestation is known as the “PRODES mask”. The
top panel in Figure B.1 presents a conceptual illustration of how PRODES
works: in year 1, the system maps and records deforested area; in year 2, the
system no longer looks for clearings inside this area, but maps and records
new patches of cleared forest outside it; in year 3 and beyond, this process
repeats itself, with total deforested area through the previous year being
incorporated into the PRODES mask and the system looking for new
deforestation outside this mask. This setup has two important consequences.
First, PRODES only detects the clearing of primary vegetation (forest that
has never been cut down). Second, and relatedly, it is an incremental system,
such that, for each year of data, it provides information on newly deforested
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Figure B.1: Satellite Systems for Detecting Forest Disturbances

1

YEAR 1 YEAR 2 YEAR 3 YEAR 4

Notes: The figure presents a conceptual illustration of how satellite-based PRODES and DETER systems
operate at an annual basis. The top panel refers to PRODES: in year 1, the system maps and records
deforested area; in year 2, the system no longer looks for clearings inside this area, but maps and records
new patches of cleared forest outside it; as of year 3, the process repeats itself. PRODES data is annual. The
bottom panel refers to DETER: in year 1, the system takes input from PRODES (region A); in year 2, the
system looks for signs of disturbance in forest areas outside the PRODES mask and issues deforestation hot
spot alerts accordingly; at the end of year 2, PRODES will either confirm or reject deforested status for these
areas, and only those that are confirmed are incorporated into the PRODES mask; in year 3 and beyond, the
process repeats itself, with DETER always looking for signs of forest disturbance in forest areas outside the
mask. DETER alerts are forwarded to law enforcement daily, but data is made publicly available in monthly
aggregates. Both PRODES and DETER are built to only capture loss of primary tropical vegetation.

areas, but never reclassifies previously cleared areas. This implies that the
PRODES mask is, by construction, non-decreasing in area.

The system classifies land cover throughout the full extent of the
Brazilian Legal Amazon into five categories of mutually-exclusive classes:
forest (standing primary vegetation), deforestation, bodies of water,
non-forest (areas that have never been covered by tropical vegetation), and
residue (a minor residual category). Only tropical forest areas can ever be
deforested, as PRODES is not technically fit to compute the clearing of other
types of vegetation. Although the Brazilian Legal Amazon is mostly covered
by tropical forest, some areas, particularly those outside the Amazon biome,
are naturally covered by savanna-like cerrado vegetation — these areas are
classified as non-forest in PRODES and are not accounted for in official
Amazon deforestation statistics. Because clouds, shadows cast by clouds, and
smoke from fires obstruct visibility in satellite imagery, some areas might be
classified into a sixth category: non-observable areas. Actual land cover in
these areas is only classified once the visual obstruction clears.

PRODES was created, and is still used, to calculate the Amazon-wide
deforestation rate. While the deforestation increment measures total visible
deforested area, the deforestation rate accounts for an estimate of cleared forest
areas that were partially or entirely blocked from view during remote sensing.
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The rate thereby attempts to more closely capture the speed at which the
Amazon was cleared, while the increment reflects when the cleared area became
known to authorities.1 Only the deforestation increment is made available as
spatial data.

PRODES uses imagery from Landsat class satellites with a spatial
resolution of 20 to 30m. When the system was implemented, technical
limitations restricted detection to deforestation patches larger than 6.25ha.
Today, although smaller patches are detected, processed, and forwarded to
environmental authorities, public data are restricted to patches larger than
6.25ha to preserve comparability across the time series. In addition, the
system only detects areas that have been clear-cut, so selective logging and
forest degradation are not included. Deforested area measured by PRODES
has been validated both internally, via Inpe-led field-based accuracy
evaluations (Adami et al., 2017), and externally, via third-party independent
interpretation of satellite imagery (Souza Jr. et al., 2013; Turubanova et al.,
2018). Cross-validations only refer to clear-cut deforestation, as PRODES
does not detect tropical degradation. As expected, analyses that account for
degradation estimate larger areas of affected forest (Souza Jr. et al., 2013;
Tyukavina et al., 2017).

Inpe annually releases updates to the PRODES series in vector format,
such that year t data contain a spatial history of all areas deforested through
that year and their associated year of deforestation. However, deforestation
years do not refer to calendar years. To minimize cloud cover and thereby
maximize visibility of the Earth’s surface, satellite images from the Amazon
dry season are typically used. Hence, for a given year t, PRODES measures
deforestation that happened from August of the previous year (t− 1) through
July of that year (t). The datasets in this dissertation are built to fit this
August-through-July window. For simplicity, I refer to this time frame simply
as “year” throughout the analyses.

Figure B.2a plots total deforested area for the 2006 through 2014 sample
period. PRODES vector data are currently available through 2016, but the
historical spatial series is only comparable through 2014. This is because, in
2015, Inpe implemented a mask shift — a non-linear spatial displacement to
adjust for inaccuracies that accumulated over time. Unfortunately, during this
procedure, the full history of clearings prior to 2013 was collapsed and all
areas cleared until then became aggregated under the 2012 year reference. As
restricting the sample to the post-2012 period would result in the loss of seven

1See Inpe (2013) for a detailed account of PRODES methodology and deforestation rate
estimation details.
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Figure B.2: Detected Forest Disturbances

(a) measuring deforestation: deforested area, 2006–2014

(b) monitoring deforestation: alert area, 2006–2014

deforested area deforestation alerts sample for analysis

Notes: The maps plot forest disturbances detected by PRODES and DETER in the 2006 through 2014
period. Sub-figure (a) shows deforested area captured in PRODES, which detects clearings larger than
6.25ha; sub-figure (b) shows forest clearing alert area captured in DETER, which detects clearings and
degraded areas larger than 25ha. Dimmed regions are non-sample areas for the analysis in Chapter 2 (see
Section 2.4.3 for sample definition). Data sources: PRODES/Inpe (deforestation); DETER/Inpe (alerts);
IBGE (Legal Amazon, Amazon biome).
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years of law enforcement data, the analyses use pre-shift PRODES data. This
sets 2014 as the sample’s final year.

B.1.2
Monitoring Deforestation and Degradation

DETER is a satellite-based system, developed and operated by Inpe, that
provides near real-time identification of forest clearing activity. Like PRODES,
DETER compares current satellite images with earlier ones, scanning for
changes in forest land cover. Upon detection, potential forest disturbances
map onto georeferenced alerts signaling areas of forest clearing activity. These
alerts are sent to the environmental law enforcement authority and serve as
the basis for targeting Amazon law enforcement.

DETER builds on the PRODES system to the extent that it only scans
for forest disturbances outside the PRODES mask. The bottom panel in
Figure B.1 illustrates the procedure: DETER needs year 1 input from PRODES
(deforested area in year 1, labeled A in the figure); in year 2, the system
looks for signs of disturbance in forest areas outside the PRODES mask and
issues deforestation hot spot alerts accordingly; at the end of year 2, PRODES
will either confirm or reject deforested status for these areas, and only those
that are confirmed are incorporated into the PRODES mask; in year 3 and
beyond, the process repeats itself, with DETER always looking for signs of
forest disturbance in forest areas outside the mask.

DETER covers the full extent of the Brazilian Legal Amazon, but only
detects signs of disturbance in areas classified as forest in PRODES; again,
cerrado areas are not included. It originally used images from the MODIS
sensor on the Terra satellite, which has a spatial resolution of 250m. The system
can therefore only detect forest clearings larger than 25ha. This relatively poor
spatial resolution was compensated by both increased temporal frequency (the
satellite revisits any given area within the Brazilian Legal Amazon daily)
and the ability to detect not only clear-cut deforestation, but also forest
degradation. Since 2015, Inpe has operated DETER alongside DETER-B.
The new system also serves to issue georeferenced alerts for recent forest
degradation and deforestation activity, but it detects changes in land cover
in patches larger than 1ha, albeit at lower temporal frequency (Diniz et al.,
2015).

Despite its high frequency, DETER data is aggregated at a monthly
basis for public release in vector format. DETER was implemented in 2004,
but remained in experimental mode through mid-2005. Thus, although a few
months of data are available for 2004 and early 2005, consistent remote sensing
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data on DETER alerts only starts in the second half of 2005. The first year
of DETER data is therefore set at 2006 throughout the empirical analyses.
Figure B.2b plots total alert area during the sample period.

B.1.3
Mapping Land Use in Deforested Areas

As PRODES and DETER are land cover classification systems, they
provide information on whether natural phenomena covering the Earth’s
surface have undergone change. Yet, once an area is deforested, whatever
happens within that area is regarded as land use. TerraClass Amazônia, a
joint effort between Inpe and the Brazilian Enterprise for Agricultural
Research (Embrapa), provides land use data for all deforested areas
throughout the Brazilian Legal Amazon. The system identifies eleven
different land use categories: four types of pasture (grassy, shrubby, exposed
soil, under regeneration); cropland (predominantly annual crops); secondary
vegetation (detailed in what follows); reforestation (commercial forests of
exotic species); urban; mining; mosaic of uses (where no single use can be
discerned); and others (a residual category).2 If clouds, shadows cast by
clouds, or smoke from fires obstruct visibility in imagery, the blocked area is
classified as unobservable. For a given year, TerraClass provides current land
use data within the full extent of the PRODES mask; that is, within
deforested area accumulated through the previous year. It is thus an
accumulated, not an incremental, dataset that allows for the identification of
transitions across different land uses over time.

TerraClass defines secondary vegetation as areas that were once clear-cut,
but currently contain trees and/or shrubs. It includes neither pasture under
regeneration, nor commercial reforestation. This category therefore captures
tropical regeneration. Figure B.3 shows secondary vegetation mapped in each
Amazon state in 2014. Although land use data are now available for 2004
and biannually from 2008 through 2014, they were not processed and released
in chronological order. TerraClass 2008 was the first to be released, but only
in 2012. Data for 2010 and 2012 followed, and data for 2004 and 2014 were
simultaneously released in mid-2016.

As TerraClass uses the same Landsat imagery as PRODES, it has a
spatial resolution of 30m. The data are publicly released in both vector and
raster formats at the same original spatial resolution, such that there is no loss
of information from operating in either format.3 In light of this, and because

2See Almeida et al. (2016) for a full description of TerraClass classes and methodology.
3This is not the case for PRODES, for which raster data are available, but only at lower

spatial resolution.
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Figure B.3: Regeneration by Amazon State, 2014

(a) Acre (b) Amapá (c) Amazonas

(d) Maranhão (e) Mato Grosso (f) Pará

(g) Rondônia (h) Roraima (i) Tocantins

Notes: The maps plot secondary vegetation area by Amazon state in 2014. States are not to scale across
sub-figures. Because secondary vegetation patches are small at the sate-level scale, it is difficult to see the
difference across years in print. Although available for other years, maps are therefore restricted to 2014
for illustrative purposes only. Data sources: TerraClass/Inpe and Embrapa (secondary vegetation); IBGE
(states).

vector data for secondary vegetation are extremely heavy and computationally
demanding, datasets for this dissertation use TerraClass raster data.

B.2
Protected Territory

FUNAI publicly releases spatial vector data for indigenous lands
throughout the country. This dataset contains date variables for each of the
indigenous territory recognition stages (see Section 2.2.3), enabling the
construction of a georeferenced annual panel. Despite being the official source
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for information on indigenous lands in Brazil, the FUNAI dataset contains
several occurrences of missing data for date variables. I address these gaps
using information from ISA, which compiles its own historical record of the
many recognition stages for indigenous territories. ISA data are publicly
available online and were collected using a data-scrapping algorithm. The
ISA-based dates fill in the gaps in FUNAI data, but never replace them.
Throughout this dissertation, an indigenous land is only regarded as
protected when it has completed the declaration stage, at which point its
spatial boundaries have been published via ordinance.4

Spatial vector data on protected areas come from the Brazilian Ministry
of the Environment (MMA). The georeferenced dataset contains information
on each area’s date of creation and protection type (strictly protected areas or
protected areas for sustainable use).

4Chiavari et al. (2016) support this cutoff stage, stating that indigenous territories are
only protected once they have been declared.
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C.1
Non-Decreasing Secondary Vegetation

Although TerraClass has performed well in internal accuracy checks
(Salum et al., 2011; Almeida et al., 2010), the classification of forest regrowth
is an empirically challenging endeavor. There are two main reasons for this
— one inherent to the use of satellite imagery, the other a consequence of
the design of Brazil’s satellite-based systems. First, because data on secondary
vegetation are built from interpretation of satellite imagery, regrowth must be
visible in the image to be detected. As imagery is limited by the satellite’s
spatial resolution, it is plausible to expect that any given deforested area must
accumulate sufficient natural biomass to be classified as secondary vegetation.
Yet, tropical regeneration is a time-consuming process that may extend over
decades (Alves et al., 1997; Aide et al., 2000; Guariguata and Ostertag, 2001).
It is therefore likely that areas that are already under regeneration may take
several years to show up in satellite-based land use classification systems.

Second, and the focus of this Appendix section, is the fact that Brazil’s
land use classification system cannot distinguish degraded primary forest
from actual secondary vegetation. This is best understood with the help
of a simplified illustration of how on-the-ground realities map onto satellite
imagery-based land use categories. Figure C.1 represents scenarios for a given
area under correct classification and misclassification of secondary vegetation.
It indicates how this area is classified under PRODES and TerraClass in
each of these scenarios over time. Consider a forested area in the correct
classification scenario (Figure C.1a). While left intact (through year t − 1 in
this example), tropical vegetation is classified as forest in PRODES. In year t,
it suffers clear-cut deforestation and falls under the deforestation increment
PRODES category. Starting in year t + 1, the area is part of the PRODES
mask, and is henceforth classified in the TerraClass system. Suppose the
area deforested in year t was used as pasture for one year after cleared and
then abandoned, allowing regrowth. TerraClass therefore classifies the area as
pasture in year t + 1 and as secondary vegetation from year t + 2 onwards.
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Figure C.1: Satellite-Based Classification of Regeneration

(a) correct classification: actual secondary vegetation
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(b) misclassification: degraded primary vegetation
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Notes: The figure represents alternative scenarios for correct classification and misclassification of secondary
vegetation in satellite imagery. It provides both PRODES and TerraClass categories for a given area over time
in each of these scenarios. Panel (a) portrays correct classification. While left intact (through year t−1 in this
example), tropical vegetation is classified as forest in PRODES. In year t, it suffers clear-cut deforestation
and falls under the deforestation increment PRODES category. Starting in year t + 1, the area is part of
the PRODES mask, and is henceforth classified in the TerraClass system. Suppose the area deforested in
year t was used as pasture for one year after cleared and then abandoned, allowing regrowth. TerraClass
therefore classifies the area as pasture in year t + 1 and as secondary vegetation from year t + 2 onwards. In
this case, the secondary vegetation classification actually captures vegetation that has grown in areas that
were once clear-cut — it is therefore correctly classified. Panel (b) portrays misclassification. The vegetation
is not left intact, but rather suffers degradation over time through year t − 1. Yet, because PRODES only
detects clear-cut deforestation, early and medium stages of degradation are classified as forest in PRODES
through year t − 1. In year t, when it has been sufficiently degraded and has lost enough biomass to look
like a deforested area in satellite imagery, it is classified as deforestation increment in PRODES. Again,
from year t + 1 onward, PRODES incorporates this area into its mask, making it available for classification
under TerraClass. In year t + 1, because TerraClass detects vegetation in the deforested area, the remaining
(but degraded) primary forest is classified as secondary vegetation. This is consistent with the TerraClass
definition for secondary vegetation category — areas that were once clear-cut, but currently contain trees
and/or shrubs. The misclassification in TerraClass occurs due to the fact that the area was never clear-cut,
thereby violating the assumption that whatever vegetation found in it is tropical regrowth.

This is taken to be correct classification of tropical regeneration, because it
captures vegetation that has grown in areas that were once clear-cut.

Now take an alternative scenario in which the forested area is not
left intact, but rather suffers degradation over time through year t − 1
(Figure C.1b). However, because PRODES only detects clear-cut deforestation,
early and medium stages of degradation are classified as forest in PRODES.
The crucial difference in this scenario is that, in year t, the area has not
suffered clear-cut deforestation. Instead, it has been sufficiently degraded and
has lost enough biomass to look like a deforested area in satellite imagery, at
which point it is classified as deforestation increment in PRODES. Again,
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from year t + 1 onward, PRODES incorporates this area into its mask,
making it available for classification under TerraClass. In year t + 1, because
TerraClass detects vegetation in the deforested area, the remaining (but
degraded) primary forest is classified as secondary vegetation. Indeed, this
is consistent with the TerraClass definition for secondary vegetation category
— areas that were once clear-cut, but currently contain trees and/or shrubs.
The misclassification in TerraClass occurs due to the fact that the area was
never clear-cut, thereby violating the assumption that whatever vegetation
found in it is tropical regrowth. This is regarded as a misclassification in
quantifying regeneration, because it can overestimate the area covered by
secondary vegetation. This is particularly concerning in light of the increasing
relevance of tropical degradation, as compared to clear-cut deforestation, in
the Brazilian Amazon (Souza Jr. et al., 2013; Rappaport et al., 2018).

In light of this, I draw on the biophysical nature of forest processes to
propose an alternative measure of secondary vegetation that is arguably less
vulnerable to misclassification errors. While an area under regeneration
typically sees an increase in biomass over time, one under degradation sees
the opposite trend. It is thus likely that, as degradation continues, a given
area will eventually cease to look like secondary vegetation and will be
classified in TerraClass according to some other use, like pasture. In
Figure C.1b, this is shown starting in year t + 2. Considering that the
permanence of secondary vegetation status differs across scenarios of correct
versus incorrect classification, I use it as the basis for building a more
conservative measure of tropical regeneration, which I call “non-decreasing
secondary vegetation”. This measure only considers an area as containing
tropical regrowth if it meets two criteria: (i) once classified as secondary
vegetation, it never ceases to be secondary vegetation; and (ii) it has been
classified as secondary vegetation for at least two consecutive TerraClass
years. The first criteria aims at avoiding the misclassification depicted in
Figure C.1b. The only exception to this rule is for areas in which satellite
visibility is compromised by visual obstructions, as these do not indicate a
change in land use, but a technical limitation in the imagery interpretation
system. Thus, unobservable is the only non-regeneration TerraClass category
that does not break secondary vegetation permanence. The second criteria
sets a stringent filter for regeneration by ignoring all areas that have no panel
history of regeneration status and can therefore not be duly assessed in terms
of permanence. Non-decreasing secondary vegetation areas are regarded as
such from the first time they appear as secondary vegetation. The
classification algorithm detects permanence by using the full (five-year)
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Figure C.2: Non-decreasing Secondary Vegetation Classification Algorithm

3

TerraClass category minicell classified as non-decreasing 
secondary vegetation in … ?

2004 2008 2010 2012 2014 2004 2014

sec. veg. sec. veg. sec. veg. sec. veg. sec. veg. yes yes

sec. veg. sec. veg. unobserved unobserved sec. veg. yes yes

forest forest sec. veg. sec. veg. sec. veg. no yes

forest sec. veg. unobserved unobserved sec. veg. no yes

forest sec. veg. unobserved unobserved unobserved no yes

pasture pasture sec. veg. sec. veg. sec. veg. no yes

sec. veg. sec. veg. pasture pasture pasture no no

sec. veg. sec. veg. pasture pasture sec. veg. no no

forest pasture sec. veg. sec. veg. pasture no no

forest sec. veg. unobserved unobserved pasture no no

forest forest forest forest sec. veg. no no

Notes: The figure presents possible land use classification histories at the raster minicell level over time and
indicates how the decision algorithm classifies non-decreasing secondary vegetation minicell status in 2004
and 2014 based on this history. Land use categories refer to the 30m raster minicell. “Sec. veg.” stands for
secondary vegetation; pasture is used here merely as an example of a non-regeneration land use category that
would be visible in satellite imagery, but the algorithm applies to all observable non-regeneration categories.

TerraClass time series to construct indicator variables that capture whether
the 30m raster minicell contained non-decreasing secondary vegetation in
2004 and 2014.1 Figure C.2 summarizes the history-based decision algorithm.

Although the assessment of forest regrowth in Chapter 3 looks at the
2004 through 2014 cross-sectional difference in the extent of secondary
vegetation, classification of non-decreasing secondary vegetation is based on
high-resolution raster minicell data spanning the complete TerraClass
historical series, and not just sample beginning and end data points.
Moreover, because temporal permanence is the key classification criteria,
non-decreasing secondary vegetation likely excludes fallow lands containing
tropical regrowth. This increases the likelihood that the proposed measure
capture secondary vegetation that grows as a result of the abandonment of
deforested areas, and not as part of an agricultural production cycle (Vieira
et al., 2003; Perz and Walker, 2002). Hence, if a minicell is classified as
non-decreasing secondary vegetation, there is a greater chance that it
actually does contain tropical regeneration. In this sense, non-decreasing
secondary vegetation measure is a more stringent and, thus, more
conservative definition for regeneration.

1The age of secondary vegetation could also be used as a measure of the likelihood of an
area classified as secondary vegetation being actual regeneration versus degraded primary
vegetation. To the best of my knowledge, these data are not available for the Brazilian
Amazon.
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