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Abstract

This paper builds a unique dataset of around 300,000 famous people born be-
tween Hammurabi's epoch and 1879, Albert Einstein's birth year. It includes the
vital dates, occupations, and locations of celebrities from the Index Bio-biblio-

graphicus Notorum Hominum (IBN), a very comprehensive biographical tool. The
main contribution of this paper is fourfold. First, it shows, using for the �rst time
a worldwide, long-running, consistent database, that mortality displays no trend
during the Malthusian era. Second, after correction for selection and composition
biases, it dates the beginning of the steadily improvements in longevity to the co-
hort born in 1640-9, clearly preceding the Industrial Revolution. Third, it �nds
that the timing of longevity improvements concerns most countries in Europe, as
well as all types of skilled occupations. Finally, the reasons for this early rise in
mean lifetime have to be found in age-dependent shifts in the survival law.
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1 Introduction

Having gathered estimations on adult life expectancy from various times and places,

Clark (2007) (Tables 5.2 and 5.3) argues that adult longevity displayed no trend during

the Malthusian stagnation era, i.e. until about the industrial revolution. Even if the

evidence remains scattered, the absence of a trend can hardly be contested, which is

likely related to the steadiness of low living standards and the stagnation of medical

practice (including nutritional and hygienic habits). This stagnation occurred despite

that the Malthusian era is characterized by technological improvements covering many

�elds of human activity.

Extended evidence shows that adult life expectancy has increases widely and sustainedly

from the beginning of the 19th century. The importance of the economic growth process

in fostering such improvements has been stressed by Fogel (1994). Country wide statis-

tics for Sweden, England and France show the emergence of a trend for the generations

born in the nineteenth century, even if little information is available for those born be-

fore.1 The earliest evidence on adult life expectancy improvement is in Wrigley et al.

(1997). They �nd for English population an important reduction in adult mortality

in the middle of the eighteenth century. Moreover, some authors who looked at small

prominent groups of households, such as the English aristocrats (Hollingsworth 1977),

identify the beginning of the change one century earlier than for the overall population.

To better understand the determinants of adult life expectancy and its overall implica-

tions for human and social development, it would be useful to identify the precise time

at which adult longevity started to increase in a sustained way. Understanding adult

longevity in the past has moreover implications for predicting future human lifespan (see

Wilmoth (2007)).

The question of the timing of the rise in longevity �nds a nice echo in what the contempo-

raneous of the industrial revolution wrote about life expectancy history and prospects.

Malthus (1798) believed that �With regard to the duration of human life, there does

not appear to have existed from the earliest ages of the world to the present moment

the smallest permanent symptom or indication of increasing prolongation.� Writing a

few years before Malthus, Condorcet (1795), instead, anticipated the emergence of large

improvements in longevity: �One feels that transmissible diseases will slowly disappear
1From the Human Mortality Database (HMD), cohort life expectancy at age 20 (males)

starts to rise in 1810-19 for Sweden, 1850-59 for France, and 1840-49 for England and Wales.
For the latter, 1840-49 is the �rst decade of observation. An overview on the HMD is in
http://www.mortality.org/Public/Overview.php.
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with the progresses of medicine, which becomes more e�ective through the progress of

reason and social order, ... and that a time will come where death will only be the

consequence of extraordinary accidents, or of the increasingly slower destruction of vital

forces.�

This paper aims to document the long stagnation period and identify the time at which

longevity started to rise above its stagnation mean. To this aim, we build a unique

dataset of around 300,000 famous people born from the 24th century BCE (Hammurabi,

king of Babylonia, is among the few �rsts) to 1879 CE, year of Albert Einstein's birth.

Individual vital dates are taken from the Index Bio-bibliographicus Notorum Hominum

(IBN), which also contains information on multiple individual characteristics, including

place of birth and death, occupation, nationality and religion, among others. This very

comprehensive tool, covering 3000 biographical sources from all countries and historical

periods, allows us to go beyond the current state of knowledge and provide a global

picture. Existing estimations are local, mainly European centered, and start at the best

at the 16th century.2

We are concerned with the fact that our results might be subject to several biases, due

to the nature of our database. Consequently, when estimating the mean lifetime of

human cohorts we have controlled by all individual observed characteristics (including,

among others, cities of birth and death, occupation, nationality and religion). We also

document some of these biases by comparing our results with existing data at di�erent

times and places.

The main contribution of this paper is fourfold. First, it documents, using a world-

wide, long-running, consistent database, that adult longevity shows no trend during the

Malthusian era. The mean lifetime of famous people was equal to 59 ± 0.4 years dur-

ing four millennia. Second, it shows that permanent improvements in longevity precede

the Industrial Revolution by at least one century. The mean lifetime of famous people

started to steadily increase for generations born during the �rst half of the 17th century,

reaching 68.2 years for Einstein's cohort. Third, using the information about locations

and occupations available in the database, we also �nd that the increase in longevity oc-

curred almost everywhere over Europe, not only in the leading countries of the 17th-18th

century, and for all observed occupations. Finally, we �nd that the reasons for this early
2Before the Fourth Lateran Council in 1215, which recommended parishes to hold Status Animarum

books covering baptisms, marriages and burials, and took centuries to be adopted over Europe, no
systematic register of individual life spans existed in Europe. Graunt (1661) produced the �rst life table
using London data collected by Cromwell in 1535, and the �rst full-�edged life table was developed by
Halley (1693) using data from Breslau (today Wroclav in Poland) for 1687-88. See Appendix D.
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rise in mean lifetime has to be mainly found in age-dependent shifts in the survival law.

To this purpose, we have grouped individuals in 150 cohorts of at least 1600 members

and measured survival laws for these cohorts, then, following Gavrilov and Gavrilova

(1991), we have estimated the Gompertz-Makeham mortality law for each cohort, and

used the estimated coe�cients to test the Compensation E�ect of Mortality. We �nd

that changes in mortality observed since the middle of the seventieth century are mainly

due to changes in the Gompertz parameters consistently with the Compensation E�ect.

This shows an early tendency of the survival law to rectangularize.

Famous people are those with a high level of human capital. The community of European

famous people such as scientists, artists, and entrepreneurs is seen by Mokyr (2011)

as being at the root of the Industrial Revolution. The early rise in their longevity

has a speci�c meaning for economic growth. This may support the hypothesis that

longevity improvements were one cause of the industrial revolution. One mechanism

can be through facilitating knowledge accumulation (see Lucas (2009) and Bar and

Leukhina (2010)). For Lucas, �a productive idea needs to be in use by a living person

to be acquired by someone else, so what one person learns is available to others only

as long as he remains alive. If lives are too short or too dull, sustained growth at a

positive rate is impossible.� Another possible mechanism goes through the provision of

incentives for investment in human capital (see Galor and Weil (1999), Boucekkine, de la

Croix, and Licandro (2002), Soares (2005), Cervellati and Sunde (2007) and de la Croix

and Licandro (2012)). For Galor and Weil, �Changes in mortality can serve as the basis

for a uni�ed model that describes the complete transition from the Malthusian Regime

to the Modern Growth Regime. Consider the e�ect of an initial reduction in mortality

(due to an exogenous shock to health technology or to standards of living). The e�ect

of lower mortality in raising the expected rate of return to human capital investments

will nonetheless be present, leading to more schooling and eventually to a higher rate of

technological progress. This will in turn raise income and further lower mortality...�.

The paper is organized as follows. Section 2 describes the data, studies their quality,

and computes the unconditional mean lifetime of famous people. Section 3 reports a

list of potential biases, de�nes a set of control variables and provides an estimation

of the conditional mean lifetime of famous people, after controlling for the reported

biases. It also studies whether changes in mean lifetime were general to all locations and

occupations. An analytical description of the observed changes is provided in Section 4

through the lenses of the Gompertz-Makeham survival law and the Compensation E�ect

of Mortality. Section 5 compares the survival probabilities of our famous people for
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speci�c places and time with similar case studies from the literature. Section 6 suggests

criteria any good interpretation of these events should meet and concludes.

2 Data and Descriptive Statistics

2.1 The Index Biobibliographicus Notorum Hominum

The database used in this paper is built from the Index Biobibliographicus Notorum

Hominum (IBN), which is aimed to help researchers over the world to easily access

existing biographical sources. The information in the IBN was compiled from around

3000 biographic sources (dictionaries and encyclopedias) covering almost all countries

and historical periods; Europeans are clearly overrepresented.

Famous People: People referred in the IBN are famous in the very particular sense
that they are included in a biographical dictionary or encyclopedia. For most of them,
the IBN delivers name, year (and often place) of birth and death, a statement about
him/her including some broad information about occupation and nationality, and the
list of biographical sources where he (rarely she) is mentioned. Data in the IBN may be
coded in di�erent languages (English, German and French are the most frequent) and
basically contain the type of information reported in the two examples below (we only
report one source per person, but many sources may be associated to the same person):

• Hammurapi; 1792-1750 (1728-1686) ante chr.;3 ... ; Babylonischer könig aus der dynastie

der Amoräer; Internationale Bibliographie de Zeitschriftenliteratur aus allen Gebieten

des Wissens.

• Einstein, Albert; 1879-1955; Ulm (Germany) - Princeton (N.J.); German physicist, pro-

fessor and scienti�c writer, Nobel Prize winner (1921), Swiss and American citizen; In-

ternationale Personal Bibliographie 1800-1943.

The digital version of the IBN used in this paper contains around one million famous

people whom last names begin with letters A to L, since those from M to Z were not

yet available in electronic format when we received the data. However, this criteria is

not expected to introduce any selection bias in the estimation of famous people cohort

mean lifetime.
3Notice that two di�erent years of birth are reported for Hammurabi (Hammurapi in German), but

a unique lifespan of 58 years. The places of birth and death are not reported.
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Figure 1: Time Distribution of Biographic Sources. Frequency (dashed line, left axis),
cumulative (solid line, right axis)

The retained database includes 297,651 individuals extracted from the IBN following

three steps. First, for reasons that we will make explicit below, we restricted the sample

to people born before 1880. Second, only people with known years of both birth and

death were retained, allowing us to measure their lifespan. Third, individuals with

lifespan smaller than 15 or larger than 100 years were excluded, 729 and 872 respectively.

Note that the IBN reports information on very few people dying during childhood, and

most centenarians in the database are likely to be measurement errors.

Biographical Sources: We have identi�ed 2,781 biographical sources in the IBN for
which a publication year is observed. To illustrate the nature of famous people in the
database, these are four haphazard examples of sources written in English language:

• A Dictionary of Actors and of Other Persons Associated with the Public Representation

of Plays in England before 1642. London: Humphrey Milford / Oxford, New Haven, New

York, 1929.

• A Biographical Dictionary of Freethinkers of all Ages and Nations. London: Progressive

Publishing Company, 1889.

• Portraits of Eminent Mathematicians with Brief Biographical Sketches. New York: Scripta-

Mathematica, 1936.

• Who Was Who in America. Historical volume (1607-1896). A complement volume of

Who's Who in American History. Chicago: The A. N. Marquis Company, 1963.
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Figure 2: Frequency of Imprecise Observations

Figure 1 plots the distribution of the years of publication (in case of multiple publication

years, we have retained the most recent date). They heavily concentrate in the 19th and

20th Century.

2.2 Data Precision

In order to asses the quality of the measured lifespans, we show in this section two

di�erent statistics: the frequency of observations with imprecise vital dates and the

heaping index.

The IBN adds to the vital dates the indications �c.�, for circa, or �?� when the years of

birth or death are not known with certainty. It may also be that more than one date is

reported. We have retained all the imprecise observations (taking the mean if there is

more than one date), but created a discrete variable called imprecision, taking value one

when the lifespan is imprecise, zero otherwise. Figure 2 reports the fraction of imprecise

observations by decade. Individual lifespan measured by the IBN is highly imprecise

until the end of the Middle Ages, then the degree of imprecision goes to zero as the

sample reaches the 19th century.

When vital data are not known with certainty, biographers (or concerned persons them-

selves) often approximate them by rounding the year of death or birth to a number

�nishing in 0 or 5. Moreover, in the particular case of famous people, for obvious rea-
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Figure 3: Heaping Index. birth year (solid line), death year (dashed line)

sons, years of birth are likely to be more uncertain than years of death. The Heaping

index measures the frequency of observations with vital dates �nishing in 0 o 5; it is

commonly normalized by multiplying by 5 the ratio of such observations to the total

number of observations. A heaping index close to unity shows that the vital data are

very precise. Figure 3 presents the two heaping indexes by decades up to 1879.4 Death

date heaping is low, indicating that the sources know quite well the death of famous

people. Birth dates are much more uncertain, as the heaping index is about three before

1450, indicating that there are three times more dates �nishing in 0 and 5 than there

should be. It appears that the improvements start around 1450. This is consistent with

the �nding of De Moor and Zuijderduijn (2011) that numeracy levels among the well-

to-do in the early modern period were very low (in the Netherlands). By 1700, the gap

between birth and death heaping has been �lled and both indexes �uctuate around one.

If, following A'Hearn, Baten, and Crayen (2006), we interpret the age heaping index

as a measure of human capital (consistently with the robust correlation between age

heaping and literacy at both the individual and aggregate level), our �ndings support

the hypothesis of a major increase in human capital preceding the industrial revolution.
4Notice that heaping has no sense before 800, when the dating system starting at the birth of Jesus

of Nazareth became widely used.
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Figure 4: Number of Observations by Decade, density (dots) and cumulative (solid line)

2.3 Unconditional Cohort Mean Lifetime

This paper focuses on the estimation of famous people mean lifetime, not on life ex-

pectancy at birth or at any other particular age. To be more precise, celebrities' mean

lifetime measures life expectancy conditional on the age at which people become famous.

This age is a random variable following some stochastic pattern unfortunately unknown

to us. For example, a book recording the life of French kings provides lifespan informa-

tion conditional on the age of accession to the throne, but a book recording the members

of the Royal French family provides information conditional on birth. The latter can be

used to estimate life expectancy at birth. The former, however, allows measuring adult

life expectancy at the accession age, which is a random variable.

We will concentrate on cohort mean lifetime, and not on period mean lifetime, which is

subject to biases (tempo e�ects) when mortality is changing over time (Bongaarts and

Feeney 2003). Individuals in the database are grouped into cohorts by year of birth. As

can be observed in Figure 4, at the beginning of the sample, the size of these cohorts is

very small; there are only 274 individuals born before Christ, 400 individuals before 230

CE, and 1600 before 1040 CE.

Before estimating conditional mean lifetime, let us represent the unconditional mean

lifetime implied by the data by grouping individuals in ten-year cohorts. To overcome

the representativity problem, which is very important at the beginning of the sample,
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Figure 5: Unconditional Mean Lifetime. data (dots), smoothing with x = 400 (dotted
line), smoothing with x = 1600 (solid line)

when representing the data, we apply a simple adaptive rule

• when nt < x λt = (nt/x) lt + (1− nt/x)λt−1

• otherwise, λt = lt

where lt and λt are the actual and smoothed mean lifetimes, nt represents the actual

cohort size, and x is an arbitrary representative size. The choice of x is based on the idea

that if people lifespan in the sample were random draws from a Normal distribution,

the standard deviation of the observed cohort mean lifetime would be σ/
√
x, where σ

is the standard deviation of the population and x is the cohort size. Since σ = 15 for

famous people born before 1640, we need x = 400 (respectively 1600) for the observed

mean lifetime be in a 95% con�dence interval ±1.5 (±0.75).

As initial condition we use λ−∞ = 60.8, taken from Clark (2007) for the hunter-

gatherers.5 The adaptive rule adds past information λt−1 when the actual size of the

sample nt is smaller than its representative size x. Current and past information, lt and

λt−1, are weighted by the relative size nt/x, when nt < x, and its complement, respec-

tively. When the cohort size is large enough, actual and smoothed mean lifetimes are

identical.
5This number is very close to the sample mean (60.9) for individuals born before 1640.
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Figure 5 reports the actual mean lifetime and the corrected mean lifetime of ten-years

cohorts for both x = 400 and x = 1600. The actual mean lifetime �uctuates dramatically

around 60.9 until the 14th Century, due to the small size of cohorts. The corrected mean

lifetime, however, moves around the mean with very small �uctuations until the Black

Death (cohorts born just before 1340-1350). Then, it shows movements around the mean

until it starts increasing from the cohort born 1640-1649.

3 Famous People Conditional Mean Lifetime

3.1 Possible Biases

When estimating famous people mean lifetime, we have to be seriously concerned with

di�erent type of selection and composition biases. In the points below, we describe these

potential biases and suggest estimation strategies to deal with them.

Notoriety Bias. An individual has to acquire some reputation or social status to be

recorded in the IBN. Since the probability of getting such a status increases with age,

famous people mortality rates tend to be underestimated, particularly at young ages.

The notoriety bias arrives because potential celebrities dying before getting the needed

reputation are excluded from the database by construction. Moreover, in some métiers,

occupations are hierarchically ranked with ranks highly correlated with seniority. It is

the clear case of military and clerical occupations. Since high rank occupations are more

reputed, we expect to observe them more frequently in the IBN than low ranks. In order

to control for the notoriety bias, we include occupational dummies in the regressions.

Occupation for which notoriety is expected to arrive at old (young) ages should show

positive (negative) dummy coe�cients.

Source Bias. As explained above, our database only includes famous people for whom

the years of both birth and death are reported. For this reason, celebrities in the IBN

still alive at the publication of a biographic dictionary or encyclopedia are excluded from

our database by construction, since their year of death was not known at the time of

publication. Consequently, our sample may underestimate the mean lifetime of famous

people, in particular for cohorts for which the average distance between birth dates and

publications dates is short. Let us call it the source bias. After dating the sources,

we have computed for each individual the age of her/his cohort at the publication of

the source and created dummies for ages {15-29, 30,39,...,90-99}. We call this variable
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�cohort age at publication.� It is used to control for the source bias. Moreover, as

most biographical sources have been published during the 19th and 20th centuries (see

Figure 1), we have decided to exclude people born after 1880.

Occupation Bias. The database is built on existing biographic publications reporting

people that were famous at their time. However, fame was not always related to the

same human achievements, implying that the weight of some occupations may have

change substantially over time. This is, for example, the case of nobility and religious

occupations. The case of martyrs, even if less frequent, is more striking since they used

to live short, by de�nition, and they were concentrated in a particular period of human

history. For this motive, changes in the occupational composition of the database may

generate arti�cial changes in the survival probabilities. Occupation dummies are used

to control for the potential occupation bias.

Location Bias. Another form of composition bias may be related to changes over time

in the location of individuals in the sample. City dummies and nationality dummies are

used to control for the location bias.

Migration Bias. Since the probability of migrating at least once in life is positively

correlated with the individual lifespan, we expect that migrants have on average a larger

lifespan than non-migrants. We refer to it as migration bias. The IBN provides for most

individuals information on both the city of birth and the city of death. To control for

the migration bias, we have created a migration variable taking the value of one when

the place of birth and death are di�erent, zero otherwise.6

3.2 Control Variables

The control variables were built using information in the IBN. For each individual, the

IBN has three cells containing the places of birth and death, a statement about who the

person was, and the sources citing him/her. Information may be in di�erent languages.7

6Mokyr (2005) measures the mobility of 1185 �creative people� in Europe over 1450-1750 and shows it
is large, with 3.72 mean number of moves per person. Longer lived people, as one would have expected,
moved somewhat more.

7It is important to notice that some cells in the IBN are empty, and when complete some are
meaningless, implying that the variables here created contain missing values. Of course, by construction,
this is not the case for the year of birth and the individual lifespan. When creating dummies, the missing
values systematically adopt the value zero. I does imply that we tend to underestimate the dummy
coe�cients, since the excluded group may include individuals belonging the control group.
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In order to locate individuals in cities, we have used the information in the places of birth

and death cells. From the 297,651 individuals in the database, a place of birth or death

was missing for 60,637 among them only (20% of the sample). For the remaining 237,014

individuals, we have �rst counted words using Hermetic Word Frequency Counter 1089t

and identi�ed 56,574 birth places and 35,852 death places. We have dealt with the issue

that some cities have composed names, such as New York. We have then translated

city names for birth (resp. death) places with at least 30 (resp. 20) observations into

22 languages,8 and search again to identify all individuals that were born or dead in

the same city. We have checked for historical names for these cities (if possible) using

Wikipedia.9 This procedure leads to identify 584 and 603 birth and death cities, respec-

tively. With translation, the sample for some cities more than double its size. We have

�nally retained the 77 cities with at least 300 observations � as either birth or death

place (see Appendix A). For the statistical analysis below, we have created a dummy

for each of the 77 cities. For individuals born and dead in di�erent cities two di�erent

city dummies are included. We have also created a large cities dummy that takes value

one if an individual was born or dead in at least one of the 77 large cities, zero other-

wise. Finally, for all individuals with observed birth and death places, we have created a

migration dummy that takes value one only if the places of birth and death are di�erent.

Information in the statement cells is more complex. Only 1,274 observations have a

missing statement cell. We have identi�ed 81,078 unique words using the Hermetic

Word Frequency Counter 1089t. Among those with at least 200 observations, we have

translated them into the same 22 languages as we did for cities and merge all obser-

vations corresponding to the same occupation, nationality or religion. They collapsed

into 171 occupations, 65 nationalities and 10 religions. Using these categories, 278,084

individuals have at least one occupation (94.4% of the sample) and 207,049 have more

than one; 218,530 have at least one nationality (73.4%) and 11,929 have more than one.

We have �nally retained all relevant words with at least 300 observations. This has al-

lowed us to identify 33 nationalities, 8 religions, and 148 occupations (see Appendix A).

Occupations were grouped in nine occupational categories: Arts and métiers, business,

clerical, education, humanities, law and government, military, nobility, and sciences (see

8For that, we have used Nice Translator �http://nicetranslator.com/. The list of languages includes
are Bulgarian, Catalan, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek,
Hungarian, Italian, Latvian, Lithuanian, Norwegian, Polish, Portuguese, Romanian, Slovak, Slovenian,
Spanish, Swedish and Turkish.

9See http://en.wikipedia.org/wiki/Names_of_European_cities_in_di�erent_languages.
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Appendix B). There were 6 other repeated words that we also use as controls.10

Finally, the source cells have been used to single out for each individual the publication

year of the biographical source citing her/him. We have identi�ed it for 290,528 indi-

viduals, 99.9% of total observations. To control for the source bias explained above, we

would like to know for each individual the date of publication of the most recent source.

Unfortunately, because of the way data are organized in the IBN, when an individual is

cited by more than one source, we can only identify one of these sources automatically,

not necessarily the most recent. In particular, it arrives that for 42,600 observations,

the year of publication precedes the year of death, which we take as evidence on the

existence of another source published latter. For all these reasons, we have measured for

each individual the age of her/his cohort at the publication of the source in the following

way. When the individual's death year is smaller than the publication year of the source,

we take the di�erence between the publication year and the individual's birth year. The

resulting cohort age at publication is then larger than the individual lifespan. Otherwise,

we assume it is missing. Finally, we have created eight cohort age at source publication

dummies for ages {15-29, 30-39, ..., 90-99}. The dummies take value one for individual

which cohort age at publication of the source is in the age group, zero otherwise.

3.3 Estimation

The unconditional picture described in Figure 5 may be a�ected by the potential biases

described in Section 3.1. In this Section, we estimate conditional mean lifetimes of

famous people cohorts with the following regression:

mi,t = m+ dt + αxi,t + εi,t (1)

where mi,t is the lifespan of individual i belonging to cohort t, the constant term m

measures the conditional mean lifetime of the excluded cohort dummy �for a represen-

tative individual without known city, nationality and occupation, as well as the excluded

characteristic of any other control�, dt measures the di�erence between the conditional

mean lifetime of cohort t and the conditional mean lifetime of the excluded cohort, xi,t is

10Chief, bengali, founder, landowner, servant and unionist. We do include bengali in this group,
because most of them concerns British soldiers in the Bengal war from the book �List of the o�cers of
the Bengal army, 1758-1834. Alphabetically arranged and annotated with biographical and genealogical
notices�, who seem to have had particularly short lives.
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Figure 6: Conditional Mean Life: Cohort dummies and 95% con�dence interval

a vector of individual controls including city, occupation and nationality dummies, pre-

cision and migration dummies, and cohort age at publication dummies, among others, α

is a vector of parameters, and εi,t is an error term measuring individual's i idiosyncratic

lifespan circumstances. Equation (1) has been estimated using Ordinary Least Squares.

The detailed results are in Appendix A.

Since one important question is to identify the precise cohort from which the mean

lifetime of famous people starts growing, and we have few observations per decade before

the �fteen century, we have created cohorts dummies by decade starting in 1430-1439,

the �rst decade with more than 300 observations. The conditional mean lifetime of all

previous cohorts, consistently with the observation in Figure 5, is assumed to be constant.

Figure 6 shows point estimates, and the corresponding 95% con�dence intervals, for all

cohort dummies. As can be observed, the mean lifetime of cohorts born before 1640 is not

signi�cantly di�erent from the mean lifetime of celebrities born before 1430. Indeed, the

mean lifetime of celebrities starts growing from the cohort born in 1640-49, to gain nine

years over around two centuries. This �gure reinforces the conclusion already stated for

the unconditional means that longevity improvements for celebrities started well before

the Industrial Revolution.

The estimated constant term is 59.04 years, which is one year and a half smaller than

the 60.46 years of the unconditional mean before 1430 �the standard deviation is 0.19,
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implying that it is estimated with high precision. The di�erence has to be attributed

to the omitted control dummies, since the constant term measures the age of the mean

celebrity born before 1430 with precise lifespan, non migrating and without identi�ed

city, nationality or occupation. The precision dummy is estimated at -0.82 years, which

is small but signi�cantly di�erent from zero �the standard deviation is 0.08. The negative

sign is fundamentally due to the fact that imprecise observations occur more frequently

before 1640. Consequently, controlling for imprecise reported lifespans, if something,

reduces the gains in mean lifetime observed after 1640.

More interestingly, the estimation also shows clear evidence that the other dummies are

e�ectively controlling for the di�erent biases referred in Section 3.1. From our estimation,

a person living in one of the 77 retained, large cities has on average no survival advantage

with respect to the rest of the population, since the estimated coe�cient of the large

cities dummy is small, 0.27 years, and not signi�cantly di�erent from zero �the standard

deviation is 0.19. Figure 22, in Appendix, shows the distribution of the 77 city dummies.

The standard deviations of the estimated coe�cients are in the interval (0.21, 0.79),

meaning that they are estimated with relatively high precision. The distribution, as

expected, is concentrated around zero with few cities having mean lifetime 2.25 years

larger (Frederiksberg) or smaller (Leipzig, Nuremberg, Riga) than the mean. Details for

cities are in Appendix A.

The estimated coe�cient for the group of large nationalities �a dummy grouping all

individuals with at least one nationality among the 33 retained nationalities� is −0.45

with a standard deviation of 0.18. Figure 23, in Appendix, shows the distribution of

the 33 retained nationality dummies. Australians have the largest positive estimated

coe�cients and Brazilians, in the other extreme, have the lowest, 5.2 years and 4.7 years

above and below the mean, respectively.

The estimated coe�cients of the occupational groups dummies are represented in Fig-

ure 25, in Appendix, with the corresponding 95% con�dence intervals. It does clearly

illustrate that the regression e�ectively controls for occupational composition bias, since

the di�erence in mean lifetime between an average military occupation and an average

science occupation is slightly larger than four years. The composition is also changing.

Nobility, for example, moves down from 28% to 22% of the observed occupations before

and after 1640, while business and sciences jointly moved up from 7% to 15%.

The distribution of the 148 occupation dummies in the benchmark regression, after

adding the corresponding occupational group dummy, are represented in Figure 24, in
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Clerical Military Education
archdeacon 7.08 admiral 4.77 dean 3.99
bishop 3.92 general 3.86 academician 3.47
rabbi 2.50 marshal 3.77 professor 1.44
abbot 2.41 colonel 1.48 writer 1.13
cardinal 2.00 major -0.66 rector 0.81
archbishop 1.94 o�cer -1.89 teacher 0.50
theologian 1.54 commander -2.06 scholar 0.20
clergyman 1.29 lieutenant-colonel -2.16 lecturer -0.94
pastor 1.01 military -2.47 student -9.21
priest 0.94 captain -2.95
vicar -0.24 lieutenant -4.38
preacher -0.32 soldier -5.15
missionary -0.55 �ghter -7.08
deacon -4.62 bengali -12.85
martyr -14.42

Table 1: Clerical, Military and Education Occupations.

Appendix. They are mainly concentrated around one-two in the interval (−2, 4), even

if a few occupations show large negative dummies, in some cases larger than 10 years.

Within and between occupational groups inequality, however, is very similar for most

occupational groups. In facts, the standard deviation of occupational dummies is 1.3

years, close to the standard deviation of occupations in most occupational groups at

the exception of clerical, military and education, with a standard deviation of 3.7, 4.1

and 3.6, respectively. The large within-occupational-group variability basically re�ects

seniority, and sometimes the fact that some occupations in these groups are famous

because of violent death.

Seniority is one of the main cause of the notoriety bias referred to in Section 3.1. Table

1 illustrates for clerical, military and education occupations the extend of the notoriety

bias. High ranks in both occupations have larger dummies than low ranks, since some

seniority is required to climb up the rank ladder. Particularly interesting is the case of

low rank military occupations and martyrs, which present a highly signi�cant negative

dummy. As said above, it likely re�ects the fact that these people became famous

because they are heroes who died young on the battle�eld.

To control for the source bias, we have included in the regression eight dummies for

cohort ages at source's publication going from 15-29 years, 30-39 up to 90-99. All

coe�cients, as reported in Figure 7, are negative, sizable and statistically signi�cant
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�the dotted lines correspond to the 95% con�dence interval. As expected, the coe�cient

of the dummy shrinks in absolute value with the cohort age at publication going from

around 40.2 to 2.7 years. The source bias is then high for people dying close to the

publication of the source. Notice that, by construction, people lifespan in the �rst group

is in between �fteen and thirty years, when added to the estimated dummy the sum is

closed to the mean lifetime of the representative celebrity (20+40=60).

To estimate the extent of the source bias, we run the regression without the cohort age

at publication dummies, and then measure the source bias as the di�erence between

the cohort dummy coe�cients of the benchmark regression and the newly estimated

coe�cients. The solid line in Figure 8 represents the estimated source bias, while the

dotted line is twice the standard deviation of the cohort dummies in the benchmark

estimation. The source bias is close to zero until the seventeenth century, then starts

slowly growing but remains small and non-signi�cant until the cohort born in 1700. It

grows from then until reaching more than 4 years for the last cohort. Controlling for the

source bias does not a�ect the main result that celebrities mean lifetime starts growing

in 1640, as we have already observed in Figure 5. However, controlling for the source

bias signi�cantly increases the size of the improvement at the end of sample: it almost

doubles the 5 years unconditional gain. Since most sources were published in the 19th

and mainly 20th centuries, the number of observations included in the cohort age at

publication dummies increases from around 5% of total observations in the �rst half of

the eighteen century to 60% in the last decade. It does explain why controlling for the

source bias has such a large impact at the end of the sample.

3.4 Robustness: Is the Early Increase in Longevity General?

Model (1) assumes that the mean lifetime of celebrities in all occupations, cities and

nationalities moved jointly over time. Any gain in longevity is then assumed to be

common. However, it may b e that a particular occupational group or a particular

region were behind the observed increase from 1640, and that the mean lifetime of other

occupations or regions did not improve at all or started improving later. Perhaps, income

started growing before the Industrial Revolution in the regions that led it, not in the

others, making famous people mean lifetime increase only in these regions. In this line,

this section tries to answer the following questions. Did some occupations, likely because

they have pro�ted from early improvements in income, or from some speci�c conditions,

lead the reduction in mortality? Did life expectancy early increase only in those regions
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Figure 8: Source bias. Estimation (solid line), 2× std cohort dummies (dotted line)
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leading the Industrial Revolution, Great Britain in particular? or was it a more general

phenomenon? To answer these questions, we run regressions interacting in each case one

of the potential candidate characteristics for early improvement in life expectancy with

the cohort dummies. The model to be estimated becomes:

mi,t = m+ dt + d̃t + αxi,t + εi,t (2)

where d̃t measures the additional di�erence between the conditional mean lifetime of

cohort t and the conditional mean lifetime of the excluded cohort for people endowed

with this characteristic.

3.4.1 Occupations

Terms interacting the cohort dummies with an occupational group (arts and métiers,

business, clerical, education, humanities, law and government, military, nobility and

sciences), one at a time, were added to the regression. We �nd that none of these

groups is individually running the main result. Figure 9 shows the coe�cient of the

cohort dummy dt estimated when the interactive terms are included, i.e., after controlling

for changes in the mean lifetime of each occupational group separately. In each case,

the cohort dummy coe�cients represent the cohort mean lives of famous people not

belonging to each of the speci�ed occupations. As can be observed in Figure 9, all of

them are in the con�dence interval of the cohort dummies in the benchmark estimation.

In Appendix, it can be seen that, for each of the nine occupational groups, the interaction

terms, measuring the di�erential changes of each occupational group mean lifetime, are

always in the (−2, 2) years interval, without showing any remarkable di�erential pattern.

3.4.2 Nationalities and Cities

Is it the case that celebrities' mean lifetime has increased �rst in those regions that

leaded the industrial revolution? Having this hypothesis in mind, we have created three

dummies. First, a leading cities dummy including the largest cities in the sample (Ams-

terdam, Berlin, Copenhagen, London, Paris, Rome, Stockholm, Wien). Second, a British

dummy, including English and Scottish nationalities, as well as people born or dead in

London and Edinburgh, the only two British cities among the retained 77 large cities.

Third, a leading nations dummy taking the value one if an individual has the nationality

of a selected group of countries, or was born or dead in a city, among the 77 selected
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Figure 10: Robustness: British, leading nations and leading cities
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cities, in the actual territory of one of the leading nations. The set of selected coun-

tries includes those that, followingMaddison (2010), had in 1870 an annual GDP per

capita at least equal to 1800 dollars per capita(Australia, Austria, Belgium, Denmark,

France, Germany, Netherlands, Switzerland, UK and US). As in the previous subsection,

we have added to the benchmark regression new terms interacting the cohort dummies

with the three leading dummies above, one at each time. Figure 10 shows the cohort

dummy coe�cients estimated when the interactive terms are included. As can be ob-

served, including the leading dummies do not a�ect signi�cantly the estimation of the

mean lifetime changes of the whole population, meaning that nor leading cities, neither

Britain nor leading nations are behind our main result that the famous people mean

lifetime started growing around the cohort born in 1640 after millennia of stagnation.

4 Survival Laws

In order to better characterize the forces responsible for the increase in the mean lifetime

of famous people as early as in the seventeenth century, we study in this section the shifts

in the survival law underlying the increase in longevity. In particular, we will investigate

whether these shifts come from a change in the process of aging, or, on the contrary,

whether they are related to improvements in health conditions independently of age.

4.1 Conditional Survival and Mortality Rates

Cohort dummies and residual terms of Equation (1), as estimated in Section 3.3, are

used to measure conditional survival laws for all individuals in the sample. For each

individual i belonging to cohort t, let us de�ne r̂i,t ≡ m̂ + d̂t + ε̂i,t, where m̂ is the

estimated constant, d̂t the estimated cohort dummy parameter and ε̂i,t the estimated

residual. Let us denote by ri,t the conditional lifespan of individual i belonging to cohort

t, where ri,t is the integer part of r̂i,t.11 It represents the lifespan of individual i after

controlling for all individual i observed characteristics.

For cohort t, let nt be the total number of observations belonging to this cohort and,

using conditional lifespans, let st,h be the number of survivors at any age h. Cohort t

11When the fractional part is smaller than 0.5, we take the largest previous integer; otherwise we take
the smallest following integer.
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Figure 11: Conditional Survivals for some 1600-cohorts: from deep black to clear gray are

cohorts 1040-1254, 1535-1546, 1623-1628, 1665-1669, 1714-1717, 1787-1788, 1807-1808, 1859,

1879.

conditional survival probabilities are then measured by computing the ratios st,h/nt for

all h.12

In this section, following the argument developed in Section 2.3 concerning con�dence

intervals, we aggregate annual cohorts to measure survival probabilities and mortality

rates for cohorts of at least 1600 individuals; individuals born the same year always

belong to the same cohort.13 We refer to them as the 1600-cohorts. Following this

criterion, we have detected 150 1600-cohorts. Figure 11 shows the survival laws of some

selected 1600-cohorts; they are ordered from deep black, the oldest, to clear grey, the

youngest. The �rst three survival laws precede 1640; they are very similar to each other.

The survival law moves to the right from the 17th century onward in a tendency to

rectangularize.
12Notice that conditional lifespan is not bounded between ages 15 and 100, as unconditional lifespan

is by construction.
13For the latter reason, cohort sizes range between 1600 and 3200 individuals. Indeed, the mode is

close to 1600 and 50% of the cohorts have less than 1900 observations.
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Figure 12: Estimated ρ̂

4.2 Gompertz-Makeham and the Compensation E�ect

We follow Gavrilov and Gavrilova (1991) to estimate and interpret the evolution of the

survival law of famous people over the last millenium. The main argument is based

on two observations: the Gompertz-Makeham law of mortality and the Compensation

E�ect.

Gompertz-Makeham Mortality Law: Let death rates be denoted by δ(a), an age

dependent function, where a denotes individuals' age. The Gompertz-Makeham law of

mortality, as suggested by Gompertz (1825) and Makeham (1860), asserts that death

rates follow

δ(a) = A+ eρ+αa. (3)

Death rates depend on an age-dependent component, the Gompertz function eρ+αa, and

an age-independent component, the Makeham constant A, A > 0. In the Gompertz

function, parameter ρ measures the mortality of young generations while parameter α,

α > 0, represents the rate at which mortality increases with age. The corresponding

survival law is

S(a) = exp{−Aa− (eρ+αa − 1)/α}.

In order to assess whether the observed shifts in the survival law are related to age depen-

dent or age independent factors, we estimate by non-linear least squares the Gompertz-
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Figure 13: Estimated α̂

Makeham law (3) (in logs) for each of the 1600-cohorts. As usual in this literature, the

estimation only considers the observed mortality rates between 30 and 90 years, since

the Gomperz-Makeham law mainly applies to this age bracket.

Consistently with the main �ndings in Gavrilov and Gavrilova (1991), the estimated

Gompertz parameter ρ is decreasing over time while the estimated Gompertz parameter

α is increasing, as can be observed in Figures 12 and 13. However, these parameter

changes take place as early as for the cohort born in 1640, i.e. earlier than in Gavrilov

and Gavrilova (1991). Moreover, contrary to the estimations in Gavrilov and Gavrilova

(1991), the age-independent parameter A is systematically non signi�cantly di�erent

from zero. This last observations is due to the fact that famous people mortality rates

are close to zero for ages close to 30. We develop this argument below in Section 4.3.

Compensation Effect of Mortality: The Compensation E�ect of Mortality states

that any observed reduction in the mortality of the young, ρ, has to be compensated by

an increase in the mortality of the old, α, following the relation

ρ = M − Tα, (4)

whereM and T , T > 0, are constant parameters, the same for all human populations. It

is easy to see that under the Compensation E�ect, the survival tends to rectangularize

when A = 0 and α goes to in�nity; in this case, the maximum life span of humanity is

25



y = -80.419x - 1.9029 

-10.0 

-9.5 

-9.0 

-8.5 

-8.0 

-7.5 

-7.0 

-6.5 

-6.0 

-5.5 

-5.0 

0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Figure 14: The Compensation E�ect of Mortality: ρ (Y-axis), α (X-axis)

T .14 Consequently, any reduction in ρ compensated following (4) by an increase in α,

rectangularizes the survival and increases the mean life. However, such an improvement

in the mean lifetime is bounded by the maximum lifespan T .

Indeed, as can be observed in Figure 14, the Compensation E�ect of Mortality holds

for famous people in the IBN, at least until the last retained cohort, the one born in

1879. This �nding is also in line with Gavrilov and Gavrilova (1991).15 Since ρ decreases

and α increases consistently with the Compensation E�ect, the survival law of famous

people tends to rectangularize as observed in Section 4.1. The Compensation E�ect has

been estimated by OLS on the pairs ρ, α estimated for the 1600-cohorts. The life span

parameter T has then been estimated at 80.4 years �with a standard deviation of 0.57

years.

4.3 Mortality of Potentially Famous People

As explained in Section 3.1, the IBN su�ers from the notoriety bias. It does mean that

some potentially famous people are excluded from the IBN because they died before
14For this purpose, take ρ in (4) and substitute it in (3). Then, let α goes to in�nity, which implies

that the death rates tend to zero for a < T and to in�nity when a > T .
15Strulik and Vollmer (2011) �nd changes in the Compensation Law in the last half of the 20th

Century and increases in the maximum lifespan.
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Figure 15: Mortality Rates 1871-79: Ages 30 to 90 (X-axis) and dead probabilities in log

scale (Y-axis). Swedish from Human Mortality Database (solid line), IBN (dashed line)

becoming famous, which tends to underestimate mortality rates particularly at young

ages. Figure 15 illustrates the point by comparing for the cohorts 1871-1879 the mortality

rates of the Swedish population, as reported in the Human Mortality Database, with

the conditional mortality rates of the IBN famous people.16 Even if the IBN tends to

slightly overestimate Swedish mortality rates for ages larger than 50, the main di�erence

is at young ages, with a clear underestimation for ages lower than 40. Moreover, the

death rates of famous people are clearly log-linear, which is consistent with our previous

�nding that the Makeham constants of famous people survivals are not signi�cantly

di�erent from zero. For the Swedish, however, the Makeham constant is not nil.

To better understand the e�ect of the notoriety bias in the estimation of Gompertz-

Makeham mortality laws of famous people let us make the following assumptions. First,

let us denote by δp(a) the mortality rates of the population of potentially famous people,

which includes not only those observed in the IBN but also those that had the potential

to be included but died before achieving the prestige and fame required to be in the IBN.

Let us then assume that the Gompertz-Makeham mortality law holds for the population

of potential celebrities. For the sake of simplicity, let us substitute δp(a) in the left hand

side of equation (3). Let us denote by Φ(a) the probability that potentially famous

16To make both picture as comparable as possible, we have condition IBN individual lifespans ri,t on
being Swedish too.
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people achieve notoriety before age a. Consequently, famous people death rates are

δ(a) = Φ(a)δp(a),

the product of those that die conditional on being already famous.

Di�erent theories may be elaborated to predict the age at which a potentially notorious

person acquires the needed reputation to become famous. In this section, we build a

simple theory based on the assumption that potentially famous people belong to dynas-

ties, each one undertaking one single prominent job. Potentially famous members of the

dynasty are sitting on a queue waiting for the death of the dynasty member currently

holding the job. This is clearly the case of hereditary occupations like nobility where,

for example, a prince has to wait for the death of the king to accede to the throne.17 It

is also the case of ranked occupations as religious or military occupations, where people

move up in a grade scale and then hold the position until death. In occupations such

as arts and sciences, things are more complex, since the number of jobs is somewhat

endogenous. However, some form of congestion may also operate, making more di�cult

to become famous when the pool of famous people is large.

Let us take the case of princes and kings as our benchmark. A prince has to wait until

his father's death to become king. Then, the probability of becoming king as a function

of his age depends on the probability of death of his father. Given that both belong to

the same population, the probability of a prince accession depends on the death of the

reigning king, i.e.,

Φ(a) = 1− Sp(a+ b),

where a is the age of the prince and a + b is the age of his father. Of course, Sp(a + b)

depends on the same parameters as the Gomperzt-Makeham function δp(a). We can

then use non-linear least square methods to estimate parameters A, ρ and α for the

population of potentially famous people for the death rates of observed celebrities by

estimating:

δ(a) =
(
A+ eρ+αa

) (
1− exp{−A(a+ b)− (eρ+α(a+b) − 1)/α}

)
(5)

for some given b.
17This is relevant, since princes are not reported in any dictionary or encyclopedia of kings, even if

they can be reported in royal family books. Consequently, they are underrepresented in the IBN. In
any case, they will never be reported as kings.
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Figure 16: The Compensation E�ect of Mortality of potentially Famous People: ρ (Y-
axis), α (X-axis)

In order to illustrate the e�ect, we have estimated the parameters of δ(a) for the 1600-

cohorts, under the assumption that b = 25. The Makeham constant becomes now

positive and signi�cant; it displays no particular trend over the whole sample, except for a

(non signi�cant) drop in the nineteenth century, which is consistent with the observations

in Gavrilov and Gavrilova (1991). More interestingly, the estimated parameters ρ and

α with this correction for the notoriety bias are represented in Figure 16. They follow a

similar pattern as the parameters estimated in Figure 14.18 The estimated life span is

80.4 years, as in the benchmark estimation.

Figure 17 represent the estimated δ(a) and δp(a) for the last nine cohorts living at the

same time as the Swedish of Figure 15. We observe that the correction for the bias we

have imposed into the model qualitatively replicates the observed di�erences in mortality

rates between the IBN famous people and the Swedish population.

One can conclude that the rectangularization of the survival laws initiated in 1640 is

robust to the proposed correction of the notoriety bias and the life span T as well. The

changes in the mean lifetime we measured in Section 3 are to be related to changes in

the age-dependent Gompertz parameters ρ and α, and these changes occur by leaving

the life span T unchanged (Compensation E�ect).

18We have obtained similar results by simply assuming that the probability Φ(a) follows the uniform
law rather than a survival probability.
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Figure 17: Simulated Mortality Rates 1871-79 for IBN people: Ages 30 to 90 (X-axis) and
dead probabilities in log scale (Y-axis). δp(a) (solid line), δ(a) (dashed line)

5 Comparisons with Previous Studies

At least two questions are still open. First, to what extent the survival probabilities we

estimate for the famous people are informative about the survival probabilities of the

whole population? To address this issue, we can compare our estimates with those which

exist for whole populations, such as the English data based on family reconstruction

(1550-1820), and the Swedish census data (1750-). Second, to what extent do we provide

a di�erent message from the various studies which have studied speci�c groups of famous

people, such as the English aristocrats, or the Knights of the Golden Fleece?

5.1 Comparison with Ordinary People

5.1.1 English Family Reconstitution Data 1580-1820

A global comparison between famous people and ordinary people of Europe cannot be

performed over the past, as data for the whole population are usually not available.

England is an exception in this respect, thanks to the work of Wrigley et al. (1997),

who provide life tables for the English population from 1550 to 1820. We can compare

their data for males with a subsample of our database that includes famous people with
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Figure 18: Wrigley's data vs IBN British: Probability of survival from one age to the other

English nationality and/or London as city. Remember that our survival probabilities

are computed from a measure of conditional lifespan for each individual, as described in

Section 4.1, which results from adding the estimated constant term, cohort dummy and

individual error. Taking periods of 25 years, as in Wrigley et al. (1997), our subsample

has a number of observations high enough to compute sensible survival laws: from 408

individuals for 1580-1599 to 4794 individuals for 1800-1824.

Three main conclusions emerge when we compare Wrigley et al. (1997) data with ours,

as can be seen in Figure 18 �the survival probabilities refer to the age intervals 25-

50 (young adults), 50-70 (old adults), and 70-85 (late age). First, for young adults,

mortality rates of famous people underestimate the mortality of ordinary people. The

survival probabilities of young adults are systematically larger for famous people. It

may be due to the notoriety bias, as suggested all along this paper. Second, there

are no remarkable di�erences between famous and ordinary late age individuals. Third,

famous adult people are forerunners in mortality decline. They reduce their mortality

one century in advance than ordinary adults. The survival of famous adults, both young

and old, starts increasing at the middle of the 17th century, generating an increasing

gap with ordinary adults, who start catching-up around the middle of the 18th century.
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Figure 19: Probability of survival from one age to the other: Sweden

5.1.2 Swedish Records, 1750-1879

As early as 1749, Sweden established a public agency responsible for producing popula-

tion statistics. These statistics were based on population records kept by the Swedish

Lutheran church. Those data are available from the Human Mortality Database. They

show that the demographic transition in Sweden follows the standard pattern. Adult life

expectancy starts to increase around 1825 (see e.g. de la Croix, Lindh, and Malmberg

(2008)).

The survival probabilities of the whole Swedish population and IBN Swedish famous

people are compared in Figure 19. Swedish population in the IBN is large enough to make

the comparison in Figure 19 meaningful: 1407 individuals born in 1750-1779, to 3400

individuals born in 1850-1879. As for England, we observe a systematic underestimation

of young adult survivals and a catching-up taking place likely at the beginning of the

19th century, 50 years later than in England.

5.2 Comparison with Nobility

In order to study long-term trends in the mortality of adults of a given population, several

others have used various types of records, usually available for high social classes, such

as genealogical data or monographies about military or religious orders. These social
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Figure 20: Probability of survival from one age to the other: Nobility

classes are closer to our famous people than the rest of the population. Comparing these

studies with similar subsamples in our data is an interesting robustness check.

We use two of such datasets, covering the period 1500 to 1900, which overlaps the period

where famous people mean lifetime starts increasing. First, the mortality tables for

British peers died between 1603 and 1938 and their o�springs published by Hollingsworth

(1977).19 A comparable subsample from our IBN database consists of British with a

nobility occupation. We have many of such individuals, from 577 for the 16th century to

3,324 for the 19th century. Second, Vandenbroucke (1985) provides vital statistics for the

Knights of the Golden Fleece, an order started in 1430 with the Dukes of Burgundy and

continued with the Hapsburg rulers, the kings of Spain and the Austrian emperors. A

comparable subsample from our database consists of people with a nobility occupation

and Austrian, Belgian, Dutch, German or Spanish nationality (belonging all to the

former Hapsburg empire): 2,349 persons fall in this category in the 16th century, and

17,334 in the 19th century.

Several lessons can be drawn from Figure 20 . First, the survival of IBN young adult

nobles is overestimated when compared with British peers and Golden Fleece's members.

Notice that, di�erently from the IBN, in both the British peers and Golden Fleece data,

most individuals belong to the sample at birth. It does imply that the overestimation is

due to the notoriety bias, i.e., nobles' o�springs dying young are generally excluded from
19The original data were sampled from genealogical data by Hollingsworth (1964).
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Figure 21: Probability of survival from one age to the other: Geneva, Perrenoud vs IBN

the IBN, reducing mortality rates at young ages. This observation reinforces the claim

that the overestimation reported in Section 5.1 regarding ordinary people is mainly

due to the notoriety bias too. Second, mortality reductions for nobility take place in

the 17th century in the three databases, reinforcing the observation that famous people

mean lifetime improvements anticipate those of ordinary people by at least one hundred

years.20

5.3 Comparison with Cities

5.3.1 Geneva, 1625-1825

Perrenoud (1978) provides very detailed demographic data for the city of Geneva (Switzer-

land) over two centuries. If we consider periods of 50 years covering the Perrenoud sam-

ple, we have about 200 famous persons born or dead in Geneva per subperiod. Results

are presented in Figure 21. We �rst remark that Perrenoud's data themselves display

an upward trend as early as in the seventeenth century. This was already stressed by

Boucekkine, de la Croix, and Licandro (2003) who use that evidence to claim that im-

provements in adult longevity precede the industrial revolution, at least in some cities,

and may have increased the incentives to acquire education. Comparing Perrenoud to
20Incidentally, we remark that the initial drop observed for young adult British peers does not appear

in the IBN, which may cast doubts on its signi�cance.
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IBN, we do not retrieve the pattern seen for Britain and Sweden of early improvement for

famous people, following by a catching-up phenomenon; here the people of the city seem

to have the same global trend as IBN famous people: improvement of young adult sur-

vival over 1625-1774 in both samples; closing gap between the samples for the old adult

survival and old age survival. This raises the question whether the trends we observe

for famous people was in fact a trend present in European cities (beyond Geneva).

5.3.2 Venice, 1600-1700

[to be done with Beltrami's data]

6 Interpretations and Conclusion

It is generally accepted that adult survival of ordinary people started to increase perma-

nently in the nineteenth century, with scatter evidence showing that in some places it

started some decades before. However, its main causes are still under debate, including

higher income, better nutrition, better hygienic habits and sanitization of cities, more

e�cient medicine and public health.21

This paper exploits for the �rst time the Index Bio-bibliographicus Notorum Hominum

(IBN), a dataset containing information about vital dates, occupations, nationality and

other relevant characteristics of hundreds of thousands of famous people around the

world. Exploiting observed individual characteristics to control for potential biases, we

show for the �rst time, using a worldwide, long-running and consistent database, that

mortality showed no trend during the Malthusian era. Indeed, the conditional mean

lifetime of all cohorts of famous people born before 1640 �uctuates around 59 years.

Second, we date the beginning of the steadily improvements in longevity to the cohorts

born in 1640-9, clearly preceding the Industrial Revolution by one and a half century.

Third, we �nd that longevity improvements concern most countries in Europe, as well as

all types of skilled occupations. Finally, the reasons for this early rise in mean lifetime

has to be mainly found in age-dependent shifts in the survival law.
21For a general view on the main causes see Wilmoth (2007) and ?). The fundamental role of nutrition

improvements on the reduction of mortality during the Industrial Revolution has been stressed by
McKeown and Record (1962). Landes (1999), referring to the �rst half of the 19th century, argues that
much of the increased life expectancy of these years has come from gains in prevention, cleaner living
rather than better medicine.
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What could be the reasons for the reduction in the seventeenth century of famous people

mortality? From the analysis above, a good explanation of this early improvement in

longevity should verify the following conditions:

Selectivity. The reductions in mortality rates have to be restricted to people with some

fame, not a�ecting the mean lifetime of the general population.

Regional Independence. They should not be related to a particular location, since the

improvements in the mean lifetime took place at least all around Europe.

Occupation Independence. They have to a�ect similarly almost all famous people occu-

pations.

Age Dependence/Life Span Constancy. They should not a�ect all adult ages in the same

way, but mainly reduce the mortality of the working age adults. In other words, they

should fundamentally generate a rectangularization of the human survival law without

a�ecting the life span of human populations.

Urban Character. They should particularly a�ect ordinary people living in cities.

We see three possible candidates, detailed below. We are not going to select one of them,

but rather, see if they can ful�ll the necessary conditions suggested above.

Increase in inequality: Let formulate this hypothesis in the following way. A major

accumulation of capital, skills and technology has preceded the industrial revolution. A

sort of necessary condition. From the seventeenth century, famous people have directly

or indirectly bene�ted from it, observing a substantial increase in their income. In other

terms, during the 17th century human society experienced the emergence of the bour-

geoisie. However, the rest of the population continued living under the same conditions

as in the Malthusian era, generating a notorious increase in income inequality. This hy-

pothesis, by assumption, ful�lls the Selectivity requirement. As long as the emergence

of the bourgeoisie is an European phenomenon, it does also ful�ll the Regional Inde-

pendency requirement. Occupation Independence is also matched since the increase in

the surplus di�uses among the famous (e.g. even if the artists or the priests are not hit

at �rst by the shock, the richest would buy more stu� from them or make them larger

transfers). The Urban Character would be matched either if the shock at the root of the

increase in inequality is a rise in urban e�ciency or productivity, or if the gain of the

urban bourgeoisie bene�ts all people in cities. (check literature on inequality - Kuznetz,

Marx)

One speci�c channel from wealth to longevity could be through childhood development
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of the famous. Child low level of health is not only conducing to death at early age,

but may also a�ect life at later stage. The relationship between early development

and late mortality has been well-established. Fogel (2004) emphases that nutrition and

physiological status are at the basis of the link between childhood development and

longevity. Another important mechanism stressed by epidemiologists links infections

and related in�ammations during childhood to the appearance of speci�c diseases in

old age (Crimmins and Finch 2006). In the same direction, Barker and Osmond (1986)

relates lower childhood health status to higher incidence of heart disease in later life.

Receding pandemics: The last plague in England is clearly identi�ed in 1666-1667

(see Creighton (1891)). After this date, Europe could have been free of plagues by

chance Lagerloef (2003), for example, or because of the natural evolution of the disease

itself. Famous people belong to the upper social classes and are therefore shielded from

certain diseases that are the prime cause of mortality for the rest of the population

such as infectious diseases, but cannot escape plagues. To �x ideas, suppose that the

causes of death for famous people is 50% ordinary infection diseases, 30% plagues, 20%

others, while for the rest of the population it is 75% infection, 5% plagues, 20% others.

If plagues are receding, as it is shown to be the case after 1640 by Biraben (1975), then

one should observe an improvement in the longevity of the upper classes, without much

e�ect on the rest of the population, which remains primarily a�ected by other types of

diseases. This type of explanation would �t Regional Independence, as plagues know no

border. The Urban Character of this explanation is also likely, as contagion is ampli�ed

by high density of population. However, it is not clear how receding pandemics could

satisfy the age dependence criterion; one would indeed a priori expect that pandemics

are included in the (age-independent) Makeham constant, rather than in the Gompertz

parameters. Finally, notice that, for receding pandemics to drive the rise in the mean

lifetime of famous people, it has to be the case that plagues were a main factor of human

mortality since the Babylonian times and they recede at the end of the 17th century. In

this case, the estimated 59 years of mean life until 1640 include the mortality induced

by pandemics. The observed increase after 1640-9 is due to the fact that this component

of mortality starts reducing.

Medical progress: According to some authors (e.g. Omran (1971)), the in�uence of

medical factors was largely inadvertent until the twentieth century, by which time pan-

demics of infection had already receded signi�cantly. However, in the period 1500-1800,

medicine showed an increasingly experimental attitude: no improvement was e�ected

on the grounds of the disease theory (which was still mainly based on traditional ideas),
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but signi�cant advances were made based on practice and empirical observations. For

example, although the theoretical understanding of how drugs work only came progres-

sively in the nineteenth century with the development of chemistry, Weatherall (1996),

the e�ectiveness of the treatment of some important diseases was improved thanks to

the practical use of new drugs coming from the New World. For example, according to

Hawkins (1829) leprosy, plague, sweating sickness, ague, typhus, smallpox, syphilis and

scurvy were leading causes of death in the past but could be treated e�ectively at the

time he wrote his book. Notice that the bene�ts of better medical practice could �t

Selectivity if it is a�ordable only to the rich Johansson (1999). Regional Independence

would be satis�ed if medical knowledge spreads easily across Europe.

Further research may try to use the criteria highlighted by our research to discriminate

among possible explanations.
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A Detailed Regression Results

Number of obs 297651 R-squared 0.1345 Root MSE 14.292

constant coef s.e. dist. source coef s.e. religion coef s.e.
59.086 0.192 15 -40.280 2.320 methodist -0.007 0.705

30 -35.364 0.963 protestant -0.318 0.356
occup. groups coef s.e. 40 -29.380 0.498 catholic 1.292 0.316
military -2.733 0.204 50 -23.035 0.281 reformed 1.143 0.384
arts & métiers -1.021 0.185 60 -15.469 0.185 baptist 0.009 0.570
nobility 0.084 0.202 70 -8.939 0.132 lutheran -2.005 0.599
clerical 0.228 0.179 80 -4.595 0.111 mennonite 5.108 0.626
humanities 0.635 0.315 90 -2.675 0.104
education 0.645 0.129
business 1.054 0.247 others coef s.e. coef s.e.
law and servant 2.319 0.629 nationality -0.458 0.181
government 1.177 0.132 unionist 3.900 0.733 city 0.275 0.189

sciences 1.415 0.250 founder 3.013 0.252 precision -0.825 0.080
chief 0.885 0.250 migration 0.486 0.059
landowner 3.501 0.401
bengali -13.333 0.480
jewish 0.089 0.529

decade coef s.e. decade coef s.e. decade coef s.e.
1430 0.157 0.656 1580 -0.007 0.348 1730 5.043 0.253
1440 -0.489 0.707 1590 0.219 0.335 1740 5.084 0.245
1450 -0.231 0.658 1600 0.633 0.324 1750 5.307 0.235
1460 0.596 0.653 1610 0.319 0.325 1760 5.195 0.231
1470 1.015 0.625 1620 0.487 0.316 1770 4.593 0.231
1480 -0.577 0.572 1630 0.395 0.311 1780 4.555 0.231
1490 -0.258 0.548 1640 1.925 0.308 1790 4.794 0.225
1500 0.944 0.512 1650 1.776 0.304 1800 5.059 0.217
1510 0.125 0.509 1660 2.387 0.299 1810 6.011 0.215
1520 0.625 0.449 1670 1.651 0.299 1820 6.388 0.215
1530 0.328 0.429 1680 2.301 0.293 1830 6.311 0.215
1540 0.671 0.421 1690 2.978 0.287 1840 6.287 0.213
1550 0.718 0.407 1700 3.397 0.283 1850 6.801 0.213
1560 0.927 0.377 1710 4.015 0.272 1860 7.979 0.213
1570 0.421 0.365 1720 4.652 0.262 1870 9.228 0.214
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city coef s.e. city coef s.e. city coef s.e.
amsterdam -0.785 0.366 freiburg -0.319 0.693 newyork 0.280 0.345
antwerpen -0.711 0.472 gdansk -1.788 0.616 nuremberg -2.491 0.463
augsburg -0.575 0.635 geneve -0.392 0.400 oslo 0.140 0.641
barcelona -2.115 0.622 genoa 0.718 0.694 paris 0.034 0.215
basel -1.079 0.634 ghent 0.772 0.583 philadelphia -1.402 0.496
berlin -0.444 0.267 graz -0.991 0.518 prag -1.623 0.349
bern -0.583 0.628 hamburg -1.502 0.382 riga -3.171 0.570
bologna 0.737 0.615 hannover 1.385 0.588 riodejaneiro 0.681 0.688
bordeaux 1.032 0.493 helsinki -0.690 0.701 roma -0.501 0.337
boston -0.120 0.564 kaliningrad -1.602 0.527 rotterdam -0.015 0.574
bremen -0.694 0.600 krakow 0.004 0.496 rouen 1.114 0.520
breslau -1.665 0.438 leiden -1.770 0.620 saintpetersburg -1.371 0.385
brno -0.264 0.632 leipzig -2.573 0.419 stockholm -0.570 0.332
bruxelles 0.851 0.404 liege 0.439 0.549 strasbourg -1.269 0.398
budapest 0.761 0.336 lisbon -0.223 0.626 stuttgart 0.671 0.514
buenosaires 0.112 0.567 london 0.329 0.260 toulouse 1.909 0.653
chicago 0.119 0.711 lviv -0.488 0.573 turin -0.287 0.641
cologne 0.065 0.501 lyon -1.727 0.426 utrecht 0.011 0.580
copenhagen -1.294 0.368 madrid -1.885 0.435 venezia 0.253 0.513
denhaag 1.932 0.422 marseille 1.128 0.642 versailles 1.826 0.629
dresden -0.838 0.383 metz 1.459 0.697 warsaw -0.992 0.395
dublin 0.280 0.598 milan -0.457 0.525 washington -0.694 0.596
edinburgh -0.596 0.538 montreal -0.181 0.718 wien -1.074 0.266
�orence -0.221 0.475 moscow 0.768 0.476 wiesbaden 2.039 0.703
frankfurt -0.822 0.468 munich -0.077 0.354 zurich -2.163 0.544
frederiksberg 4.748 0.782 napoli -0.883 0.478

nationality coef s.e. nationality coef s.e. nationality coef s.e.
german -0.494 0.183 russian -3.278 0.231 irish 1.240 0.356
french 1.281 0.198 polish -0.976 0.250 canadian 3.116 0.459
british 1.571 0.201 spanish -0.018 0.277 chinese 1.129 0.453
swedish 1.087 0.217 belgian -0.837 0.295 roman -0.621 0.299
american 2.578 0.210 icelandic 0.869 0.361 croatian -1.226 0.602
hungarian -1.947 0.238 czech 0.542 0.341 greek 2.371 0.478
dutch -0.180 0.252 norwegian -0.515 0.389 slovenian -1.780 0.611
swiss 0.943 0.235 �nnish -0.838 0.383 japanese 0.202 0.650
austrian 0.358 0.257 brazilian -4.740 0.483 australian 5.205 0.628
italian 1.635 0.239 argentinian -1.949 0.486 indian -1.342 0.533
danish 0.194 0.276 portuguese 0.448 0.479 slovak 1.782 0.710
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occupation coef s.e. occupation coef s.e. occupation coef s.e.
franciscan 1.483 0.447 judge 2.083 0.252 notary 1.475 0.408
jesuit -2.735 0.231 physician -0.363 0.340 physicist 1.110 0.479
author 0.831 0.115 missionary -0.777 0.278 violinist 0.648 0.473
professor 1.438 0.118 philologe -0.688 0.371 illustrator 1.964 0.426
writer 1.135 0.135 singer 0.267 0.312 dean 3.989 0.447
painter 1.784 0.190 surgeon 0.245 0.370 administrator 0.750 0.419
doctor -1.804 0.253 farmer 2.508 0.335 astronomer -0.369 0.477
jurist -0.507 0.149 soldier -2.416 0.411 collector 4.222 0.459
o�cer 0.842 0.183 diplomat 1.702 0.314 geologist 1.092 0.505
poet -0.837 0.210 publicist -0.539 0.360 admiral 7.498 0.420
politician 1.606 0.166 king 0.175 0.197 commander 0.671 0.455
teacher 0.498 0.153 artist 0.506 0.284 inventor 1.874 0.516
pastor 0.773 0.196 congressman -1.040 0.340 pianist -0.865 0.485
general 6.597 0.206 mathematician 0.157 0.371 knight 0.090 0.396
lawyer -0.239 0.168 botanist 0.292 0.358 scholar 0.196 0.276
theologian 1.311 0.190 benedictine 0.633 0.364 �ghter -4.349 0.511
historian 1.994 0.311 philosopher -0.813 0.376 baili� -0.056 0.476
composer 0.796 0.250 magistrato 2.246 0.345 academician 3.475 0.556
musician 1.028 0.251 printer -0.189 0.366 adviser -0.095 0.312
director 0.488 0.329 secretary -0.778 0.294 designer -0.541 0.572
councillor 1.090 0.285 librarian 0.995 0.412 consul 0.456 0.297
journalist -1.919 0.343 organist 1.316 0.372 prince -1.405 0.312
priest 0.710 0.190 chemist -0.250 0.370 cardinal 1.768 0.558
clergyman 1.050 0.235 banker 3.713 0.393 geograph -0.283 0.499
editor 0.022 0.277 industrialist 3.431 0.373 builder 1.781 0.525
deputy 1.710 0.218 vicar -0.467 0.341 agronomist 1.348 0.596
actor 0.967 0.204 lecturer -0.938 0.328 chamberlain 0.906 0.602
preacher -0.547 0.232 lord 0.841 0.225 procureur -0.493 0.553
businessman 1.485 0.289 dramatist -0.155 0.377 sheri� 1.406 0.609
mayor 2.593 0.219 inspector 0.229 0.355 deacon -4.846 0.552
bishop 3.690 0.238 student -9.214 0.380 economist 0.907 0.554
minister 1.089 0.211 merchant 1.227 0.337 rabbi 2.268 0.476
architect 1.217 0.317 earl -2.146 0.389 pewterer 0.959 0.703
noble -2.134 0.246 manufacturer 2.725 0.344 cantor 1.661 0.564
military 0.259 0.249 bookseller 0.849 0.396 cartographer 0.112 0.606
beamter 0.640 0.228 goldsmith 0.097 0.455 martyr -14.648 0.600
engineer 0.378 0.293 duke -0.822 0.246 regisseur 0.295 0.650
translator -0.310 0.344 abbot 2.184 0.320 prefect 1.955 0.569
sculptor 2.065 0.273 major 2.071 0.394 zoologist 0.723 0.593
pedagogue 1.686 0.361 trader -0.885 0.354 orientalist -0.799 0.628
lieutenant -1.646 0.243 archaeologist 1.699 0.484 wholesaler 1.342 0.748
captain -0.212 0.281 lithograph 0.691 0.416 classicist 0.821 0.702
rector 0.809 0.220 pharmacist 0.258 0.456 archdeacon 6.856 0.818
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occupation coef s.e. occupation coef s.e.
brigadier_general -3.038 0.614 capuchin 2.053 0.489
major_general -2.796 0.575 marshal 6.503 0.370
lieutenant_colonel 0.577 0.573 archbishop 1.713 0.449
violin_maker -0.688 0.642 ambassador 0.814 0.462
colonel 4.052 0.287 naturalist -0.829 0.475
engraver 0.177 0.285 baron 1.852 0.652
president 3.276 0.238 queen -0.180 0.527
senator 3.659 0.292 antiquary 1.539 0.630
governor 0.710 0.265 piarist -0.117 0.679
kapellmeister 1.405 0.549
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B Occupation categories

Arts and métiers: actor, artist, cantor, collector, composer, designer, dramatist, en-

graver, goldsmith, illustrator, kapellmeister, lithograph, musician, organist, painter,

pewterer, pianist, poet, regisseur, sculptor, singer, violinmaker and violinist.

Business: antiquary, bookseller, banker, printer, publicist, businessman, director, editor,

farmer, librarian, industrialist, merchant, trader, manufacturer and wholesaler.

Clerical: abbot, archbishop, archdeacon, capuchin, cardinal, clergyman, deacon, fran-

ciscan, jesuit, martyr, missionary, pastor, piarist, preacher, priest, rabbi, theologian and

vicar.

Education: author, academician, dean, lecturer, professor, rector, scholar, student,

teacher and writer.

Humanities: archaeologist, classicist, economist, historian, journalist, orientalist, peda-

gogue, philologe, philosopher and translator.

Law and government: administrator, adviser, ambassador, baili�, beamter, congress-

man, consul, councillor, deputy, diplomat, governor, inspector, judge, jurist, lawyer,

magistrato, mayor, minister, notary, politician, prefect, president, procureur, secretary,

senator and sheri�.

Military: admiral, brigadier-general, captain, colonel, commander, �ghter, general, lieu-

tenant, lieutenant-colonel, major, major-general, marshal, military, o�cer and soldier.

Nobility: baron, chamberlain, duke, earl, king, knight, lord, noble, prince and queen.

Sciences: agronomist, architect, astronomer, botanist, builder, cartographer, chemist,

doctor, engineer, geographer, geologist, inventor, mathematician,naturalist, pharmacist,

physician, physicist, surgeon and zoologist.
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C Additional Figures
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Figure 22: Conditional Mean Life: Distribution of city dummies
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Figure 23: Conditional Mean Life: Distribution of nationality dummies
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Figure 24: Conditional Mean Life: Distribution of occupation dummies
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Figure 25: Conditional Mean Life: Main occupational groups
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D The �rst life tables

The �rst life table had been published in London in 1662 in a book by Graunt (1661).

His analysis is based on data originally collected 127 years earlier on the age at the time

of death in London. Thirty years after this �rst life table Halley (1693) published results

based on number of births and deaths in Breslau 1687-1691. (today called Wroclaw).

For information, we provide in Table 2 some key survival rates from these tables.

Age 25 to 50 Age 50 to 70 Age 70 to 85
Graunt's life table London 1534 0.251163 0.351852 0
Halley's life table Breslau 1687-1691 0.610229 0.410405 0.057803

Table 2: Survival Probabilities in various life tables
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