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ABSTRACT: In this paper, we propose a class of ACD-type models that accommodates

overdispersion, intermittent dynamics, multiple regimes, and sign and size asymmetries

in financial durations. In particular, our functional coefficient autoregressive conditional

duration (FC-ACD) model relies on a smooth-transition autoregressive specification. The

motivation lies on the fact that the latter yields a universal approximation if one lets the

number of regimes grows without bound. After establishing that the sufficient conditions

for strict stationarity do not exclude explosive regimes, we address model identifiability as

well as the existence, consistency, and asymptotic normality of the quasi-maximum like-

lihood (QML) estimator for the FC-ACD model with a fixed number of regimes. In addi-

tion, we also discuss how to consistently estimate using a sieve approach a semiparametric

variant of the FC-ACD model that takes the number of regimes to infinity. An empirical

illustration indicates that our functional coefficient model is flexible enough to model IBM

price durations.
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1. INTRODUCTION

There has recently been a great interest in the implications of price durations in empirical

finance. Most empirical analyses use one of the several extensions of Engle and Russell’s

(1998) linear autoregressive conditional duration (ACD) model that abound in the litera-

ture. Fernandes and Grammig (2006) consider a family of ACD-type models that relies on

asymmetric responses to shocks and on a Box-Cox transformation to the conditional du-

ration process. Their family encompasses most ACD-type models in the literature, though

there are a few exceptions. Zhang, Russell, and Tsay (2001) argue for a nonlinear ver-

sion based on self-exciting threshold ACD processes, whereas Meitz and Teräsvirta (2006)

propose the smooth transition and the time-varying ACD models. This paper puts for-

ward a novel class of ACD-type models based on logistic smooth-transition autoregressive

processes with multiple regimes. In particular, our functional coefficient autoregressive

conditional duration (FC-ACD) model not only nests the ACD-type processes proposed by

Meitz and Ter̈asvirta (2006), but may also serve as the basis for a semiparametric approach

if one lets the number of regimes to grow without bounds.

We first address the theoretical aspects of the FC-ACD process with a fixed number

of regimes. In particular, we establish sufficient conditions for strict stationarity and for

the existence of higher-order moments. It turns out that the conditions are quite mild in

that they do not exclude duration processes with explosive regimes. As in Medeiros and

Veiga (2004), we show that explosive regimes may entail very interesting dynamics. In

particular, strictly stationary FC-ACD processes with explosive regimes are particularly

suitable to model intermittent dynamics: The system spends a large fraction of time in a

bounded region, but sporadically develops an instability that grows exponentially for some

time and then suddenly collapses.

We then move to establishing sufficient conditions for model identifiability as well as

for the existence, consistency, and asymptotic normality of the quasi-maximum likelihood

(QML) estimator. We derive consistency and asymptotic normality under first- and second-

order moment conditions, respectively. Finally, we develop a sequence of simple Lagrange

multiplier (LM) tests to determine the number of limiting regimes. Although we derive the

tests using the exponential distribution as reference, we also discuss a robust version so as

to cope with non-exponential errors.
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We also consider a semiparametric version of the FC-ACD model in which the num-

ber of extra regimesM increases with the sample size. The motivation rests on the fact

that the logistic smooth transition autoregressive process withM → ∞ acts as a univer-

sal neural-network approximation (Hornik, Stinchcombe, and White, 1989). The resulting

semiparametric model encompasses most first-order ACD-type models in the literature,

despite the fact we impose some restrictions on the functional coefficients specification to

achieve identification of the nonparametric term as well as to ensure stationarity and geo-

metric ergodicity. To estimate the semiparametric model, we rely on a regularization pro-

cedure that penalizes the log-likelihood function as one increases the number of regimes.

In particular, we employ Chen and Shen’s (1998) results to provide asymptotic justification

for the resulting sieve estimator.

We thus deem that we contribute to the literature in several aspects. First, in contrast

to Meitz and Ter̈asvirta’s (2006) smooth transition ACD framework, our FC-ACD spec-

ification permits modeling more than two limiting regimes as well as explosive regimes.

Second, our framework allows for statistical inference as to what concerns the number of

regimes, and hence it is not necessary to impose a priori a certain number of regimes as

in Zhang, Russell, and Tsay (2001). Third, we also consider the case in which the num-

ber of regimes to increase with the sample size, so as to obtain a sieve approximation for

the conditional duration process. Finally, we demonstrate the practical usefulness of the

FC-ACD specification by modeling IBM price durations. The main motivation lies on the

fact that early findings clearly reject many of the extant ACD-type specifications in the lit-

erature (see Fernandes and Grammig, 2006). We show that allowing for multiple regimes

facilitates substantially the task of reaching a congruent specification for the IBM price

durations.

The remainder of the paper is organized as follows. Section 2 outlines the statistical

properties of the FC-ACD process, whereas Section 3 deals with quasi-maximum likeli-

hood estimation for a known fixed number of regimes. Section 4 then proposes a sequential

testing procedure to determine the unknown number of regimes. Section 5 next considers

a semiparametric version of the FC-ACD model by letting the number of regimes increase

with the sample size. Section 6 collects the findings of the empirical application that we

carry out aiming to model IBM price durations. Section 7 summarizes the main results and

3



offers some concluding remarks. We collect all technical details concerning the derivations,

including proofs and lemmas, in the Appendix.

2. A FUNCTIONAL COEFFICIENTACD PROCESS

Let the durationxi = ti − ti−1 denote the time spell between two events occurring at

timesti andti−1. For instance, we define price duration as the time interval necessary to

observe a cumulative change in the mid-price of at least some given value. To account for

the serial dependence that characterizes financial duration data, we assume that durations

follow an accelerated time failure process.

ASSUMPTION1. Let xi = ψi εi. The sequence{εi; i ∈ Z} of iid random variables has

a continuous density functionf > 0 in [0,∞), with E
(
εi

∣∣Fi−1

)
= 1, whereFi−1 is

the information set available at timeti−1. Also, ψi = E
(
xi

∣∣Fi−1

)
is independent of

{εi, εi+1, . . .}.

Assumption 1 is standard in the literature (see discussion in Drost and Werker, 2004).

Engle and Russell’s (1998) ACD model assumes a linear specification for the conditional

expected duration, viz.ψi = ω + α xi−1 + β ψi−1. Bauwens and Giot (2000) propose a

logarithmic version of the ACD model with a similar autoregressive structure for the log

rather than for the level of the expected duration so as to ensure the positivity of the duration

process. In this paper, we propose a more flexible model based on a functional coefficient

specification.

DEFINITION 1. The durationxi follows a functional coefficient autoregressive conditional

duration (FC-ACD) process withM + 1 regimes ifxi = ψi εi, whereεi and ψi satisfy

Assumption 1 and

log ψi = ω(log xi−1) + α(log xi−1) log xi−1 + β(log xi−1) log ψi−1 (1)

with

ω(log xi) = ω0 +
M∑

m=1

ωm Gm(log xi) (2)

α(log xi) = α0 +
M∑

m=1

αm Gm(log xi) (3)

β(log xi) = β0 +
M∑

m=1

βm Gm(log xi), (4)
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and

Gm(log xi) = G(log xi; γm, cm) =
1

1 + exp
[−γm

(
log xi − cm

)] . (5)

The FC-ACD process belongs to the class of logistic smooth transition autoregressive

models. The parameter vector is

θ = (ω0, . . . , ωM , α0, . . . , αM , β0, . . . , βM , c1, . . . , cM , γ1, . . . , γM )′ .

The slope parametersγm (m = 1, . . . , M ) controls the smoothness of the regime transi-

tions: e.g.,Gm(log xi) converges to a step function asγm grows without bound. Equation

(5) also implies that log-durations determine the weights at which each regime contributes

to the overall dynamics of the process at timeti. Alternatively, one may could think of

distinct transition variables, e.g., the log of the expected duration. The resulting model thus

is quite similar to Zhang, Russell, and Tsay’s (2001) self-exciting threshold ACD specifica-

tion. The main differences are that we allow for smooth transitions and that, as in Bauwens

and Giot (2000), we model the log rather than the level of the expected duration so as to

avoid positivity constraints on the parameter space.

The FC-ACD specification entails several advantages. First, the condition we derive in

Subsection 2.1 for strict stationarity does not rule out the presence of explosive regimes.

The latter is interesting because it may give way to the moderately high, but very persis-

tent, autocorrelation structure that seems to characterize financial duration data. Second,

our specification nests the threshold ACD-type processes put forth by Meitz and Teräsvirta

(2006). Third, as in Medeiros and Veiga (2000), one may interpret (2) to (4) as a single-

hidden layer neural network withM hidden units. It thus follows that the FC-ACD specifi-

cation admits a semiparametric variant by letting the number of regimes increase with the

sample size. A neural network with a large number of hidden units indeed approximates

arbitrarily well any Borel-measurable function (Hornik, Stinchcombe, and White, 1989).

To establish the statistical properties of the FC-ACD process, we require a standard

regularity condition on the error term and on the parameter space.

ASSUMPTION2. The error termεi is such thatE |log εi| < ∞ andE |εi|k < ∞ for some

integerk ≥ 4.

ASSUMPTION3. The vectorθ is interior to the compact parameter spaceΘ ⊆ R5M+3.
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The asymptotic normality of the QML estimator depends heavily on the fourth-moment

requirement in Assumption 2. If the interest lies only on the consistency of the QML

estimator, then it suffices to assume that the finiteness of the second moment.

2.1. Statistical properties: Strict stationarity. Let ui = (log ψi, log εi)
′. It is easy to

see that{ui; i ∈ Z} is a Markov chain with homogenous transition probability in view that

ui+1 = F (ui; θ) + εi+1, (6)

whereF (ui; θ) = [F (ui; θ) , 0]′ with

F (ui; θ) = ω(log xi) + [α(log xi) + β(log xi)] log xi + α(log xi) log εi,

andεi = [0, log εi]′. We are now ready to establish our first theoretical result.

THEOREM1. Suppose that the durationxi follows a FC-ACD process withM +1 regimes

satisfying Assumptions 1 and 2. IfA0 < 1, AM < 1, andA0 AM < 1, whereA0 = α0+β0

andAM =
∑M

m=0 (αm + βm), then strict stationarity holds for the duration process and

E |log xi|k < ∞.

The sufficient condition in Theorem 1 is intuitive and simple despite not only the highly

nonlinear nature of the model but also the extant sufficient conditions in the literature

(Meitz and Saikkonen, 2004; Meitz, 2005; Fernandes and Grammig, 2006). As in thresh-

old autoregressive models (Tong, 1990), it suffices to impose constraints only on the two

polar regimes. In particular, it allows strictly stationary and ergodic FC-ACD processes to

have explosive regimes. This is of particular interest given that such processes are suitable

to model intermittent dynamics (Medeiros and Veiga, 2004). An ergodic FC-ACD process

with explosive regimes indeed spends a large fraction of time in a bounded region, though

it sporadically develops an instability that grows exponentially for some time and then sud-

denly collapses. As we illustrate in Example 1, even though we only consider first-order

specifications, the FC-ACD process admits a highly persistent behavior with moderate val-

ues for the autocorrelation function, especially in the presence of explosive regimes.

EXAMPLE 1. Consider a FC-ACD process with three limiting regimes, exponential errors,

and parametersω0 = 0.005, ω1 = −0.9, ω2 = 3, α0 = 0.09, α1 = −0.05, α2 = −0.05,

β0 = 0.9, β1 = 0.6, β2 = −0.5, γ1 = 1000, γ2 = 100, c1 = −2, and c2 = 1. The

condition for strict stationarity holds given thatA0 = α0+β0 = 0.99, A2 =
∑2

m=0(αm+

βm) = 0.99 andA0 A2 = 0.9801, despite the explosiveness of the second regime. Figure
6
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FIGURE 1. Simulated path and autocorrelation function of a FC-ACD
process with three limiting regimes, exponential errors, and parameters
ω0 = 0.005, ω1 = −0.9, ω2 = 3, α0 = 0.09, α1 = −0.05, α2 = −0.05,
β0 = 0.9, β1 = 0.6, β2 = −0.5, γ1 = 1000, γ2 = 100, c1 = −2, and
c2 = 1.

1 depicts a simulated path of such duration process and the corresponding autocorrelation

function up to the 200th lag.

3. QUASI-MAXIMUM LIKELIHOOD ESTIMATION

In this section, we carefully address the parametric estimation of the FC-ACD model.

To avoid further distributional assumptions, we invoke quasi-maximum likelihood (QML)

methods. After describing the setting, we derive the conditions for model identification as

well as for the consistency and asymptotic normality of the QML estimator.

The derivation of the semiparametric ACD model in Drost and Werker (2004) clarifies

that adaptiveness occurs if and only if the error distribution belongs to the two-parameter

gamma family with unit mean. It actually turns out that the exponential and gamma scores

are proportional, and hence there is no efficiency loss in restricting attention to the ex-

ponential distribution. This means that the QML estimator is consistent only if we write

the likelihood as if under the assumption of exponential (or standard gamma) distribution
7



(Bickel, 1982). The quasi-log-likelihood thus reads

LN (θ) =
1
N

N∑

i=1

`i(θ), (7)

where

`i(θ) = − log ψi − xi

ψi
.

We treat the unobservable sequence{(x−i, ψ−i) ; i ∈ N} as constant rather than random.

The quasi-log-likelihood is thus suitable for practical applications given that it is not con-

ditional on the true initial value(x0, ψ0).

To derive the asymptotic properties of the QML estimator, it is convenient to work also

with the unobserved process{(xu,i, ψu,i) ; i ∈ Z}, which satisfies

xu,i = ψu,i εu,i

log ψu,i = ω0 + α0 log xu,i−1 + β0 log ψu,i−1

+
M∑

m=1

[
ωm + αm log xu,i−1 + βm log ψu,i−1

]
Gm(log xi).

(8)

The unobserved quasi-log-likelihood conditional onF0 = (x0, x−1, x−2, . . .) is

Lu,N (θ) =
1
N

N∑

i=1

`u,i(θ), (9)

with `u,i(θ) = − log ψu,i − xu,i

ψu,i
. As is apparent, the primary difference betweenLN (θ)

andLu,N (θ) is that the latter is conditional on an infinite series of past observations. For

the same technical reasons, we also consider the unfeasible QML estimator based on (9).

Let

θ̂N = argmax
θ∈Θ

LN (θ) = argmax
θ∈Θ

1
N

N∑

i=1

`i(θ), (10)

and

θ̂u,N = argmax
θ∈Θ

Lu,N (θ) = argmax
θ∈Θ

1
N

N∑

i=1

`u,i(θ). (11)

Subsection 3.1 next discusses the existence ofL(θ) = E [`u,i(θ)], so as to tackle the

identifiability of the FC-ACD model in Subsection 3.2. Subsection 3.3 then derives the con-

sistency and asymptotic normality of the QML estimators in (10) and (11) under second-

and fourth-order moment conditions, respectively.

3.1. Existence of the QML estimator. It is easy to appreciate that the QML estimator

exists only ifL(θ) = E [`u,i(θ)] exists. The next result immediately follows from White’s
8



(1996) Theorem 2.12, which establishes thatL(θ) exists under certain continuity and mea-

surability conditions on the quasi-log-likelihood function.

THEOREM 2. If the durationxi follows a strictly stationary and ergodic FC-ACD process

with M + 1 regimes, then, for any parameter vectorθ ∈ Θ, L(θ) exists and is finite under

Assumptions 1 and 3.

3.2. Identifiability of the model. A fundamental problem that usually haunts nonlinear

econometric models is the lack of identifiability of the empirical loss function. To carry out

statistical inference, we must first show thatθ0 is the unique maximizer ofL(θ). It turns

out, however, that we achieve neither global nor local identification of the FC-ACD model

without imposing some parametric constraints.

There are three reasons for the model unidentifiability. First, as the multiple regimes

correspond to hidden units in neural networks, they are interchangeable. This means that

the empirical loss function of the FC-ACD specification is invariant to regime permuta-

tions, and hence there are(M + 1)! equal local maxima for the quasi-log-likelihood in (7).

See Sussman (1992) and Suarez-Fariñas, Pedreira, and Medeiros (2004) for a discussion.

Second, the logistic function in (5) is such that

G(log xi; γm, cm) = 1−G(log xi; −γm, cm).

This property evidently compromises model identifiability. Third, identifiability also re-

lates to model reducibility as it automatically imposes constraints on the vector of pa-

rametersθm = (ωm, αm, βm, γm, cm)′ that defines the extra regimes of the FC-ACD

model(m = 1, . . . , M). For instance, it is not possible to identify the logistic parame-

ters(γm, cm) if (ωm, αm, βm)′ = 0, whereas(ωm, αm, βm, cm)′ may take on any value

without affecting the value of the quasi-log-likelihood function ifγm = 0. We then restrict

the parameter spaceΘ so as to circumvent such problems.

ASSUMPTION4. The parameter spaceΘ is such that any vectorθ ∈ Θ satisfies

C1: c < c1 < . . . < cM < c̄ for some finite constantsc and c̄;

C2: γm > 0 for m = 1, . . . ,M and

C3: (ωm, αm, βm) 6= 0 for somem ∈ {0, . . . , M}.

THEOREM 3. Assumptions 1 to 4 ensure the global identifiability of the FC-ACD model

and thatL(θ) has a unique maximum atθ0.
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Despite the fact that Assumption 4 is not verifiable, one may alleviate the risk of irrele-

vant regimes by carrying out a sequence of LM tests (see Section 4).

3.3. Asymptotic theory. Our interest lies on the large sample properties of the QML es-

timator given by (10). To derive the next result, we first establish that the unfeasible QML

estimator in (11) converges in probability toθ0 and then show that the difference between

the two QML estimators shrinks to zero as the sample sizeN grows without bound.

THEOREM 4. Under Assumptions 1 to 4, the QML estimators in (10) and (11) are consis-

tent, i.e.,̂θu,N
p→ θ0 andθ̂N

p→ θ0, for strictly stationary FC-ACD models.

To complete the asymptotic characterization of the QML estimator, we first introduce

some notation and then establish the asymptotic distribution of the QML estimator. Let

A0 = E

[
− ∂2`u,i(θ)

∂θ ∂θ′

∣∣∣∣
θ0

]

B0 =
1
N

N∑

i=1

E

(
∂`u,i(θ)

∂θ

∣∣∣∣
θ0

∂`u,i(θ)
∂θ′

∣∣∣∣
θ0

)

and denote their empirical counterparts by

AN (θ) =
1
N

N∑

i=1

[
∂2 log ψi

∂θ ∂θ′

(
1− xi

ψi

)
+

xi

ψi

∂ log ψi

∂θ

∂ log ψi

∂θ′

]

BN (θ) =
1
N

N∑

i=1

(
xi

ψi
− 1

)2
∂ log ψi

∂θ

∂ log ψi

∂θ′
.

We are now ready to state that the QML estimator weakly converges to a Gaussian distri-

bution with the usual asymptotic covariance matrix (White, 1982).

THEOREM 5. Under the conditions we assume in Theorem 4, it follows that

√
N (θ̂N − θ0)

d→ N (
0,A−1

0 B0A−1
0

)
(12)

and thatAN (θ̂N ) andBN (θ̂N ) consistently estimateA0 andB0, respectively.

3.4. Optimization algorithm. As in any smooth-transition specification, the likelihood

function of the FC-ACD model is very likely flat, especially for the transition parameters.

This means that one must carry out the optimization in a very careful fashion. That is why

we initially employ a genetic algorithm based on a population of 500 sets of initial values

for the parameters that meet the strict stationarity conditions in Theorem 1. We then switch

to the BFGS nonlinear-optimization algorithm using as initial values the solution of the

genetic-algorithm procedure.
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4. DETERMINING THE NUMBER OF REGIMES

As the FC-ACD specification in Definition 1 depends on the unknown number of extra

regimesM , statistical inference must come into play. One solution is to carry out a sequen-

tial procedure in which we start with a small model and then decide whether it pays off to

add more regimes using some model selection criterion. This typically boils down to some

sort of likelihood ratio testing, where the particular choice of the model selection criterion

determines the asymptotic significance level of the test (see Teräsvirta and Mellin, 1986).

There is a serious drawback in such approach, however. Suppose the data generating

mechanism is a FC-ACD process withM regimes. Applying a model selection criterion to

decide whether to considerM +1 regimes requires the estimation of an unidentified model

with M logistic functions. It thus is impossible to estimate the parameters in a consistent

manner, so that numerical problems likely arise in the QML estimation. Besides, the lack

of identification under the alternative hypothesis ofM + 1 regimes also contaminates the

likelihood ratio statistic, which does not converge to the usualχ2 distribution under the null

hypothesis ofM regimes.

We therefore take a different approach to determining the number of regimes of the

FC-ACD model. Although we keep relying on a specific-to-general modeling strategy, we

circumvent the identification problem using sequential LM-type tests. Our sequential test-

ing procedure controls for the significance level of the individual tests using Bonferroni’s

upper bound for the overall significance level. In what follows, we discuss our framework

assuming exponential errors and then show how to robustify the procedure so as to cope

with nonexponential errors.

Consider an ergodic FC-ACD process withM +1 regimes as in (1)–(5). To test whether

it is necessary to include the term corresponding to the(M + 1)th regime, viz.

(ωM + αM log xi−1 + βM log ψi−1) GM (log xi−1; γM , cM ), (13)

we define the null and alternative hypotheses asHM : γM = 0 and HM+1 : γM > 0,

respectively. To remedy the lack of identification of the FC-ACD model withM + 1

regimes under the null, we expand the logistic functionGM aroundγM = 0 as in Meitz

and Ter̈asvirta (2006).
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A first-order Taylor expansion ofGM aroundγM = 0 then yields

log ψi = ω̃0 + α̃0 log xi−1 + β̃0 log ψi−1

+
M−1∑
m=1

[ωm + αm log xi−1 + βm log ψi−1] Gm(log xi−1)

+ δ1 log ψi−1 log xi−1 + δ2 (log xi−1)2 + O
(
γ2

M

)
,

(14)

where ω̃0 = ω0 + 1
2 ωM − 1

4 ωMγMcM , α̃0 = α0 + 1
2 αM + 1

4 γM (ωM − αMcM ),

β̃0 = β0 + 1
2 βM − 1

4 βMγMcM , δ1 = 1
4 βMγM , andδ2 = 1

4 αMγM . Under the null

of HM: γM = 0, the specification in (14) reduces to the FC-ACD model withM regimes.

Before stating the next result, we first establish some notation. Letφ = [θ′, δ′]′ with

δ = (δ1, δ2)′. The QML estimator ofφ under the null hypothesis ofHM : γM = 0

is φ̂N = [θ̂N ,0]. Let ψ̂i ≡ ψi

(
φ̂N

)
denote the estimate of the expected conditional

duration under the null and̂di = ∂ log ψi

∂φ

∣∣∣
φ=bφN

correspond to the derivative oflog ψi

with respect toφ evaluated at the QML estimator̂φN . Although d̂i is recursive in that it

depends on̂di−1, it is straightforward to calculate it as a function of the initial valuex0

of the duration process as in Medeiros and Veiga (2004). We are now ready to state the

asymptotic distribution of the LM statistic to testHM: γM = 0 againstHM+1: γM > 0.

THEOREM6. Let the durationxi follow a strictly stationary and ergodic FC-ACD process

with M regimes. Assumptions 1 to 4 ensure that

LM = N

[
N∑

i=1

(
xi

ψ̂i

− 1
)

d̂
′
i

](
N∑

i=1

d̂i d̂
′
i

)−1 [
N∑

i=1

(
xi

ψ̂i

− 1
)

d̂i

]
(15)

has an asymptoticχ2
2 distribution under the null ofHM: γM = 0.

To avoid the exponential assumption, one may consider a robust version of the LM

test that is suitable to nonexponential errors, as in Meitz and Teräsvirta (2006), using the

tools in Wooldridge (1990, Procedure 4.1). The three steps of the resulting robust testing

procedure are as follows.

(1) Estimate the FC-ACD model under the null (withM regimes).

(2) Regress ∂
∂θ log ψi

∣∣
φ=bφN

on ∂
∂δ log ψi

∣∣
φ=bφN

and compute the vector of residuals

r̂i for i = 1, . . . , N .

(3) Regress 1 on
(
xi/ψ̂i − 1

)
r̂i and compute the resulting sum of squared residuals

SSR. The robust test statisticLMR = N−SSR has an asymptoticχ2
2 distribution

under the null hypothesis ofHM .
12



We now combine the above statistical ingredients into a coherent modeling strategy that

involves a sequence of robust LM tests. The idea is to test a FC-ACD model with only

one regime against an alternative model with two regimes at the significance levelλ1.

In the event we reject the null, we keep testing FC-ACD specifications withJ regimes

against alternative models withJ + 1 regimes at the significance levelλJ = λ1 C1−J for

some arbitrary constantC > 1. We terminate the testing sequence at the first nonrejection

outcome and then estimate the number of extra regimesM of the FC-ACD specification

by M̂ = J̄ − 1, whereJ̄ refers to how many testing runs are necessary to lead to the

first nonrejection result. By reducing the significance level at each step of the sequence,

we are able to control the overall significance level and hence to avoid excessively large

models. The Bonferroni procedure indeed ensures that such sequence of robust LM tests is

consistent and that
∑J̄

J=1 λJ acts as an upper bound for the overall significance level. As

for the selection of the arbitrary constantC, it is good practice to carry out the sequential

testing procedure with different values ofC so as to avoid models that are too parsimonious.

5. A SEMIPARAMETRIC VARIANT

In this section, we take benefit from the fact that the logistic smooth transition autore-

gressive specification in (2) to (4) corresponds to a single-hidden layer neural network

with M hidden units. This implies that, ifM is large enough, it approximates arbitrarily

well any Borel-measurable function (Hornik, Stinchcombe, and White, 1989; Chen and

White, 1998). We therefore consider a semiparametric version of the FC-ACD model in

which the number of extra regimesM increases with the sample size. To emphasize the

dependence on the sample size, we denote the number of extra regimes byMN in this

section.

DEFINITION 2. The durationxi follows a semiparametric FC-ACD process ifxi = ψi εi,

whereεi andψi satisfy Assumption 1 and

log ψi = ω(log xi−1) + β log ψi−1 (16)

with |β| < 1 andω(·) < ∞ belonging to the functional spaceH of continuous bounded

functions.

This definition complements well Drost and Werker’s (2004) semiparametric approach,

whose focus is on the error distribution rather than on the specification of the conditional
13



expected duration. It indeed encompasses most first-order ACD-type models in the litera-

ture, despite the fact that we impose three restrictions on the functional coefficients speci-

fication. First, we confine attention to duration processes that satisfy strict stationarity with

finite second moments, geometric ergodicity, andβ−mixingness with exponential decay

by assuming thatω(·) is bounded and that|β| < 1 (see Meitz and Saikkonen, 2004). This

ensure that we may apply Chen and Shen’s (1998) asymptotic theory for sieve extremum

estimates in the context of weakly dependent data.

Second, we eliminate the slope functional coefficient in (1) — i.e.,α(z) z — to achieve

identification of the nonparametric component in (16). Third, we restrict the recursiveness

of the conditional expected duration process by assuming thatβ is constant across regimes.

This simplifies matters a lot for it permits rewriting the semiparametric FC-ACD model as

a tractable nonlinear AR model of infinite order, namely,

log xi = ω(log xi−1) + β log ψi−1 + log εi

=
∞∑

j=0

βj ω(log xi−1−j) + log εi. (17)

As the largeness of the functional spaceH may compromise the estimation, we approx-

imateH with a sequenceHN of sieve spaces (Grenander, 1981; Chen and Shen, 1998)

that becomes dense inH as the sample size increases. As the sieve spaces correspond to

finite-dimensional parameter spaces, they only require parametric estimation. In particular,

we approximate any functionω ∈ H with ωN ∈ HN , where

ωN (·) = ω
(N)
0 +

MN∑
m=1

ω(N)
m G(N)

m (·) (18)

andG
(N)
m (·) is the logistic function in (5) with parametersc

(N)
m andγ

(N)
m . Makovoz (1996)

demonstrates that the approximation error is such that‖ωN − ω ‖ = O
(
M
− 1

2− 1
2d

N

)
, where

d is the dimension of the domain of the functionω and‖· ‖ denotes theL2 norm.

The resulting vector of parameters then is

θ(N) =
(
ω

(N)
0 , . . . , ω

(N)
MN

, c
(N)
1 , . . . , c

(N)
MN

, γ
(N)
1 , . . . , γ

(N)
MN

, β
)

.

Instead of alluding to the sequenceHN of sieve functional spaces, we may sometimes

refer to the corresponding sequenceΘ(N) of sieve parameter spaces so as to emphasize the

parametric nature of the estimation problem. In accordance with the sieve literature, we

14



then approximate the first term of the right-hand side of (17) by

log ψ
(N)
i =

JN∑

j=0

βj ωN (log xi−1−j). (19)

This means that we actually employ two sieve approximations. The first truncates the

infinite summation in (17) by means ofJN , whereas the second relates to the finite number

of extra regimesMN in the neural network. The next result documents the conditions under

which our semiparametric approach is consistent. The proof is straightforward, relying on

the fact that (19) converges to the first term of the right-hand side of (17) as bothJN and

MN go to infinity with the sample size.

THEOREM 7. If the duration processxi satisfies the conditions in Definition 2, the sieve

approximation error is negligible as long asJN →∞ andM3
N log MN = O(N).

To avoid overfitting, we take a regularization approach by penalizing the empirical loss

function so as to control for the number of extra regimesMN (i.e., the number of hidden

units in the neural-network approximation) as well as for the number of lagsJN in the

nonlinear AR representation. Let

LN (θ(N)) =
1
N

N∑

i=1

`
(N)
i

(
θ(N)

)
, (20)

where

`
(N)
i

(
θ(N)

)
= − log ψ

(N)
i − xi

ψ
(N)
i

+ λN

∥∥θ(N)

∥∥ ,

λN is a regularization factor that shrinks to zero as the sample size increases. The sieve

estimator then is

θ̂(N) = argmax
θ(N)∈Θ(N)

1
N

N∑

i=1

`
(N)
i

(
θ(N)

)
. (21)

Given thatL (
θ(N)

)
= E

[
`
(N)
i

(
θ(N)

)]
is uniquely identified, the sieve estimator in (21)

is well defined and hence Chen and Shen’s (1998) results hold.

6. REVISITING IBM PRICE DURATIONS

In this section, we estimate the FC-ACD model for the price durations of the IBM stock

traded on the New York Stock Exchange (NYSE) from September to November 1996. In

contrast to Zhang, Russell, and Tsay’s (2001) empirical analysis of IBM durations, we do

not fix the number of regimes in that we let the data determine the proper number of regimes

using either a sequence of LM-type tests or a regularization approach in the parametric
15
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FIGURE 2. The first plot displays the time series of IBM price durations
from September to November 1996, whereas the second plot exhibits
its sample autocorrelation function up to 200 lags. The data correspond
to diurnally adjusted durationsxi = Di/%(ti), whereDi is the plain
duration in seconds and%(·) denotes the diurnal factor determined by
first averaging the durations over thirty minutes intervals for each day of
the week and then fitting a cubic spline with nodes at each half hour.

and semiparametric contexts, respectively. We define price duration as the time interval

necessary to observe a cumulative change in the mid-price of at least $0.125. The main

interest in models for price durations is due to the fact that they permit retrieving intraday

estimates of the instantaneous volatility of the price process (Engle and Russell, 1998).

Apart from the opening auction, NYSE trading is continuous from 9:30 to 16:00. We re-

move all durations between events recorded outside the regular opening hours of the NYSE

as well as overnight spells. It is well known that financial durations feature a strong time-of-

the-day effect. We therefore consider diurnally adjusted durationsxi = Di/%(ti), where

Di is the plain price duration in seconds and%(·) denotes the diurnal factor determined

by first averaging the durations over thirty minutes intervals for each day of the week and

then fitting a cubic spline with nodes at each half hour. The resulting (diurnally adjusted)

durations serve as input for the remainder of the analysis.
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A comparison between price and trade durations mirrors the fact that the IBM stock is

very liquid. In particular, more than 75% of the trade durations do not exceed 30 seconds

and it takes several transactions to alter the mid-quote price by at least $0.125. The sample

size indeed reduces from 60,454 to 6,728 observations once we filter the data to compute

price durations. Table 1 describes the main statistical properties of the IBM price durations.

We compute descriptive statistics for both plain and diurnally adjusted data for two sub-

samples. We employ the first subsample with 4,484 observations for estimation purposes,

reserving the second subsample with 2,244 observations for out-of-sample analysis.

The distributions of the price durations in the first and second subsamples are substan-

tially different, regardless of the time-of-the-day adjustment. For instance, if one restricts

attention to the diurnally adjusted series, the first-subsample mean, standard deviation, first

quartile, and median are about twofold their counterparts in the second subsample. In

addition, the third quartile declines by more than one half from the first to the second sub-

sample, whereas the maximum value in the first subsample is threefold the maximum in

the second subsample. The minimum value and overdispersion are the only statistics that

remain approximately constant across subsamples.

The evidence in favor of overdispersion is also robust to the time-of-the-day effect. The

latter feature ensures that it is not an artifact due to data seasonality. Figure 2 displays

the diurnally adjusted series of IBM price durations as well as its sample autocorrelation

function up to 200 lags. It reveals that IBM price durations are very persistent in that there

are significant positive values in the sample autocorrelation function at very high orders.

Altogether, the combination of overdispersion and persistent autocorrelation in IBM price

durations warrants the estimation of FC-ACD models with multiple regimes.

We then estimate by quasi-maximum likelihood the FC-ACD model of first order using

the exponential distribution as reference. Table 2 reports the estimation and testing results

for models with one and two regimes given that our modeling cycle strategy indicates

that IBM price durations feature only two limiting regimes. The LM test for additional

regimes indeed does not reject the null of only two limiting regimes at the usual levels

of significance. Although the transition between the two regimes is very abrupt given the

large value of̂γ1, Figure 3 shows that there are enough observations (i.e., about 200 data

points) within the transition phase to estimate the parameters of the logistic function with

reasonable precision.
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FIGURE 3. The graph plots the logistic function in (5) against the sample
values of the transition variable forc1 = 0.3210 andγ = 496.99. The
transition variable is the past value of the logarithm of the diurnally ad-
justed IBM price duration, whereas the sample consists of the first 4,484
observations from the period ranging from September to November
1996.

The first regime is extremely persistent, witĥA0 = α̂0 + β̂0 = 0.9909, whereas persis-

tence subsides in the second regime given thatÂ1 = α̂0 + α̂1 + β̂0 + β̂1 = 0.8696. The less

persistent second regime mostly affects larger durations in view thatexp(ĉ1) = 1.3784 lies

slightly above the sample mean of the IBM price durations, at the 78% percentile. This is

somewhat in line with the evidence put forth by Zhang, Russell, and Tsay (2001), though

they assume nonsmooth transitions between three fixed (rather than estimated) regimes in

their threshold ACD model.

The results for the FC-ACD model with one regime, which corresponds to Bauwens

and Giot’s (2000) logarithmic ACD model, show that ignoring the second regime affects

substantially the analysis of persistence. The persistence of the one-regime model is a

convex combination of the very distinct degrees of persistence that characterize the first

and second regimes of the FC-ACD model. In particular, it is closer to the persistence

in the first regime, which seems to prevail for 3,117 out of the 4,484 observations of the

in-sample period. Allowing for the second regime not only entails a better picture of the

persistent nature of IBM price durations, but also substantially improves both the in-sample

and out-of-sample fits as measured by the quasi-likelihood function values.
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FIGURE 4. The plot displays the actual and fitted values of the IBM
price durations from September to November 1996. Actual values are
in gray, corresponding to diurnally adjusted IBM price durations. Fitted
values are in black, relating to the estimates of the expected duration of
the FC-ACD model with two regimes for the parameter values in Table
1. The dashed vertical line marks the sample splitting for estimation and
forecasting purposes.

Figure 4 displays the actual and fitted values of the IBM price duration for the full sam-

ple. Although the fitted values are not as volatile as the realizations of the IBM price dura-

tions, it is evident that it tracks well the movements in the latter series. The in-sample and

out-of-sample correlations between the actual and fitted log-values are quite reasonable,

namely, 0.3832 and 0.3069, respectively. They add up to an overall correlation between

actual and fitted log-values of 0.4391 in the full sample. Furthermore, the in-sample and

out-of-sample residuals of the FC-ACD model with two regimes also have well-behaved

distributions in that their mean and standard deviation are close to unity (as expected given

the exponential benchmark). The in-sample residuals have a mean of 1.0001 with a stan-

dard deviation of 1.1536, whereas the mean and standard deviation of the out-of-sample

residuals are 0.8949 and 1.0152, respectively. The overdispersion coefficients of the in-

sample and out-of-sample residuals are respectively 1.1536 and 1.1344, and hence well

below the overdispersion that we report in Table 1 for the IBM price durations.

To check for misspecification, we also inspect whether the in-sample and out-of-sample

residuals display any serial correlation by looking at the sample autocorrelation function

up to 200 lags. Table 2 documents that the FC-ACD model with two regimes does a much
19



better job in accounting for the serial dependence in the IBM price durations than Bauwens

and Giot’s (2000) logarithmic ACD model. The residual autocorrelation reduces by a pal-

pable amount as one allows for the second regime. The decline is particularly strong for

the in-sample residuals in that their maximum autocorrelation (in magnitude) for the one-

regime model is about twofold the one of the FC-ACD model with two regimes.

7. CONCLUSION

This paper proposes a functional coefficient ACD model that accommodates overdis-

persion, intermittent dynamics, multiple regimes, as well as sign and size asymmetries in

financial durations. In particular, we rely on a very flexible smooth-transition autoregres-

sive specification with multiple regimes. The motivation lies on the fact that it gives way

to a semiparametric version of the model as the number of regimes goes to infinity. We

formally address how to consistently estimate the parametric FC-ACD model with fixed

number of regimes by quasi-maximum likelihood as well as the semiparametric counter-

part using a sieve approach.

An empirical illustration indicates that our functional coefficient specification is flexible

enough to model IBM price durations in a congruent manner. This is in stark contrast with

the alternative model with a single regime, whose residuals display much larger autocorre-

lations. In addition, we also evince that the FC-ACD model with two regimes outperforms

the one-regime model in goodness-of-fit terms both in-sample and out-of-sample. This is of

particular interest because the FC-ACD model with one regime corresponds to the popular

logarithmic ACD model by Bauwens and Giot (2000).
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APPENDIX A. PROOFS

Proof of Theorem 1. We start by casting the FC-ACD process with multiple regimes into a smooth

transition autoregressive moving average (STARMA) representation. Letω̄i−1 ≡ ω(log xi−1),

ᾱi−1 ≡ α(log xi−1), andβ̄i−1 ≡ β(log xi−1). It follows from (1) that the duration process has

the following STARMA(1,1) representation:

log xi = ω̄i−1 +
�
ᾱi−1 + β̄i−1

�
log xi−1 + log εi − β̄i−1 log εi−1. (A.1)

Following similar steps to Zhang, Russell, and Tsay (2001), it is straightforward to show that the

Markov chain in (6) is aφ-irreducible T-chain. This means that we may apply Tweedie’s (1975) drift

criterion to derive sufficient conditions for strict stationarity. In addition, Ling’s (1999) Theorem 4.1

implies that the strict stationarity of the functional coefficient ARMA model depends exclusively on

its autoregressive part, and hence we confine attention to the analogous STAR(1) process withM +1

regimes

yi = ν̄i−1 + ζ̄i−1 yi−1 + ςi, (A.2)

whereν̄i−1 ≡ ν0+
PM

m=1 νm Gm(yi), ζ̄i−1 ≡ ζ0+
PM

m=1 ζm Gm(yi−1), and the error termςi is iid

with E |ςi| < ∞. The sufficient conditions for strict stationarity that we derive are exactly the same

for TAR(1) processes (see, e.g., Chen and Tsay, 1991), though our derivation differs in view that (A.2)

involves smooth transitions. For anyeC > 0, there exists a positive constantC > max{| c | , | c̄ |}
such that

��ζ̄i−1 − ζ0

�� ≤ eC for anyyi−1 < −C and
���ζ̄i−1 −

PM
m=0 ζm

��� ≤ eC for anyyi−1 > C.

It then follows that

yi = ν̄i−1 + 1{yi−1<−C} ζ̄i−1 yi−1 + 1{|yi−1|≤C} ζ̄i−1 yi−1 + 1{yi−1>C} ζ̄i−1 yi−1 + ςi,

where1A is the indicator function that takes value one ifA is true and zero, otherwise. Taking

absolute values of both sides gives way to

|yi| ≤ LC + 1{yi−1<−C}
��ζ̄i−1

�� |yi−1|+ 1{yi−1>C}
��ζ̄i−1

�� |yi−1|+ |ςi|
≤ LC + ζ+

i−1 |yi−1|+ |ςi|

≤ |y0|Qi−1
j=0 ζ+

j +

i−1X

k=1

(|ςk|+ LC)
Qi−1

j=k ζ+
j + |ςi|+ LC ,

whereζ+
i−1 ≡ 1{yi−1<−C} (|ζ0|+ eC) + 1{yi−1>C}

����PM
m=0 ζm

���+ eC

�
andLC is a positive

constant that exceeds|ν̄i−1|+ 1{yi−1<−C}
��ζ̄i−1

��C. We then take conditional expectation yielding

E
�|yi|

�� y0

� ≤ |y0|E
�Qi−1

j=0 ζ+
j

��� y0

�
+

i−1X

k=1

E
h
(|ςk|+ LC)

Qi−1
j=k ζ+

j

��� y0

i
+ E |ςi|+ LC

= |y0|E
�Qi−1

j=0 ζ+
j

��� y0

�
+ L∗C

"
1 +

i−1X

k=1

E
�Qi−1

j=k ζ+
j

��� y0

�#
,

whereL∗C ≡ E |ς1| + LC . We now have four cases to evaluate according to the signs ofζ0 and

ζ∗ ≡
PM

m=0 ζm. In the first case, we considerζ0 > 0 andζ∗ > 0. It then holds that

E
�|y1|

�� y0

� ≤ |y0|E
�
ζ+
0

�� y0

�
+ L∗C

≤ |y0|
�
1{y0<−C} (|ζ0|+ eC) + 1{y0>C} (|ζ∗|+ eC)

�
+ L∗C ,

and hence

E
�|y1|

�� y0 < −C
� ≤ |y0| (|ζ0|+ eC) + LC .
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If 0 < ζ0 < 1, it is always possible to chooseeC < 1− |ζ0|, so that Tweedie’s (1975) drift criterion

holds. Analogously,

E
�|y1|

�� y0 > C
� ≤ |y0| (|ζ∗|+ eC) + LC ,

and so the same result follows if0 < ζ∗ < 1. In the second case, we assume thatζ0 < 0 andζ∗ < 0.

It then follows that

E
�|y2|

�� y0

� ≤ |y0|E
�
ζ+
1 ζ+

0

�� y0

�
+ L∗C

�
1 + E

�
ζ+
1

�� y0

��
,

where

E
�
ζ+
1 ζ+

0

�� y0

�
= Pr

�
y1 < −C

�� y0 < −C
�
(|ζ0|+ eC)2

+ Pr
�
y1 > C

�� y0 < −C
�
(|ζ0|+ eC) (|ζ∗|+ eC) . (A.3)

However, for anyaC > 0, there exists some constantC that bounds from above the first term of the

right-hand side of (A.3). This means that

E
�
ζ+
1 ζ+

0

�� y0

� ≤ (|ζ0|+ eC) (|ζ∗|+ eC) + aC

= ζ0ζ∗ + (|ζ0|+ |ζ∗|) eC + e2
C + aC

satisfies Tjøstheim’s (1990) criterion (i.e., it does not exceed one) ifζ0ζ∗ < 1 given that botheC and

aC are arbitrarily small. As before, the same reasoning applies to the case in whichy0 > C, yielding

exactly the same condition. Finally, the third and fourth cases are symmetrical and hence we consider

only the case ofζ0 < 0 and0 < ζ∗ < 1. Lettingh ≡ infi∈Z+
��ζ0 ζi−1

∗
�� < 1, observe that

E
�|yh|

�� y0

� ≤ |y0|E
�Qh−1

j=0 ζ+
j

��� y0

�
+ L∗C

"
1 +

h−1X

k=1

E
�Qh−1

j=k ζ+
j

��� y0

�#
.

The argument
Qh−1

j=0 ζ+
j will differ from zero only for the paths

�
ζ+
0 , . . . , ζ+

h−1

	
whose values are

all greater thanC in magnitude. To avoid a burdensome notation, we denote these paths byPj , with

j = 1, . . . , 2h. It then ensues that

E
�Qh−1

j=0 ζ+
j

��� y0

�
=

2hX
j=1

(|ζ0|+ eC)aj (|ζ∗|+ eC)bj Pr
�Pj

�� y0

�
,

whereaj ≡
Ph

k=1 1{yh−k<−C} andbj ≡
Ph

k=1 1{yh−k>C}. As before, it is straightforward to

show that, for|y0| > C, the probability of{y` < −C} is arbitrarily small for anỳ = 1, . . . , h− 1

and Tjøstheim’s (1990) criterion depends exclusively on the values of(|ζ0|+ eC) and(|ζ∗|+ eC).

It indeed turns out thatE
�Qh−1

j=0 ζ+
j

��� y0

�
< 1 for any0 < ζ∗ < 1 such that

��ζ0 ζh−1
∗

�� < 1.

Q.E.D.

Proof of Theorem 2. The model given by (1)–(5) is continuous in the parameter vectorθ given that,

for any value oflog xi, the logistic function in (5) depends in a continuous manner onγm andcm.

Similarly, the model is also continuous inlog xi, and hence measurable for any fixed value of the

parameter vectorθ. The stationarity condition of Theorem 1 then ensures thatE
�
sup
θ∈Θ

log |ψu,i|
�

is

finite, and thusE |`u,t(θ)| < ∞ for everyθ ∈ Θ.

Q.E.D.

Proof of Theorem 3. Let zi ≡ [1, log xi−1, log ψi−1]
′, φj ≡ [ωj , αj , βj ]

′ for j = 0, . . . , M and

ρm ≡ (γm, cm)′ for m = 1, . . . , M . The parameter vector isθ = [φ′0, . . . , φ
′
M , ρ′1, . . . , ρ

′
M ]

′.
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Consider now another parameter vectoreθ ≡
heφ′0, . . . , eφ

′
M , eρ′1, . . . , eρ′M

i′
such that

φ′0zi +

MX
m=1

φ′mzi G(log xi−1; ρm) = eφ′0zi +

MX
m=1

eφ′mzi G(log xi−1; eρi). (A.4)

To show global identifiability of the FC-ACD model, we must demonstrate that Assumption 4 ensures

that (A.4) holds if and only ifθ = eθ. It follows from (A.4) that

φ′0zi − eφ′0zi −
2MX
j=1

φ̄
′
jzi G

�
log xi−1; ρ̄j

�
= 0, (A.5)

whereρ̄j = ρj for j = 1, . . . , M , ρ̄j = eρj−M for j = M + 1, . . . , 2M , φ̄j = φj for j =

1, . . . , M , andφ̄j = φj−M for j = M + 1, . . . , 2M . For the sake of notation simplicity, letϕi,j ≡
ϕ
�
log xi−1; ρ̄j

�
for j = 1, . . . , 2M . Hwang and Ding’s (1997) Lemma 2.7 implies that, ifϕj1 and

ϕj2 are not sign-equivalent forj1 ∈ {1, . . . , 2M} andj2 ∈ {1, . . . , 2M}, (A.5) holds if and only if

φ0, eφ0, andφ̄j jointly vanish for everyj ∈ {1, . . . , 2M}. Conditions C2 and C3 in Assumption 4

however preclude that possibility because they guarantee that there are no irrelevant limiting regimes.

Although this means thatϕj1 andϕj2 must be sign-equivalent, they must also come from different

models; otherwise it would contradict C2 in Assumption 4. There thus existj1 ∈ {0, . . . , M} and

j2 ∈ {M + 1, . . . , 2M} such thatϕj1 andϕj2 are sign-equivalent. Assumption 4 implies that (A.4)

holds only if φm = eφm andθm = eθm, m = 1, . . . , M given that C1 rules out the permutation

of regimes. It now remains to show thatθ0 uniquely maximizes the log-likelihood functionL(θ).

Letting ψi(θ0) = xi/εi(θ0) denote the true conditional duration process, one may rewrite, as in

Lumsdaine (1996), the maximization problem as

max
θ∈Θ

[L(θ)− L(θ0)] = max
θ∈Θ

E
�
log

ψi(θ0)

ψu,i
− ψi(θ0)

ψu,i
− 1

�
.

In addition, for anyy > 0, m(y) = y − log(y) ≤ 0, so that

E
�
log

ψi(θ0)

ψu,i
− ψi(θ0)

ψu,i

�
≤ 0.

Given thatm(y) achieves its maximum aty = 1, E[m(y)] ≤ E[m(1)] with equality holding almost

surely only if log ψi(θ0) and log ψu,i coincide with probability one. By the mean value theorem,

this is equivalent to showing that

(θ − θ0)
∂ log ψu,i

∂θ
= 0

with probability one. A straightforward application of Lemma 1 then shows that this happens if and

only if θ = θ0, completing the proof.

Q.E.D.

Proof of Theorem 4. To show thatbθu,N converges in probability toθ0, it suffices to verify whether

Newey and McFadden’s (1994) regularity conditions hold under Assumptions 1 to 4. Assumption 3

takes care of their first condition, which relates to the compactness of the parameter space. Theorems

2 and 3 ensure the validity of their second and third conditions, which require the log-likelihood

function to be continuous in the parameter vectorθ, with a unique maximum atθ0, and measurable

with respect to the duration process{xi, i ∈ N} for all θ ∈ Θ. Finally, Lemma 2 fulfills the

requirements of their last condition, i.e.,Lu,N (θ)
p→ L(θ). This means thatbθu,N

p→ θ0, so that

it now remains to demonstrate that
bθN − bθu,N

 p→ 0. We do that in Lemma 3 by showing that

sup
θ∈Θ

|Lu,N (θ)− LN (θ)| p→ 0, and hencebθN
p→ θ0.
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Q.E.D.

Proof of Theorem 5. As before, we first tackle the asymptotic normality of the QML estimator

that hinges on the unobserved log-likelihood functionLu,N (θ) and then employ Lemmas 3 and 5

to extend the result for the QML estimator based on the observed log-likelihood functionLN (θ).

Asymptotic normality of the QML estimator requires four additional regularity conditions. First, the

true parameter vectorθ0 must lie in the interior of the parameter spaceΘ. Second, the matrix

AN (θ) =
1

N

NX
i=1

�
∂2`i(θ)

∂θ∂θ′

�

exists and is continuous inΘ. Third, the matrixAN (θ)
p→ A0 for any sequenceθN such that

θN
p→ θ0. Fourth, the score vector satisfies

1

N

NX
i=1

�
∂`i(θ)

∂θ

�
d→ N (0,B0).

We next verify these conditions. Assumption 3 ensures that the first condition holds, whereas Lemma

5 substantiates the third condition. The second condition follows from the stationarity of the FC-

ACD model and from the fact that̀i(θ) is twice differentiable onθ ∈ Θ. In fact,A0 andB0 are

nonsingular due to the model identifiability (see Hwang and Ding, 1997). Finally, Lemma 4 shows

that the score condition also holds, completing the proof.

Q.E.D.

Proof of Theorem 6. The local approximation to the instantaneous quasi-log-likelihood function in

a neighborhood ofH0 is `i(θ) = − log ψi(θ)− xi/ψi(θ). Let θ = [θ′1, θ
′
2]
′ with

θ1 =
�
ω̃0, ω1, . . . , ωM−1, α̃0, α1, . . . , αM−1, β̃0, β1, . . . , βM−1, c1, . . . , cM−1, γ1, . . . , γM−1

�′

andθ2 = (δ1, δ2)
′. The resulting score vector thus is

q(θ) =
�
q(θ1)

′,q(θ2)
′�′ =

NX
i=1

 
∂

∂θ1
`i(θ)

∂
∂θ2

`i(θ)

!
=

NX
i=1

�
xi

ψi
− 1

� 
vi

ui

!

with vi = ∂ log ψi(θ)/∂θ1 andui = ∂ log ψi(θ)/∂θ2. whereas the information matrix reads

A(θ) = E
�
−∂2`i(θ)

∂θ∂θ′

�
= E

�
1

ψ2
i

∂ψi

∂θ

∂ψi

∂θ′
xi

ψi
−
�

xi

ψi
− 1

�
∂

∂θ′

�
1

ψi

∂ψi

∂θ

��

= E
�

1

ψ2
i

∂ψi

∂θ

∂ψi

∂θ′

�
= E

"
viv

′
i viu

′
i

uiv
′
i uiu

′
i

#
.

Consider next the consistent estimator for the information matrixA(θ) given by

AN (θ) =
1

2N

NX
i=1

 
viv

′
i viu

′
i

uiv
′
i uiu

′
i

!

and letdi = (v′i,u
′
i)
′. As in Godfrey (1988, page 16), theLM statistic thus is

LM = q(θ)|H0
h
AN (θ)|H0

i−1

q(θ)|H0

= N

"
NX

i=1

�
xi

ψi
− 1

�
di

# 
NX

i=1

did
′
i

!−1 " NX
i=1

�
xi

ψi
− 1

�
di

#
.

To complete the proof, it then suffices to apply Lemmas 4 and 5.

Q.E.D.
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Proof of Theorem 7. It suffices to observe that the approximation error consists of

log ψ
(N)
i − log ψi =

∞X
j=0

βj (ω̄j,N − ω̄j)−
∞X

j=JN +1

βj ω̄j,N ,

whereω̄j = ω(log xi−1−j) andω̄j,N = ωN (log xi−1−j). The first term refers to the approximation

error due to the finite number of regimes in the neural network, whereas the second term relates to

the approximation error due to the lag truncation. Lemma 6 shows that the latter is at most of order

Op

�
βJN

�
, hence it remains to show that the former approximation error is also negligible. This

indeed holds for a suitable choice ofMN . Chen and Shen (1998) show that‖ω̄j,N − ω̄j ‖ is at most

of orderOp

�
[N/ log N ]−1/3

�
provided thatM3

N log MN = O(N), whereas the sieve extremum

estimator forβ is root-N consistent and asymptotic normal.

Q.E.D.
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APPENDIX B. LEMMAS

LEMMA 1. Suppose thatxi follows a FC-ACD process withM + 1 regimes given by (1)–(5) that

satisfies Assumptions 1 to 4. Letd be a constant vector with the same dimension asθ. It then follows

that

d′
�

∂ log ψu,i

∂θ

�
= 0 a.s.

if and only if d = 0.

PROOF. We follow the same reasoning as in the proof of Lumsdaine’s (1996) Lemma 5. Define

ξi ≡ ∂ log ψi/∂θ andGm,i ≡ G(log xi; γm, cm). It is straightforward to show that

ξi = β(log xi−1)ξi−1 + κi−1,

where

κi−1 =

"
1, log xi−1, log ψi−1, G1,i−1, . . . , GM,i−1,

G1,i−1 log xi−1, . . . , GM,i−1 log xi−1, G1,i−1 log ψi−1, . . . , GM,i−1 log ψi−1,

(ω1 + α1 log xi−1 + β1 log ψi−1)
∂G1,i−1

∂γ1
, . . . ,

(ωM + αM log xi−1 + βM log ψi−1)
∂GM,i−1

∂γM
,

(ω1 + α1 log xi−1 + β1 log ψi−1)
∂G1,i−1

∂c1
, . . . ,

(ωM + αM log xi−1 + βM log ψi−1)
∂GM,i−1

∂cM

#′
,

so thatd′ξi = d′β(log xi−1)ξi−1 + d′κi−1. It then follows by assumption thatd′ξi = 0 and

d′ξi−1 = 0 with probability one, implying thatd′κi−1 = 0 with probability one. In view thatκi is

nondegenerate,d′ξi = 0 with probability one if and only ifd = 0.

Q.E.D.

LEMMA 2. If xi follows a FC-ACD process withM + 1 regimes given by (1)–(5) that satisfies

Assumptions 1 to 4, thensup
θ∈Θ

|Lu,N (θ)− L(θ)| p→ 0.

PROOF. We derive this result by building on the proof of Lemma 4.3 in Ling and McAleer (2003).

Let g(Xi, θ) = `u,i(θ) − E [`u,i(θ)], whereXi = (xi, xi−1, xi−2, . . .)
′. Theorem 2 implies

thatE
�
sup
θ∈Θ

|g(Xt, θ)|
�

< ∞. The result then ensues from the fact that Theorem 3.1 in Ling and

McAleer (2003) implies thatsup
θ∈Θ

���N−1PN
i=1 g(Xi, θ)

��� = op(1) in view thatg(Xt, θ) is stationary

with zero mean.

Q.E.D.

LEMMA 3. If xi follows a FC-ACD process withM + 1 regimes given by (1)–(5) that satisfies

Assumptions 1 to 4, thensup
θ∈Θ

|Lu,N (θ)− LN (θ)| p→ 0.

PROOF. We follow the proof of the first result in Lumsdaine’s (1996) Lemma 6. The conditions in

Theorem 1 ensure thatlog ψu,0 is well defined and that, as the constantk →∞,

Pr

�
sup
θ∈Θ

(log ψu,0) > k

�
→ 0.
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Combining (7) and (9) gives way to

log ψu,i − log ψi = (log ψu,0 − log ψ0)

iY
j=1

β(log xj).

Defining two finite positive constantsδ andδ̄ such thatlog ψi > δ andβ(log xi) ≤ δ̄ then leads to

0 ≤
�����N

−1/2
NX

i=1

log

�
ψu,i

ψi

������

p

≤
"
N−1/2

NX
i=1

����log

�
ψu,i

ψi

�����
#p

=

"
N−1/2

NX
i=1

log

�
ψu,0

ψi

� iY
j=1

β(log xj)

#p

≤ N−p/2

�
log

�
ψu,0

δ

��p
"

NX
i=1

iY
j=1

β(log xj)

#p

.

The upper bound of the latter expression converges in probability uniformly to zero by Theorem 1

and Slutsky’s Theorem, and hence

Pr

"
sup
θ∈Θ

NX
i=1

|log ψu,i − log ψi| > k

#
→ 0

as the sample size grows for any constantk > 0. It remains to show that

sup
θ∈Θ

�����N
−1/2

NX
i=1

�
xi

ψu,i
− xi

ψi

������
p→ 0.

To that end, we first observe that
"
N−1/2

NX
i=1

����xi

�
ψi − ψu,i

ψu,iψi

�����
#p

≤ 1

Np/2δ2p

"
NX

i=1

|xi (ψi − ψu,i)|
#p

=
1

Np/2δ2p

"
NX

i=1

x2
i

�����(ψ0 − ψu,0)

iY
j=1

β(log xj)

�����

#p

.

Defineξi ≡
���(ψ0 − ψu,0)

Qi
j=1 β(log xj)

���. Under the conditions of Theorem 1, the duration pro-

cess is a strictly stationary and ergodic withE |xi| < ∞. In addition, it holds that sup
1≤i≤N

|ξi| ≤ CN ,

whereCN is some finite constant, and1
N

PN
i=1 |ξi| = op(1). To conclude the proof, it now suffices

to apply Ling and McAleer’s (2003) Lemma 4.5 to show thatN−1PN
i=1 xiξi = op(1), and hence

1

Np/2δ2p

"
NX

i=1

xi

�����(ψ0 − ψu,0)

iY
j=1

β(log xj)

�����

#p

p→ 0.

Q.E.D.

LEMMA 4. The conditions of Theorem 5 ensure not only thatE
h

∂
∂θ

`i(θ)
��
θ=θ0

i
exists and is finite,

but also thatB0 is finite and positive definite, and that

1√
N

NX
i=1

∂`i(θ)

∂θ

����
θ=θ0

d→ N (0,B0).

PROOF. The existence ofE
h

∂
∂θ

`i(θ)
��
θ=θ0

i
< ∞ immediately follows from the conditions of

Theorem 1. Letting then

∇0 `u,i ≡ ∂`u,i(θ)

∂θ

����
θ=θ0

and ∇0 log ψu,i ≡ ∂ log ψu,i

∂θ

����
θ=θ0
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yields

∇0 `u,i∇0 `′u,i =
�
ε2i − 2εi + 1

�∇0 log ψu,i∇0 log ψ′u,i.

Let δ < ∞ be a positive constant such thatlog ψu,i > δ. Under the strict stationarity condition of

Theorem 1, we may employ the same reasoning as in the proof of Lemma 1 in Boussama (2000),

giving way to

E
�∇0 log ψu,i∇0 log ψ′u,i

�
< K1,

whereK1 is a constant matrix with finite elements, and

E
�∇0 `u,i∇0 `′u,i

� ≤ K1 E
�
ε2i − 2εi + 1

�
= K1 (µ2 − 1) ,

which is finite given thatµ2 ≡ E
�
ε2i
�

< ∞. This means thatB0 is finite. The conditions of

Theorems 1 and 3 also ensure thatB0 is positive definite. It now remains to show the asymptotic

normality of the score vector. LetSN =
PN

i=1 k′∇0 `u,i, wherek is a constant vector. It then

follows thatSN is a martingale with respect to the filtrationFi with a positive expected value, and

hence

N−1/2SN
d→ N �0,k′B0k

�

by Stout’s (1974) central limit theorem. A straightforward application of the Cramér-Wold device

then yields

N−1/2
NX

i=1

∂`u,i(θ)

∂θ

����
θ=θ0

d→ N (0,B0) ,

whereas it is also possible to show, as in the proof of Lemma 3, that

N−1/2
NX

i=1

�����
∂`u,i(θ)

∂θ

����
θ=θ0

− ∂`i(θ)

∂θ

����
θ=θ0

�����
p→ 0.

We thus conclude that

N−1/2
NX

i=1

∂`i(θ)

∂θ

����
θ=θ0

d→ N (0, B0),

completing the proof.

Q.E.D.

LEMMA 5. Under the conditions of Theorem 5, both

sup
θ∈Θ

�����
1

N

NX
i=1

∂2`u,i(θ)

∂θ∂θ′
− E

�
∂2`u,i(θ)

∂θ∂θ′

������ and sup
θ∈Θ

�����
1

N

NX
i=1

�
∂2`u,i(θ)

∂θ∂θ′
− ∂2`i(θ)

∂θ∂θ′

������

converge in probability to zero.

PROOF. If we define

∇2
0 `u,i ≡ ∂2`u,i(θ)

∂θ∂θ′

����
θ=θ0

and ∇2
0 log ψu,i ≡ ∂2 log ψu,i

∂θ∂θ′

����
θ=θ0

,

then

∇2
0 `u,i =

�
xi

ψu,i
− 1

�
∇2

0 log ψu,i −
�

xi

ψu,i

�
∇0 log ψu,i∇0 log ψ′u,i.

Because∇2
0 log ψu,i consists exclusively of second-order terms, it ensues from the conditions of

Theorem 1 thatE
�∇2

0 log ψu,i

� ≤ K2, whereK2 is a constant matrix with finite elements. This

implies that

∇2
0`u,i ≤ (εi − 1)K2 − εi K1,
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so thatE
�∇2

0`u,i

�
is finite. By Theorem 3.1 in Ling and McAleer (2003),

sup
θ∈Θ

�����
1

N

NX
i=1

∂2`u,i(θ)

∂θ∂θ′
− E

�
∂2`u,i(θ)

∂θ∂θ′

������
p→ 0.

We omit the proof of the second result given that it very much resembles the proof of Lemma 3.

Q.E.D.

LEMMA 6. If the semiparametric FC-ACD process is stationary with finite second moments and

β−mixing with exponential decay, the approximation error due to the lag truncation is negligible in

that
∞X

j=JN +1

βj ω̄j,N ≤ Op

�
βJN

�
. (B.6)

PROOF. We first show that both the expectation and variance of the left-hand side of (B.6) converge

to zero as the sample size increases and then complete the proof applying Chebyshev’s inequality.

Stationarity implies that

E

0
@

∞X
j=JN +1

βj ω̄j,N

1
A = E (ω̄1,N )

∞X
j=JN +1

βj = E (ω̄1,N )
βJN +1

1− β

and that

V

0
@

∞X
j=JN +1

βj ω̄j,N

1
A =

∞X
j=JN +1

β2j V (ω̄j,N ) + 2
XX

JN +1≤j<k<∞
βj+kCov(ω̄j,N , ω̄k,N ) .

The first term of the right-hand side is of orderO
�
β2JN

�
. As for the second term, we take benefit

from the fact that, by assumption, the semiparametric FC-ACD process isβ−mixing with exponential

decay to show that it is at most of the same order as the first term. In particular, the fact that the mixing

coefficient is of orderO
�
ηN
�
, with 0 < η < 1, implies that

������
XX

JN +1≤j<k<∞
βj+kCov(ω̄j,N , ω̄k,N )

������
≤ V (ω̄1,N )

XX

JN+1≤j<k<∞
βj+k η

δ
1+δ

(j−k)

= V (ω̄1,N )

∞X
j=JN +1

βj η
δ

1+δ
j

∞X

k=j+1

�
β η−

δ
1+δ

�k

= V (ω̄1,N )

∞X
j=JN +1

βj η
δ

1+δ
j

�
β η−

δ
1+δ

�j+1

1− β η−
δ

1+δ

=
V (ω̄1,N ) β η−

δ
1+δ

1− β η−
δ

1+δ

∞X
j=JN +1

β2j

=
V (ω̄1,N ) η−

δ
1+δ β2JN+3

�
1− β η−

δ
1+δ

�
(1− β2)

= O
�
β2JN

�
,

for someδ > 0. This means that the expectation and standard deviation of (B.6) are both at most

of orderO
�
βJN

�
, and hence the approximation error due to the lag truncation is at most of order

Op

�
βJN

�
by Chebyshev’s inequality.

Q.E.D.
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Table 1

Descriptive statistics of IBM price durations

Price durations refer to the time interval necessary to observe a cumulative change in the mid-price of at

least $0.125. We document the descriptive statistics for both plain and diurnally adjusted durations for

the period running from September to November 1996. The latter corresponds toxi = Di/%(ti), where

Di is the plain duration in seconds and%(·) denotes the diurnal factor as measured by first averaging the

durations over thirty minutes intervals for each day of the week and then fitting a cubic spline with nodes

at each half hour. The in-sample period considers the first 4,484 observations of the data set, whereas the

remaining 2,244 observations compose the out-of-sample period.

adjusted durations plain durations

in-sample out-of-sample in-sample out-of-sample

sample size 4,484 2,244 4,484 2,244

mean 1.2387 0.5682 262.55 119.74

standard deviation 1.6470 0.7541 422.67 172.96

minimum 0.0039 0.0033 1 1

first quartile 0.2902 0.1540 51 30

median 0.7137 0.3236 128 60

third quartile 1.5399 0.6744 300 139

maximum 29.121 11.286 7,170 2,865

overdispersion 1.3296 1.3271 1.6098 1.4445
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Table 2

Estimation results for IBM price durations

Price durations refer to the time interval necessary to observe a cumulative change in the mid-price of at least

$0.125. The data are diurnally adjusted durations from September to November 1996, namely,xi = Di/%(ti),

whereDi is the plain duration in seconds and%(·) denotes the diurnal factor as measured by first averaging the

durations over thirty minutes intervals for each day of the week and then fitting a cubic spline with nodes at

each half hour. We then estimate by quasi-maximum likelihood the FC-ACD model with two regimes for the

first 4,484 observations of the sample. The lower panel reports the p-values of the LM test for an extra regime,

the in-sample and out-of-sample values of the logarithm of the quasi-likelihood function, and the maximum and

minimum values of the sample autocorrelation functions of the in-sample and out-of-sample residuals from order

1 to 200, respectively.

one regime two regimes

estimate standard error estimate standard error

ω0 0.0501 0.0015 0.0201 0.0028

ω1 0.0152 0.0362

α0 0.0867 0.0040 0.0609 0.0132

α1 0.1118 0.0158

β0 0.8929 0.0043 0.9301 0.0062

β1 -0.2331 0.0290

c1 0.3210 0.0160

γ1 496.99 0.0004

LM test for extra regime (p-value) 0.0000 0.3765

log-likelihood in-sample -1.1247 -1.1172

out-of-sample -0.3788 -0.3732

maximum ACF in-sample 0.0616 0.0352

out-of-sample 0.0918 0.0829

minimum ACF in-sample -0.0326 -0.0386

out-of-sample -0.0608 -0.0634
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