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Abstract

The goal of this paper is to test for and model nonlinearities in several monthly exchange rates

time series. We apply two different nonlinear alternatives, namely: the artificial neural network

time series model estimated with Bayesian regularization and a flexible smooth transition specifica-

tion, called the neuro-coefficient smooth transition autoregression. The linearity test rejects the null

hypothesis of linearity in ten out of fourteen series. We compare, using different measures, the fore-

casting performance of the nonlinear specifications with the linear autoregression and the random

walk models.
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1 Introduction

During the last two decades many different nonlinear models have been proposed in the literature to

model and forecast exchange rates. Several authors claimed that exchange rates are rather unpredictable,

and that a random walk model is often a better predictor than concurrent nonlinear models. See for

example, Chang and Osler (1999), Gencay (1999), Meese and Rose (1991), and Meese and Rose (1990).

With this concern in mind, some questions should be raised: How relevant is the nonlinearity in the

series? Is the nonlinearity uniformly spread? Are nonlinear models better predictors? If there are periods

of the series with no nonlinearity, what is the lost (if any) of applying a nonlinear model? Without having

the intention of solving these fundamental and complex questions, this paper addresses the problem by

benchmarking two nonlinear alternatives against the linear AutoRegressive (AR) and the Random Walk

(RW) models. Several monthly exchange rates time series are used. For similar papers, see Sarantis

(1999) and Qi and Wu (to appear).

The nonlinear alternatives considered in this paper are the Artificial Neural Network (ANN) model

(Kuan and White 1994) and a novel flexible model called the Neuro-Coefficient Smooth Transition Au-

toRegression (NCSTAR) (Medeiros and Veiga 2000b). The NCSTAR specification can be interpreted

as a linear model where its coefficients are given by a single hidden layer feedforward neural network

and has the main advantage of nesting several well-known nonlinear formulations, such as, the Self-

Exciting Threshold AutoRegression (SETAR) (Tong 1978, Tong and Lim 1980), the Smooth Transition

AutoRegression (STAR) (Chan and Tong 1986, Luukkonen, Saikkonen and Ter¨asvirta 1988, Ter¨asvirta

1994), and the ANN model. Furthermore, if the neural network is interpreted as a nonparametric univer-

sal approximation to any Borel-measurable function, the NCSTAR model is directly comparable to the

Functional Coefficient AutoRegression (FAR) (Chen and Tsay 1993) and the Single-Index Coefficient

Regression model (Xia and Li 1999). A modelling strategy for the NCSTAR model was developed in

Medeiros and Veiga (2000a) and Medeiros and Veiga (to appear).

The plan of the paper is as follows. Section 2 discusses the NCSTAR model and briefly describes

the modelling strategy. Section 3 outlines the neural network models with Bayesian regularization. The

benchmark models are described in Section 4. Section 5 gives a description of an experiment compar-

ing the forecasting performance of the NCSTAR and the neural network models with the benchmark
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alternatives. The results are discussed in Section 6. Finally, Section 7 concludes.

2 The NCSTAR Model

2.1 Mathematical Formulation

Consider a linear model with time-varying coefficients expressed as

yt = �0tzt + "t; (1)

where�t = [�
(0)
t ; �

(1)
t ; : : : ; �

(p)
t ]0 is a vector of real coefficients andzt = [1; ~z0t]

0. ~zt 2 R
p is a vector

of lagged values ofyt and/or some exogenous variables. The random term"t is a normally distributed

white noise with variance�2. The time evolution of the coefficients�(j)t of (1) is given by

�
(j)
t =

hX
i=1

�jiF (!0
ixt � �i)� �j0; j = 0; � � � ; p; (2)

where�ji and�j0 are real coefficients.

The functionF (!0ixt � �i) is the logistic function, wherext 2 R
q is a vector of input variables,

!i = [!1i; : : : ; !qi]
0 and�i are real parameters . The norm of!i is called theslope parameter. In the

limit, when the slope parameter approaches infinity, the logistic function becomes a step function.

Note that (1) can be interpreted as a linear model where its coefficients are given by a single hidden

layer feedforward neural network. The neural network architecture representing (2) is illustrated in

Figure 1. The elements ofxt, called the transition variables, can be formed by lagged values ofyt and/or

any exogenous variables. In this paper, we assume thatxt is formed by a subset of the elements ofzt

and that there are no exogenous variables in the model specification.

Equations (1) and (2) represent a time-varying model with a multivariate smooth transition structure

defined byh hidden neurons.

[FIGURE 1 SOMEWHERE HERE]
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Equation (1) can be rewritten as

yt = G(zt;xt;	) + "t = �0 +

pX
j=1

�jyt�j +

hX
i=1

�0iF (!0
ixt � �i)

+

pX
j=1

(
hX

i=1

�jiF (!0
ixt � �i)

)
yt�j + "t;

(3)

or in vector notation

yt = G(zt;xt;	) + "t = �0
zt +

hX
i=1

�0iztF (!0
ixt � �i) + "t; (4)

where	 = [�0;�01; : : : ;�
0
h;!

0
1; : : : ;!

0
h; �1; : : : ; �h]

0 is a parameter vector with(q+1)�h+(p+1)�

(h+ 1) elements,� = [�0; : : : ; �p]
0 = [��00; : : : ;��p0]

0, and�i = [�0i; : : : ; �pi]
0.

Note that model (4) is, in principle, neither globally nor locally identified. To ensure the identifiability

of (4) we have to impose the following restrictions:�1 � : : : � �h and!1i > 0, i = 1; : : : ; h. For

details on identifiability concepts see, e. g., Sussman (1992), Kurkov´a and Kainen (1994), Hwang and

Ding (1997), Anders and Korn (1999), Trapletti, Leisch and Hornik (2000), and Medeiros and Veiga

(2000a).

The NCSTAR model has the main advantage of nesting several well-known nonlinear formulations,

such as, for example, the SETAR, STAR, and ANN models.

2.2 Modelling Cycle

In this section, we briefly outline a modelling technique based on statistical inference to build the NC-

STAR model. For more details, see Medeiros and Veiga (2000a) and Medeiros and Veiga (to appear).

This amounts to proceeding from a linear model to the smallest NCSTAR model and gradually towards

larger ones through a sequence of Lagrange Multiplier (LM) tests. Finally, after the model has been

estimated, it is evaluated by some misspecification tests. For similar ideas, see Tsay (1989), Ter¨asvirta

(1994), and Eitrheim and Ter¨asvirta (1996). The modelling cycle can be summarized as follows:

1. Specification

(a) Select the variables of the model.
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(b) Test linearity.

(c) If linearity is rejected, determine the number of hidden units.

2. Parameter estimation of the specified model.

3. Model evaluation based on misspecification testing.

(a) Test for parameter constancy.

(b) Test for serial independence of the error term.

(c) Test for homoscedasticity of the error term .

These three stages are briefly described below.

2.2.1 Specification

2.2.1.1 Variable Selection. The first step of the specification stage is to select the variables of the

model. In this step we will not distinguish between the variables inzt andxt in (4). Following Medeiros

and Veiga (2000a), we adopt the simple procedure proposed by Rech, Ter¨asvirta and Tschernig (1999).

Their proposal uses global parametric least squares estimation and is based on a polynomial expansion

of the model. We provide a brief overview of the method. For more details see Rech et al. (1999).

Consider model (4). The first step is to expand functionG(zt;xt;	) into a k-order polynomial

expansion around an arbitrary fixed point in the sample space. After merging terms, one obtains

G(zt;xt;	) = �0zt +

pX
j1=1

pX
j2=j1

�j1j2zj1;tzj2;t + : : :

: : : +

pX
j1=1

� � �

pX
jk=jk�1

�j1:::jkzj1;t � � � zjk;t +R(zt;xt;	);

(5)

whereR(zt;xt;	) is the remainder and the�0s, �0s, and� 2 R
p+1 are parameters. Note that the terms

involving xt merged with the terms involvingzt.

The second step is to regressyt on all variables in the polynomial expansion and compute the value

of a model selection criterion, such as, for example, the Akaike’s information criterion (AIC). After that,

remove one variable from the original model and regressyt on all the remaining terms in the expansion
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and compute the value of the AIC. Repeat this procedure by omitting each variable in turn. Continue by

simultaneously omitting two regressors of the original model and proceed in that way until the polyno-

mial expansion becomes a function of a single regressor. Choose the combination of variables that yields

the lowest value of the AIC. The selected variables will compose the vectorzt.

2.2.1.2 Testing Linearity. In practical nonlinear time series modelling, testing linearity plays an im-

portant role. In the context of model (4), testing linearity has two objectives. The first one is to verify if

a linear model is able to adequately describe the data generating process. The second one refers to the

variable selection problem. The linearity test is used to determine the elements ofxt. After selecting the

elements ofzt with the procedure described above, we choose the elements ofxt by running the linearity

test described below settingxt equal to each possible subset of the elements ofzt and choosing the one

that minimize thep-value of the test.

In order to test for linearity, equation (4) is rewritten as

yt = �0
zt +

hX
i=1

�0iztF (i(~!
0
ixt � ci)) + "t; (6)

wherei = k!ik, ~!i = !i=i, andci = �i=i, i = 1; : : : ; h. The transition functionF (i(~!
0
ixt � ci))

is redefined as

F (i( ~!
0
ixt � ci)) =

1

1 + exp(�i(~!0
ixt � ci))

�
1

2
: (7)

Subtracting one-half from the logistic function is useful just in deriving linearity tests where it simplifies

notation but not affect the argument. The models estimated in this paper do not contain that term.

Consider (6) with (7) and the testing of the hypothesis thatyt is a linear process. Note thatF (0) = 0,

implying the null hypothesis of linearity

H0 : i = 0; i = 1; : : : ; h: (8)

Hypothesis (8) offers a convenient starting point for studying the linearity problem in the LM (score)

testing framework.

Note that model (6) is not identified under the null. A consequence of this complication is that
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the standard asymptotic distribution theory for the likelihood ratio or other classical test statistics for

testing (8) is not available. We solve the problem by replacingF (i(~!
0
ixt � ci)) by a third order Taylor

expansion approximation abouti = 0, i = 1; : : : ; h.

After rearranging terms, we get

yt =�
0
zt +

qX
i=1

qX
j=i

�ijxi;txj;t +

p�qX
i=1

qX
j=1

�ijz
�
i;txj;t +

qX
i=1

qX
j=i

qX
k=j

�ijkxi;txj;txk;t

+

p�qX
i=1

qX
j=1

qX
k=j

�ijkz
�
i;txj;txk;t +

qX
i=1

qX
j=i

qX
k=j

qX
l=k

�ijklxi;txj;txk;txl;t

+

p�qX
i=1

qX
j=1

qX
k=j

qX
l=k

�ijklz
�
i;txj;txk;txl;t + "�t ;

(9)

where"�t = "t +R(zt;xt;	). R(zt;xt;	) is the combined remainder of the third-order Taylor expan-

sion of the logistic functions. The vectorz�t 2 R
p�q is formed by the elements ofzt that are not inxt.

The null hypothesis is defined as H0 : �ij = 0, �ij = 0, �ijk = 0, �ijk = 0, �ijkl = 0, and�ijkl = 0.

From (9) it is seen that the test is just a test of a linear hypothesis in a linear model, so that standard

asymptotic inference is available.

It is important to stress that the linearity test against a STAR model (Ter¨asvirta 1994) and the neural

network linearity test (Ter¨asvirta, Lin and Granger 1993) are special cases of the test discussed here.

2.2.1.3 Determining the Number of Hidden Units. In a practical situation one wants to be able to

test for the number of hidden units of the neural network. The basic idea is to start using the linearity

test described above and test the linear model against the nonlinear alternative with only one hidden unit.

If the linearity is rejected, then fit a model with one hidden unit and test for the second one. Proceed in

that way until the first acceptance of the null hypothesis. The individual tests are based on linearizing

the nonlinear contribution of the additional hidden neuron. Consider the general case in which the model

containsh hidden units, and we want to know whether an additional unit is required or not. Write the

model as

yt = �0
zt +

hX
i=1

�0iztF (i(~!
0
ixt � ci)) + F (h+1(~!

0
h+1xt � ch+1)) + "t: (10)
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An appropriate null hypothesis is

H0 : h+1 = 0: (11)

Note that (10) is only identified under the alternative. Using a third order expansion and after rearranging

terms, the resulting model is

yt =�
0
zt +

hX
i=1

�0iztF (i(~!
0
ixt � ci))

+

qX
i=1

qX
j=i

�ijxi;txj;t +

p�qX
i=1

qX
j=1

�ijz
�
i;txj;t +

qX
i=1

qX
j=i

qX
k=j

�ijkxi;txj;txk;t

+

p�qX
i=1

qX
j=1

qX
k=j

�ijkz
�
i;txj;txk;t +

qX
i=1

qX
j=i

qX
k=j

qX
l=k

�ijklxi;txj;txk;txl;t

+

p�qX
i=1

qX
j=1

qX
k=j

qX
l=k

�ijklz
�
i;txj;txk;txl;t + "�t :

(12)

The null hypothesis is defined as H0 : �ij = 0; �ij = 0; �ij = 0. Again, standard asymptotic

inference is available.

2.2.2 Parameter Estimation

After specifying the model, the parameters should be estimated by nonlinear least squares (NLS). Hence

the parameter vector	 of (4) is estimated as

	̂ = argmin
	

QT (	) = argmin
	

TX
t=1

(yt �G(zt;xt;	))2 : (13)

Under some regularity conditions the estimates are consistent and asymptotically normal (Davidson and

MacKinnon 1993).

The estimation procedure is carried together with the test for the number of hidden units. First we test

for linearity against a model given by (4) withh = 1. If linearity is rejected we estimate the parameters

of the nonlinear model and test for the second hidden unit. If the null hypothesis is rejected, we use the

estimated values for the first hidden unit as starting values and use the procedure described in Medeiros

and Veiga (2000a) to compute initial values for the second hidden unit. We proceed in that way until the

first acceptance of the null hypothesis.
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2.2.3 Model Evaluation

After the NCSTAR model has been estimated it has to be evaluated. This means that the assumptions

under which the model has been estimated have to be checked. These assumptions include the hypothesis

of no serial correlation, parameter constancy, and homoscedasticity. Testing for normality is also a

common practice in econometrics. In this paper we use the tests discussed in Medeiros and Veiga (to

appear). They are Lagrange multiplier (LM) type tests of parameter constancy against the alternative

of smoothly changing ones, of serial independence of the error term, and homoscedasticity against the

hypothesis that the variance smoothly changes between regimes. To test for normality we use the Jarque-

Bera test (Jarque and Bera 1987).

3 Artificial Neural Networks and Bayesian Regularization

A feedforward Artificial Neural Network (ANN) time series model can be defined as

yt = G(zt;	) = �0 +
hX

i=1

�iF (!0
izt � �i) + "t; (14)

where� = [�0; : : : ; �q]
0 and!i = [!1i; : : : ; !pi]

0 are vectors of real parameters,zt = [1; ~z0t]
0, ~zt 2 R

p

is a vector of lagged values ofyt, f"tg is assumed to be a sequence of independent, normally distributed

random variables with zero mean and finite variance, andF (!0izt��i) is the logistic function. Note that

model (14) is just a special case of the NCSTAR model.

In this paper we adopt the regularization approach to estimate the ANN models. The fundamental

idea is to find a balance between the number of parameters and goodness of fit by penalizing large models.

The objective function is modified in such a way that the estimation algorithm effectively prunes the

network by driving irrelevant parameter estimates to zero during the estimation process. The parameter

vector	 is estimated as

	̂ = argmin
	

~QT (	) = argmin
	

(�QT (	) + (1� �)Q�
T (	)) ; (15)

whereQT (	) =
PT

t=1 (yt �G(zt;	))2, Q�
T (	) is theregularization or penalty term, and� > 0 is
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often called thedecay constant. The usual penalty is the sum of squared parameters

Q�
T (	) =

pX
j=0

�2j +

hX
i=1

�2i +

pX
j=1

hX
i=1

!2ji: (16)

The forecasting ability of the ANN model can depend crucially on the decay constant�, especially

with small in-sample periods. If� is too large, the network may still overfit, and if it is too small, the

ANN model does not have an adequate fit in the estimation period. Usually, different types of parameters

in the ANN model will usually require different decay constants for good forecasting ability.

One approach to determine the optimal regularization parameter� is the Bayesian framework of

MacKay (1992), where the parameters of the network are assumed to be random variables with well-

specified distributions. The regularization parameters are related to the unknown variances associated

with these distributions and can be estimated with statistical techniques. Foresee and Hagan (1997)

give a detailed discussion of the use of Bayesian regularization in combination with the Levenberg-

Marquardt optimization algorithm. The main advantage of this method is that even if the ANN model is

over-parametrized, the irrelevant parameter estimates are likely to be close to zero and the model behaves

like a small network.

All the ANN models in this paper are estimated with Bayesian regularization in combination with

the Levenberg-Marquardt algorithm. The starting-values for the parameters are selected by the Nguyen-

Widrow rule (Nguyen and Widrow 1990).

4 Benchmark Models

In this section we outline two simple linear models that are often used as benchmark formulations in the

financial time series literature.

4.1 The Random Walk Model

Consider the following Random Walk (RW) model for the level of the exchange rate series

pt = �+ pt�1 + ut; (17)
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wherept is the price at the time instantt, � is a constant, andut is a random term identically distributed.

Taking the first difference of the logarithms, the resulting model becomes

yt = ln(pt)� ln(pt�1) = c+ "t; (18)

whereyt is the return at timet andc is a constant. Usually"t is assumed to be a normally distributed

random variable with zero mean and finite variance.

4.2 The Linear Autoregressive Model

A linear autoregressive (AR) model of orderp for the returns is defined as

yt = �0 + �1yt�1 + � � � + �pyt�p + "t; (19)

where�0; �1; : : : ; �p are real coefficients and"t is a identically normally distributed random variable

with zero mean and finite variance. The order of the model is determined by inspection of the autocorre-

lation and partial autocorrelation functions (ACF and PACF).

5 The Experiment

To assess the practical usefulness of the NCSTAR and ANN models in comparison with the linear AR

and RW models and to address the questions proposed in the Introduction, an experiment with 14 dif-

ferent monthly exchange rates time series is conducted. We have decided to work with monthly time

series just to avoid to model any ARCH effect in the conditional variance of the series. It is well known

that daily exchange rates are more volatile than the monthly ones and, of course, will have more non-

linearity to model. The data are summarized in Table 1. The series were obtained fromEconomagic

(www.economagic.com).

[TABLE 1 SOMEWHERE HERE]

Both in-sample and out-of-sample performance are considered. The first step is to test linearity in all

series. We discard all the series that do not have evidence of nonlinearity according to the test described
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in Section 2.2.1.2. For the series that turn out to be nonlinear we proceed estimating linear and nonlinear

models, each of which are evaluated according to their in-sample explanatory power and out-of-sample

forecasting ability. The forecasts made by each estimated model are compared according to the following

statistics (described in Appendix A): nRMSE, MAE, MAD, and SIGN.

The forecasting experiment can be viewed of consisting of the following steps.

1. Split the sample into two subsamples: the estimation set (t = 1; : : : ; t0) and the forecasting set

(t = t0 + 1; : : : ; T ).

2. Estimate the parameters of each model using only the estimation set and analyse the in-sample

performance of the estimated models.

3. Fort = t0; : : : ; T � 4, compute the out-of-sample forecasts of 1- to 4-step-ahead,ŷt+kjt, and the

associated forecast errors denoted by"̂t+kjt, wherek is the forecasting horizon. Multi-step fore-

casts for the nonlinear models are obtained by Monte-Carlo simulation as described in Appendix

B

4. For each forecasting horizon, compute different performance measures.

6 Results

6.1 Specification and Estimation

Using the variables selected by the AIC and the linearity test described in Section 2.2.1.2, evidence

of nonlinearity was found in ten series: Austria, Belgium, Finland, France, Germany, Sweden, Spain,

India, Siri Lanka, and Australia. However, linearity was strongly rejected only in Finland, Australia, Siri

Lanka, and India. The results are summarized in Table 2.

[TABLE 2 SOMEWHERE HERE]

To check if the nonlinearity is uniformly spread over the in-sample period, we fix the specification

of zt andxt and test linearity in a rolling window with 100 observations. Thep-value of the linearity

test for each sub-sample is shown in Figure 2. With the exception of the Siri Lanka, nonlinearity is only
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significant in a few number of periods, specially in the beginning or in the end of the series. This is

an interesting result and explains why linearity is not strongly rejected for most of the series considered

here.

[FIGURE 2 SOMEWHERE HERE]

For those series that turned out to be nonlinear, we continue estimating the models.

The specification and estimation results for the NCSTAR models can be found in Table 3. This table

shows, for each series, the estimated number of hidden units (h), thep-value of the LM test of serial

correlation of orderr in the residuals (LMiid
F (r)), the p-value of the LM test of parameter constancy

(LMpc
F ), thep-value of the LM test of homocedasticity (LM�

F ), thep-value of the Jarque-Bera (JB) test

of normality of the residuals, and, finally, the estimated residual standard deviation.

Analysing the results in Table 3, we observe that all the estimated models have uncorrelated errors at

0.01 level. Only Sweden and Australia have evidence of serial correlated errors (of order 1) at 0.05 level.

The hypothesis of parameter constancy is rejected at 0.05 level but not at 0.01 level for France and Aus-

tralia. The only case where the null hypothesis of homoscedasticity is rejected (at 0.05 level) is France.

Due the fact that the null hypothesis of serial independence, parameter constancy, and homoscedasticity

are not strongly rejected (see thep-values of the tests) we do not take this into account and we accept the

estimated models as our final specifications. Figure 3 shows, for each model, the scatter plot of the tran-

sition function versus the linear combination of transition variables. With few exceptions, the transitions

between regimes are rather smooth.

[FIGURE 3 SOMEWHERE HERE]

The specification and estimation results for the AR models are shown in Table 4. The columns show,

respectively, the selected lags, thep-value of the Ljung-Box test of order 1,2, and 6, thep-value of the

Jarque-Bera (JB) test of normality of the residuals, and the estimated residual standard deviation.

Observing Table 4, we note that all the linear models have uncorrelated errors.

In Table 5 we show the lags in the ANN models, the number of hidden units, the minimum value of

the absolute correlation between the outputs of the hidden units of the estimated ANN models, and the

residual standard deviation.
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By inspection of Table 5, we observe that, with exception of Australia and Siri Lanka, the hidden

units of the ANN models are heavily correlated pointing to the fact that a model with only one hidden

unit will be enough to model the data. Although not shown here, the plots of the outputs of the hidden

units of most of the estimated models indicate that the hidden neurons are almost linear. This can be also

checked by comparing the standard deviation of the residuals from the ANN and AR models.

Additionally, we should stress that the standard deviation of residuals from the NCSTAR model is

smaller than the ones from the linear AR and the ANN for all the series.

[TABLE 3 SOMEWHERE HERE]

[TABLE 4 SOMEWHERE HERE]

[TABLE 5 SOMEWHERE HERE]

6.2 Forecasting Experiment

The forecasting results are shown in Tables 6–8. Table 6 shows the number of series where each model

is the best model according to the performance measures used here. Note that more than one model can

be the “winner” for each series, specially according to theSIGN criterion.

For 1-step-ahead forecasts the linear AR model has the best performance in50% of the cases when

the nRMSE, the MAE, and the MAD are used as performance measures. According to SIGN, the results

are mixed, with the RW model having a small advantage. For 2-, 3-, and 4-step-ahead forecasts the

results are not very clear and there is no evidence of a “winner” model when the nRMSE and the MAE

are considered. However, the RW model seems to be the best predictor of the SIGN. It is also important

to notice that according to the MAD, that is a measure robust to outliers, the nonlinear models outperform

the concurrent linear specifications in most of the cases.

To check if the forecasts produced by different models are statistically different or not, the number of

series where model A (column) is better than model B (row) according to the modified Diebold-Mariano

test (Diebold and Mariano 1995, Harvey, Leybourne and Newbold 1997) at a 0.05 level are shown in

Tables 7 and 8 (See Appendix C for details). The results in Table 7 concern to the nRMSE test and the

ones in Table 8 concern to the MAE test.
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Observing Tables 7 and 8, we conclude that, in most of the series, the differences in the forecast

performance between NCSTAR, ANN, AR, and RW models are not significant according to the Diebold-

Mariano test. It is important to notice that the NCSTAR model is better than the AR and ANN specifi-

cations when the Siri-Lanka series is considered. This is not surprising, because that is the only series

where the nonlinearity is uniformly spread. It is also important to observe that for 1-step-ahead forecasts

and specially when the MAE is used as a comparison criterion, the results are quite supportive in favour

of the linear and nonlinear specifications against thenäıve RW model.

[TABLE 6 SOMEWHERE HERE]

[TABLE 7 SOMEWHERE HERE]

[TABLE 8 SOMEWHERE HERE]

7 Conclusions

This paper has presented and compared different alternatives to model and forecast monthly exchange

rates time series. The models that have been used are the Neuro-Coefficient Smooth Transition AutoRe-

gressive (NCSTAR) model, Artificial Neural Networks (ANN), linear AutoRegression (AR), and, the

Random Walk (RW) formulation.

In conclusion, we can now answer the questions raised in the Introduction. How relevant is nonlin-

earity in the series? Nonlinearity is only relevant in some periods of the series, specially in the beginning

or in the end of the sample. Is the nonlinearity uniformly spread? No, with the exception of the Siri-

Lanka, the nonlinearity is concentrated in only a small sub-sample of the data. Are nonlinear models

better predictors? Nonlinear models stand a better chance only in the cases where nonlinearity is uni-

formly spread. Otherwise, there is no significant differences in the forecasts made by a concurrent linear

model. What is the lost (if any) of applying a nonlinear alternative when there is no evidence of nonlin-

earity? If a statistical procedure to build nonlinear models is used, probably the final estimated model

will be close to a linear specification and the forecasting ability will be close to the one from a linear

specification. In this paper we have used a statistical approach to build the NCSTAR model and the ANN

formulations have been estimated with Bayesian regularization that tries to build a parsimonious model
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based on Bayesian fundamentals. Concerning the predictability of exchange rates, we conclude that for

1-step-ahead forecasts and when the MAE is used as a performance metric, there are some supportive

results in favor of linear and nonlinear models against the simple random walk.
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A Evaluating Forecasts

The performance measures used in this paper are the following.

1. Normalized root mean squared error (nRMSE):

nRMSE(k) =

vuut 1

T � t0 � 3

PT�4
t=t0

"̂2t+kjt

�̂2y
; (20)

where�̂2y is the estimated in-sample unconditional variance of the series.

2. Mean Absolute Error (MAE):

MAE(k) =
1

T � t0 � 3

T�4X
t=t0

j"̂t+kjtj (21)

3. Median Absolute Deviation (MAD):

MAD(k) = median(j"̂t+kjt � median("̂t+kjt)j): (22)

The MAD is as a measure that is robust to outliers.

4. The proportion of times the sign of excess returns is correctly forecasted (SIGN):

SIGN(k) =
1

T � t0 � 3

T�4X
t=t0

Æt; (23)

where

Æt =

8>><
>>:
1; if yt+kŷt+kjt � 0;

0; otherwise.

B Forecasting with Nonlinear Models

Multi-step forecasting with nonlinear models is more challenging than forecasting with linear models.

See, for example, Granger and Ter¨asvirta (1993, Section 8.1) for a general discussion.
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Consider the simple nonlinear model defined as

yt = G(yt�1;	) + "t; (24)

whereG(�) is a nonlinear function with parameter vector	. The term"t is an independent identically

distributed random variable with zero mean and finite variance. The history of the process up to timet is

called=t.

Due the fact thatE("t+1j=t) = 0, the optimal 1-step-ahead forecast ofyt+1 is given by

ŷt+1jt = E(yt+1j=t) = G(yt;	); (25)

which is equivalent to the optimal 1-step-ahead forecast whenG(�) is linear.

For multi-step forecasts, the problem is much more complicated. For 2-step-ahead the optimal fore-

cast is given by

ŷt+2jt = E(yt+2j=t) = E(G(yt+1;	)j=t)) =

Z 1

�1
G(yt+1;	)f("t+1)d"t+1; (26)

wheref("t+1) is the density of"t+1. Usually the expression (26) is approximated by numerical tech-

niques, such as, for example, Monte-Carlo or bootstrap.

The Monte-Carlo method is a simple simulation technique for obtaining multi-step forecasts. For

model (24), thek-step-ahead forecast is defined as

ŷt+kjt =
1

N

NX
i=1

ŷ
(i)
t+kjt; (27)

whereN is the number of replications and

ŷ
(i)
t+kjt

= G(ŷt+k�1jt);	) + �
(i)
t+kjt

: (28)

�
(i)
t+kjt is a random number drawn from a normal distribution with the same mean and standard deviation

as the in-sample estimated residuals.

In this paper we adopt the Monte Carlo method with 2000 replications to compute the multi-step
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forecasts.

C The Diebold-Mariano Test

In order to test if the forecasts produced by two concurrent methods are statistically different or not, we

use the Diebold-Mariano statistic (Diebold and Mariano 1995) with the correction proposed by Harvey

et al. (1997). Suppose that a pair ofk-steps-ahead, forecasts have produced the errors
�
"̂
(1)
t+kjt; "̂

(2)
t+kjt

�
,

t = t0; : : : ; T � k. The quality of the forecasts is measured based on a specified loss functiong("̂t+kjt)

of the forecast error. Defining

dt = g
�
"̂
(1)
t+kjt

�
� g

�
"̂
(2)
t+kjt

�
; (29)

and

�d =
1

T � t0 � 3

T�4X
t=t0

dt; (30)

the Diebold-Mariano statistic is

S =
h
V̂ ( �d)

i�1=2
�d; (31)

where

V̂ ( �d) =
1

T � t0 � 3

"
̂0 + 2

k�1X
i=1

̂i

#
; (32)

and

̂i =
1

T � t0 � 3

T�4X
t=t0+i

(dt � �d)(dt�i � �d): (33)

Under the null hypothesis,S is asymptotic normally distributed with zero mean and unit variance.

However, the test is over-sized even in moderate samples. To circumvent this problem, Harvey et al.

(1997) proposed the following statistic

S� =

�
n+ 1� 2h+ n�1k(k � 1)

n

�1=2
S; (34)

wheren = T � t0 � k + 1.

Under the null,S� is assumed to have a Student’st distribution with(n� 1) degrees of freedom.
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In this paper we adopt the following loss functions.

g
�
"̂t+kjt

�
= "̂2t+kjt; for thenRMSE test; and

g
�
"̂t+kjt

�
= j"̂t+kjtj; for theMAE test.
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Figure 1: Architecture of the neural network.
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Figure 2: p-value of the linearity test.
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Figure 3: Scatter plot of transition function versus the linear combination of transition variables
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Table 1: Data sets.

Series Description Period T t0
1 - Austria Austrian Schillings to one US Dollar Jan/1971–Jul/2000 354 298
2 - Belgium Belgian Francs to one US Dollar Jan/1971–Jul/2000 354 298
3 - Denmark Danish Krones to one US Dollar Jan/1971–Jul/2000 354 298
4 - Finland Finnish Markkas to one US Dollar Jan/1971–Jul/2000 354 298
5 - France French Francs to one US Dollar Jan/1971–Jul/2000 354 298
6 - Germany German Marks to one US Dollar Jan/1971–Jul/2000 354 298
7 - The Netherlands Dutch Guilders to one US Dollar Jan/1971–Jul/2000 354 298
8 - Norway Norwegian Krones to one US Dollar Jan/1971–Jul/2000 354 298
9 - Sweden Swedish Krones to one US Dollar Jan/1971–Jul/2000 354 298
10 - Spain Spanish Pesetas to one US Dollar Jan/1973–Jul/2000 330 274
11 - India Indian Rupees to one US Dollar Jan/1973–Jul/2000 330 274
12 - Siri Lanka Siri Lanka Rupees to one US Dollar Jan/1973–Jul/2000 330 274
13 - Australia US Dollars to one Australian Dollar Jan/1971–Jul/2000 354 298
14 - United Kingdom US Dollars to one British Pound Jan/1971–Jul/2000 354 298
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Table 2: Linearity test.

Series Lags in zt Lags in xt p-value
1 - Austria 1; 4 1 0:0103
2 - Belgium 1; 2; 3 1; 3 0:0068
3 - Denmark 1 1 0:4470
4 - Finland 1; 2; 3; 4 2; 4 2:0191 � 10�5

5 - France 1; 3; 6 3; 6 0:0019
6 - Germany 1; 4 1 0:0079
7 - The Netherlands 1 1 0:5078
8 - Norway 1 1 0:1300
9 - Sweden 1; 6 1 0:0059
10 - Spain 1; 3 1 0:0085
11 - India 1; 3; 5; 8 1; 3; 5; 8 2:5690 � 10�10

12 - Siri Lanka 1; 2; 6; 8 8 0
13 - Australia 1; 4 1; 4 0:0001
14 - United Kingdom 1; 2 1 0:1961
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Table 3: Specification and estimation results - NCSTAR model.

Series h LM iid
F (1) LM iid

F (2) LM iid
F (6) LMpc

F LM�
F JB �̂

Austria 1 0.7720 0.2933 0.6973 0.6270 0.8084 0.2314 0.0259
Belgium 1 0.4365 0.7502 0.2342 0.4537 0.1963 0.2208 0.0248
Finland 1 0.4330 0.2944 0.7634 0.4206 0.6865 0.0000 0.0216
France 2 0.9072 0.4074 0.1935 0.0262 0.6150 0.0078 0.0239

Germany 1 0.4232 0.3812 0.5026 0.6417 0.6425 0.1050 0.0258
Sweden 1 0.0293 0.0715 0.0240 0.5776 0.3946 0.0000 0.0216

Australia 1 0.0439 0.1281 0.3585 0.0144 0.0631 0.0000 0.0204
Spain 1 0.1706 0.2590 0.5155 0.3407 0.9207 0.0000 0.0242

Siri Lanka 2 0.6268 0.0758 0.0547 0.5389 0.8013 0.0000 0.0151
India 2 0.7260 0.4370 0.3675 0.1755 0.4691 0.0000 0.0130
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Table 4: Specification and estimation results - AR model.

Series Lags LB(1) LB(2) LB(6) JB �̂

Austria 1 0.8040 0.5350 0.6140 0.0522 0.0264
Belgium 1 0.8170 0.3461 0.2820 0.0921 0.0257
Finland 1,2 0.8020 0.8832 0.8210 0.0000 0.0224
France 1,3 0.6774 0.3760 0.6700 0.0004 0.0254

Germany 1 0.7630 0.4420 0.6110 0.0630 0.0266
Sweden 1,2 0.8862 0.7781 0.4851 0.0000 0.0223
Australia 1,4 0.8100 0.8781 0.9823 0.0000 0.0213

Spain 1 0.8540 0.3660 0.3290 0.0000 0.0250
Siri Lanka 1,8 0.8720 0.8810 0.9360 0.0000 0.0179

India 1,8 0.4390 0.7100 0.5550 0.0000 0.0281
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Table 5: Estimation results - ANN model.

Series Lags Hidden Units min(j�̂j) �̂

Austria 6 5 0.9680 0.0264
Belgium 6 5 0.9098 0.0256
Finland 6 5 0.9603 0.0224
France 6 5 0.9997 0.0254

Germany 6 5 0.9603 0.0266
Sweden 6 5 0.9835 0.0223
Australia 6 5 0.2395 0.0213

Spain 6 5 0.8734 0.0248
Siri Lanka 10 12 0.0156 0.0051

India 10 12 1.0000 0.0177
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Table 6: Number of series where each model is the best model.

1-step-ahead 2-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW

nRMSE 1 2 5 2 2 1 3 4
MAE 2 2 5 1 2 0 5 3
MAD 2 1 5 2 3 5 1 1
SIGN 3 2 3 4 3 3 4 6

3-step-ahead 4-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW

nRMSE 2 2 4 2 4 2 3 1
MAE 3 1 2 4 2 1 3 4
MAD 6 2 0 2 4 3 1 2
SIGN 3 4 2 5 1 4 3 6
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Table 7: Number of series where model A (column) is better than model B (row) according to the
modified Diebold-Mariano test at a 0.05 level (nRMSE test).

1-step-ahead 2-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW

NCSTAR – 0 0 0 – 0 3 0
ANN 1 – 1 1 1 – 1 1
AR 1 0 – 0 0 0 – 2
RW 0 2 3 – 0 0 0 –

3-step-ahead 4-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW

NCSTAR – 0 1 0 – 0 1 1
ANN 1 – 1 2 1 – 1 0
AR 0 0 – 0 0 1 – 0
RW 0 0 0 – 0 0 0 –
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Table 8: Number of series where model A (column) is better than model B (row) according to the
modified Diebold-Mariano test at a 0.05 level (MAE test).

1-step-ahead 2-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW

NCSTAR – 0 0 0 – 1 2 1
ANN 1 – 1 1 1 – 1 2
AR 1 0 – 0 0 0 – 1
RW 2 5 4 – 0 0 0 –

3-step-ahead 4-step-ahead
NCSTAR ANN AR RW NCSTAR ANN AR RW

NCSTAR – 0 1 1 – 0 0 0
ANN 1 – 1 1 1 – 1 1
AR 0 0 – 1 0 0 – 0
RW 0 0 0 – 0 0 0 –
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