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Abstract

Social demand functions result from the budget constrained maximization of “so-
cial preferences” or “other regarding preferences.” These preferences are non-selfish
in the sense that they also depend on other consumers’ wealth. This paper addresses
the robustness to wealth externalities of the classical general equilibrium model with
finite numbers of goods and consumers. The existence of equilibrium, the genericity of
regular economies and, at those regular economies, the finite odd number of equilibria
and the local continuity of equilibrium selection maps, and finally the identification
(or diffeomorphism) of the equilibrium manifold with a Euclidean space are shown
to be satisfied independently of the size of those wealth externalities provided total
resources are variable.
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1. Introduction

The goal of this paper is to explore the robustness to wealth externalities of the general
equilibrium model with finite numbers of goods and consumers. The study of general
forms of externalities started immediately with the axiomatic approach adopted by Arrow,
Debreu and McKenzie in the 1950s but results for very general forms of externalities have
been limited to discussions of the existence of equilibrium and the validity of the theorems
of welfare economics1. The only exception I am aware of is a paper by Bonnisseau and
del Mercato [5] that proves the genericity of regular economies.

I show in the current paper that, while it may be difficult to come up with general results
for the most general forms of externalities, the situation is radically different for the less
general wealth externalities. This phenomenon is quite remarkable given the emphasis that
has been placed in the past 15 years on the relevance of wealth externalities for economic
theory. First, two recent expository papers by Fehr and Gächter [11] and by Sobel [20]

∗Department of Economics, PUC-Rio, Brazil and Department of Economics, University of York, UK.
1See in particular the references made in this paper to McKenzie, Arrow and Hahn, Shafer and Sonnen-

schein for existence [1, 13, 19] and to Osana, Kranich and Rader [12, 16, 17] on the welfare theorems for
models with finite numbers of goods and consumers. Section 5.1 of the recent paper by Dufwenberg et al.
[10] also contains a short update of the literature on externalities. For measure spaces of consumers, see
the paper by Noguchi and Zame [15] and its references.
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emphasize the appropriateness of “social preferences” or “other-regarding preferences” or
“ORP” over classical selfish preferences and other forms of externalities. Second, the study
by Dufwenberg et al. [10] of the theorems of welfare economics in the case of separable
social preferences marks the beginning of a systematic study of the general equilibrium
model with finite numbers of consumers and goods at the level of generality of Debreu’s
Theory of Value [6]. Finally, the paper by DeMarzo et al. [8] identifies rational bubbles
to some of the equilibria of an overlapping-generations model with wealth externalities.
That paper may stand apart because it involves an overlapping-generations model instead
of a standard general equilibrium model. However, the many examples of simple models
that bring invaluable insights into the properties of more complex models suggest that
even bubbles (in overlapping-generations models) may benefit from a study of the simpler
general equilibrium model with wealth externalities.

In this paper, I show that the approach through the equilibrium manifold and the
natural projection that I first applied to the classical exchange model (i.e., without ex-
ternalities) in [2] extends almost unhampered to wealth externalities under very general
assumptions regarding consumers’ individual demand functions. It is therefore possible to
establish that the following properties are satisfied by the exchange model with wealth
externalities provided that total resources are variable: existence of equilibrium for all
economies; genericity of regular economies; at regular economies, finiteness and oddness
of the number of equilibria; also at regular economies, local continuity of equilibrium selec-
tion maps; identification (or diffeomorphism) of the equilibrium manifold with a Euclidean
space; pathconnectedness of the set of equilibrium allocations. These properties do not
depend on the size and extent of externalities.

This paper is organized as follows. Section 2 is devoted to the main assumptions
and definitions regarding the social exchange model with finite numbers of goods and
consumers and also variable total resources, the main characteristic of the model being the
dependence of every consumer’s demand function on the wealth of the other consumers.
Properties associated with the equilibrium manifold are proved in Section 3 while those
related to the natural projection map from the equilibrium manifold into the parameter
(or endowment) space are dealt with in Section 4. Concluding comments end this paper
with Section 5.

2. The social exchange model

Prices and their two normalizations

There is a finite number ` of goods. The consumption space X of every consumer is the
strictly positive orthant of the commodity space R`. Prices p = (pj) ∈ X are all strictly
positive. The default assumption is to normalize prices by the numeraire convention
p` = 1. The set of numeraire normalized prices is denoted by S = R`−1

++×{1}. The study of
the behavior of a consumer’s demand when some relative prices tend to zero is significantly
easier with the alternative simplex normalization: the set of simplex normalized prices is
the open simplex SΣ = {p ∈ X | ∑j pj = 1}. The closure SΣ = {p ∈ R`+ |

∑
j pj = 1}, is

compact.
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Social demand functions

The price-income vector b = (p, w1, . . . , wi , . . . , wm) where p ∈ S and (w1, . . . , wm) ∈
Rm++ respectively describes the price of every good and the wealth of every consumer. The
set of price-income vectors b = (p, w1, . . . , wi , . . . , wm) is denoted by B = S × Rm++.

A classical demand function is a map fi : S × R++ → X that associates with the
price vector p ∈ S and the consumer i ’s wealth wi the demand fi(p, wi) ∈ X. A social
demand function is a map fi : B → X that associates with the price-income vector
b = (p, w1, . . . , wi , . . . , wm) the demand fi(b). A classical demand function fi for consumer
i is a social demand function that does not depend on the wealths of the other consumers
w−i = (w1, . . . , wi−1, wi+1, . . . , wm) ∈ Rm−1

++ .

Definition 1. The following properties are defined for consumer i ’s (social) demand func-
tion fi :

(W ) Walras law: p · fi(b) = wi for any b ∈ B.

(S) Smoothness: fi is smooth.

(A) Boundary behavior: Let the sequence bn = (pn, w n1 , . . . , w
n
m) (where prices pn sim-

plex normalized) tend to b0 = (p0, w 0
1 , . . . , w

0
m) ∈ SΣ×Rm++ where some coordinates

of p0 are equal to 0. Then,

lim sup
n→+∞

‖fi(bn)‖ = +∞.

The social exchange models

The social exchange model is defined by the m-tuple of social demand functions (fi)

where all demand functions satisfy (S) and (W ) and one function at least (A). The initial
endowment vector ω = (ωi) ∈ Xm represents consumers’ endowments before exchange
takes place. The set of these endowments is denoted by Ω = Xm and is known as the
endowment or parameter space. Note that total resources r =

∑
i ωi are variable.

The map ϕ : S × Ω → B associates with every pair (p, ω) ∈ S × Ω the price-income
vector b ∈ B where b = (p, p · ω1, . . . , p · ωm).

The map f : B → S ×Ω is defined by

f (b) = (p, f1(b), . . . , fm(b))

where b = (p, w1, . . . , wm) ∈ B.
The aggregate excess demand vector z(p, ω) ∈ R` associated with the pair (p, ω) ∈

S ×Ω is by definition equal to

z(p, ω) =
∑

1≤i≤m
fi(ϕ(p, ω))−

∑
i

ωi .

The classical exchange model is a special case of the social exchange model where every
consumer’s demand function does not depend on the wealth of the other consumers.

Definition 2. i) The pair (p, ω) ∈ S ×Ω is an equilibrium if z(p, ω) = 0.
ii) The equilibrium manifold E is the subset of S×Ω defined by equation z(p, ω) = 0.
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iii) A no-trade equilibrium (p, ω) ∈ S × Ω satisfies the relation ωi = fi(ϕ(p, ω)) for
1 ≤ i ≤ m.

iv) The natural projection π : E → Ω is the restriction of the projection map S×Ω→ Ω

to the equilibrium manifold E.

A no-trade equilibrium is evidently an equilibrium. The subset of the equilibrium man-
ifold E consisting of the no-trade equilibria is denoted by T . The equality T = f (B) is
obvious. The set of no-trade equilibria T will be seen to play a pivotal role in the study
of the exchange model in two areas at least: 1) Structure of the equilibrium manifold E;
2) Structure of the set of equilibrium allocations as the image π(T ) of the set of no-trade
equilibria by the natural projection π : E → Ω.

The notation ϕ is also used for the restriction to the equilibrium manifold E of the
map ϕ : S ×Ω→ B where ϕ(p, ω1, . . . , ωm) = (p, p · ω1, . . . , p · ωm).

3. The equilibrium manifold

Local structure

The name of equilibrium manifold given to the subset E of S × Ω suggests that this set
is actually a smooth submanifold of S ×Ω. This is confirmed by:

Proposition 3. The equilibrium manifold E is a smooth submanifold of S×Ω of dimension
`m.

Proof. The proof of Proposition 4.9 in [4] for the case of classical demand functions works
also here.

For x = (x1, . . . , x `−1, x `) ∈ R`, denote by x̄ = (x1, . . . , x `−1) ∈ R`−1 the projection
of x in R`−1 defined by its first ` − 1 coordinates. With (p, ω) ∈ S × (R`)m, let b =

(p, p ·ω1, . . . , p ·ωm) ∈ S×Rm and ω̄−m = (ω̄1, . . . , ω̄m−1) ∈ (R`−1)m−1. Define the map
θ : S × (R`)m → (S × Rm)× (R`−1)m−1 by θ(p, ω) =

Ä
(p, p · ω1, . . . , p · ωm), ω̄−m

ä
).

Proposition 4. Let (p∗, ω∗) ∈ E. There exist open neighborhoods U and V of (p∗, ω∗) ∈ E
and θ(p∗, ω∗) ∈ B× (R`−1

++ )m−1 respectively that are diffeomorphic by the map θ restricted
to the open set U.

Proof. Let ρ : B × (R`−1)m−1 → S × (R`)m be the map ρ
Ä
(p, w1, . . . , wm), ω̄−m

ä
=

(p′, ω′1, . . . , ω
′
m−1, ω

′
m) where p′ = p, ω′i = (ω̄i , wi − p̄ · ω̄i) for 1 ≤ i ≤ m − 1 and

ω′m =
∑

1≤i≤m fi(b)−∑
1≤i≤m−1 ω

′
i .

It follows from ρ
Ä
θ(p∗, ω∗)

ä
= (p∗, ω∗) ∈ E and the continuity of the map ρ that

there exists an open neighborhood U ′ in S × (R`++)m of (p∗, ω∗) such that V = ρ−1(U ′)

is contained in B × (R`−1
++ )m−1. Let U = U ′ ∩E. It follows from the formulas defining the

maps θ and ρ that the restrictions of ρ◦θ and θ◦ρ to U and V respectively are the identity
maps of U and V . These two open sets are therefore diffeomorphic since the maps θ and
ρ are smooth.

The open neighborhood U of (p∗, ω∗) ∈ E is known as a chart of the smooth manifold
E at the point (p∗, ω∗). A local coordinate system for the equilibrium manifold E (i.e., a set
of coordinates for the open set U) is therefore defined by

Ä
(p̄, w1, . . . , wm), ω̄−m

ä
∈ (R`−1

++×
Rm++)× (R`−1

++ )m−1. These coordinate system is obtained by composing the restriction of
the map θ to U with the projection of S = R`−1

++ × {1} onto R`−1
++ .

4



The set of no-trade equilibria

We will see shortly that the structure of the set of no-trade equilibria T is essential in the
study of the equilibrium manifold E.

Proposition 5. i) The map f : B → E is a smooth embedding with image f (B) = T .
ii) The set of no-trade equilibria T is a smooth submanifold of E diffeomorphic to B.

Proof. Same as for Proposition 5.2 in [4].

Corollary 6. The set of equilibrium allocations π(T ) is pathconnected.

Proof. The image π(T ) of the pathconnected set T by the continuous map π : E → Ω

is pathconnected.

Remark 1. The pathconnectedness of the set of equilibrium allocations π(T ) with variable
total resources is the strongest global topological property that can be proved short of
much stronger assumptions regarding the individual social demand functions fi : B → X.
Because the two theorems of welfare economics do not hold true here, the set of equilib-
rium allocations cannot be parameterized by consumers’ utility levels and total resources.

The global structure of the equilibrium manifold

Without sign restrictions on wealth and consumption, the diffeomorphism θ : U → V in
the proof of Proposition 4 can easily be extended to the full equilibrium manifold E to
define a global diffeomorphism. See for example Corollary 5.9 in [4] for the classical case.

Sign restrictions on wealth and consumption make more sense here than in the classical
case because of the difficulty or even impossibility of giving some economic consistence
to externalities associated with negative wealth. This justifies working out a proof of the
diffeomorphism property despite the difficulties created by those sign restrictions. In the
classical case with sign restrictions, the diffeomorphism of the equilibrium manifold with
a Euclidean space results from Theorem 3 of [2]. See also [18] for a different proof. The
proof given here is new and takes advantage of recent mathematical results on fibrations.
Written for the social exchange model, it also works for the classical case. This proof
starts by two lemmas.

Lemma 7. The map ϕ : E → B is a surjective submersion.

Proof. Surjectivity follows from Proposition 5, (ii).
By definition, the map ϕ is a submersion at (p, ω) if its derivative (or tangent map)

Dϕ(p, ω) at (p, ω) is onto (i.e., a surjection). A projection map is a special case of
a submersion. (The converse is also true locally.) With local coordinates for E and B
defined by

Ä
(p̄, w1, . . . , wm), ω̄−m

ä
∈ U and (p̄, w1, . . . , wm) respectively, it results from

ϕ
Ä
(p̄, w1, . . . , wm), ω̄−m

ä
→ (p̄, w1, . . . , wm)

that the map ϕ (restricted to U) is a projection and, therefore, a submersion.

Lemma 8. Every fiber ϕ−1(b) with b ∈ B is diffeomorphic to R(`−1)(m−1).
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Proof. Let b = (p, w1, . . . , wm) ∈ B. The fiber ϕ−1(b) consists of the points (p, ω) ∈
S × (R`)m with ω = (ω1, . . . , ωm) ∈ (R`)m such that p · ωi = wi for 1 ≤ i ≤ m,∑
i ωi =

∑
i fi(b) and ωji > 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ `. This set of linear equalities

and strict inequalities defines a convex set. That set is non empty since it contains the
point f (b) and its relative interior has dimension (`− 1)(m− 1) as follows from the local
chart U in Proposition 4. The fiber ϕ−1(b) is therefore diffeomorphic to R(`−1)(m−1) as a
non-empty open convex subset of R(`−1)(m−1).

Proposition 9. The equilibrium manifold E is diffeomorphic to R`m.

Proof. It follows from Meigniez [14], Corollary 31 that the surjective submersion ϕ : E →
B with fibers diffeomorphic to a Euclidean space is a locally trivial fiber map. The base
space B being contractible as diffeomorphic to a Euclidean space, the fibration defined by
the map ϕ : E → B is therefore trivial. The equilibrium manifold E is diffeomorphic to
the Cartesian product B × R(`−1)(m−1).

As in the classical case, the equilibrium manifold E is therefore a disjoint union of
convex fibers, each fiber containing a unique no-trade equilibrium.

Remark 2. The properties of this section depend crucially on the specific forms of exter-
nalities as depending on consumers’ wealth only. These properties do not extend to more
general forms of consumption externalities.

4. The natural projection

Proposition 10. The natural projection π : E → Ω is:

i) smooth;
ii) proper;
iii) its topological degree is equal to +1 for suitable orientations of E and Ω;
iv) its modulo 2 degree is equal to 1.

Proof. i) Smoothness. The natural projection π : E → Ω can be viewed as a map from
R`m into itself that is smooth because that map is the composition of a projection map
that is smooth with the embedding of the equilibrium manifold E in S×Ω, a map that is
also smooth because E is a smooth submanifold of S ×Ω.

ii) Properness. Let K be a compact subset of Ω. In order to prove that the set
π−1(K) is compact, it suffices to show that every sequence xn = (pn, ωn) in π−1(K)

has a convergent subsequence. Here, the simplex normalization is used for prices. The
sequence (ωn) belonging to the compact set K, there is no loss of generality in considering
a subsequence still denoted by (ωn) that converges to a limit ω∗ ∈ K.

The closed simplex SΣ is also compact. We can therefore assume without loss of
generality that the sequence pn has a convergent subsequence with limit some p∗ ∈ SΣ. If
p∗ belongs to the interior SΣ, i.e., to the strictly positive (price) simplex, the pair (p∗, ω∗)

is an equilibrium by the continuity of the equations defining an equilibrium and also belongs
to the preimage π−1(K).

Assume now that the limit p∗ belongs to the boundary ∂S̄Σ = S̄Sigma \ SΣ and let us
get a contradiction.
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It follows from the compactness of K that its image by the projection map ω =

(ω1, . . . , ωm) → ωi is a compact subset of X = R`++. There exist Ai and Bi in X such
Ai ≤ ωi ≤ Bi for all ω = (ωi) ∈ K and 1 ≤ i ≤ m.

All the coordinates of the demand fi(bn) where bn = (pn, w n1 , . . . , w
n
m) are strictly

positive. The equilibrium equation
∑
i fi(b

n) =
∑
i ω
n
i therefore implies the inequality

fi(b
n) ≤ ∑

i Bi for i with 1 ≤ i ≤ m.
It follows from Ai ≤ ω)in that pn · Ai ≤ pn · ωni . At the limit, this gives the inequality

p∗ · Ai ≤ w ∗i . All the coordinates of Ai are strictly positive and one coordinate of p∗ at
least is different from zero and, therefore, strictly positive. This implies p∗ · Ai > 0 and,
therefore, w ∗i is strictly positive for 1 ≤ i ≤ m.

Pick i arbitrary. Property (A) now implies lim supn→∞ ‖fi(bn)‖ = +∞, a contradiction
with the fact fi(bn) is bounded from above.

iii) and iv): Degrees. The topological and modulo 2 degree are homotopy invari-
ants of continuous (and therefore smooth) proper maps. Let f ′i : S × R++ → X be a
(classical) demand function that satisfy (S), (W) and (A). Extend f ′i to B by setting
f ′i (b) = f ′i (p, wi) with b = (p, w1, . . . , wi , . . . , wm). One checks readily that the function
fi(t, ·) = (1−t)fi+tf ′i with 0 ≤ t ≤ 1 satisfies (S), (W) and (A). Let Et be the equilibrium
manifold associated with the m-tuple of demand functions (fi(t, ·)). Let πt : Et → Ω the
corresponding natural projection and εt : B × R(`−1)(m−1) → Ω the composition of the
diffeomorphism of B×R(`−1)(m−1) with Et of Proposition 9 with the natural projection πt .
By varying t from 0 to 1, the same argument as in [3] proves that the maps εt define a
proper homotopy between ε0 and ε1. These two maps have therefore the same topological
and modulo 2 degrees. It suffices to observe that π′ : E1 → Ω is the natural projection for
classical demand functions. It then suffices to apply Proposition 7.12 and 7.14 of [4].

Properties (i) and (ii) of Proposition 10 imply that the natural projection π : E → Ω

is a “ramified” covering of Ω. Before translating the property of being a ramified covering
in a more accessible language, a few definitions are in order.

A regular equilibrium x = (p, ω) ∈ E is a regular point of the natural projection π :

E → Ω. This is equivalent to the derivative (or tangent map) Dπ(x) : R`m → R`m being
invertible. The set of regular equilibria is a subset of the equilibrium manifold E denoted
by R. That set is an open subset of the equilibrium manifold E. A critical equilibrium is an
equilibrium that is not regular. The set of critical equilibria is the complement C = E \R
of the set of regular equilibria in the equilibrium manifold. The set of critical equilibria C

is closed in the equilibrium manifold E.
The element ω ∈ Ω is a singular economy if it is a singular value of π, i.e., if there

exists a critical point (i.e., a critical equilibrium) x ∈ R with ω = π(x). The set of singular
values of π is denoted by Σ. It is a subset of Ω. The definitions imply Σ = π(C).

The element ω ∈ Ω is a regular economy (i.e., a regular value of π) if it does not
belong to Σ, the set of singular economies. The set of regular economies is denoted by
R and this set is the complement in Ω of the set of singular economies: R = Ω \Σ.

Proposition 11. i) The set of singular values Σ of the map π : E → Ω is closed with
measure zero in Ω.

ii) The set of regular values R = Ω \Σ is open with full measure in Ω.
iii) The set π−1(ω) is finite for ω ∈ R and its elements are locally smooth functions of

ω ∈ R.
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iv) The number of equilibria is constant over each connected component of the set of
regular values R.

v) The number of elements of π−1(ω) is odd for ω ∈ R.
vi) Equilibrium exists for all ω ∈ Ω.

Proof. It suffices to reproduce the proofs in Chapter 7 of [4].

Remark 3. Properties (i), (ii), (iii), (iv) and (vi) of Proposition 11 were proved for the
classical case by Debreu [7]. Property (v) is due to Dierker [9].

5. Concluding comments

The social exchange model has therefore the same properties as the classical exchange
model provided total resources are variable when every consumer’s individual demand
function satisfy (S) and (W ) and one consumer’s demand function also satisfies (A).
In the classical exchange model, these properties extend to the important case of fixed
total resources if consumers’ preferences can be represented by strictly quasi-concave
utility functions, one consumer’s utility function having everywhere non-zero Gaussian
curvature. The problem of extending those properties to the case of fixed total resources
for the classical and social exchange models considered in the current paper is open.
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