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Abstract

The Heckscher-Ohlin model of international trade is a general equilibrium model with finite
numbers of goods, factors, consumers (i.e., countries) plus assumptions on consumption and
production. Since only goods are traded between consumers, it is only by resorting to the factor
contents of goods that one can interpret goods trading as a way of trading factors. Leontief
was the first to measure the content in productive factors of US foreign trade. Vanek went
on by reformulating the classical Heckscher-Ohlin theorem as a statement about the factors
that a country export or import. I show in this paper that the Heckscher-Ohlin model not only
can be interpreted as, but is actually equivalent to, an exchange model for productive factors.
This property is established for an arbitrary number of goods, factors, consumers, with no
restrictions on consumers’ preferences except the usual ones made in consumer theory, and
convex production subject to constant returns to scale and no-joint production of consump-
tion goods. Vanek’s reformulation of the Heckscher-Ohlin theorem is then a straightforward
consequence of that equivalence. New properties of the Heckscher-Ohlin model also follow
from this equivalence. They underscore the significant and complex effect of the volume of
trade in factor contents resulting from specialization and globalization. At the theoretical level
adopted in this paper, the only issues that are considered deal with the uniqueness of equi-
librium, more generally their number, and their possible discontinuities. The equivalence of
the Heckscher-Ohlin model with an exchange model and applications of that equivalence to
international trade issues are proved through the equilibrium manifold and natural projection
approach that I have previously developed for and applied to the general equilibrium model with
no productive factors.

1. Introduction

The Heckscher-Ohlin model is essentially a general equilibrium model where countries are identified
to consumers, consumption goods are freely traded between countries (i.e., consumers) while
productive factors can be traded only within each country [11, 12, 18]. Consumption goods
are outputs of productions processes where the inputs are the productive factors. Production
technologies are the same across countries. They are represented by smooth concave production
functions that are homogeneous of degree one (constant returns to scale). There is no-joint
production of the consumption goods.

Some famous properties of the model (Heckscher-Ohlin, Rybczynski and Stolper-Samuelson
theorems) hold only for the special case of two consumers, two goods and two factors. This does
not reduce, however, the interest of arbitrary numbers of consumers, goods and factors. It is
in that setup that Samuelson discusses the most general version of the factor price equalization
theorem [19]. The impossibility of directly extending the Heckscher-Ohlin theorem about the goods
that a country import or export as a function of its factor endowments to more than two goods
led Vanek to compare the factors embodied in a country’s production and those embodied in its
consumption [22]. The factor content of trade had already been used by Leontief in a study of US
foreign trade of which the main result is now known as Leontief’s paradox [16]. According to Fisher
[8], the main value of Vanek’s contribution is to have emphasized that “trade in goods is only a
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veil,” that “Heckscher-Ohlin theory is really about the trade in the underlying factor services.” The
importance recently given to the trade content in productive factors is evidenced by the large body
of literature, mostly empirical, that has been devoted during the past two decades to measuring
the factor content of net trade for various countries and to apply these measures to various tests
of the theory. See [21] and the references therein.

The Heckscher-Ohlin model is a general equilibrium model in its own right. It is encompassed
in some of the papers that consider very general forms of the general equilibrium model as in T.
Kehoe [14, 15], Mas-Colell [17] and Smale [20]. It follows from these papers that the following
properties proved by Debreu [6] and Dierker [7] for the exchange model hold true in the Heckscher-
Ohlin model: 1) The set of regular economies is open and dense (for suitable parameter spaces
and topologies); 2) Equilibrium selections are locally unique and continuous at regular economies;
3) The number of equilibria is constant over every connected component of the set of regular
economies; 4) An index number (which provides some way of “counting equilibria” and that has
important invariance properties) can be defined at regular economies. These properties may not
appeal very much to the international trade community. In particular, they fail to bring any real
insight into possible relationships between goods and their factor content for example.

This paper is the result of my attempts at extending to the Heckscher-Ohlin model the equi-
librium manifold and natural projection approach that I have developed for the exchange model in
[1] and several subsequent papers. The two main results of the current paper are: 1) The equiv-
alence of the general Heckscher-Ohlin model with convex constant returns to scale and no-joint
production of goods with an exchange model for productive factors; 2) If consumers’ preferences
satisfy the usual assumptions of consumer theory, the equivalent exchange model satisfies the rich
set of properties described in Chapters 5 to 8 of my book [4]. It follows from this equivalence and
the properties of the equivalent exchange model that there exists a strong relationship between
the volume of trade in factor content and the properties of the equilibria of the Heckscher-Ohlin
model. For example and as in the exchange model, uniqueness, more generally, the number of
equilibria and the discontinuity of equilibrium selections depend closely on the volume of trade as
follows from [1]. To sum up, the two main results of this paper provide the theoretical justification
that has been missing so far of the importance, theoretical and applied, of the volume of trade in
factor content as a concept for analyzing international trade.

I have adopted for this article the formulation, the notation and the vocabulary that have been
used rather consistently in general equilibrium theory during the past three or four decades [3, 4, 5].
I do not expect readers with international trade background to face real difficulties in recasting
the developments of this paper in the terms and notation they are more familiar with.

This paper is organized as follows. The model with (consumption) goods and (production)
factors, no-joint production and constant returns to scale production, i.e., the Heckscher-Ohlin
model is defined in Section 2 with the level of generality adopted in this paper. In Section 3, goods
prices are expressed as a function of factor prices. That relation is then exploited to define the
content in productive factors of any bundle of (consumption) goods. The exchange model whose
“goods” are the (productive) factors is defined in Section 4. The equivalence between that exchange
model and the Heckscher-Ohlin model is proved in Section 5. Section 6 is devoted to proving that
the equivalent exchange model does indeed satisfy a rich set of properties provided preferences and
production in the Heckscher-Ohlin model satisfy standard assumptions that, for some of them at
least, are significantly weaker than the ones usually considered in the literature. The equivalence
of the two models is applied in Section 7 to describe several new properties of the Heckscher-Ohlin
model. They deal in particular with the uniqueness and, more generally, the number of equilibria and
the discontinuity of equilibrium selections, all important issues in comparative statics. Concluding
comments make up Section 8. A few technical and mostly well-known properties of production
and production functions are gathered and proved in a first appendix. A second and very short
appendix is devoted to the statement and proof of a very convenient sufficient condition for a
smooth map to be an embedding. Both appendices can easily be skipped in a first reading.
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2. The Heckscher-Ohlin model

2.1. Goods and prices

There are two kinds of goods: 1) Output or consumption goods simply known as goods; 2) Primary
or input goods also known as (productive) factors. The consumption goods are arguments of con-
sumers’ preferences (and of utility functions when preferences are represented by utility functions).
The productive factors participate only to the production process; they are not arguments of con-
sumers’ preferences or utility functions. The finite numbers of consumption goods and productive
factors are denoted by ` and k respectively.

2.2. Prices

The price of the consumption good j is denoted by pj (with 1 ≤ j ≤ `) and the price of the
productive factor h by qh (with 1 ≤ h ≤ k). The k-th productive factor is taken as numeraire, i.e.,
qk = 1. Let S = Rk−1

++ ×{1} denote the set of numeraire normalized factor prices q = (q1, . . . , qk).
Let X = R`++ denote the strictly positive orthant of R`. The set of (numeraire normalized) prices
(p, q) for all the goods and factors is the Cartesian product X × S.

2.3. Consumers’ preferences and endowments

There is a finite number m of consumers. Consumer i ’s preferences, with 1 ≤ i ≤ m, are
defined by a utility function ui : X = R`++ → R that satisfies the following standard assumptions:
1) Smoothness; 2) Smooth monotonicity, i.e., Dui(xi) ∈ X for xi ∈ X where Dui(xi) is the gradient
vector defined by the first-order derivatives of ui ; 3) Smooth strict quasi-concavity, namely, the
restriction of the quadratic form defined by the Hessian matrix D2ui(xi) to the tangent hyperplane
to the indifference surface {yi ∈ X | ui(yi) = ui(xi)} through xi is negative definite; 4) The
indifference surface {yi ∈ X | ui(yi) = ui(xi)} is closed in R` for all xi ∈ X. (See, for example, [4],
Chapter 2.)

Under these assumptions, the problem of maximizing the utility ui(xi) subject to the constraint
p ·xi ≤ wi has a unique solution fi(p, wi). This defines a demand function fi : X×R++ → X that is
homogenous of degree zero: fi(λp, λwi) = fi(p, wi) for every λ > 0. Note that only consumption
goods are demanded and consumed by consumer i .

In addition, the demand function fi is smooth (S), satisfies Walras law (W), namely the identity
p · fi(p, wi) = wi for any (p, wi) ∈ X ×R++, and the weak axiom of revealed preferences (WARP)
that states that the inequality p′ · fi(p, wi) ≤ w ′i implies the (strict) inequality p · fi(p′, w ′i ) > wi .
The following two properties known as desirability (A) and negative definiteness of the Slutsky
matrix (ND) are also satisfied by every demand function fi :

(A): For any sequence (pt , w ti ) ∈ X × R++ converging to (p0, w0
i ) ∈ R`+ \ {0} × R++, some

coordinates of p0 being equal to zero, then lim supt→∞ ‖fi(pt , w ti )‖ = +∞.

(ND): The Slutsky matrix of the demand function fi at any (p, wi) ∈ X × R++ truncated to its
first `− 1 rows and columns is negative definite.

Consumer i ’s endowments in pure production factors are represented by the vector ωi ∈ Rk++.
The m-tuple ω = (ωi) then represents the endowment vectors of all consumers and Ω = (Rk++)m

is the endowment or parameter space.

2.4. Production and the production matrix

There is no joint production. The quantity x j of consumption good j that is produced is a function
x j = Fj(η

1
j , . . . , η

k
j ) that depends only on the inputs in productive factors (η1

j , . . . , η
k
j ) ∈ Rk+. The
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production function Fj is assumed to be smooth, monotone (i.e., ∂Fj/∂ηh > 0 for 1 ≤ h ≤ k),
homogenous of degree one and concave, with Hessian matrix D2Fj(η) negative semi-definite and of
rank k − 1. In addition, I assume that limt→∞ Fj(η

t) = 0 if η0 = limt→∞ η
t has some coordinates

equal to zero (i.e., all production factors are necessary for production). Though these properties
are satisfied in the classical version of the Heckscher-Ohlin model, they could easily be weakened
without impairing the main properties of the model.

Firms’ demand functions

It follows from Proposition A.9 in Appendix A that there exists a unique combination of productive
factors η = bj(q) ∈ Rk++ that minimizes the cost of producing the quantity γj = 1 of the
consumption good j . The function bj : S → Rk++ is homogeneous of degree zero (Lemma A.12)
and smooth by Proposition A.11.

Definition 1. The production matrix associated with the factor price vector q ∈ S is the k × `
matrix B(q) =

î
b1(q) b2(q) . . . b`(q)

ó
. The production matrix function is the map B :

S → (R)k`++ defined by q → B(q).

The production matrix function B encapsulates all the economic properties of the production
sector, which is made possible by the assumption of no-joint production and constant returns to
scale.

The properties of the production matrix function play an important role in the study of the
Heckscher-Ohlin model. Their derivation is given in Appendix A: See more particularly Lemma
A.19, A.20 and A.21.

2.5. The Heckscher-Ohlin model

The (general equilibrium) model with pure production factors, no-joint production, and consumers’
endowments in pure production factors, in short the production model, is defined by the m
consumers’ utility functions ui , the (production matrix) function B : S → Rk` and the endowment
set Ω = Rkm++. An economy is defined by a specific value of the endowment vector in pure
production factors ω = (ωi) ∈ Ω where ωi ∈ Rk++.

Equilibrium

Definition 2. The 3-tuple
(
p, q, ω

)
∈ X × S × Ω is an equilibrium of the production model if

there exists a vector x ∈ X such that the two following equalities are satisfied:∑
1≤i≤m

fi(p, q · ωi) = x, (1)

B(q) x =
∑

1≤i≤m
ωi . (2)

The component (p, q) is then an equilibrium price vector for the economy ω = (ωi) ∈ Ω.

The equality of the aggregate demand for consumption goods and the supply x ∈ X of those
goods by the production sector is represented by equality (1). Equality between the demand for
productive factors B(q) x required for the production of consumption bundle x ∈ R`++ given the
factor price vector q ∈ S and the total supply of productive factors is represented by equality (2).
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Equilibrium manifold and the natural projection

The equilibrium manifold for the Heckscher-Ohlin model is the subset E of R`++×S×Ω consisting
of equilibria (p, q, ω). The natural projection π : E → Ω is the restriction to the equilibrium
manifold E of the projection map (p, q, ω)→ ω.

The direct study of the Heckscher-Ohlin model along the lines followed for the exchange model
would start with the study of the properties of the equilibrium manifold E among which the local
and global structures of that set stand in good place and continue with the study of the natural
projection π : E → Ω as a map from the equilibrium manifold E into the endowment set Ω. See,
for example, [1] or [4]. If followed from the very beginning, that approach would face the lack of
an obvious candidate for the concept of no-trade equilibrium that is so central in the exchange
model. The route I am going to follow bypasses this problem.

3. Goods bundles and their content in productive factors

In this section, I define the content in productive factors of an arbitrary goods bundle for a given
(equilibrium) price vector.

3.1. The factor content of a goods bundle

Proposition 3. The cost of producing the goods bundle x ∈ X given the factor price vector q ∈ S
is strictly minimized at y = B(q)x (matrix notation).

Proof. Let yj ∈ Rk++ be a factor bundle that enables the production of the quantity x j > 0

of good j , with 1 ≤ j ≤ `. The sum y = y1 + · · · + y` enables the production of the goods
bundle x = (x1, . . . , x j , . . . , x `). It follows from the property of no-joint production that the cost
q · y = q · y1 + · · · + q · y` is minimized if each term of this sum is minimum. Each one of these
minimization problems has a unique solution yj = bj(q)x j and, therefore, y =

∑
j bj(q)x j = B(q)x

(matrix notation).

The following definition exploits Proposition 3:

Definition 4. The factor content of the goods bundle x ∈ X for the factor price vector q ∈ S is
the bundle y = B(q)x ∈ Rk++ made of the factors that minimize the total cost of producing x .

Corollary 5. The factor content y = B(q)x is a linear function of the goods bundle x .

3.2. Relations between goods and factor prices at equilibrium

Equilibrium prices are obviously not arbitrary since they must satisfy the equilibrium equation. But
the equilibrium equation also implies simpler equalities that can lead to helpful simplifications by
giving alternative angles of attack. Here is such an example:

Proposition 6. Let (p, q, ω) ∈ X × S ×Ω be an equilibrium. Then, necessarily, p = B(q)T q.

Proof. The production of commodity j is a zero-profit operation, which implies the equality pj =

bj(q)T q for 1 ≤ j ≤ `, which can be rewritten as p = B(q)T q.

4. Consumer’s demand function for factors

Let q ∈ S be an arbitrary factor price vector. Define the goods price vector by p = B(q)T q ∈ X.
Consumer i ’s demand for goods given the wealth wi > 0 is equal to fi(p, wi) = fi(B(q)T q, wi).
The factor content of this demand is equal to B(q) fi(B(q)T q, wi). This leads to the following:
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Definition 7. Consumer i ’s demand function for factors hi : S×R++ → Rk++ is the map defined
by

hi(q, wi) = B(q) fi(B(q)T q, wi).

The question is whether this demand function is derived from the maximization of some utility
function for factors.

4.1. The indirect and direct utility functions for factors

Let ûi(p, wi) = ui
(
fi(p, wi)

)
denote consumer i ’s indirect utility function for goods. Let q ∈ S be

a factor price vector. For p = B(q)T q and wi > 0, the demand for consumption goods is equal to
fi(p, wi). The factor content of that demand is equal to B(q)fi(B(q)T q, wi). It seems natural to
define the indirect utility v̂i(q, wi) by the formula

v̂i(q, wi) = ûi(B(q)T q, wi).

The question is whether this function can be the indirect utility function that generates the demand
function hi(q, wi) for factors.

Proposition 8. Consumer i ’s demand for factors hi : S × R++ → Rk++ is the demand function
associated with the indirect utility function v̂i .

Proof. It suffices to show that the demand function hi(q, wi) is related to the (indirect utility)
function v̂i(q, wi) by Roy’s identity. Using the column matrix notation for hi(q, wi) and ∂q v̂i(q, wi),
it suffices to prove Roy’s identity, namely

∂wi v̂i(q, wi) hi(q, wi) = −∂q v̂i(q, wi). (3)

From the definition of v̂i(q, wi) = ûi(B(q)T q, wi), it comes

∂wi v̂i(q, wi) = ∂wi ûi(B(q)T q, wi) = ∂wi ûi(p, wi).

Application of the chain rule yields

∂q v̂i(q, wi)
T = ∂pûi(p, wi)

T ∂q(B(q)T q).

The equality ∂q(B(q)T q) = B(q)T of Lemma A.20 implies the equality

∂q v̂i(q, wi)
T = ∂pûi(p, wi)

T B(q)T

and, after taking the transpose,

∂q v̂i(q, wi) = B(q) ∂pûi(p, wi)

Roy’s identity (3) now takes the form

∂wi ûi(p, wi) hi(q, wi) = −B(q) ∂pûi(p, wi). (4)

It follows from the definition of fi(p, wi) as the demand function associated with the utility function
ui that it satisfies Roy’s identity with respect to the utility function ûi(p, wi), which, in matrix
notation, takes the form:

∂wi ûi(p, wi)fi(p, wi) = −∂pûi(p, wi).

Left multiplication by B(q) yields

∂wi ûi(p, wi)B(q) fi(p, wi) = −B(q) ∂pûi(p, wi),

which, after substituting hi(q, wi) = B(q)fi(p, wi), is exactly equation (4).
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The direct utility function for factors

Proposition 9. Consumer i ’s direct utility function vi for factors is defined by

vi(yi) = min
q∈S

v̂i(q, q · yi).

Proof. Follows readily from the definition of the direct utility function from the indirect one.

An obvious consequence of Proposition 9 is that the demand function hi for production factors
results from the maximization of the direct utility function vi subject to a budget constraint.

5. The factor exchange model

Definition

The commodity space is the Euclidean space of factors Rk . Good k is used as numeraire. The
price set is the set S = Rk−1 × {1} of numeraire normalized factor price vectors. The factor
exchange model consists of m consumers, with consumer i ’s utility function (with 1 ≤ i ≤ m)
the direct utility for pure production factors vi : Rk++ → R of Proposition 9.

An exchange economy is defined by a specific value of the endowment vector ω = (ωi) ∈ Ω

where ωi ∈ Rk++ represents consumer i ’s endowments in factors.

Equilibrium

Definition 10. The pair (q, ω) ∈ S × Ω is an equilibrium of the factor exchange model if and
only if the equilibrium equation ∑

1≤i≤m
hi(q, q · ωi) =

∑
1≤i≤m

ωi

is satisfied. The factor price vector q ∈ S is then an equilibrium price vector associated with the
economy ω.

Equilibrium manifold and natural projection

The equilibrium manifold for the factor exchange model is the subset Ẽ of S×Ω consisting of the
equilibria (q, ω). The natural projection π̃ : Ẽ → Ω is the restriction to the equilibrium manifold
Ẽ of the projection map (q, ω) → ω. It is a property of the exchange model that its “equilibrium
manifold” Ẽ is indeed a smooth submanifold of S ×Ω and is diffeomorphic to a Euclidean space.
(See [1] or [4], Proposition 4.9 and 5.8.)

6. Equivalence of the two models

6.1. Equivalence between equilibria

Proposition 11. The triple (p, q, ω) ∈ R`++ × S × Ω is an equilibrium of the Heckscher-Ohlin
model if and only if the pair (q, ω) ∈ S ×Ω is an equilibrium of the factor exchange model.

Proof.
Necessity. Let (p, q, ω) ∈ X × S ×Ω that satisfies∑

1≤i≤m
fi(p, q · ωi) = x, (5)

B(q) x =
∑

1≤i≤m
ωi (6)
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for some x ∈ X. Matrix multiplication of both sides of (5) by B(q) yields∑
1≤i≤m

B(q) fi(p, q · ωi) = B(q) x.

Substituting B(q)T q to p and applying Equation (5) yields∑
1≤i≤m

B(q) fi(B(q)T q, q · ωi) =
∑

1≤i≤m
ωi , (7)

which can be rewritten as ∑
1≤i≤m

hi(q, q · ωi) =
∑

1≤i≤m
ωi .

Sufficiency. Let p = B(q)T q and define

x =
∑

1≤i≤m
fi(p, q · ωi). (8)

Each vector fi(p, q · ωi) belongs to the strictly positive orthant X = R`++. So does the sum
x =

∑
1≤i≤m fi(p, q · ωi). Left multiplication by B(q) of equality (8) yields

B(q) x = B(q)
∑

1≤i≤m
fi(p, q · ωi).

With q ∈ S a solution of equation (7), the above right-hand side term is equal to
∑

1≤i≤m ωi ,
from which follows the equality

B(q) x =
∑

1≤i≤m
ωi ,

which is equation (2) of Definition 2. The triple (p, q, ω) is then an equilibrium of the Heckscher-
Ohlin model.

6.2. Equivalence of the two models

Intuitively, Proposition 11 tells us that the equilibrium equation systems of the Heckscher-Ohlin
and factor exchange models have the same properties. The standard mathematical formulation
of this equivalence (of equation systems) is by way of a diagram of maps (or functions) that is
commutative. With these two models represented by their natural projection maps π : E → Ω

and π̃ : Ẽ → Ω respectively, these two models are equivalent if these two maps are equivalent in
the mathematical sense: See for example [2], Definition 5.4.2. or [9], Chapter III, Definition 1.1.
Since Ẽ is a smooth manifold, equivalence means in practice that the domain E, the “equilibrium
manifold” of the Heckscher-Ohlin model is not only a smooth manifold (and actually a smooth
submanifold of X × S × Ω) but that this smooth manifold is also diffeomorphic to Ẽ. The proof
that these two maps are equivalent will also require identifying two smooth maps α̃ : E → Ẽ

and β̃ : Ẽ → E that are inverse to each other and such that the diagram of Proposition 20 is
commutative.

Definition of maps α and β

Beware, the maps α and β are not to be confused with the maps α̃ and β̃ respectively described
just above even if those maps are closely related. They differ in particular by their domains or
ranges. Some readers may consider these differences to be little more than minor mathematical
technicalities. Unfortunately, these technicalities have their importance in some circumstances as,
for example, here.
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Definition 12. The map α : X × S × Ω → S × Ω is the projection (p, q, ω) → (q, ω). The map
β : S ×Ω→ X × S ×Ω is defined by β(q, ω) = (B(q)T q, q, ω).

It follows from this definition that the maps α and β are smooth. They are not the diffeomor-
phism we are looking for yet even if we are not that far as the following lemma suggests:

Lemma 13. α ◦ β = idS×Ω.

Proof. Obvious.

Note that the composition β ◦α is not the identity map of X×S×Ω. In other words, Lemma
13 says that the map β is a right inverse of the map α for the composition of maps. But the
map α has no left inverse, which prevents the maps α and β from being inverse to each other.
Nevertheless, the following property of the map β shows us how to get the diffeomorphisms we
are looking for.

Lemma 14. The map β : S ×Ω→ X × S ×Ω is an embedding.

Proof. The fact that the map β is an embedding follows readily from Lemma B.1 of the Appendix
combined with Lemma 13 above.

Corollary 15. The image F = β(S×Ω) is a smooth submanifold of X×S×Ω that is diffeomorphic
to S ×Ω.

Proof. Follows readily from the property of an embedding of being a smooth map that is a diffeo-
morphism between its range and its domain.

Define now the map β F : S×Ω→ F by the same formula as the map β except that the range
is now the image F = β(S×Ω) and the map (α |F ) : F → S×Ω as the restriction of the map α
to the submanifold F .

Corollary 16. The map β F : S×Ω→ F and (α |F ) : F → S×Ω are smooth and inverse to each
other.

Proof. Obvious.

The equilibrium manifold Ẽ being a smooth submanifold of S×Ω, the restriction of the smooth
map βF to Ẽ is therefore a smooth map (βF | Ẽ) : Ẽ → F .

Lemma 17. We have (βF | Ẽ)(Ẽ) = E.

Proof.
Step 1: (βF | Ẽ)(Ẽ) ⊂ E. Let (q, ω) ∈ Ẽ. The equation of Definition 10 is satisfied. It then
follows from Proposition 11 that (p, q, ω) = (βF | Ẽ)(q, ω) = β(q, ω) satisfies the equilibrium
equation of Definition 2 or, in other words, (p, q, ω) belongs to E.
Step 2: E ⊂ (βF | Ẽ)(Ẽ). Let (p, q, ω) ∈ E. By definition, the equation of Definition 2
is satisfied. Again by Proposition 11, the equation of Definition 10 is satisfied by (q, ω) and
p = B(q)T q. In other words, (q, ω) belongs to Ẽ and (p, q, ω) = β(q, ω) = (βF | Ẽ)(q, ω)

belongs to (βF | Ẽ)(Ẽ).

Proposition 18. The map (β | Ẽ) : Ẽ → F is an embedding from Ẽ into F with image the set E.

Proof. Follows readily from the previous lemmas.

Corollary 19. The “equilibrium manifold” E is a smooth submanifold of X × S ×Ω diffeomorphic
to E.

Proof. Follows readily from the characterization of an embedding.
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Define the map β̃ : Ẽ → E as the map that has the same formula as β but with domain the
equilibrium manifold Ẽ and range E.

Proposition 20. The maps α̃ : E → Ẽ and β̃ : Ẽ → E are inverse to each other.

Proof. Follows readily from the proof of Proposition 18.

Proposition 20 can be reformulated as the commutativity of the maps π and π̃ in the following
diagram:

Corollary 21. The diagram

Ω

π π̃

S × ΩX × S × Ω

E Ẽ

β

α

β̃

α̃

is commutative.

Theorem 22. The Heckscher-Ohlin model and the factor exchange model are equivalent.

Proof. First, the maps α̃ and β̃ are inverse diffeomorphisms by Proposition 20. Second, the
equality π = π̃ ◦ α̃ is equivalent to π(p, q, ω) = π̃(α̃(p, q, ω)) for (p, q, ω) ∈ E. This equality is
equivalent to π(p, q, ω) = π̃(q, ω), itself equivalent to ω = ω by the definitions of the maps π
and π̃. Third, the equality π̃ = π ◦ β̃ is equivalent to π̃(q, ω) = π(B(q)T q, q, ω) for (q, ω) ∈ Ẽ.
Again, this is equivalent to ω = ω.

7. Consumers’ factor demand functions

The properties of the factor exchange model depend on the properties of consumers’ preferences
for productive factors. The richest set of properties is obtained if all demand functions hi satisfy
smoothness (S), Walras law (W), the weak axiom of revealed preferences (WARP), and the demand
function of one consumer the negative definiteness of the Slutsky matrix (ND) and desirability (A).
See [4], Chapter 5 to 8. All those properties are satisfied by demand functions hi (with 1 ≤ i ≤ m)
that result from the maximization subject to a budget constraint of utility functions vi satisfying
the standard assumptions of (smooth) consumer theory.

Though it would suffice for this section at least that I show that consumer i ’s utility function
for factors vi satisfies those properties, it is much easier and more general to prove directly that
the factor demand function hi satisfies properties (S), (W), (WARP), (ND) and (A) when the
respective properties are satisfied by goods demand function fi .

Proposition 23. Consumer i ’s factor demand function hi is smooth (S) (resp. satisfies Walras
law (W)) if the goods demand function fi satisfies (S) (resp. (W)).

10



Proof. Smoothness (S) for fi implies (S) for hi . Let fi be smooth. The production matrix function
q → G(q) is smooth. Therefore, the demand function hi(q, wi) = B(q) fi(B(q)T q, wi) is smooth
by composition of smooth functions, which proves (S).
Walras law (W) for fi implies (W) for hi . Let fi satisfy (W). We then have

qT hi(q, wi) = qTB(q) fi(p, wi) = pT fi(p, wi) = wi .

Proposition 24. Consumer i ’s factor demand function hi satisfies the weak axiom of revealed
preferences (WARP) (resp. the negative definiteness of the Slutsky matrix (ND)) is the goods
demand function fi satisfies (WARP) (resp. (ND)).

Proof. (WARP) for fi implies (WARP) for hi . Let (q, wi) and (q′, w ′i ) with hi(q, wi) 6= hi(q
′, w ′i )

be such that (q′)T hi(q, wi) ≤ w ′i . This inequality can be spelled out as

(q′)TB(q) fi(p, wi) ≤ w ′i . (9)

Inequality
(q′)T (B(q′)) ≤ (q′)T (B(q))

follows from Lemma A.21 of Appendix A. The positivity of matrices B(q) and B(q′) and of the
demand vector fi(p, wi) then leads to inequality

(q′)TB(q′) fi(p, wi) ≤ (q′)TB(q) fi(p, wi),

which implies, by (9), the inequality

(p′)T fi(p, wi) ≤ w ′i . (10)

By (WARP) that is satisfied by fi , inequality (10) implies the inequality

(p)T fi(p
′, w ′i ) > wi , (11)

which can be rewritten as
qTB(q) fi(p

′, w ′i ) > wi . (12)

A new application of Lemma A.21 yields inequality qTB(q) ≤ qTB(q′). The inequality

qTB(q)fi(p
′, w ′i ) ≤ qTB(q′)fi(p

′, w ′i ).

then follows from the positivity of the demand vector fi(p′, w ′i ). This inequality can be rewritten
as

pT fi(p
′, w ′i ) ≤ qTB(q′)fi(p

′, w ′i ) = qT hi(q
′, w ′i ).

Combining this inequality with the strict inequality (11) yields

qT hi(q
′, w ′i ) ≥ pT fi(p′, w ′i ) > wi ,

which proves that (WARP) is satisfied by hi .

(ND) for fi implies (ND) for hi . Let fi satisfy (ND). In this part, I assume that the price vector
q ∈ Rk++ is not normalized because the computation of Slutsky matrices requires computing
derivatives of demand functions with respect to the price qk of the numeraire good (here, productive
factor k). Without price normalization, the factor demand function hi(q, wi) is homogenous of
degree zero. Define ∂qhi(q, wi) as the k × k matrix of first order derivatives of hi with respect to
the price vector q. Similarly, let ∂pfi(p, wi) denote the ` × ` matrix of partial derivatives for the
demand function fi with respect to the price vector p ∈ X.
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Step 1: Negative definiteness of the restriction of the quadratic form associated with matrix
∂pfi(p, wi) to the hyperplane {z ∈ R` | zT fi(p, wi) = 0}. It follows from Hildenbrand and Jerison
[13] that (ND) satisfied by fi is equivalent to the restriction of the quadratic form

z ∈ R` → zT ∂pfi(p, wi)z

to the hyperplane fi(p, wi)⊥ = {z ∈ R` | zT fi(p, wi) = 0} being negative definite.
Step 2: ∂qhi(q, wi) = (∂qB(q))fi(B(q)T q, wi) +B(q)(∂qfi(B(q)T q, wi). Follows from taking the
derivative of the product hi(q, wi) = B(q)fi(B(q)T q, wi) with respect to the price vector q ∈ Rk++.
Step 3: ∂qfi(B(q)T q, wi) = (∂pfi(p, wi))B(q)T . Application of the chain rule to fi(B(q)T q, wi)

yields
∂qfi(B(q)T q, wi) = (∂pfi(p, wi)) ∂q(B(q)T q).

It then suffices to apply Lemma A.20.
Step 4: ∂qhi(q, wi) = (∂qB(q)) fi(p, wi)) + B(q) ∂pfi(p, wi)B(q)T . It suffices to substitute the
expression obtained in Step 3 in the formula of Step 2.
Step 5: The quadratic form defined by the matrix (∂qB(q)) fi(p, wi) is negative semi-definite, with
rank k − 1. The column matrix B(q) fi(p, wi) is equal to

B(q) fi(p, wi) =
∑

1≤j≤`
bj(q) f ji (p, wi).

Its derivative with respect to q is the k × k matrix

∂qB(q) fi(p, wi) =
∑

1≤j≤`
(∂qbj(q)) f ji (p, wi).

Each square matrix ∂qbj(q) defines a quadratic form that is negative semidefinite, with rank k − 1

and kernel collinear with q by Lemma A.15 and A.17 of the Appendix. The linear combination of
these quadratic forms with the strictly positive coefficients f ji (p, wi), with 1 ≤ j ≤ `, is therefore
negative semidefinite and takes a value different from zero for any vector v ∈ Rk that is not
collinear with the price vector q ∈ Rk++.
Step 6: v ∈ hi(q, wi)⊥ implies B(q)T v ∈ fi(p, wi)⊥. The relation v ∈ hi(q, wi)⊥ is equivalent to
vT hi(q, wi) = vTB(q)fi(p, wi) = 0. This relation is equivalent to z = B(q)T v in fi(p, wi)⊥.
Step 7: qT hi(q, wi) 6= 0. Follows readily from Walras law qT hi(q, wi) = wi 6= 0.
Step 8: vT ∂qhi(q, wi) v < zT ∂pfi(p, wi) z < 0 for any v ∈ hi(q, wi)⊥. By step 4, it comes

vT ∂qhi(q, wi) v = vT (∂qB(q)) fi(p, wi) v + vTB(q) ∂pfi(p, wi)B(q)T v .

By Step 5, since v ∈ hi(q, wi)⊥ is not collinear with q, it comes

vT ∂qhi(q, wi) v < vTB(q) ∂pfi(p, wi)B(q)T v .

The application of Steps 6 and 1 yields

vT ∂qhi(q, wi) v < zT ∂pfi(p, wi) z < 0.

Step 9: hi satisfies (ND). Follows readily from the negative definiteness of the restriction of the
quadratic form defined by ∂qhi(q, wi) to the hyperplane hi(q, wi)⊥ and its equivalence with (ND)
satisfied by hi by [13].

Desirability (A)

In this section again, the factor price vector q is not normalized.

12



Proposition 25. Consumer i ’s factor demand function hi satisfies Desirability (A) if the goods
demand function fi satisfies (A).

Proof. Let (qt , w ti ) ∈ Rk++ be a sequence of non-normalized price and income vectors converging
to (q0, w0

i ) ∈ Rk+ × R++, with some but not all coordinates of the price vector q0 being equal to
zero. It follows from Proposition A.23 of the Appendix that, for each j , with 1 ≤ j ≤ `, there is at
least one coordinate bkj (qt) of bj(qt) that tends to +∞. In other words, to produce one unit of
good j at factor prices qt that tend to q0, there is at least one production factor k whose demand
bkj (qt) tends to +∞.

By considering if necessary a subsequence, there is no loss of generality in assuming that pt

tends to a limit p0 ∈ R`+, where some coordinates of p0 may be equal to 0. If none of these
coordinates are equal to 0, continuity implies limt→∞ fi(p

t , w ti ) = fi(p
0, w0

i ) ∈ R`++. It then
follows from

hi(q
t , w ti ) = B(qt) fi(B(qt)T qt , w ti ) = B(qt) fi(p

t , w ti )

that lim ‖hi(qt , w ti )‖ is equal to +∞ by the above property. If some coordinates of p0 are equal to
0, it follows from (A) that is satisfied by fi that we have lim supt→∞ ‖fi(pt , w ti )‖ = +∞, i.e., there
exists some consumption good j such that the demand f ji (pt , w ti ) tends to +∞. This implies that
the demand for the production factor k to produce the quantity f ji (pt , w ti ) of consumption good
j also tends to +∞.

Proposition 26. If consumer i ’s preferences can be represented by a utility function ui : X → R
that satisfy the assumptions of Section 2.3, the associated goods demand function fi : X×R++ →
R`++ and factor demand function hi : S×R++ → Rk++ satisfy (S), (W), (WARP), (ND) and (A).

Proof. For the goods demand function fi , see for example [4], Chapter 3. For the factor demand
function hi , this follows from Propositions 23, 24 and 25.

Remark 1. The assumption that consumers’ preferences are represented by continuous or, given
the current context, smooth utility functions is standard. Assuming convexity and monotonicity of
preferences, representability by a (continuous) utility function is roughly equivalent to transitivity
of preferences. It results from the above developments that transitivity is not necessary to obtain
a full set of properties for the Heckscher-Ohlin model, something that may be useful in some
applications.

8. Application to the Heckscher-Ohlin model

This section presents a rather small sample of properties of the Heckscher-Ohlin model that are
derived from its equivalence with the factor exchange model when consumers’ preferences for
goods satisfy the assumptions of Proposition 26, in other words when preferences are represented
by smooth utility functions satisfying standard assumptions. The properties that I have chosen for
the Heckscher-Ohlin model stand out for their immediate relevance for comparative statics, a major
issue in many applications of that model. These are not and by large the only properties of that
model. See for example [3] and [4], Chapter 5 to 8 for a list of those properties for the exchange
model, their translation into properties of the Heckscher-Ohlin model being straightforward through
the equivalence between the two models. All these properties are new in the setup of the Heckscher-
Ohlin model except those described in Proposition 28.

Global structure of the equilibrium manifold

Proposition 27. The equilibrium manifold E of the Heckscher-Ohlin model is a smooth manifold
diffeomorphic to Rkm.
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Proof. Follows from the same property of the equilibrium manifold Ẽ of the factor exchange model.
See [1]. (See also [4], Proposition 5.8 for a simpler proof in the case of a larger parameter space
that allows for possibly negative endowments.)

Remark 2. The diffeomorphism property stated in Proposition 27 may not seem very appealing.
In fact, it says three interesting things. First, it is possible to parameterize all the equilibria of
the Heckscher-Ohlin model by simply km parameters. A closer look at these parameters shows
that these parameters can be prices, wealth distribution across consumers and the coordinates
that determine the factor trade vector (provided the parameters can have negative coordinates).
This is coordinate system (B) of [4], Chapter 6, Section 6.3. Second, the equilibrium manifold
is pathconnected. In practice, this means that any two equilibria can be linked by a continuous
path in the equilibrium manifold. Third, the natural projection is a smooth map: using a suitable
coordinate system, that map can be expressed as a map from Rkm into itself or, in other words,
by just a set of km real-valued functions depending on km parameters. No more need even for
the most elementary aspects of differential topology!

Regular economies

The natural projection π : E → Ω being a smooth map, one defines a regular (resp. critical)
point of that map as an element x of E (i.e., x is an equilibrium) that is such that the derivative
Dxπ : Tx(E) → Tπ(x)(Ω) is a bijection (resp. is not). The spaces Tx(E) and Tπ(x)(Ω) are the
tangent spaces to X and Ω at x ∈ E and π(x) ∈ Ω respectively. By definition a singular value
ω ∈ Ω of the map π : E → Ω is the image of a critical point, i.e., there exists x ∈ E that is a
critical point and such that π(x) = ω ∈ Ω. It is easy to see that the set of critical points Σ is
closed in the equilibrium manifold E. If the natural projection π : E → Ω is proper, then the image
of every closed set is also closed. By Sard’s theorem, the set Σ has also measure zero in Ω. Last
but not least, the element ω ∈ Ω is by definition a regular value of the map π : E → Ω if it is not
a singular value. The set of regular values R of the map π is therefore the complement Ω \ Σ.
This set is open dense in Ω. For details, see [4], Chapter 7.

The following four properties of the Heckscher-Ohlin model have already been mentioned in
the introduction.

Proposition 28. 1) The set of regular economies R is an open and dense subset of the parameter
space Ω; 2) Equilibrium selections are locally unique and continuous in sufficiently small neighbor-
hoods of ω ∈ R; 3) The number of equilibria #π−1(ω) is constant for ω in a connected component
of the set of regular economies R; 4) The modulo 2 degree of the natural projection π : E → Ω

is equal to 1.

Proof. They were proved for the exchange model by Debreu [6] and Dierker [7]. It then suffices
to apply the equivalence between the Heckscher-Ohlin model and its factor exchange model.

Remark 3. In the exchange model, the properties stated under Proposition 28 follow readily from
the smoothness and properness of the natural projection. See [4], Chapter 7. It is also obvious by
the equivalence property that the natural projection in the Heckscher-Ohlin model is also proper
and smooth.

Remark 4. Dierker’s degree concept and its extension by Kehoe to regular production economies
and, henceforth, to the Heckscher-Ohlin model correspond to the topological or Brouwer degree
of the natural projection instead of the modulo 2 degree. See Section 7.6.1 of [4].

Uniqueness of equilibrium

Let P denote the set of Pareto optima of the factor exchange model. This set is a subset of Ω and
consists of the allocations (or endowments) ω = (ωi) that are Pareto optima of the factor exchange
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model. In the case of m = 2 consumers and k = 2 two factors, this set coincides with the contract
curve of the Edgeworth-Bowley box. It follows from the two theorems of welfare economics (for
the exchange model) that the set of Pareto optima P for the factor exchange model coincides
with the set of factor contents of the equilibrium allocations of the Heckscher-Ohlin model.

Proposition 29. The set of Pareto optima P is a pathconnected smooth submanifold of the
endowment space Ω = (Rk++)m.

Proof. Follows from [4] Corollary 8.5 applied to the factor exchange.

Remark 5. The most important part of Proposition 29 is the pathconnectedness. Note that, in
fact, the set of Pareto optima P is diffeomorphic to R`+m−1.

The set of regular economies R is open. As such, it is partitioned into a collection of connected
components. These are open subsets. By Proposition 28, the number of equilibria is constant for
ω in every pathconnected component of R: [6] and [4], Proposition 7.7. The following property is
therefore quite remarkable:

Proposition 30. The set of Pareto optima P is contained in a unique connected component of
the set of regular economies R.

Proof. See [4], Proposition 8.8.

Let this component be denoted by R1. In Figure 1, the component R1 is the subset of Ω

bounded by the curve Σ (the set of singular economies) and containing the curve P (the set of
Pareto optima). The grey area in Ω consists of the regular economies ω with three equilibria.

π

Ω

E

Σ
P

Figure 1: The equilibrium manifold and the natural projection

Proposition 31. Equilibrium is unique for all endowment vectors ω in the component R1.

Proof. See [4], Proposition 8.8.

In practice, the endowment vector ω belongs to the connected component R1 if the vector
of net trades in factor contents

(
hi(p, p · ωi) − ωi

)
is sufficiently small. This is equivalent to the

volume of trade represented by the distance between the vector of factor endowments ω and the
set of factor contents of equilibrium allocations P being sufficiently small.
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Remark 6. The first mention and proof that the set of Pareto optima is contained in a unique
pathconnected component of the set of regular economies R and that equilibrium is unique for
endowments in that component are due to Balasko [1].

Multiplicity of equilibria

The connected component U of R is said to be adjacent to the connected component R1 if the
boundaries or these two open sets have a non-empty intersection: ∂R1 ∩ ∂U 6= ∅.

Proposition 32. The number of equilibria is larger than or equal to three for all factor endowment
ω in the connected components of the set of regular economies R that are adjacent to R1.

Proof. Here is a brief outline of the proof. Let ω ∈ U, with U is connected component of R
adjacent to R1. Let ω′ ∈ R1. By the definition of U, there exists a continuous path going from ω′

to ω that intersects the set of singular economies Σ just once at some point ω′′. When following
that path, the number of equilibria jumps from one to at least three when it goes through Σ at
ω′′. For more details, see for example [2], p. 144 and the developments in its Chapter 7.

Remark 7. The location and size of the uniqueness component R1 are therefore critical for issues
of comparative statics. The location is determined by the location of the set of Pareto optima,
i.e., of the set of factor contents of equilibrium allocations. The size can be inferred from the
distance of the set of singular economies Σ, to the set of Pareto optima P . It follows from [4],
Chapter 6, Proposition 6.6. that this distance is inversely related to the size of the polyhedral

cone defined by the m vectors
∂f1
∂w1

(q, w1),
∂f2
∂w2

(q, w2), . . . ,
∂fm
∂wm

(q, wm) in Rk that represent

the wealth effects on the factor demands of each consumer. When all these vectors are collinear,
then all these factor demand functions are identical and, furthermore, satisfy the Gorman-Nataf
perfect aggregation condition: [10] and [2], Theorem 7.Ann.3. No endowment vector ω ∈ Ω is
then singular, and equilibrium is always unique.

Remark 8. Very roughly speaking, it follows from the previous remark that the more consumers
have different preferences and the smaller is the uniqueness domain R1 and the more likely it is to
observe multiple equilibria and discontinuities of equilibrium selections for sufficiently large volume
of trade in factor contents.

9. Concluding comments

The main conclusion that emerges from this paper is the importance of the volume of trade in
factor contents in issues of comparative statics within the setup of the Heckscher-Ohlin model.
The accelerating trend towards more specialization and globalization that has been going on in
the world economy since a few decades has led to increasingly large volumes of trade in the factor
contents of goods. When reformulated within the Heckscher-Ohlin model, this phenomenon implies
that the world economy may very well be hovering over domains of multiple equilibria, and the
latter are also associated with discontinuities of equilibrium selections. This conclusion requires
nothing more than widely accepted economic assumptions on preferences and production. This
deeply ingrained property of the Heckscher-Ohlin model (and also of the exchange model) holds
without more or less artificial additions of complicating elements for the sake of realism.

It may very well be that these discontinuities of and jumps between equilibrium selections have
not occurred in the world economy yet. Nevertheless, it is hard not to think that they have not
already occurred but haven’t been properly identified and understood. And, even if this has not
been the case yet, the fact that these phenomena are so deeply enrooted in the equilibrium equation
of a simple and beautiful model implies that these phenomena will occur sooner or later. I bet that
Dirac would not disagree with me. Equations ought to be taken seriously.
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A. The production sector
The main properties of the production sector follow from the lack of joint production and from the concavity of the
production functions Fj . These properties are well-known, at least in the special case of the Heckscher-Ohlin model.
They are gathered in this appendix for lack of convenient references at this level of generality.

A.1. Production functions
The production of the quantity x j of consumption good j is a function x j = Fj(η

1
j , . . . , η

k
j ) of the pure production

factors (η1
j , . . . , η

k
j ) ∈ Rk+. The production function Fj is smooth, monotone (i.e., ∂Fj/∂ηh > 0 for 1 ≤ h ≤ k),

homogenous of degree one and concave, with Hessian matrix D2Fj(η) negative semi-definite and of rank k − 1. In
addition, all production factors are necessary for production, i.e., limt→∞ Fj(η

t) = 0 if η0 = limt→∞ η
t has some

coordinates equal to zero.

Lemma A.1. DFj(η)Tη = Fj(η).

Proof. By homogeneity of degree one, it comes Fj(λη) = λFj(η) with λ ∈ R. It then suffices to take the derivative
with respect to λ (Euler’s identity).

Corollary A.2. DFj(η)Tη 6= 0 for η ∈ Rk++.

The Hessian matrix D2Fj

It follows from the concavity of the production function Fj that its Hessian matrix D2Fj is negative semidefinite. It
is not negative definite as follows from:

Lemma A.3.
ηTD2Fj(η) = D2Fj(η)η = 0.

Proof. It follows from the homogeneity of degree one of Fj that the first order partial derivatives of Fj are homogenous
of degree zero. It then suffices to apply Euler’s identity to these partial derivatives.

Lemma A.4. The kernel of matrix D2Fj(η) is collinear with η ∈ Rk++

Proof. The rank of matrix D2Fj(η) being equal to k − 1, its kernel is one dimensional. It also contains the vector
η = (η1, . . . , ηk) 6= 0.

The Hessian matrix D2Fj is as close as possible to being negative definite as follows from:

Lemma A.5. Let η ∈ Rk++. The strict inequality zTD2Fj(η)z < 0 is satisfied for any non-zero vector z ∈ Rk that
is not collinear with η.

Proof. All the k eigenvalues of the symmetric matrix D2Fj(η) are real and there is a set of k two by two orthogonal
eigenvectors. One of these eigenvectors can be η, an eigenvector associated with the eigenvalue 0. The k − 1

remaining eigenvalues are then strictly negative because of the rank assumption. The k − 1 associated eigenvectors
generate a hyperplane that is orthogonal to the vector η. The restriction of the quadratic form associated with
D2Fj(η) to that hyperplane is therefore negative definite.

The vector z ∈ Rk is the sum z = z ′+z ′′ of its orthogonal projections z ′ and z ′′, with z ′ in the vector space gen-
erated by η and z ′′ in the hyperplane orthogonal to η. It comes zTD2Fj(η)z = (z ′)TD2Fj(η)z ′+ (z ′′)TD2Fj(η)z ′′ =

(z ′′)TD2Fj(η)z ′′. The strict inequality (z ′′)TD2Fj(η)z ′′ < 0 follows from z ′′ 6= 0 for z not collinear with η.

Lemma A.6. The bordered Hessian matrix
î
D2Fj (η) DFj (η)

DFj (η)T 0

ó
is invertible.
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Proof. Assume the contrary. There exists a vector z = (z̄ , zk+1) 6= 0 ∈ Rk × R such thatï
D2Fj(η) DFj(η)

DFj(η)T 0

ò ï
z̄

zk+1

ò
= 0

which can be rewritten as

D2Fj(η)z̄ + zk+1DFj(η) = 0 (13)

z̄TDFj(η) = 0. (14)

Left multiplication of (13) by z̄T yields, given (14),

z̄TD2Fj(η)z̄ = 0.

By Lemma A.5, the vector z̄ is collinear with η. By Lemma A.3, D2Fj(η)z̄ = 0, which implies zk+1DFj(η) = 0 in
(13). Therefore, it comes z = λ(η, 0) ∈ Rk+1 with λ ∈ R. Equation (13) becomes λD2Fj(η)η = 0, which implies
λ = 0 by Corollary A.2, a contradiction with z 6= 0.

Strict convexity of isoquants

The set {ηj ∈ Rk++ | Fj(ηj) = 1} is the analog in our setup with k production factors of the isoquant curve for two
factors.

Lemma A.7. The set {η ∈ Rk++ | Fj(η) ≥ 1} is strictly convex.

Proof. Let η and η′ in Rk++ be such that F (η) = F (η′) = 1. The vector η and η′ are not collinear. Otherwise,
assume η′ = λη with λ 6= 1. Then, we would have 1 = Fj(η

′) = Fj(λη) = λF (η) = λ, a contradiction.
The second derivative of the function t ∈ [0, 1]→ Fj((1−t)η+tη′) is equal to (η′−η)TD2Fj((1−t)η+tη′)(η′−η)

and is strictly negative by Lemma A.5 because η′ − η is not collinear with η. This implies the strict concavity of
the function t ∈ [0, 1] → Fj((1 − t)η + tη′), hence the strict inequality Fj((1 − t)η + tη′) > 1 for t ∈ (0, 1) and,
therefore, the strict convexity of the set {η ∈ Rk++ | Fj(η) ≥ 1}.

Lemma A.8. The recession cone of the strictly convex set {ηj ∈ Rk++ | Fj(ηj) ≥ 1} is the non-negative orthant Rk+.

Proof. The vector d ∈ Rk defines a direction of recession for the set {ηj ∈ Rk++ | Fj(ηj) ≥ 1} if, for some η∗ given
in that set, the set {η∗ + αd | α ≥ 0} is also contained in that set. This is equivalent to having Fj(η∗ + αd) ≥ 1

for α ≥ 0. This is obviously satisfied by the monotonicity of Fj for d ∈ Rk+, which proves that the recession cone
contains the non-negative orthant.

Conversely, let d ∈ Rk with at least one strictly negative coordinate which, without loss of generality, can be
assumed to be d1 < 0. Let α be defined by η∗1 + αd1 = 0. From η∗ > 0 and d1 < 0 results α > 0. In addition, we
have Fj(η∗ + αd1) = 0, which implies that d cannot be a direction of recession.

A.2. Firms’ factor demand functions

The cost minimization problem

Proposition A.9. For every factor price vector q ∈ S, there exists a unique combination of inputs consisting of
pure production factors η = bj(q) ∈ Rk++ that minimizes the total cost of producing the quantity γj = 1 of the
consumption good j .

Proof. Let η∗ ∈ Rk++ be such that Fj(η∗) ≥ 1. It is the same problem to minimize the cost q · η subject to the
constraint Fj(η) ≥ 1 or the two constraints Fj(η) ≥ 1 and q · η ≥ q · η∗.

The set defined by these two constraints is closed as the intersection of two closed sets. It is also bounded.
Obviously, we have η ≥ 0. It follows from ηh > 0 for every h with 1 ≤ h ≤ k that the inequality q ·η∗ ≥ q ·η implies

q · η∗ > qhηh, from which follows ηh <
q · η∗

qh
for 1 ≤ h ≤ k. It follows from the compactness of that set and the

continuity of the objective function that a solution exists to the above maximization problem.
The constraint Fj(η) ≥ 1 is obviously binding by the monotonicity of Fj . The proof that the solution is unique

is standard and proceeds by contradiction. Let η 6= η′ be two different solutions. By definition, q · η = q · η′ while
Fj(η) = Fj(η

′) = 1. Let η′′ = (η+η′)/2. It follows from Lemma A.7 that the strict inequality Fj(η′′) > 1 is satisfied
while q · η′′ = q · η = q · η′.

Proposition A.10. The vector η ∈ Rk++ is a solution to the minimization problem of Proposition A.9 if and only if
there exists a real number µ > 0 such that the following equation system is satisfied:®

DFj(η)− µq = 0,

Fj(η)− 1 = 0.

Proof. These are the first order conditions for the minimization problem of Proposition maximization problem of
the firm with respect to production factors. These conditions are are necessary and sufficient here.
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Firms’ factor demand functions

Let q ∈ S be a (normalized) factor price vector. We denote by bj(q) the bundles of pure production factors η ∈ Rk++

that solves firm j ’s cost minimization problem of Proposition A.9. All ` firms’ demand functions are represented by
the matrix B(q) =

[
b1(q) · · · bj(q) · · · b`(q)

]
,

Proposition A.11. The function bj : S → Rk++ is smooth.

Proof. The idea is to apply the implicit function theorem to the first order conditions of Proposition A.10. This
follows from Lemma A.6.

Lemma A.12. The function bj(q) is homogenous of degree zero for non normalized factor price vectors q ∈ Rk++.

Proof. Obvious.

Lemma A.13. (∂qbj(q))Tq = 0.

Proof. Follows readily from Euler’s identity applied to bj(q), homogenous function of degree zero.

Lemma A.14. Let q and q′ in S. Then q · bj(q) ≤ q · bj(q′).

Proof. Follows readily from the definition of bj(q) as minimizing the cost q·η subject to the constraint Fj(η) ≥ 1.

(Note that the inequality in Lemma A.14 is strict for q 6= q′.)

Lemma A.15. Let q and q′ in S. Then, (q − q′) · (bj(q)− bj(q′)) ≤ 0.

Proof. The inequalities q ·(bj(q)−bj(q′)) ≤ 0 and q′ ·(bj(q′)−bj(q)) ≤ 0 follow from Lemma A.14. It then suffices
to add up these two inequalities.

(The property stated in Lemma A.15 is known as the monotonicity of the function bj .)

Lemma A.16. The Jacobian matrix ∂qbj(q) defines a negative semidefinite quadratic form

Proof. The derivation of that property from Lemma A.15 is standard.

Lemma A.17. The Jacobian matrix ∂qbj(q) has rank k − 1 and its kernel is collinear with the factor price vector q.

Proof. The idea of the proof is to show that any vector v 6= 0 ∈ Rk in the kernel of ∂qgj(q) is collinear to the factor
price vector q ∈ Rk++. From the first order conditions of Proposition A.10, it comes ∂qFj(bj(q))− µ(q)q = 0 where
µ(q) 6= 0.

Taking the derivative of this equality with respect to the price vector q yields

D2Fj(bj(q))∂qbj(q) = µ(q)I + q(∂qµ)T

with I being the k × k identity matrix. Right multiplication of this equality by v 6= 0 (in the kernel of ∂qbj(q)) yields

µ(q)v = −(∂qµ · v)q

from which follows that v 6= 0is necessary collinear with the factor price vector q.

Corollary A.18. rank ∂qbj(q) = k − 1.

Some useful properties of the production matrix function B(q)

Lemma A.19. (∂qB(q))Tq = 0.

Proof. Follows readily from Lemma A.13.

Lemma A.20. ∂q
(
B(q)Tq

)
= B(q)T .

Proof. The derivative of the matrix product B(q)Tq is equal to

∂q(B(q)Tq) = B(q)T + (∂qB(q))Tq.

One concludes by applying Lemma A.19.

Lemma A.21. Let q and q′ in S two (numeraire normalized) factor price vectors. The following (vector) inequality
is then satisfied:

qTB(q) ≤ qTB(q′).

Proof. Follows from Lemma A.14 applied to each bj(q) amd bj(q′).

Remark 9. For q 6= q′, it results from the uniqueness of the cost minimizing input in pure production factors in
Proposition 3 that the inequality in Lemma A.21 is then strict.
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Asymptotic behavior when some (non-normalized) prices tend to zero

Lemma A.22. Let A > 0. The set {y ∈ Rk++ | Fj(y) = 1 and y ≤ (A, . . . , A)} is bounded away from zero.

Proof. For 1 ≤ h ≤ k, the function y h → Fj(A, . . . , A, y
h, A, . . . , A) is equal to 0 for y h = 0, is increasing with y h,

and tends to +∞ as y h tends to +∞.
Let y = (y 1, . . . , y k) ∈ Rk++ such that Fj(y) = 1 and y ≤ (A, . . . , A). It follows from the monotonicity of the

production function Fj that the inequality

1 = Fj(y
1, . . . , y h−1, y h, y h+1, . . . , y k) ≤ Fj(A, . . . , A, y h, A, . . . , A)

is satisfied. Let y hA be such that Fj(A, . . . , A, y hA, A, . . . , A) = 1

It follows from the monotonicity of the production function Fj that the inequality 0 < y hA ≤ y h is satisfied for
1 ≤ h ≤ k, which implies the inequality yA ≤ y .

Lemma A.23. Let (qt) ∈ Rk++ be a sequence of non-normalized price vectors (for pure production factors) converging
to some limit q0 ∈ Rk+, with some coordinates of q0 6= 0 equal to zero, then lim supt→∞ ‖bj(qt)‖ = +∞.

Proof. The proof proceeds by contradiction. Let us write y t = gj(q
t) and assume lim supt→∞ ‖y t‖ < +∞. This

is equivalent to the sequence ‖y t‖ being bounded. There exists a real number A > 0 such that the inequalities
0 ≤ y t ≤ (A,A, . . . , A) are satisfied for all t. Recall that F (y t) = 1. Therefore, there exists by Lemma A.22
yA ∈ Rk++ such that yA ≤ y t ≤ A for all t. By considering if necessary a subsequence, we can assume that the
sequence y t converges to some y 0 that satisfies the inequalities yA ≤ y 0 ≤ A. By continuity, it comes Fj(y 0) = 1.
In addition, the price vector qt is collinear with the gradient vector DFj(y t), i.e., there exists λt > 0 such that
qt = λtDFj(y

t). The sequences qt and DFj(y t) are bounded from above and bounded away from zero: the
sequence λt is therefore bounded from above and away from zero. Again considering if necessary a subsequence,
we can assume that the sequence λt converges to some λ0 > 0. It then follows from the continuity of DFj that, at
the limit, it comes q0 = λ0DFj(y

0). The contradiction comes from the fact that some coordinates of q0 are equal
to zero while each partial derivative of the production function Fj is different from zero.

B. A helpful lemma about embeddings
An embedding φ : X → Y is a smooth map between two smooth manifolds X and Y that is an immersion (its
derivative map Dφ(x) : TxX → Tf (x)Y between the tangent spaces TxX and Tf (x)Y is into, i.e., an injection) and
also a homeomorphism between its domain X and its image φ(X). A very nice feature of embeddings is that the
image φ(X) is then also a smooth submanifold of the range Y . Embeddings provide a very convenient way of proving
that some subset φ(X) ⊂ Y is actually a smooth submanifold of Y . The global structure of the smooth submanifold
φ(X) as homeomorphic to X then comes as a courtesy. The application of the following lemma requires little more
than the computation of derivatives (i.e., Jacobian matrices).

Lemma B.1. Let φ : X → Y and ψ : Y → X be two smooth mappings between smooth manifolds with: 1) The
map ψ : Y → X is onto (i.e., a surjection); 2) The composition φ ◦ ψ : Y → Y is the identity map idY : Y → Y .
Then, the set Z = φ(X)), the image of φ, is a smooth submanifold of Y diffeomorphic to X.

Proof. The strategy is to show that the smooth map φ : X → Y is an embedding, which therefore implies that its
image Z = φ(X) is a submanifold of Y diffeomorphic to X.

To prove the homeomorphism part, we first remark that φ, viewed as a map from X to φ(X), is a surjection.
To prove that φ is an injection, assume φ(x) = φ(x ′). Since ψ : Y → X is onto, there exist y and y ′ with x = ψ(y)

and x ′ = ψ(y ′). It comes φ(x) = φ ◦ ψ(y) = y and φ(x ′) = φ ◦ ψ(y ′) = y ′, hence y = y ′.
Let ψ | Z denote the restriction of the map ψ to the subset Z of Y . The relation ψ ◦ φ = idY implies

(ψ | Z) ◦ φ = idY ; with φ being a bijection between X and Z, its inverse map is therefore equal to ψ | Z. The
maps φ : X → Y and ψ : Y → X are continuous (in fact, smooth). It follows readily from the definition of
the induced topology of Z that the restriction ψ | Z : Z → X is continuous as well as the map still denoted by
φ : X → Z = φ(X). (Note that the fact that Z is simply a subset of Y equipped with the induced topology does not
make it a “nice” subset of Y yet, which prevents us from using the above argument to infer that ψ | Z : Z → X and
φ : X → Z are smooth mappings.) At the moment, these maps are just continuous and define a homeomorphism
between X and Z.

To prove the immersion part, take y ∈ Y . Let x = ψ(y). The relation φ ◦ ψ = idY yields, by taking the
derivatives, the relation

Dφ(x) ◦Dψ(y) = idTy (Y )

where Ty (Y ) denotes the tangent space to the manifold Y at y . This relation implies that the linear map between
tangent spaces Dψ(y) : Ty (Y ) → Tx(X) is an injection . The map φ : X → Y is therefore an immersion. In
combination with the homeomorphism part above, this proves that the map φ : X → Y is an embedding.
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