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Abstract

In this paper we examine the forecast accuracy of linear autoregressive, smooth transition
autoregressive (STAR), and neural network (NN) time series models for 47 monthly macro-
economic variables of the G7 economies. Unlike previous studies that typically consider
multiple but fixed model specifications, we use a single but dynamic specification for each
model class. The point forecast results indicate that the STAR model generally outperforms
linear autoregressive models. It also improves upon several fixed STAR models, demonstrat-
ing that careful specification of nonlinear time series models is of crucial importance. The
results for neural network models are mixed in the sense that at long forecast horizons, an
NN model obtained using Bayesian regularization produces more accurate forecasts than a
corresponding model specified using the specific-to-general approach. Reasons for this out-
come are discussed.
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1 Introduction

In recent years, numerous forecast competitions between linear and nonlinear models for macro-

economic time series have been held. Comparisons based on a large number of variables have

been carried out, and the results on forecast accuracy have generally not been particularly

favourable to nonlinear models.

In a paper with impressive depth and a wealth of results, Stock and Watson (1999), hence-

forth SW, addressed the following four issues, among many others. First, do nonlinear time series

models produce forecasts that improve upon linear models in real time? Second, if they do, are

the benefits greatest for relatively tightly parameterized models or for more nonparametric ap-

proaches? Third, if forecasts from different models are combined, does the combination forecast

outperform its components? Finally, are the gains from using nonlinear models and combination

forecasts over simple linear autoregressive models large enough to justify their use?1

In this paper, we re-examine these four issues. The reason for this, and the motivation for

this paper, is the following. SW used two nonlinear models to generate their forecasts: a “tightly

parameterized” model and a “more nonparametric” one. The former model was the (logistic)

smooth transition autoregressive ((L)STAR) model, see Bacon and Watts (1971), Chan and Tong

(1986) and Teräsvirta (1994), and the latter the autoregressive single hidden layer feedforward

neural network (AR-NN) model; see Fine (1999) for a general overview of neural network models.

SW applied these models to 215 monthly US macroeconomic time series. They considered three

forecast horizons, one, six and 12 months ahead, constructing a different model for each horizon.

Furthermore, since they were interested in real-time forecasting, the models were re-estimated

each time another observation was added to the information set. Repeating this procedure some

300 times for each of the series (as the (longest possible) forecasting period was January 1972 to

December 1996) amounted to estimating a remarkably large number of both linear and nonlinear

models.

Carrying out these computations obviously required some streamlining of procedures. Thus,

SW chose to employ a large number of different specifications of STAR and AR-NN models,

keeping these specifications fixed over time and only re-estimating the parameters each period.

1Among the other issues addressed by SW was the effect of the pre-test based choice of levels versus differences
on forecast accuracy, but that question will not be taken up in the present work.
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This simplification was necessary in view of the large number of time series and forecasts. But

then, it can be argued that building nonlinear models requires a large amount of care. As

an example, consider the STAR model. First, when the data-generating process is a linear AR

model, some of the parameters of the STAR model are not identified. This results in inconsistent

parameter estimates, in which case the STAR model is bound to lose any forecast comparison

against an appropriate linear AR model. Hence, it is essential to first test linearity before

considering a STAR model at all. Second, the transition variable of the STAR model is typically

unknown and has to be determined from data. Fixing it in advance may lead to a badly specified

model and, again, to forecasts inferior to those from a simple linear model.

Similar arguments can be made for the AR-NN model. The ones SW used contained a

linear component, that is, they nested a linear autoregressive model. This is reasonable when

NN models are fitted to macroeconomic time series because the linear component can in that

case be expected to explain a large share of the variation in the series. But then, if the data-

generating process is linear, the nonlinear “hidden units” of the AR-NN model are redundant,

and the model will most likely lose forecast comparisons against a linear AR model. Testing

linearity is therefore important in this case as well. Furthermore, if the number of hidden units

in the AR-NN model is too large, in the sense that some of the units do not contribute to

explaining the variation in the time series, convergence problems and implausible parameter

estimates may occur. This calls for a careful modelling strategy for AR-NN models as well.

An important part of our re-examination concerns the potential benefits of careful specifi-

cation of STAR as well as AR-NN models. Specifically, instead of examining the forecasting

performance of multiple but fixed specifications of STAR and AR-NN models, we shall consider

a single but dynamic specification of these nonlinear models. For this purpose, model building

is carried out “manually” as follows. Linearity is tested for every series and a STAR or AR-NN

model is considered only if linearity is rejected. The nonlinear models are then specified using

available data-based techniques that will be described in some detail below. This would be a

remarkable effort if, to approximate a real-time forecasting situation as closely as possible, it

were done sequentially every time another observation is added to the in-sample period. In order

to keep the computational burden manageable, the models are respecified only once every 12

months. Besides, we shall consider fewer time series than SW did. Even with these restrictions,
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the human effort involved is still quite considerable. As described below, our data set consists

of 47 monthly time series, and for most of these the forecasting period covers 20 years. Scarce

resources have also forced us to ignore an important part of model building, namely detailed

in-sample evaluation of estimated models before applying them to out-of-sample forecasting.

This omission may have an adverse effect on our results.

As noted before, SW defined a different model for each forecast horizon. This approach

has the advantage that the complications involved in computing multiple-period ahead forecasts

from nonlinear models are avoided. In the case of nonlinear models such as STAR and AR-NN

models it may, however, be difficult to find a useful model for longer horizons. Another part

of our re-examination thus consists of asking what happens if we specify a nonlinear model for

one-period ahead forecasts only and obtain the forecasts for longer horizons numerically, by

simulation or bootstrap.2 Can such forecasts compete with ones from a linear AR model?

Finally, following SW we shall also consider combinations of point forecasts. The difference

between our study and SW is that the number of forecasts to be combined here will be consider-

ably smaller. This is due to the fact that we generate fewer forecasts for the same variable and

time horizon than SW did. One of the most remarkable results in SW was that a combination of

a large number of forecasts from nonlinear models performed much better than any individual

nonlinear forecast. In this study we only consider a small number of models and thus do not

particularly focus on this issue here; see Granger and Jeon (2004) for an extensive discussion of

this topic.

Another difference between our study and SW is that they applied a rolling window in

estimating the parameters, whereas we use expanding windows. This means that we use all

observations available at each forecast origin to estimate the parameters. An important reason

for doing this is that neural network models do not work very well in small samples, and we would

like to give them a decent chance to perform well. Consequently, the possibility of structural

breaks in series we are going to forecast is de-emphasized in our approach.

2An advantage of this simulation approach is that forecast densities are obtained directly as a by-product.
These densities can in turn be used for constructing interval forecasts. It is sometimes argued that the strength
of nonlinear models in macroeconomic forecasting lies in such interval and density forecasts; see for example
Lundbergh and Teräsvirta (2002) and Siliverstovs and van Dijk (2003). Nevertheless, since useful methods for
comparing density forecasts from different models are not as yet available, neither interval nor density forecasts
are considered in this study.
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The plan of the paper is as follows. Section 2 contains a brief review of relevant previous

studies on forecasting with neural network and STAR models. These two models are presented

in Section 3 with a short discussion of their specification procedures. The issues involved in

forecasting with nonlinear models are discussed in Section 4, including forecast combination.

The recursive procedure employed to mimic real-time forecasting is presented in Section 5. The

data set is described in Section 6. The empirical results are presented and analyzed in Section

7 and, finally, conclusions can be found in Section 8.

2 Previous studies

There exists a vast literature on comparing time series forecasts from neural network and linear

models; Zhang, Patuwo, and Hu (1998) provide a recent survey. Many applications are to other

than macroeconomic variables, and the results are mixed. In addition to SW, recent articles

that examine macroeconomic forecasting with linear and AR-NN models include Swanson and

White (1995, 1997a,b), Tkacz (2001), Marcellino (2002), Rech (2002) and Heravi, Osborn, and

Birchenhall (in press). The approach taken by Swanson and White in their articles is quite

close in spirit to ours, in the sense that their idea was to select either a linear or an AR-NN

model and to choose the size of the NN model using a model selection criterion such as BIC;

see Rissanen (1978) and Schwarz (1978). Rech (2002) compared forecasts obtained from several

neural network models specified and estimated using different methods and algorithms.

The general conclusion from the papers cited above appears to be that, in general, there

is not much to gain from using an AR-NN model instead of the simple linear autoregressive

model, at least as far as point forecasts are concerned. Marcellino (2002) is to some extent an

exception to this rule. The data set in his study consisted of 480 monthly macroeconomic series

from the 11 countries that originally formed the European Monetary Union. While a linear AR

model was the best overall choice in terms of point forecast accuracy, there was a reasonably

large number of time series that were predicted most accurately by AR-NN models when the

criterion for comparison was the root mean squared forecast error.

The number of studies examining the forecasting performance of STAR models relative
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to linear or other nonlinear models is appreciably smaller.3 Teräsvirta and Anderson (1992)

considered forecasting the volume of industrial production with STAR models. Even here,

the results were mixed when the root mean squared forecast error was used as a criterion for

comparison with linear models. Sarantis (1999) forecast real exchange rates using linear and

STAR models and found that there was not much to choose between them. STAR models did,

however, produce more accurate point forecasts than Markov-switching models. Similarly, Boero

and Marrocu (2002) found that STAR models did not perform better than linear AR models

in forecasting nominal exchange rates, although Kilian and Taylor (2003) did find considerable

improvements in forecast accuracy from using STAR models for such series, in particular for

longer horizons. The results in SW did not suggest that forecasts from individual LSTAR

models are more accurate than forecasts from linear models. The findings of Marcellino (2002)

were similar to his findings concerning AR-NN models: a relatively large fraction of the series

were most accurately forecast by LSTAR models, but for many other series this model clearly

underperformed.

3 The models

In this section we present the LSTAR and the AR-NN models and the modelling techniques

used in this study. Throughout, we denote by yt,h the h-month (percent) change between t − h

and t of the macroeconomic time series of interest, and yt,1 ≡ yt.

3.1 The smooth transition autoregressive model

3.1.1 Definition

The smooth transition autoregressive (STAR) model is defined as follows:

yt = φ′wt + θ′wtG(yt−d,h; γ, c) + εt, (1)

3It should be mentioned though that there is a sizeable literature on the forecasting performance of the
threshold autoregressive (TAR) model which, in its simplest form (a single threshold), is nested in the logistic
STAR model considered here; see Clements and Krolzig (1998), Clements and Smith (1999), and Siliverstovs and
van Dijk (2003), among many others.
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where wt = (1, yt−1, . . . , yt−p)
′ consists of an intercept and p lags of yt, φ = (φ0, φ1, . . . , φp)

′ and

θ = (θ0, θ1, . . . , θp)
′ are parameter vectors, and εt ∼ IID(0, σ2). Note that the model (1) can be

rewritten as

yt = {φ + θG(yt−d,h; γ, c)}′ wt + εt,

which shows that the STAR model can be interpreted as a linear model with stochastically

time-varying coefficients φ + θG(yt−d,h; γ, c).

In general, the transition function G (yt−d,h; γ, c) is a bounded function of yt−d,h, continuous

everywhere in the parameter space for any value of yt−d,h. In the present study we employ the

logistic transition function, which has the general form

G(yt−d,h; γ, c) =

(
1 + exp

{
−γ

K∏

k=1

(yt−d,h − ck)

})−1

, γ > 0, c1 ≤ . . . ≤ cK , (2)

with d ≥ 1, and where the restrictions on the slope parameter γ and on the location parameters

c = (c1, . . . , cK)′ are identifying restrictions. Equations (1) and (2) jointly define the LSTAR

model; see Teräsvirta (1994) for more discussion.

The most common choices of K in the logistic transition function (2) are K = 1 and K = 2.

For K = 1, the parameters φ + θG(yt−d,h; γ, c) change monotonically from φ to φ + θ as a

function of yt−d,h. When γ → 0, the LSTAR model becomes a linear AR model with coefficients

(φ + θ)/2, while the model becomes a two-regime TAR model with c1 as the threshold value

when γ → ∞.

For K = 2, the parameters in (1) change symmetrically around the mid-point (c1 + c2)/2

where this logistic function attains its minimum value. The minimum lies between zero and

1/2, reaching zero when γ → ∞ and equalling 1/2 when c1 = c2 and γ < ∞. The parameter γ

controls the slope and c1 and c2 determine the location of the transitions.

LSTAR models are capable of generating asymmetric realizations, which makes them inter-

esting in modelling macroeconomic time series exhibiting, for example, changes in their dynamic

properties over the business cycle. Building upon this idea, in our application K in (2) is set

equal to 1 (the same choice is made by SW) and the transition variable yt−d,h is taken to be

a lagged annual difference, that is, h = 12. As a consequence for most series in our data
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set, the resulting regimes associated with the extreme values of the logistic transition function

G(yt−d,h; γ, c) correspond quite closely with business cycle expansions and recessions. A lagged

first difference would be too volatile a transition variable for that purpose. A similar choice

was made in Skalin and Teräsvirta (2002) for modelling business cycle asymmetries in quarterly

unemployment rate series.

3.1.2 Building STAR models

In building STAR models we shall follow the modelling strategy presented in Teräsvirta (1998),

see also van Dijk, Teräsvirta, and Franses (2002) and Lundbergh and Teräsvirta (2002). As

already indicated, the building of STAR models has to be initiated by testing linearity. The

LSTAR model reduces to a linear AR model when either θ = 0 or γ = 0 in (1). Testing

the linearity hypothesis is not straightforward, however, due to the presence of unidentified

nuisance parameters that invalidates the standard asymptotic inference. In the STAR context

it is customary to circumvent this problem by approximating the alternative model, using a

Taylor series expansion of the transition function, as discussed in Luukkonen, Saikkonen, and

Teräsvirta (1988). Linearity is tested for a number of “candidate” transition variables yt−d,h,

d ∈ D = {1, 2, . . . , dmax} where we set dmax = 6, using a significance level of 0.05 for each

individual test. The test results are at the same time used to select the delay parameter d,

which is taken to be the value for which the p-value of the linearity test is smallest; see Teräsvirta

(1994, 1998) for details. Because of our choice to set K equal to 1 a priori, the data-based choice

between K = 1 and K = 2, which normally is part of the specification procedure, need not be

made.

The lag structure of the LSTAR model can in principle be specified by starting with a

“large” model and removing redundant lags, that is, (sequentially) imposing zero restrictions on

parameters. During this reduction process, the estimated models can be evaluated by various

misspecification tests as discussed in Teräsvirta (1998) to monitor their adequacy. Preliminary

experiments indicated, however, that doing so often impairs forecasts, and as a result this

reduction is not used in this paper. Hence, we restrict ourselves to “full” LSTAR models

containing all lags up to a certain order p in both the linear and nonlinear parts of the model

(as represented by the parameter vectors φ and θ, respectively), where p is determined using
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BIC, allowing for a maximum lag order of 12.

As a whole, the modelling strategy requires a substantial amount of human resources and

consequently, as mentioned in the Introduction, the STAR model is respecified only once every

year. However, the parameters are re-estimated every month.

3.2 The autoregressive artificial neural network model

3.2.1 Definition

The autoregressive single hidden-layer feedforward neural network (AR-NN) model used in our

work has the form

yt = β′
0wt +

q∑

j=1

βjG(γ ′
jwt) + εt, (3)

where wt = (1, yt−1, ..., yt−p)
′ as before, and βj , j = 1, . . . , q, are parameters, called “connection

strengths” in the neural network literature. Furthermore, the function G(·) is a bounded function

called a “hidden unit” or “squashing function” and γj , j = 1, . . . , q, are parameter vectors. Our

squashing function is the logistic function G(z) = 1/(1 + exp(−z)), comparable to (2) with

K = 1. The errors εt are assumed to be IID
(
0, σ2

)
. We include the “linear unit” β′

0wt in

(3) despite the fact that many neural network users assume β0 = 0. A theoretical argument

used to motivate the use of (AR-)NN models is that they are universal approximators. Suppose

that yt = H(wt) for some nonlinear function H(·), that is, there exists a functional relationship

between yt and the variables in wt. Then, under mild regularity conditions on H, there exists

a positive integer q ≤ q0 < ∞ such that for arbitrary δ > 0,
∣∣∣H(wt) −

∑q
j=1 βjG(γ′

jwt)
∣∣∣ < δ

for all wt. This is an important result because q0 is finite, so any unknown function H(·)

can be approximated arbitrarily accurately by a linear combination of a finite number of hidden

units G(γ′
jwt). This universal approximator property of (3) has been discussed in several papers

including Cybenko (1989), Funahashi (1989), Hornik, Stinchombe, and White (1989), and White

(1990). In principle, equation (3) offers a very flexible parametrization for describing the dynamic

structure of yt.
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3.2.2 Building AR-NN models using statistical inference

Building AR-NN models involves two crucial choices. First, one has to select the input variables,

wt, for the model. In the univariate case considered here this is equivalent to selecting the

relevant lags of yt. Second, one has to choose the number of hidden units, q, to be included

in the model. Broadly speaking, there exist two alternative ways of building AR-NN models.

On the one hand, one may begin with a small model and gradually increase its size. This is

sometimes called a “bottom-up” approach or “growing the network” and is applied, for example,

in Swanson and White (1995, 1997a,b). On the other hand it, is also possible to have a large

model as starting-point and “prune” it, which means (sequentially) removing hidden units and

variables. In this paper we apply both approaches and shall first describe a bottom-up approach

based on the use of statistical inference, originally suggested in Medeiros, Teräsvirta, and Rech

(2002).

The first step of the bottom-up inference-based strategy is to select the input variables.

This is done by applying another universal approximator, a general polynomial. For example,

approximating the right-hand side of (3) by a third-order polynomial yields

yt = µ0 +

p∑

i=1

αiyt−i +

p∑

i=1

p∑

i=j

αijyt−iyt−j +

p∑

i=1

p∑

j=i

p∑

k=j

αijkyt−iyt−jyt−k + ε∗t . (4)

An appropriate model selection criterion such as BIC is used to sort out the redundant combi-

nations of variables and thus select the relevant lags of yt, as described in Rech, Teräsvirta, and

Tschernig (2001). The automated selection technique by Krolzig and Hendry (2001) may also

be used for this purpose.

The second step consists of selecting the number of hidden units. Linearity is tested first,

which entails an identification problem similar to the one encountered in STAR models. This is

circumvented by using (4) and the neural network linearity test of Teräsvirta, Lin, and Granger

(1993). If linearity is rejected, a model with a single hidden unit (q = 1 in (3)) is estimated

using conditional maximum likelihood. Next, this model is tested against an AR-NN model with

q ≥ 2 hidden units as described in Medeiros, Teräsvirta, and Rech (2002) and, if rejected, an

AR-NN model with two hidden units is estimated. This procedure is continued until the first

non-rejection of the null hypothesis. We favour parsimonious models and therefore follow the
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suggestion of Medeiros, Teräsvirta, and Rech (2002) to let the significance levels in the testing

sequence form a decreasing sequence of positive real numbers. More specifically, the significance

level is halved at each stage, while we set the significance level of the first (linearity) test equal

to 0.05.

3.2.3 Building AR-NN models using Bayesian regularization

There exist many methods for pruning a network, see for example Fine (1999, Chapter 6) for

an informative account. In this paper we apply a technique called “Bayesian regularization”,

as described in MacKay (1992a). The aim of Bayesian regularization is twofold. First, it is

intended to facilitate maximum likelihood estimation by penalizing the log-likelihood in case

some of the parameter estimates become excessively large. Second, the method is used to find a

parsimonious model within a possibly very large model. In order to describe the former aim in

more detail, suppose that the estimation problem is “ill-posed” in the sense that the likelihood

function is very flat in several directions of the parameter space. This is not uncommon in large

neural network models, and it makes numerical maximization of the likelihood difficult. Besides,

the maximum likelihood value may be strongly dependent on a small number of data points. An

appropriate prior distribution on the parameters acts as a “regularizer” that imposes smoothness

and makes estimation easier. For example, the prior distribution may be defined such that it

shrinks the parameters or some linear combinations of them towards zero. Information in the

time series is used to find the “optimal” amount of shrinkage. Furthermore, a set of smaller

models nested within the large original model is defined. The algorithm allows to choose one of

these sub-models and thus reduce the size of the neural network. This requires determining prior

probabilities for the models in the set and finding the one with the highest posterior probability.

Bayesian regularization can be applied to feedforward neural networks of type (3), as dis-

cussed in MacKay (1992b). In this context, the set of eligible AR-NN models does not usually

contain models with a linear unit, and we adhere to that practice here. In our case, the largest

model has nine hidden units (q = 9 in (3)), and the maximum lag p equals six. We apply

the Levenberg-Marquardt optimization algorithm in conjunction with Bayesian regularization

as proposed in Foresee and Hagan (1997).

As already mentioned, in the approach based on statistical inference discussed in Section
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3.2.2 parsimony is achieved by starting from a small model and growing the network by ap-

plying successively tightening tests for remaining nonlinearity. Bayesian regularization also has

parsimony as a guiding principle, but it is achieved from the opposite direction by pruning a

large network. In what follows and in all tables, a neural network model obtained this way

is called the NN model, whereas a neural network model built as explained in Section 3.2.2 is

called the AR-NN model.

4 Forecasting with STAR and neural network models

As pointed out in the Introduction, we obtain forecasts for different horizons for a given variable

from the same (one-step ahead) model. This means that the forecasts from nonlinear models

have to be generated numerically as discussed, in Granger and Teräsvirta (1993). Let

yt = f(yt−1, ..., yt−p; θ) + εt, (5)

where θ is the parameter vector and εt ∼ IID
(
0, σ2

)
, be a nonlinear model with an additive error

term. The STAR model (1)-(2) and the AR-NN model (3) considered here are special cases of

(5). The one-step ahead point forecast for yt+1 equals

ŷt+1|t = f(yt, ..., yt−p+1; θ̂t),

where θ̂t indicates that parameter estimates are obtained using observations up to time period

t. For the two-step ahead forecast of yt+2 one obtains

ŷt+2|t =

∫ ∞

−∞
f(ŷt+1|t + εt+1, yt, . . . , yt−p+2; θ̂t)dεt+1. (6)

For longer horizons, obtaining the point forecast would even require solving a multidimensional

integral. Numerical integration in (6) can be avoided either by approximating the integral by

simulation or by bootstrapping the residuals. The latter alternative requires the assumption

that the errors of model (5) be independent.

In this paper we adopt the bootstrap approach, see Lundbergh and Teräsvirta (2002) for
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another application of this method in the context of STAR models. In particular, we simulate

N paths for yt+1, yt+2, . . . , yt+hmax , where we set N = 500 and hmax = 12, and obtain the

h-period ahead point forecast as the average of these paths. For example, the two-step ahead

point forecast is computed as

ŷt+2|t =
1

N

N∑

i=1

ŷt+2|t(i) =
1

N

N∑

i=1

f(ŷt+1|t + ε̂i, yt, . . . , yt−p+2; θ̂),

where ε̂i are resampled residuals from the model estimated using observations up to time period

t. To be precise, in this paper we do not consider h-step ahead forecasts of the 1-month growth

rate ŷt+h|t but focus instead on the economically more interesting forecasts of the h-month

growth rate, denoted as ŷt+h,h|t =
∑h

j=1 ŷt+j|t.

Note that by building a separate model for each forecast horizon as in SW and Marcellino

(2002), numerical forecast generation is avoided. In that case point forecasts for the h-month

growth rate are of the form

ŷt+h,h|t = fh(yt, ..., yt−p+1; θ̂h), h ≥ 1,

where fh(yt, ..., yt−p+1; θ̂h) is the estimated conditional mean of yt+h,h at time t according to the

model constructed for forecasting h periods ahead.

We also consider combining forecasts from different models, where we limit ourselves to

combinations of pairs of models and exclude the combination of forecasts from the NN and

AR-NN models. Following Granger and Bates (1969), the composite point forecast based on

models Mi and Mj is given by

ŷ
(i,j)
t+h,h|t = (1 − λt)ŷ

(i)
t+h,h|t + λtŷ

(j)
t+h,h|t, (7)

where λt, 0 ≤ λt ≤ 1, is the weight of the h -month forecast ŷ
(j)
t+h,h|t from model Mj . The weights

can be time-varying and based on previous forecasting performance of Mi and Mj , but they may

also be fixed. In fact, a general conclusion from the literature on forecast combination, also

reached by SW, appears to be that equal weighting, that is λt ≡ 1/2, does an adequate job in

the sense that more refined weighting schemes generally do not lead to further improvements in
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forecast accuracy. We follow this approach here. In combination forecasts that include the AR

model as one the components, the equal weighting scheme actually favours the linear model. In

both STAR and AR-NN approaches, forecasts are obtained from a linear model when linearity

is not rejected. The implicit weight of the linear model in combination forecasts is thus greater

than the weight indicated by λt.

5 Recursive specification, estimation, and forecasting

Specification, estimation, and forecasting are carried out recursively using an expanding window

of observations. For most of the series considered in this paper the first window starts in January

1960 and ends in December 1980, whereas the last window (also starting in January 1960) ends

in December 1999. However, for a few series the starting-date for the windows and the ending

date for the last window are slightly different. The general rule is that all windows begin from

the first observation and the last window is closed 12 months before the final observation. As

already mentioned, all models are respecified only once a year, but parameters are re-estimated

each month. For every window we compute point forecasts
{
ŷt+h,h|t

}R+P−1

t=R
of the h-month

growth rate yt+h,h of all variables, where h = 1, . . . , 12, R is the point where the first forecast

is made, and P is the number of windows. This procedure gives us P forecasts for all horizons;

for most series in our data set P = 228.

Neural network models have a tendency to overfit in the sense that the specification procedure

may lead to a large number of hidden units and poor out-of-sample performance. Furthermore,

as will be pointed out in Section 7.3, estimated AR-NN models may sometimes be explosive

although the time series to be modelled appear stationary. For these reasons we impose an

“insanity filter” on the forecasts; see also Swanson and White (1995). If a forecast deviates more

than plus/minus two standard deviations from the average of the observed h-month differences,

it is replaced by the arithmetic mean of yt,h computed with the available observations up until t.

“Insanity” is thus replaced by “ignorance”. SW apply a similar technique and call it trimming

the forecast.
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6 Data

We consider the following monthly macroeconomic variables for each of the G7 countries: volume

of industrial production (IP), consumer price index inflation (CPI), narrow money (M1), short-

term (3-month) interest rate (STIR), volume of exports (VEX), volume of imports (VIMP), and

unemployment rate (UR). The unemployment rates for France and Italy are excluded because

sufficiently long monthly series are not available, such that the data set consists of 47 monthly

time series. Most series start in January 1960 and are available up to December 2000.

The series are seasonally adjusted with the exception of the short-term interest rate and

inflation. With the exception of the NN models estimated with Bayesian regularization, season-

ality in these series is modelled by including monthly dummy variables, which are restricted to

enter linearly in all models. In the NN model seasonality is modelled by including the first 12

lags as input variables. For all series except the interest rates and unemployment rates, models

are specified for monthly growth rates yt, obtained by first differencing the logarithm of the

levels. For interest rates, plain first differences are used. For unemployment rates, models are

specified for the levels of the series, which is effectively done by including a lagged level term as

additional variable in the model for the one-month change. Most series have been adjusted to

remove the influence of outliers. Details, including the data sources and the types of adjustments

made, can be obtained from the authors upon request.

7 Results

Before we turn to the empirical results of the forecasting exercise, we briefly discuss the results

of the linearity tests. These are summarized in Table 1, showing the fraction of times linearity

is rejected with tests performed once a year when the models are respecified.

The results for the two models (or linearity tests) are not identical, the differences being

most pronounced for the IP series. There are at least three reasons for this. First, the linear

models that form the null hypotheses are not the same for the STAR and AR-NN alternatives.

In the STAR case the linear models contain all lags up to the order p selected by BIC. In the

AR-NN case the variables to be included in the AR-NN model are selected first by means of the

technique described in Section 3.2.2. Second, the alternative against which linearity is tested is
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not the same either. Finally, a “rejection” against the STAR model is the result of carrying out

the test against a number of dmax alternatives in which the transition variable of the model is

different; see Section 3.1.2.

Linearity is rejected somewhat more frequently against LSTAR than against AR-NN mod-

els. The short-term interest rate, inflation and the unemployment rate series appear to be

most systematically nonlinear when linearity is tested against STAR. In the AR-NN case, in-

flation, interest rates, and imports are the “most nonlinear” variables. Also note that there are

country/series combinations for which linearity is never rejected.

The fact that linearity is always rejected does not, however, imply stability of the STAR

and AR-NN specifications over time. As an example, the AR-NN model for the German unem-

ployment rate first contains two hidden units. This number first declines to one for a period of

time, then fluctuates between two and four before it drops to one again towards the end of the

observation period. There are other examples, however, such as the Canadian VIMP, in which

the number of hidden units remains unchanged, in this case one, over the whole period.

7.1 Comparing point forecasts using the root mean squared forecast error

The point forecasts are evaluated by using the root mean squared forecast error (RMSFE). We

also computed the mean absolute forecast errors (MAFE), but because they do not seem to

contain information not already available in RMSFE values, they are not reported here. Table 2

reports the ratios of the RMSFE for a given forecast horizon, h = 1, 3, 6, and 12 months, relative

to the RMSFE of the linear AR(p) model with p selected by BIC, which we use as benchmark.

It also contains the ranks of the four forecasting methods.

We assess the significance of observed differences in MSFE between models by applying the

pairwise Diebold-Mariano test of equal forecast accuracy, using the modified form of Harvey,

Leybourne, and Newbold (1997), and the pairwise forecast encompassing test developed in

Harvey, Leybourne, and Newbold (1998). It should be noted that the standard asymptotic

theory for the Diebold-Mariano and forecasting encompassing test statistics are invalid whenever

the two models involved are nested, see Clark and McCracken (2001), among others. At first

sight, in our case this appears to exclude comparisons between the AR, LSTAR and AR-NN

models. However, the linear AR model and the linear components in the LSTAR and AR-NN
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models do not generally contain the same lags as they are selected using different techniques.

We thus maintain that these models are approximations to the same unknown data-generating

process and include them in our comparisons. This argument is not valid, however, in cases

where linearity is never rejected against STAR; see Table 1, and these cases are removed from

comparisons. The NN model does not contain a linear unit, so it can be tested against all the

other models without problem. Table 3 contains results of pairwise model comparisons in terms

of MSFE, using the Diebold-Mariano test. The entries represent the number of times the model

indicated by column has smaller MSFE than the model indicated by row at the 5% significance

level. Forecast encompassing results are shown in Table 4.

Several interesting conclusions emerge from these tables. Results in Table 2 suggest, as

expected, that no model or method dominates the others, and the model performing best is

not the same across countries, variables and forecast horizons. This holds in particular for the

forecasting performance of the nonlinear STAR and (AR-)NN models relative to the linear AR

model. For example, AR models clearly render the most accurate forecasts for the interest rate

series. Incidentally, linearity was systematically rejected for these series. But then, with few

exceptions, the linear forecasts are consistently beaten by at least one of the nonlinear models

for IP, M1, VIMP and unemployment rates. Hence, for some variables our results support the

conventional wisdom that linear time series models are robust forecasting devices, while for

others it seems that there is considerable scope for forecast improvement by using nonlinear

models. It should be mentioned though that there does not exist a single country/variable

combination such that all three nonlinear models generate more accurate forecasts than the

linear AR model; German IP being the example that comes closest. From Table 3 it is seen that

the AR model is rarely found to have a significantly larger MSFE than any other model. The

relative forecasting performance of the linear model does seem to deteriorate, however, with an

increasing horizon. For example, the number of rejections of equal MSFE of the AR and NN

models in favour of the latter model having superior forecast accuracy increases from 0 to 7, 11

and 15 as h increases from 1 to 3, 6 and 12.

On the whole, the LSTAR model appears to perform slightly better in terms of raw MSFE

values than the neural network models, especially for IP and M1, and for series from Canada,

Germany and the US. Also note that the relative performance of the LSTAR model often
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improves considerably with the forecast horizon; see the German IP and VIMP, and the French

and UK M1 for examples. SW in their study found that the individual NN models performed

better than the individual LSTAR models, whereas the situation is rather the opposite here. A

probable cause for this is that SW used a separate model for each forecast horizon, whereas we

employ the same model for all horizons. Because the NN model is a flexible functional form,

it suffers less from an omission of the shortest lags in the forecasting model than the tightly

parameterized LSTAR model. Considering the results in Table 3 it has to be said, though, that

the NN model shows better relative performance than the LSTAR model against the linear AR

model, in the sense that the NN model more often has significantly smaller MSFE relative to

the AR model than the LSTAR model does.

Regarding the two neural network-based methods, the NN models obtained by pruning a

large model clearly perform better on average than the bottom-up procedure employed for

the AR-NN model, except for the shortest forecast horizon h = 1, in particular for IP and

unemployment rates. Reasons for this will be discussed in Section 7.3. Sometimes both neural

network models produce inferior forecasts: inflation for Japan and UK or even Germany are

examples. In forecasting inflation, however, the relative differences between models can be large

whereas the absolute ones remain small: note the small RMSFE values for the AR model in

brackets.

7.2 Value of careful specification: STAR models

The results in the preceding subsection suggest that the LSTAR model often is among the best

ones when it comes to forecasting, and it may be argued that on average it even performs better

than the linear AR model. But then, it would also be useful to know whether the modelling

strategy applied to building LSTAR models is an important factor for this result. This is a

relevant question because it is possible to just choose an LSTAR model without any model

selection and use it for forecasting, as SW did. As already mentioned, this may not always

be a very good idea because of the identification problem present when the data-generating

process is linear, among others. In fact, results in Table 2 already hint at the possibility that

linearity tests provide a useful insurance against outright bad forecasts. There are several series

for which linearity is never rejected; see the VIMP series of Canada, France and Japan, for
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example. Consequently, the LSTAR model rarely fails badly. The reader is reminded of the fact

that no in-sample evaluation of LSTAR models by misspecification tests is carried out before

forecasting, but the quality of forecasts suggests that serious specification failures have been

rare.

In order to investigate the value of careful model building, we define three additional LSTAR

specifications. First, an LSTAR model is specified without testing linearity first. This means

that the linearity tests are performed as described in Section 3.1.2 but only to select the value

of the delay parameter d. The maximum lag p again is determined with BIC. In the second and

third LSTAR models we not only skip linearity testing altogether but in addition fix the lag

order p in (1) at 1 and 6, respectively, and set the delay d = 1. The whole forecasting exercise

is repeated using each of these three model specifications, and the results are compared to the

ones obtained using the LSTAR model of previous sections as the benchmark. Table 5 contains

the relevant RMSFE ratios, where the RMSFE of the forecasts from the original LSTAR model

is the denominator.

The results show, somewhat surprisingly, that testing linearity does not seem to matter very

much, but carefully selecting the lag order and delay parameter in the LSTAR model does.

The overall RMSFE ratios for the first specification are only marginally above one for forecast

horizons of 1, 3 and 6 months, and marginally below one for the 12-month horizon. On the other

hand, fixed LSTAR models perform less well, which indicates that selecting the delay parameter

d and the lag order p is important. The only exception is the short-term interest rate, which

appears best predicted by a fixed first-order LSTAR model. A closer scrutiny of the results

reveals, however, that the gains originate from just two series: the ones for Canada and the US.

Fixed models, both of order one and six, can also fail quite badly, as the results of forecasting

the unemployment rate series indicate.

In order to shed more light on the issue of testing linearity we repeated the analysis by

applying significance levels 0.10 and 0.20 in the linearity tests. For the 10% level the results

were very similar to the ones in Table 6. When the significance level was increased to 0.20,

however, the models built conditionally on the results of linearity tests performed somewhat

better than the three others. It thus appears that it may be advantageous to reject linearity

and select the LSTAR model more often than is done when the 5% significance level for each
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individual test for d ∈ D is applied.

7.3 Value of careful specification: AR-NN models

Our previous results suggest that the AR-NN models do not perform as well as the other

nonlinear models, including the NN models specified using Bayesian regularization. This could

be due either to the different specification strategies employed or to the treatment of the linear

unit. Recall that the AR-NN model includes a linear unit, while the Bayesian regularization

approach omits it. In order to shed light on these issues, we repeat the forecasting exercise for

four alternative NN model specifications. First, we use Bayesian regularization to estimate an

NN model with a linear unit included, denoted as NN-L in the following. In addition, we use

conditional maximum likelihood to estimate three fixed NN model specifications without a linear

unit. The first one, called the S(mall)-NN model, contains three hidden units and just the first

lag of the series as the input variable. The second one, the L(arge)-NN model, also has 3 hidden

units but uses (the first) six lags as inputs; and, finally, the third one, called the XL(arge)-NN

specification, has 10 hidden units and six lags as input variables. Table 6 shows the ratios of

the RMSFE of the these models with respect to the “fully specified” AR-NN models.

This Table gives rise to three clear-cut conclusions. First, inclusion of a linear hidden unit

improves the forecasting performance. This follows from the observation that the NN-L model

renders more accurate forecasts than the NN model, while the same generally holds for the

AR-NN models compared with the fixed specifications S-, L- and XL-NN. Second, specification

(in the sense of selecting the input variables and the number of hidden units) is an important

factor. The three fixed model specifications do not fare well. In fact, the XL-NN specification

is the worst performing model on average, while the S-NN model performs badly in particular

at long forecast horizons. Third, NN models specified with Bayesian regularization outperform

the AR-NN models, as the RMSFE ratios for both the NN and NN-L models are always less

than one. The problem with the estimated AR-NN models turns out to be that they frequently

are explosive or close to nonstationary. This is only possible when the model contains an

autoregressive linear unit; see Trapletti, Leisch, and Hornik (2000). This is less of a problem

in the NN-L model because the parameters of the linear unit are also shrunk towards zero.

We conclude that in-sample evaluation of NN models is important. In this study it has not
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been possible to evaluate every AR-NN model before using it for forecasting and, due to this

omission, explosive AR-NN models have been used. Damage control has only occurred in the

form of the insanity filter, which apparently does not work sufficiently well. A possible way of

avoiding explosive models could be to shrink the parameters of the linear unit towards zero in

the estimation as is done in the context of Bayesian regularization.

7.4 Combining point forecasts

As indicated in Section 4, our aim is also to consider the accuracy of combination forecasts.

We consider the three possible combinations of pairs involving a linear AR model and two

combinations that only involve nonlinear models. The latter ones are labelled NN+STAR and

AR-NN+STAR.

Table 7 contains results for the RMSFE comparisons. The benchmark is again the linear AR

model, which means that the entries in the table are ratios of the RMSFE of the combination

forecast and the corresponding RMSFE of the linear AR model. A general conclusion is that

combining often improves forecast accuracy, unless one of the models generates strongly inferior

forecasts. In that case, the forecasts are more accurate than the ones from the inferior model

but still less accurate than the linear AR benchmark. In this study, the inferior model is most

often the AR-NN model.

Sometimes the combination of two nonlinear models produces very good results. A case

in point is the Canadian CPI. Combining forecasts from the NN and LSTAR model leads to

remarkably good forecasts for longer horizons, even though the forecasts from the NN model

are not particularly accurate; see Table 2. Combinations in which the linear AR model is one of

the components are conservative, in the sense that they further emphasize the linear model. For

example, combining the linear and the LSTAR model often lead to forecasts that are slightly

more accurate than the forecasts from the linear model. This is due to the fact that some of the

STAR forecasts may be “linear” in the sense that they arise from a linear model. This happens

when linearity is not rejected against STAR, so that the model actually used for forecasting is

the linear AR model.
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8 Conclusions

In this paper we consider the forecast accuracy of a linear AR model and three different nonlinear

models, the LSTAR model and two neural network models. A general result that emerges is that

in order to obtain acceptable results with nonlinear models, modelling has to be carried out with

care. When it comes to neural network models, there seems to be a risk for explosive models

and thus for implausible forecasts at long forecasting horizons. Controls have to be applied to

detect them and to replace them by simple rule-of-thumb forecasts.

The first question posed in the Introduction was whether nonlinear models produce real-

time forecasts that improve upon linear models. The answer seems to be mixed. It appears

that LSTAR models generate forecasts that are to some extent more accurate than forecasts

from linear models. The same holds for NN models specified with Bayesian regularization,

but not for the AR-NN models. The answer to the second question thus appears to be that

tightly parameterized models, here represented by the LSTAR family, have an edge over more

nonparametric approaches such as neural network models.

Furthermore, combining forecasts improves the accuracy of point forecasts. This answer to

the third question in the Introduction is not without reservations, but by and large our results

seem favourable to the idea. It should be noticed, however, that gains from pooling forecasts

may be more substantial if the number of forecasts is large, which is not the case here. Finally,

there is no unique answer to the final question concerning the amount of gain in forecast accuracy

from nonlinear models. Whether or not these gains are worthwhile depends on how large the

costs of careful nonlinear model specification are estimated to be compared to the improvement

in forecast accuracy achieved by these models.

Our results are not fully comparable with the results in SW and Marcellino (2002). As

already mentioned, these authors built a separate model for each forecast horizon, whereas in

this study the same model has been used for generating forecasts for all horizons. Whether or

not this is an important difference is worthy to be investigated, but this is left for future research.

At any rate, our results indicate that building nonlinear models with care has a positive effect on

forecast accuracy. This is true for LSTAR models and it should also be true for neural network

models. It appears, however, that the possibility of obtaining explosive models when applying

21



the modelling technique presented in Medeiros, Teräsvirta, and Rech (2002) for AR-NN models

has to be accounted for. For example, in estimating the final AR-NN model the coefficients of

the linear unit may be shrunk towards zero, which has not been attempted in this paper. It is

obvious that building these models requires more individual care than what has been possible

to exercise in our simulated forecasting experiment.

The results in this paper are based on the implicit assumption that all models have constant

parameters during the estimation period. Evaluation of models should contain testing parameter

constancy. This requirement is difficult to satisfy in a study with a large number of time series

and models, and therefore no evaluation tests have been carried out here, although such tests

do exist. It may therefore be possible to build better models than the ones used for forecasting

in this study. Applying a rolling window in modelling may also mitigate effects of parameter

change should this be a problem. But then, if the number of series to be predicted is large, it

may be that the forecaster cannot devote sufficient resources to building the required forecasting

models. The results of this study at least indicate that when one considers choosing a forecasting

model from a large family of models, careful specification (selecting a member of this family)

may substantially improve the precision of forecasts.
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Lundbergh, S., and T. Teräsvirta (2002): “Forecasting with Smooth Transition Autore-

gressive Models,” in A Companion to Economic Forecasting, ed. by M. P. Clements, and D. F.

Hendry, pp. 485–509, Oxford. Blackwell.
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van Dijk, D., T. Teräsvirta, and P. H. Franses (2002): “Smooth Transition Autoregres-

sive Models - A Survey of Recent Developments,” Econometric Reviews, 21, 1–47.

White, H. (1990): “Connectionist Nonparametric Regression: Multilayer Feedforward Net-

works Can Learn Arbitrary Mappings,” Neural Networks, 3, 535–550.

Zhang, G., B. E. Patuwo, and M. Y. Hu (1998): “Forecasting with Artificial Neural Net-

works: The State of the Art,” International Journal of Forecasting, 14, 35–62.

26



Table 1: Linearity test results

STAR
IP CPI M1 STIR VEX VIMP UR

Canada 0.95 0.25 1 1 0.05 0 0.90
France 1 1 0.77 1 0.55 0 –
Germany 0.90 1 0 1 0 0.60 0.95
Italy 0 1 0.22 1 1 1 –
Japan 0.15 1 0.85 1 0.35 0 0.95
UK 0 0.35 0.95 1 0.25 0.20 0
USA 1 1 0.80 1 0.50 1 1

AR-NN
IP CPI M1 STIR VEX VIMP UR

Canada 0 0.95 0.47 1 0.11 1 0.74
France 0 1 0.35 0.84 0 0 –
Germany 0 1 0 1 0 1 1
Italy 0 1 0.25 0.95 1 1 –
Japan 0.53 0.95 0 0.37 0.16 0.11 0.84
UK 0 1 0.58 1 0.32 1 1
USA 1 0.95 1 1 1 1 0.32

Note: The table contains rejection frequencies of the linearity hypothesis against STAR (upper panel)
and AR-NN (lower panel) models, with the respective linearity tests performed once a year when the
models are respecified. A dash indicates that the series is not available.

27



Table 2: Point Forecast Evaluation: RMSFE Ratios
IP CPI

1 3 6 12 1 3 6 12
Canada AR [0.012] (4) [0.018] (3) [0.029] (3) [0.042] (3) [0.004] (1) [0.004] (1) [0.004] (1) [0.005] (2)

NN 0.994 (3) 0.990 (2) 0.989 (2) 0.941 (2) 1.119 (4) 1.144 (3) 1.174 (3) 1.069 (3)
AR-NN 0.983 (1) 1.034 (4) 1.088 (4) 1.236 (4) 1.001 (3) 1.167 (4) 1.332 (4) 1.251 (4)
STAR 0.989 (2) 0.938 (1) 0.890 (1) 0.871 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (2)

France AR [0.011] (3) [0.014] (3) [0.020] (3) [0.031] (3) [0.003] (1) [0.003] (2) [0.003] (2) [0.004] (1)
NN 0.992 (2) 0.971 (1) 0.972 (2) 0.961 (1) 1.004 (2) 0.990 (1) 0.933 (1) 1.040 (2)

AR-NN 1.009 (4) 1.031 (4) 1.051 (4) 1.105 (4) 1.107 (4) 1.620 (4) 1.936 (4) 1.760 (4)
STAR 0.983 (1) 0.985 (2) 0.964 (1) 0.971 (2) 1.023 (3) 1.034 (3) 1.061 (3) 1.061 (3)

Germany AR [0.015] (4) [0.019] (3) [0.027] (3) [0.042] (4) [0.003] (2) [0.004] (1) [0.004] (1) [0.005] (1)

NN 0.985 (3) 0.991 (2) 0.970 (2) 0.913 (2) 1.155 (4) 1.101 (3) 1.309 (3) 1.278 (4)
AR-NN 0.970 (1) 1.007 (4) 1.007 (4) 0.998 (3) 0.995 (1) 1.128 (4) 1.337 (4) 1.110 (3)
STAR 0.971 (2) 0.902 (1) 0.832 (1) 0.783 (1) 1.000 (2) 1.000 (1) 1.000 (1) 1.000 (1)

Italy AR [0.020] (2) [0.023] (2) [0.031] (2) [0.047] (2) [0.003] (2) [0.004] (4) [0.003] (3) [0.004] (4)

NN 0.995 (1) 0.992 (1) 0.962 (1) 0.893 (1) 1.119 (4) 0.958 (3) 1.075 (4) 0.890 (1)
AR-NN 1.003 (4) 1.013 (4) 1.018 (4) 1.040 (4) 1.073 (3) 0.952 (2) 0.968 (1) 0.927 (2)
STAR 1.000 (2) 1.000 (2) 1.000 (2) 1.000 (2) 0.956 (1) 0.919 (1) 0.995 (2) 0.986 (3)

Japan AR [0.015] (3) [0.019] (2) [0.031] (2) [0.045] (2) [0.005] (1) [0.006] (2) [0.005] (1) [0.007] (1)

NN 0.992 (2) 0.972 (1) 0.973 (1) 0.889 (1) 1.160 (3) 1.185 (3) 1.467 (3) 1.551 (4)
AR-NN 0.989 (1) 1.022 (4) 1.068 (4) 1.210 (4) 1.289 (4) 1.605 (4) 1.580 (4) 1.408 (3)
STAR 1.000 (4) 1.000 (3) 1.002 (3) 1.000 (3) 1.005 (2) 0.979 (1) 1.014 (2) 1.018 (2)

UK AR [0.011] (1) [0.016] (2) [0.024] (3) [0.031] (2) [0.004] (1) [0.005] (1) [0.004] (2) [0.005] (2)
NN 1.020 (4) 0.998 (1) 0.995 (1) 0.981 (1) 1.325 (4) 1.257 (3) 1.585 (3) 1.539 (3)

AR-NN 1.006 (3) 1.002 (4) 0.997 (2) 1.012 (4) 1.315 (3) 1.997 (4) 2.282 (4) 2.165 (4)
STAR 1.000 (1) 1.000 (2) 1.000 (3) 1.000 (2) 1.066 (2) 1.012 (2) 1.003 (1) 1.026 (1)

USA AR [0.007] (4) [0.015] (3) [0.023] (2) [0.034] (3) [0.003] (3) [0.004] (2) [0.004] (2) [0.004] (2)
NN 0.992 (2) 1.002 (4) 1.001 (3) 0.990 (2) 0.920 (1) 0.924 (1) 0.966 (1) 0.907 (1)

AR-NN 0.995 (3) 0.997 (2) 1.016 (4) 1.080 (4) 0.987 (2) 1.052 (4) 1.194 (4) 1.149 (4)
STAR 0.954 (1) 0.941 (1) 0.919 (1) 0.902 (1) 1.000 (3) 1.000 (2) 1.000 (2) 1.000 (2)

M1 STIR
1 3 6 12 1 3 6 12

Canada AR [0.014] (3) [0.023] (2) [0.030] (2) [0.044] (1) [0.776] (2) [1.511] (2) [2.144] (1) [2.765] (1)
NN 1.002 (4) 1.032 (4) 1.078 (3) 1.152 (3) 1.022 (2) 1.108 (4) 1.092 (4) 1.178 (4)

AR-NN 1.000 (2) 1.008 (3) 1.081 (4) 1.166 (4) 0.930 (1) 0.964 (1) 0.995 (1) 1.049 (2)
STAR 0.992 (1) 0.966 (1) 0.997 (1) 1.025 (2) 1.078 (4) 1.019 (3) 1.006 (2) 1.083 (3)

France AR [0.007] (1) [0.013] (2) [0.020] (2) [0.034] (2) [0.565] (2) [1.092] (1) [1.566] (1) [1.830] (1)
NN 1.134 (4) 1.073 (3) 1.130 (3) 1.182 (3) 1.001 (3) 1.099 (4) 1.145 (4) 1.233 (3)

AR-NN 1.087 (3) 1.189 (4) 1.349 (4) 1.493 (4) 0.903 (1) 1.016 (3) 1.073 (3) 1.152 (2)
STAR 1.084 (2) 0.910 (1) 0.835 (1) 0.763 (1) 1.017 (3) 1.011 (2) 1.039 (2) 1.240 (4)

Germany AR [0.008] (2) [0.015] (2) [0.022] (2) [0.029] (1) [0.371] (1) [0.739] (1) [1.174] (1) [1.606] (1)

NN 1.006 (4) 1.000 (4) 0.993 (1) 1.021 (3) 1.005 (2) 1.067 (3) 1.050 (2) 1.068 (2)
AR-NN 1.001 (3) 0.998 (1) 1.022 (4) 1.146 (4) 1.035 (4) 1.083 (4) 1.073 (3) 1.097 (3)
STAR 1.000 (2) 1.000 (2) 1.000 (2) 1.000 (1) 1.013 (3) 1.042 (2) 1.094 (4) 1.186 (4)

Italy AR [0.007] (2) [0.014] (2) [0.023] (2) [0.039] (2) [0.597] (1) [1.151] (1) [1.617] (1) [2.171] (1)

NN 1.065 (3) 1.109 (4) 1.130 (3) 1.193 (3) 1.092 (3) 1.270 (3) 1.350 (3) 1.435 (3)
AR-NN 1.081 (4) 1.107 (3) 1.137 (4) 1.233 (4) 1.490 (4) 1.489 (4) 1.519 (4) 1.468 (4)
STAR 0.986 (1) 0.974 (1) 0.927 (1) 0.887 (1) 1.070 (3) 1.121 (2) 1.207 (2) 1.220 (2)

Japan AR [0.009] (2) [0.018] (2) [0.028] (2) [0.041] (2) [0.355] (4) [0.751] (2) [1.083] (2) [1.461] (2)

NN 1.010 (3) 1.021 (3) 1.037 (3) 1.087 (3) 0.928 (1) 1.049 (4) 1.121 (4) 1.076 (4)
AR-NN 1.056 (4) 1.098 (4) 1.148 (4) 1.394 (4) 0.977 (2) 1.015 (3) 1.012 (3) 1.031 (3)
STAR 0.984 (1) 0.894 (1) 0.838 (1) 0.870 (1) 0.978 (3) 0.971 (1) 0.941 (1) 0.855 (1)

UK AR [0.005] (3) [0.009] (2) [0.015] (2) [0.028] (2) [0.526] (1) [1.092] (1) [1.577] (1) [2.208] (1)
NN 0.994 (2) 1.031 (3) 1.012 (3) 1.018 (3) 1.009 (2) 1.054 (4) 1.150 (3) 1.199 (4)

AR-NN 1.075 (4) 1.396 (4) 1.284 (4) 1.227 (4) 1.022 (3) 1.000 (2) 1.014 (2) 1.015 (2)
STAR 0.951 (1) 0.860 (1) 0.692 (1) 0.604 (1) 1.023 (4) 1.047 (3) 1.085 (3) 1.101 (3)

USA AR [0.006] (3) [0.012] (3) [0.020] (2) [0.035] (3) [0.705] (2) [1.323] (4) [1.686] (3) [2.320] (4)
NN 0.992 (1) 1.000 (2) 1.004 (3) 0.976 (2) 1.006 (3) 0.988 (3) 0.968 (3) 0.891 (3)

AR-NN 1.028 (4) 1.126 (4) 1.168 (4) 1.216 (4) 0.966 (1) 1.008 (4) 0.961 (2) 0.856 (1)
STAR 0.995 (2) 0.975 (1) 0.949 (1) 0.902 (1) 1.090 (4) 0.974 (1) 0.859 (1) 0.859 (2)

Continued on next page
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Continued from previous page

VEX VIMP
1 3 6 12 1 3 6 12

Canada AR [0.040] (1) [0.048] (2) [0.060] (2) [0.090] (2) [0.043] (3) [0.051] (2) [0.069] (2) [0.108] (3)
NN 1.036 (4) 1.060 (4) 1.042 (4) 1.045 (4) 0.973 (2) 0.992 (1) 0.978 (1) 0.958 (1)

AR-NN 1.001 (2) 0.988 (1) 1.005 (3) 1.009 (3) 0.931 (1) 1.008 (4) 1.001 (4) 0.995 (2)
STAR 1.004 (3) 0.995 (2) 0.995 (1) 0.995 (2) 1.000 (3) 1.000 (2) 1.000 (2) 1.000 (3)

France AR [0.040] (3) [0.042] (2) [0.050] (1) [0.070] (1) [0.033] (2) [0.040] (2) [0.055] (2) [0.088] (1)
NN 0.992 (2) 1.011 (3) 1.105 (3) 1.230 (3) 0.992 (1) 1.000 (1) 0.989 (1) 1.003 (3)

AR-NN 1.012 (4) 1.029 (4) 1.147 (4) 1.307 (4) 1.014 (4) 1.041 (4) 1.053 (4) 1.084 (4)
STAR 0.969 (1) 0.984 (1) 1.076 (2) 1.201 (2) 1.000 (2) 1.000 (2) 1.000 (2) 1.000 (1)

Germany AR [0.038] (2) [0.043] (1) [0.057] (1) [0.084] (1) [0.046] (3) [0.048] (3) [0.065] (3) [0.101] (3)

NN 1.025 (4) 1.028 (4) 1.028 (4) 1.040 (4) 1.016 (3) 0.987 (2) 0.968 (2) 0.895 (2)
AR-NN 0.999 (1) 1.007 (3) 1.004 (3) 1.005 (3) 1.017 (4) 1.043 (4) 1.036 (4) 1.023 (4)
STAR 1.000 (2) 1.000 (1) 1.000 (1) 1.000 (1) 0.979 (1) 0.941 (1) 0.889 (1) 0.833 (1)

Italy AR [0.087] (2) [0.084] (2) [0.097] (1) [0.137] (1) [0.093] (2) [0.092] (2) [0.111] (2) [0.159] (2)

NN 1.012 (3) 1.056 (4) 1.064 (4) 1.029 (3) 1.007 (3) 1.034 (3) 1.067 (4) 1.054 (4)
AR-NN 0.999 (1) 0.997 (1) 1.006 (2) 1.016 (2) 0.993 (1) 0.995 (1) 1.004 (3) 1.011 (3)
STAR 1.018 (4) 1.033 (3) 1.052 (3) 1.048 (4) 1.032 (4) 0.994 (1) 0.981 (1) 0.972 (1)

Japan AR [0.038] (1) [0.044] (3) [0.067] (3) [0.114] (2) [0.066] (3) [0.069] (2) [0.104] (2) [0.159] (2)

NN 1.011 (3) 0.986 (1) 0.966 (1) 0.934 (1) 0.999 (2) 0.997 (1) 0.973 (1) 0.858 (1)
AR-NN 1.046 (4) 1.107 (4) 1.140 (2) 1.175 (4) 0.992 (1) 1.042 (4) 1.062 (4) 1.116 (4)
STAR 1.003 (2) 0.997 (2) 0.994 (2) 1.016 (3) 1.000 (3) 1.000 (2) 1.000 (2) 1.000 (2)

UK AR [0.043] (1) [0.047] (1) [0.062] (1) [0.092] (3) [0.040] (1) [0.052] (2) [0.073] (3) [0.101] (3)
NN 1.008 (3) 1.027 (3) 1.005 (3) 0.997 (2) 1.001 (2) 1.007 (4) 0.997 (2) 0.949 (1)

AR-NN 1.013 (4) 1.062 (4) 1.009 (4) 1.026 (4) 1.025 (4) 1.012 (4) 1.008 (4) 1.000 (2)
STAR 1.003 (2) 1.004 (2) 0.997 (1) 0.973 (1) 1.007 (4) 1.006 (3) 1.012 (4) 1.015 (4)

USA AR [0.035] (1) [0.042] (1) [0.051] (1) [0.077] (1) [0.053] (2) [0.058] (3) [0.073] (3) [0.100] (3)
NN 1.052 (4) 1.060 (3) 1.196 (4) 1.274 (4) 1.019 (3) 0.972 (1) 0.965 (1) 0.903 (1)

AR-NN 1.019 (2) 1.079 (4) 1.179 (3) 1.264 (3) 0.980 (1) 0.980 (2) 0.979 (2) 0.971 (2)
STAR 1.039 (3) 1.029 (2) 1.107 (2) 1.141 (2) 1.032 (4) 1.048 (4) 1.070 (4) 1.092 (4)

UR
1 3 6 12

Canada AR [0.250] (3) [0.488] (3) [0.785] (3) [1.181] (3)
NN 0.979 (2) 0.978 (1) 0.976 (2) 0.958 (2)

AR-NN 0.953 (1) 0.980 (2) 1.080 (4) 1.229 (4)
STAR 1.009 (3) 0.982 (3) 0.964 (1) 0.920 (1)

France AR – – – –
NN – – – –

AR-NN – – – –
STAR – – – –

Germany AR [0.106] (3) [0.257] (2) [0.438] (2) [0.625] (3)

NN 0.973 (1) 0.977 (1) 0.970 (1) 0.991 (2)
AR-NN 0.989 (2) 1.032 (4) 1.199 (4) 1.492 (4)
STAR 1.019 (4) 1.015 (3) 1.002 (3) 0.962 (1)

Italy AR – – – –

NN – – – –
AR-NN – – – –
STAR – – – –

Japan AR [0.091] (1) [0.126] (2) [0.170] (2) [0.277] (2)

NN 1.000 (2) 0.977 (1) 0.981 (1) 0.974 (1)
AR-NN 1.007 (3) 1.203 (3) 1.297 (3) 1.305 (4)
STAR 1.124 (4) 1.384 (4) 1.380 (4) 1.220 (3)

UK AR [0.116] (3) [0.291] (2) [0.501] (2) [0.703] (1)
NN 0.929 (1) 0.922 (1) 0.971 (1) 1.162 (3)

AR-NN 0.986 (2) 1.116 (4) 1.278 (4) 1.744 (4)
STAR 1.000 (3) 1.000 (2) 1.000 (2) 1.000 (1)

USA AR [0.176] (3) [0.362] (4) [0.598] (4) [0.911] (2)
NN 1.002 (4) 0.997 (3) 0.997 (3) 1.011 (3)

AR-NN 0.985 (2) 0.934 (2) 0.942 (2) 1.020 (4)
STAR 0.968 (1) 0.902 (1) 0.891 (1) 0.922 (1)

Note: Table entries are ratios of root mean squared forecast errors and ranks (in parentheses) of the models by
variable, country, and forecast horizon, where the linear AR model is the baseline model. For the AR model,
entries in square brackets are RMSFE values.
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Table 3: Point Forecast Evaluation: Testing Equal Forecast Accuracy

h=1 h=3 h=6 h=12
AR NN AR-NN STAR AR NN AR-NN STAR AR NN AR-NN STAR AR NN AR-NN STAR

IP AR – 0 2 0 – 0 1 0 – 1 2 1 – 1 3 1
NN 0 – 1 0 0 – 0 0 1 – 2 1 2 – 5 1

AR-NN 1 1 – 2 1 0 – 0 0 0 – 0 0 0 – 0
STAR 1 1 2 – 1 2 3 – 2 2 4 – 1 1 4 –

Inflation AR – 1 1 0 – 2 3 0 – 1 3 0 – 2 2 0
NN 0 – 0 0 0 – 1 0 0 – 2 0 2 – 3 1

AR-NN 0 2 – 0 0 1 – 0 0 1 – 0 0 0 – 0
STAR 1 2 2 – 1 3 3 – 1 2 4 – 1 2 3 –

M1 AR – 0 0 1 – 1 1 0 – 1 1 0 – 1 2 0
NN 0 – 0 0 1 – 1 0 2 – 0 1 3 – 3 1

AR-NN 1 1 – 2 1 0 – 0 0 0 – 0 0 0 – 0
STAR 1 1 1 – 2 2 2 – 2 3 3 – 2 2 4 –

STIR AR – 0 1 0 – 1 1 0 – 0 1 0 – 1 2 0
NN 0 – 0 0 1 – 0 0 2 – 1 1 2 – 3 1

AR-NN 2 2 – 2 0 1 – 0 0 0 – 0 0 0 – 0
STAR 0 0 1 – 0 0 1 – 0 0 1 – 0 0 2 –

VEX AR – 1 0 1 – 1 0 0 – 1 1 0 – 1 3 0
NN 0 – 0 1 2 – 0 0 2 – 1 0 2 – 3 0

AR-NN 0 1 – 0 0 1 – 0 0 1 – 0 0 0 – 0
STAR 0 1 0 – 0 1 0 – 0 1 1 – 0 1 3 –

VIMP AR – 0 0 1 – 0 0 0 – 0 1 0 – 0 3 0
NN 0 – 0 1 2 – 0 0 3 – 1 1 3 – 4 1

AR-NN 1 1 – 1 0 0 – 0 0 0 – 0 0 0 – 0
STAR 0 0 0 – 0 0 0 – 0 0 1 – 0 0 3 –

UR AR – 0 0 2 – 0 1 1 – 0 2 1 – 0 3 1
NN 0 – 0 2 1 – 1 1 1 – 2 1 1 – 3 1

AR-NN 0 0 – 1 0 0 – 0 0 0 – 0 0 0 – 0
STAR 0 0 0 – 0 0 0 – 0 0 1 – 0 0 2 –

All AR – 2 4 5 – 5 7 1 – 4 11 2 – 6 18 2
NN 0 – 1 4 7 – 3 1 11 – 9 5 15 – 24 6

AR-NN 5 8 – 8 2 3 – 0 0 2 – 0 0 0 – 0
STAR 3 5 6 – 4 8 9 – 5 8 15 – 4 6 21 –

Note: Table entries represent the number of times the model indicated by row has significantly smaller MSFE than the model indicated by column according
to the pairwise modified Diebold-Mariano test, using a nominal significance level 0.05.
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Table 4: Point Forecast Evaluation: Testing Forecast Encompassing

h=1 h=3 h=6 h=12
AR NN AR-NN STAR AR NN AR-NN STAR AR NN AR-NN STAR AR NN AR-NN STAR

IP AR – 3 3 2 – 1 1 3 – 1 0 2 – 3 0 1
NN 1 – 3 4 1 – 2 4 1 – 0 3 1 – 0 2

AR-NN 3 4 – 4 4 4 – 3 4 3 – 4 3 5 – 4
STAR 0 2 3 – 0 1 0 – 1 1 0 – 1 1 0 –

Inflation AR – 1 2 1 – 1 0 1 – 2 0 1 – 2 0 1
NN 3 – 3 3 3 – 2 4 2 – 2 3 2 – 2 3

AR-NN 3 1 – 3 4 4 – 4 5 4 – 5 3 4 – 4
STAR 0 1 2 – 0 1 0 – 0 1 0 – 0 1 0 –

M1 AR – 3 4 2 – 2 1 2 – 3 0 2 – 3 0 2
NN 3 – 3 3 2 – 1 3 1 – 0 3 1 – 0 3

AR-NN 2 1 – 2 2 1 – 2 4 3 – 4 2 4 – 4
STAR 2 2 3 – 0 1 0 – 0 1 0 – 0 1 0 –

STIR AR – 2 3 0 – 2 0 0 – 2 0 0 – 2 0 0
NN 1 – 3 0 1 – 1 1 1 – 1 1 1 – 1 0

AR-NN 1 1 – 1 1 1 – 1 2 2 – 3 3 3 – 2
STAR 2 3 3 – 1 1 1 – 0 1 0 – 0 1 0 –

VEX AR – 3 3 0 – 3 1 0 – 3 0 0 – 3 0 0
NN 1 – 4 1 1 – 1 1 1 – 1 1 2 – 1 2

AR-NN 1 1 – 1 1 1 – 1 4 3 – 4 3 3 – 3
STAR 3 3 3 – 1 1 1 – 0 1 0 – 0 0 0 –

VIMP AR – 3 4 0 – 4 1 0 – 4 0 0 – 4 0 0
NN 0 – 4 0 0 – 0 0 0 – 0 0 1 – 0 1

AR-NN 1 1 – 1 1 1 – 1 3 3 – 3 3 4 – 3
STAR 2 3 4 – 1 2 1 – 0 2 0 – 0 1 0 –

UR AR – 2 3 0 – 3 1 0 – 2 0 0 – 2 0 0
NN 0 – 3 0 0 – 0 0 0 – 0 0 1 – 0 1

AR-NN 2 2 – 1 2 2 – 1 3 3 – 2 3 3 – 3
STAR 3 3 3 – 1 2 1 – 1 1 0 – 1 1 0 –

All AR – 17 22 5 – 16 5 6 – 17 0 5 – 19 0 4
NN 9 – 23 11 8 – 7 13 6 – 4 11 9 – 4 12

AR-NN 13 11 – 13 15 14 – 13 25 21 – 25 20 26 – 23
STAR 12 17 21 – 4 9 4 – 2 8 0 – 2 6 0 –

Note: Table entries represent the number of times the model indicated by row does not forecast encompass the model indicated by column according to
the pairwise modified Diebold-Mariano test, using a nominal significance level 0.05.
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Table 5: Forecasting Performance of Fixed STAR Specifications

IP CPI M1
1 3 6 12 1 3 6 12 1 3 6 12

STAR 0.999 0.998 0.993 0.990 1.022 1.029 1.034 0.999 1.001 0.990 0.980 0.970
p = 1 1.008 1.009 1.011 1.012 1.077 1.041 1.010 0.985 1.009 0.993 0.987 0.976
p = 6 1.001 1.003 1.008 1.015 0.969 0.973 0.995 1.014 1.038 1.033 1.021 1.011

STIR VEX VIMP
1 3 6 12 1 3 6 12 1 3 6 12

STAR 1.002 1.029 1.034 0.999 1.001 0.996 1.001 0.996 0.995 1.008 1.013 1.008
p = 1 0.978 0.981 0.973 0.985 1.016 1.038 1.052 1.038 1.016 1.025 1.021 1.018
p = 6 1.032 1.013 0.994 0.999 1.013 1.026 1.018 1.022 1.014 1.039 1.042 1.045

UR All
1 3 6 12 1 3 6 12

STAR 1.003 1.003 1.002 1.013 1.003 1.004 1.004 0.996
p = 1 1.041 1.123 1.168 1.213 1.020 1.026 1.026 1.025
p = 6 1.020 1.039 1.095 1.183 1.012 1.017 1.022 1.035

Note: Table entries represent ratios of RMSFE of the fixed STAR specifications, where the “fully specified” STAR model is
the baseline model. STAR refers to the specification where the delay parameter d is select by means of the linearity tests and
the lag order p is set according to BIC. p = 1 and p = 6 refer to the STAR model the lag order p in (1) is fixed at 1 and 6,
respectively, and the delay d is set equal to 1.
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Table 6: Forecasting Performance of Neural Network Specifications

IP CPI M1
1 3 6 12 1 3 6 12 1 3 6 12

S-NN 1.024 1.003 1.004 1.013 1.024 0.964 1.005 1.109 1.009 0.985 0.995 1.040
L-NN 1.059 1.014 1.006 0.995 1.064 0.978 0.942 0.951 1.037 0.992 0.955 0.991

XL-NN 1.136 1.053 1.035 1.001 1.185 1.097 1.054 1.028 1.144 1.104 1.067 1.030
NN-L 1.030 0.989 0.940 0.903 0.974 0.900 0.864 0.862 0.963 0.925 0.894 0.864
NN 1.049 1.024 0.972 0.929 1.000 0.913 0.869 0.865 1.020 0.980 0.951 0.928

STIR VEX VIMP
1 3 6 12 1 3 6 12 1 3 6 12

S-NN 0.968 1.007 1.139 1.386 0.998 0.997 1.031 1.089 1.025 0.961 1.035 1.148
L-NN 1.000 1.021 1.054 1.091 1.005 0.936 0.951 0.951 1.010 0.926 0.944 0.960

XL-NN 1.082 1.149 1.218 1.291 1.096 1.033 1.008 1.008 1.148 0.997 0.993 0.960
NN-L 0.928 0.951 0.965 0.951 0.939 0.882 0.863 0.791 0.934 0.865 0.870 0.834
NN 0.964 0.990 1.010 0.971 0.966 0.901 0.909 0.852 0.979 0.887 0.909 0.897

UR All
1 3 6 12 1 3 6 12

S-NN 0.999 0.980 1.007 1.031 1.007 0.985 1.031 1.116
L-NN 0.999 0.999 1.000 1.018 1.025 0.980 0.979 0.994

XL-NN 1.113 1.063 1.098 1.089 1.129 1.071 1.068 1.058
NN-L 0.995 0.968 0.956 0.939 0.966 0.926 0.908 0.878
NN 1.004 0.971 0.960 0.925 0.997 0.952 0.940 0.910

Note: Table entries represent ratios of RMSFE of fixed NN specifications estimated with Bayesian regularization, where the “fully
specified” AR-NN model is the baseline model. S-NN, L-NN and XL-NN contain three, three and 10 hidden units, respectively,
and one, six and six lags as input variable(s), respectively. NN-L and NN are neural network models estimated with Bayesian
regularization with and without a linear unit, respectively.
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Table 7: Performance of Combination Forecasts
IP CPI

1 3 6 12 1 3 6 12
Canada AR+NN 0.989 0.960 0.936 0.926 1.000 1.000 1.000 1.000

AR+AR-NN 0.982 1.001 1.029 1.111 0.962 1.011 1.067 1.022
AR+STAR 0.996 0.994 0.993 0.969 1.000 0.999 0.995 0.935
NN+STAR 0.985 0.954 0.929 0.893 1.000 0.999 0.995 0.935

AR-NN+STAR 0.975 0.968 0.970 1.040 0.962 1.011 1.067 1.022

France AR+NN 0.988 0.988 0.977 0.981 1.009 1.014 1.027 1.029
AR+AR-NN 1.001 1.012 1.021 1.051 1.036 1.163 1.283 1.221
AR+STAR 0.993 0.983 0.983 0.979 0.951 0.954 0.933 0.998
NN+STAR 0.981 0.973 0.962 0.962 0.959 0.968 0.961 1.028

AR-NN+STAR 0.994 1.005 1.004 1.034 1.044 1.177 1.302 1.247

Germany AR+NN 0.980 0.943 0.907 0.883 1.000 1.000 1.000 1.000

AR+AR-NN 0.979 1.000 1.001 0.998 0.944 0.976 1.046 0.965
AR+STAR 0.991 0.993 0.982 0.955 0.983 0.963 1.043 1.036
NN+STAR 0.973 0.939 0.894 0.840 0.983 0.963 1.043 1.036

AR-NN+STAR 0.962 0.943 0.907 0.879 0.944 0.976 1.046 0.965

Italy AR+NN 1.000 1.000 1.000 1.000 0.967 0.947 0.991 0.988

AR+AR-NN 1.001 1.006 1.008 1.020 1.015 0.954 0.968 0.950
AR+STAR 0.991 0.991 0.975 0.944 1.010 0.933 0.982 0.926
NN+STAR 0.991 0.991 0.975 0.944 0.988 0.890 0.974 0.916

AR-NN+STAR 1.001 1.006 1.008 1.020 0.987 0.906 0.962 0.942

Japan AR+NN 1.000 1.000 1.001 1.000 0.997 0.981 0.997 1.003

AR+AR-NN 0.983 1.003 1.022 1.093 1.080 1.103 1.113 1.033
AR+STAR 0.994 0.984 0.984 0.941 0.984 1.011 1.084 1.139
NN+STAR 0.994 0.984 0.985 0.941 0.982 0.995 1.081 1.139

AR-NN+STAR 0.983 1.003 1.023 1.093 1.085 1.095 1.105 1.035

UK AR+NN 1.000 1.000 1.000 1.000 1.022 0.995 0.999 1.006
AR+AR-NN 1.002 1.001 0.998 1.006 1.085 1.344 1.418 1.274
AR+STAR 1.007 0.997 0.997 0.989 1.071 1.021 1.148 1.137
NN+STAR 1.007 0.997 0.997 0.989 1.095 1.024 1.152 1.141

AR-NN+STAR 1.002 1.001 0.998 1.006 1.113 1.360 1.421 1.274

USA AR+NN 0.969 0.962 0.952 0.945 1.000 1.000 1.000 1.000
AR+AR-NN 0.995 0.995 1.005 1.038 0.978 0.992 1.041 1.022
AR+STAR 0.995 0.999 0.999 0.994 0.943 0.947 0.969 0.942
NN+STAR 0.964 0.961 0.951 0.939 0.943 0.947 0.969 0.942

AR-NN+STAR 0.967 0.960 0.959 0.985 0.978 0.992 1.041 1.022

M1 STIR
1 3 6 12 1 3 6 12

Canada AR+NN 0.990 0.980 0.996 1.010 1.026 0.987 0.971 1.030
AR+AR-NN 0.993 0.999 1.035 1.080 0.956 0.971 0.987 1.016
AR+STAR 0.994 1.011 1.034 1.072 0.998 1.042 1.035 1.082
NN+STAR 0.994 0.994 1.033 1.084 1.030 1.041 1.021 1.119

AR-NN+STAR 0.992 0.983 1.035 1.093 0.982 0.961 0.964 1.050

France AR+NN 1.017 0.936 0.888 0.837 0.983 0.985 1.002 1.104
AR+AR-NN 1.023 1.078 1.154 1.236 0.931 0.987 1.017 1.062
AR+STAR 1.031 1.029 1.058 1.084 0.992 1.043 1.066 1.111
NN+STAR 1.049 0.960 0.940 0.913 0.979 1.026 1.068 1.220

AR-NN+STAR 1.038 1.001 1.021 1.052 0.937 0.987 1.033 1.179

Germany AR+NN 1.000 1.000 1.000 1.000 1.005 1.016 1.040 1.082

AR+AR-NN 0.995 0.992 1.004 1.070 0.970 1.013 1.020 1.037
AR+STAR 1.002 0.998 0.995 1.009 0.958 0.996 0.984 0.977
NN+STAR 1.002 0.998 0.995 1.009 0.962 1.009 1.023 1.066

AR-NN+STAR 0.995 0.992 1.004 1.070 0.974 1.027 1.059 1.129

Italy AR+NN 0.987 0.978 0.951 0.924 1.025 1.043 1.081 1.087

AR+AR-NN 1.005 0.990 0.992 1.045 1.139 1.164 1.177 1.189
AR+STAR 0.999 0.991 0.985 1.017 1.022 1.111 1.152 1.191
NN+STAR 0.994 0.981 0.950 0.960 1.048 1.155 1.235 1.285

AR-NN+STAR 1.000 0.979 0.955 0.985 1.168 1.208 1.253 1.272

Japan AR+NN 0.979 0.930 0.894 0.888 0.987 0.982 0.964 0.918

AR+AR-NN 1.020 1.035 1.061 1.188 0.952 0.995 1.000 1.010
AR+STAR 1.004 1.010 1.018 1.043 0.954 1.014 1.049 1.027
NN+STAR 0.983 0.938 0.910 0.926 0.943 1.000 1.021 0.953

AR-NN+STAR 0.997 0.962 0.953 1.069 0.940 0.979 0.966 0.928

UK AR+NN 0.953 0.890 0.787 0.727 1.009 1.020 1.038 1.045
AR+AR-NN 1.025 1.132 1.094 1.096 0.994 0.983 0.997 1.005
AR+STAR 0.992 1.009 1.000 1.004 0.993 1.013 1.062 1.093
NN+STAR 0.953 0.904 0.797 0.746 1.003 1.035 1.102 1.139

AR-NN+STAR 0.983 1.029 0.892 0.842 1.001 1.001 1.033 1.049

USA AR+NN 0.992 0.977 0.956 0.922 1.026 0.970 0.910 0.919
AR+AR-NN 1.005 1.032 1.064 1.098 0.960 0.979 0.956 0.922
AR+STAR 0.992 0.998 1.000 0.986 0.983 0.965 0.942 0.908
NN+STAR 0.986 0.978 0.962 0.917 1.016 0.950 0.868 0.836

AR-NN+STAR 1.001 1.016 1.032 1.028 0.993 0.963 0.886 0.844
Continued on next page
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VEX VIMP
1 3 6 12 1 3 6 12

Canada AR+NN 1.001 0.996 0.996 0.995 1.000 1.000 1.000 1.000
AR+AR-NN 0.998 0.992 0.999 1.000 0.957 1.001 0.997 0.996
AR+STAR 1.014 1.027 1.019 1.022 0.982 0.993 0.987 0.978
NN+STAR 1.016 1.024 1.016 1.017 0.982 0.993 0.987 0.978

AR-NN+STAR 1.000 0.989 0.995 0.994 0.957 1.001 0.997 0.996

France AR+NN 0.978 0.984 1.026 1.094 1.000 1.000 1.000 1.000
AR+AR-NN 0.996 1.002 1.058 1.146 1.005 1.017 1.023 1.040
AR+STAR 0.994 1.000 1.044 1.110 0.991 0.997 0.993 1.000
NN+STAR 0.975 0.993 1.087 1.213 0.991 0.997 0.993 1.000

AR-NN+STAR 0.982 1.000 1.106 1.250 1.005 1.017 1.023 1.040

Germany AR+NN 1.000 1.000 1.000 1.000 0.987 0.967 0.941 0.914

AR+AR-NN 0.998 1.003 1.001 1.002 1.003 1.013 1.012 1.009
AR+STAR 1.003 1.006 1.008 1.018 1.001 0.986 0.976 0.944
NN+STAR 1.003 1.006 1.008 1.018 0.990 0.957 0.922 0.860

AR-NN+STAR 0.998 1.003 1.001 1.002 0.990 0.978 0.952 0.923

Italy AR+NN 1.002 1.010 1.018 1.017 1.013 0.996 0.990 0.985

AR+AR-NN 0.998 0.998 1.003 1.007 0.996 0.997 1.002 1.005
AR+STAR 0.990 1.011 1.016 1.007 0.988 1.000 0.991 0.985
NN+STAR 0.998 1.028 1.039 1.028 0.999 0.995 0.978 0.970

AR-NN+STAR 1.003 1.009 1.021 1.025 1.009 0.993 0.992 0.991

Japan AR+NN 1.001 0.996 0.994 1.006 1.000 1.000 1.000 1.000

AR+AR-NN 1.015 1.039 1.059 1.084 0.993 1.011 1.023 1.054
AR+STAR 1.004 0.991 0.982 0.966 0.998 0.993 0.980 0.924
NN+STAR 1.005 0.987 0.976 0.973 0.998 0.993 0.980 0.924

AR-NN+STAR 1.018 1.040 1.059 1.093 0.993 1.011 1.023 1.054

UK AR+NN 0.999 1.001 0.997 0.984 0.999 1.000 1.005 1.007
AR+AR-NN 1.005 1.021 0.998 1.007 1.009 1.004 1.003 0.999
AR+STAR 1.001 1.011 1.002 0.998 0.998 1.001 0.996 0.972
NN+STAR 1.002 1.013 0.999 0.982 0.997 1.001 1.001 0.979

AR-NN+STAR 1.005 1.023 0.996 0.992 1.011 1.006 1.009 1.006

USA AR+NN 1.013 1.008 1.046 1.066 1.011 1.021 1.032 1.044
AR+AR-NN 0.997 1.022 1.078 1.128 0.988 0.988 0.988 0.984
AR+STAR 1.017 1.019 1.085 1.132 0.997 0.971 0.965 0.941
NN+STAR 1.036 1.036 1.143 1.201 1.011 0.989 0.993 0.984

AR-NN+STAR 1.015 1.040 1.133 1.196 1.000 1.010 1.021 1.029

UR
1 3 6 12

Canada AR+NN 0.998 0.982 0.973 0.948
AR+AR-NN 0.962 0.969 1.014 1.096
AR+STAR 0.985 0.983 0.983 0.975
NN+STAR 0.986 0.969 0.960 0.927

AR-NN+STAR 0.962 0.956 0.991 1.053

France AR+NN – – – –
AR+AR-NN – – – –
AR+STAR – – – –
NN+STAR – – – –

AR-NN+STAR – – – –

Germany AR+NN 1.007 1.005 0.997 0.967

AR+AR-NN 0.961 0.945 1.024 1.177
AR+STAR 0.979 0.982 0.977 0.982
NN+STAR 0.986 0.985 0.970 0.945

AR-NN+STAR 0.966 0.947 1.015 1.139

Italy AR+NN – – – –

AR+AR-NN – – – –
AR+STAR – – – –
NN+STAR – – – –

AR-NN+STAR – – – –

Japan AR+NN 1.041 1.162 1.165 1.090

AR+AR-NN 0.982 1.056 1.096 1.107
AR+STAR 0.996 0.986 0.987 0.982
NN+STAR 1.037 1.148 1.152 1.075

AR-NN+STAR 1.020 1.206 1.245 1.192

UK AR+NN 1.000 1.000 1.000 1.000
AR+AR-NN 0.959 0.986 1.054 1.276
AR+STAR 0.938 0.932 0.954 1.037
NN+STAR 0.938 0.932 0.954 1.037

AR-NN+STAR 0.959 0.986 1.054 1.276

USA AR+NN 0.972 0.938 0.934 0.951
AR+AR-NN 0.983 0.952 0.951 0.984
AR+STAR 0.999 0.997 0.998 1.004
NN+STAR 0.973 0.936 0.932 0.956

AR-NN+STAR 0.963 0.900 0.895 0.942

Note: Table entries are ratios of root mean squared forecast errors and ranks (in parentheses)
of the models by variable, country, and forecast horizon, where the linear AR model is the
baseline model. For the AR model, entries in square brackets are RMSFE values.
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