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Abstract

In a repeated unobserved endowment economy in which agents negotiate long-

term contracts with a financial intermediary, we study the risk-sharing implications

of the interaction between incentive compatibility constraints (due to private infor-

mation) and participation constraints (due to one-sided commitment). In particular,

we assume that after a default episode, agents consume their endowment and re-

main in autarky forever. We find that once they are away from autarky today, if the

probability of drawing the highest possible endowment shock is sufficiently small, the

optimal contract prevents agents from reaching autarky tomorrow and, thus, from

being “impoverished”. Moreover, an invariant cross-sectional distribution of life-time

utilities (or values) exists. A numerical example shows that the mass of agents living

in autarky can be zero in the limit.
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1 Introduction

This paper studies optimal risk sharing contracts in an endowment economy with pri-

vate information and one-sided commitment. Each risk-averse agent is endowed with a

sequence of perishable goods, distributed identically and independently over time and

agents. A long-term contract can be signed with a risk-neutral financial intermediary (or

principal). Private information imposes incentive compatibility constraints, as in Thomas

and Worrall [1990]. One-sided commitment introduces a set of ex post participation con-

straints. As in Thomas and Worrall [1988] and Kocherlakota [1996], we assume that after

repudiating the contract, agents consume their endowment and then remain in autarky

forever. In contrast with those papers, we assume that the principal can credibly commit

to the long-term contract.

Focusing on both private information and one-sided commitment allows this paper to

encompass two important contributions of the existing literature. On the one hand,

Thomas and Worrall [1990] study the implications of private information for risk sharing

in an endowment economy assuming full commitment. On the other hand, Ljungqvist

and Sargent [2012]’s version of Thomas and Worrall [1988] only considers one-sided com-

mitment in the context of complete information. When private information is the sole

contracting friction, the principal spreads continuation values in order to provide incen-

tives. The so-called immiseration result arises, in which the continuation values become

arbitrarily negative with a probability of one. In sharp contrast, when commitment is

instead one-sided under complete information, continuation values increase over time,

reaching a finite limit in finite time when full insurance is achieved.1

Our model also echoes some earlier work by Phelan [1995], who considers both incentive

and participation constraints, although with a different modeling of participation, in

particular, ex-ante participation constraints, which simply impose a lower bound on the

set of possible continuation values. Hence, they do not depend on current realizations

of the endowment. In contrast, we consider ex post participation constraints that allow

1Thomas and Worrall [1988] informally mention this result, although they perform their analysis
assuming that the principal can also renege on the contract.
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agents to consume their endowment after a default episode.2 Despite some similarities

with previous contributions, the interaction between ex post participation and incentive

compatibility constraints, which is the focus of this paper, has novel implications.

Our main result (Proposition 1 in Section 4) states that once away from the autarky state

today (i.e., once agents are promised a value higher than the value of autarky), if the

probability of drawing the highest possible endowment shock is small enough, the optimal

contract prevents agents from reaching the autarky state tomorrow. In other words, the

optimal contract prevents agents from being “immiserated” (or “impoverished”) in the

sense that the optimal contract does not deliver the value of autarky tomorrow, which is

the greatest lower bound on the set of feasible continuation values.

Moreover, our numerical simulations suggest that the mass of agents living in autarky can

be zero in the limit, even if the probability of drawing the highest possible endowment

shock is bounded away from zero. In particular, we provide a simple numerical example

showing that once an agent is away from the autarky state, if a long sequence of the

lowest possible endowment shock is realized, continuation values associated with this

sequence converge to a value strictly above the value of autarky in finite time. This is in

sharp contrast to the immiseration result.3

To prove Proposition 1, we state two intermediate lemmas that characterize the optimal

contract at the autarky state. These lemmas are also useful to develop some intuition

behind the main result. First, we find that if an agent is at the autarky state and has

access to financial markets, the financial intermediary cannot spread continuation values

to provide incentives unless the highest realization of the endowment is drawn.4 In other

words, if the agent draws any realization of the endowment other than the highest possible

one, then he remains stuck in autarky. Second, we find that at the autarky state, some

2In related contexts, Hertel [2004] and Broer et al. [2017] consider both private information and
limited commitment (or enforcement). Broer et al. [2017] study consumption risk sharing in a similar
environment with persistent shocks, public insurance and ex ante participation constraints, whereas Hertel
[2004] studies risk sharing contracts between two risk-averse agents, as in Kocherlakota [1996]. Other
papers that study the interaction between private information and limited commitment, but in different
contexts, include Sleet and Yeltekin [2001] and Ales et al. [2014].

3When private information is the sole friction in the model, Phelan [1998] argues that the crucial
assumption to generate the immiseration result rests on preferences.

4This result follows directly from the restrictions on continuation values and transfers that arise from
the constraints in the recursive problem.
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intertemporal trade occurs between the financial intermediary and the agents who draw

the highest endowment shock. Hence, the autarky state is non-absorbing.5

The intuition behind our main result is as follows. In a problem with asymmetric in-

formation, the possibility to spread continuation values is a profitable tool to provide

incentives. But at the autarky state, the principal cannot spread continuation values for

the agents who have drawn endowment shocks (their types) other than the highest one. If

the probability of obtaining the highest possible endowment shock is small enough, then

autarky is a persistent state. In this case, the impossibility to spread continuation values

for lower types becomes excessively costly. Hence, the slope of the value function of the

principal becomes positive in the neighborhood of the autarky state, which prevents him

from promising the value of autarky.

Moreover, we show that the constraint that can prevent agents from being “immiserated”

is the participation constraint that causes the agent hit by the lowest income shock to be

indifferent between living in autarky and honoring the contract. Furthermore, we show

that none of the states reached is absorbing. In particular, Proposition 2 shows that

a non-degenerate invariant cross-sectional distribution of life-time utilities (or values)

exists. These results contrast Ljungqvist and Sargent [2012]’s version of Thomas and

Worrall [1988], who show that the continuation values converge to an absorbing state,

pinned down by the participation constraint of the highest type.

Finally, our results also differ from Phelan [1995], who shows that the lower bound on

the set of continuation values is a recurrent state. Phelan [1995] also shows that a non-

degenerate invariant distribution exists. Because the main difference between this paper

and Phelan [1995] is the presence of ex post participation constraints, we solve numerically

for the optimal contract with and without these constraints to highlight their role in the

model. We rely on a simple numerical example to emphasize that ex post participation

constraints are crucial to prevent agents from being “immiserated”. Without them, the

mass of agents at the autarky state, which is the greatest lower bound on the set of

feasible continuation values, is positive in the limit.

5This result is reminiscent of the literature on dynamic risk sharing contracts with private information.
In general, whenever a lower bound on continuation values is present, it is not an absorbing state. See,
for example, Atkeson and Lucas [1995] and Wang [1995], among others.
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The remainder of this paper is organized as follows. Section 2 presents the model. Section

3 states some intermediate results. Section 4 studies the dynamics of the model. Section

5 discusses some numerical results. Finally, Section 6 concludes.

2 The Model

We consider an economy in which many infinitely lived ex ante identical agents can sign

a single long-term contract with a financial intermediary (or principal). In each period,

an agent is endowed with θ units of a perishable consumption good (his type). We

assume that type θ is private information drawn from the set {θ1 < θ2 < ... < θn},

with n ≥ 3. In particular, we assume that endowment shocks are independently and

identically distributed over agents and time, with πj = prob(θ = θj) > 0, j = 1, ..., n,

such that
∑n

j=1 πj = 1.

Each agent derives utility from a consumption stream {ct}∞t=0. Preferences are separable

over time, such that the discounted instantaneous utility at t is denoted by δtu(ct), where

δ ∈ (0, 1) is the discount factor. We assume that u is strictly increasing, strictly concave,

twice continuously differentiable and bounded above, i.e., supu(c) < ∞. Finally, we

normalize life-time utility by the factor (1− δ):

(1− δ)
∞∑
t=0

δtu(ct).

This normalization facilitates the proof that the value function of the principal, which

maps life-time utilities (or values) to life-time profits, is strictly concave for a δ that is

high enough, a result we use in Section 4 to derive a Lagrange functional for the problem.

The financial intermediary is risk neutral with free access to credit markets, where he

can borrow and lend at a constant risk-free interest rate given by 1
δ − 1. Hence, the

agents and the principal discount the future at the same rate, an assumption we relax

in Appendix C.2. The financial intermediary can credibly commit to a long-term loan

contract designed to maximize his life-time profits, which are also normalized by the

factor (1 − δ). In particular, at t = 0, he offers a long-term contract to agents that
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promises a given normalized life-time utility (or value) v0. In contrast, agents can walk

away from the contract at any time at a cost of living in autarky forever.

The optimal contracting problem can be written recursively. Suppose an agent enters a

period with a given promised value v. Hence, for each θj , the contract assigns a transfer

bj to the agent, which can be negative, and a promised continuation value wj that the

contract must honor in the beginning of the next period.

For a given value v promised to the agent at the end of the previous period, the contract

{bj , wj}nj=1 offered by the financial intermediary must respect four restrictions. First, the

financial intermediary must honor the last period promised value. To do so, the expected

value of the contract must be equal to v. Hence, the promise-keeping constraint reads as

follows:

(PK)

n∑
j=1

πj [(1− δ)u(θj + bj) + δwj ] = v.

Second, since θ is private information, agents can misreport their endowment shocks.

Incentive compatibility requires that:

(IC) (1− δ)u(θj + bj) + δwj ≥ (1− δ)u(θj + bk) + δwk, for all j, k.

Third, we assume that agents cannot commit to honor the contract. Once an agent

reneges on the contract, he is excluded from the financial market and forced to remain in

autarky forever. Hence, the contract must respect the following participation constraints:

(PC) (1− δ)u(θj + bj) + δwj ≥ (1− δ)u(θj) + δwaut, for all j,

where waut =
∑n

j=1 πju(θj) is the normalized expected life-time utility of living in autarky

forever.

Many contributions in the literature also assume this specific form of ex post participation

constraints.6 In particular, the nature of the punishment, i.e., living in autarky forever,

6A non-exhaustive list includes Thomas and Worrall [1988], Kocherlakota [1996], Attanasio and Ŕıos-
Rull [2000], Kehoe and Levine [2001], Ligon et al. [2002], Krueger and Perri [2006], Krueger and Perri
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is crucial to derive our analytical results. This outside option entails a lower bound waut

on the set of continuation values, a constraint that will be used to derive some results in

the next sections. Indeed, both (PK) and (PC) imply that:

v =
n∑
j=1

πj [(1− δ)u(θj + bj) + δwj ] ≥
n∑
j=1

πj [(1− δ)u(θj) + δwaut] = waut.

Hence, wj < waut for some j violates the next-period promise keeping constraint. Finally,

note that no contract can provide incentives by promising values higher than wmax =

supu(ct) <∞.

Therefore, given a promised utility v, the principal solves

W (v) = max
{bj ,wj∈[waut,wmax]}nj=1

n∑
j=1

πj [−(1− δ)bj + δW (wj)]

subject to (PK), (IC) and (PC),

where W is the value function of the principal.

This problem encompasses two important contributions from the literature. Ljungqvist

and Sargent [2012]’s version of Thomas and Worrall [1988] leaves (IC) out of the problem.

Similarly, under additional assumptions on u, Thomas and Worrall [1990] solve the case

in which (PC) is absent, which implies that the set of constrains wj ≥ waut, for all j, is

also absent from the problem.7

Phelan [1995] also considers participation constraints in a model of risk sharing with

private information, although with a different modeling of participation. In particular,

he assumes that the decision to repudiate the contract is taken at the beginning of the

period, or equivalently, one-period contracts are enforceable. The principal can also

renege on the contract at a fixed cost. As a result, participation constraints translate

into a lower and an upper bound on the set of continuation values.8 If he assumed that

[2011], Tian and Zhang [2013] and Laczó [2014]. See also Gobert and Poitevin [2006] who allow for
savings in a model of dynamic risk sharing with limited commitment.

7To be precise, neither contribution normalizes life-time utility and profits by (1 − δ). It is easy to
verify that this normalization is innocuous, not altering the results in Ljungqvist and Sargent [2012] and
Thomas and Worrall [1990].

8In his model, this lower bound is endogenized by assuming that the outside option is the value of
signing a long-term contract with another financial intermediary, which is determined in equilibrium. The
main messages of the paper, i.e., some risk-sharing occurs and a non-degenerate distribution of values
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the outside option of the agents is to live in autarky forever, then wj ≥ waut for all j

would follow. Therefore, the program above without (PC) but with the set of constrains

wj ≥ waut, for all j, is akin to the setup in Phelan [1995].9

3 Characterization at v = waut

In the next subsections, we state some intermediate lemmas that are used to prove

our main result (Proposition 1 in Section 4). These lemmas might be of interest by

themselves. The first subsection explores the interaction among (PK), (IC) and (PC)

to show that at v = waut, unless the highest endowment shock is realized, the principal

cannot spread continuation values to provide incentives. The second subsection shows

that at v = waut, some intertemporal trade occurs between the financial intermediary

and agents who draw the highest shock. Hence, although autarky impairs the amount of

risk sharing that can be achieved, it is not an absorbing state. Some risk sharing occurs

at v = waut.

3.1 The Interaction Among (PK), (IC) and (PC)

In this subsection, we argue that the interaction among promise keeping (PK), incen-

tive compatibility (IC) and ex post participation (PC) constraints has the potential to

substantially limit the amount of risk sharing in this economy.

A standard result in the literature states that (IC) and the concavity of u impose restric-

tions on the transfers that can be made by the principal. In particular, bj−1 ≥ bj and

wj−1 ≤ wj for j ≥ 2. In words, in order to provide incentives, transfers must weakly

decrease with income, whereas continuation values must weakly increase. The following

auxiliary lemma states that the interaction among (IC), (PC) and the concavity of u im-

poses further restrictions on the transfers that can be made by the principal. It considers

the case in which (PC) is binding at one type, which must eventually happen along the

exists in the limit, would follow if this lower bound were treated exogenously.
9In contrast with this paper, Phelan [1995] simplifies his framework along two dimensions. First,

for ease of exposition, he considers an economy with n = 2. Second, he assumes constant absolute risk
aversion preferences.
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optimal contract path if πn is small enough, as we show below.

Lemma 1. If i < k (i > k) and (PC) is binding at k, then bi ≥ 0 (bi ≤ 0). In addition,

if (PC) is not binding at i, then bi > 0 (bi < 0).

Proof. (PC) and (IC) imply that

(1− δ)u(θk) + δwaut = (1− δ)u(θk + bk) + δwk ≥ (1− δ)u(θk + bi) + δwi

≥ (1− δ)[u(θk + bi)− u(θi + bi)] + (1− δ)u(θi) + δwaut.

The concavity of u and i < k (i > k) implies that bi ≥ 0 (bi ≤ 0). Finally, if (PC) is not

binding at i, the last inequality is strict, which completes the proof.

In words, if (PC) is binding at a given type, say k, then every type below (above) it

must receive positive (negative) transfers. The relevant part of the lemma for the rest

of the analysis is that bi ≥ 0 if i < k and (PC) is binding at k. Note that Lemma 1

does not make use of (PK). If we consider the role of (PK), even further restrictions on

the contract offered by the principal apply. In fact, recall from the previous section that

(PC) and (PK) imply that wj ≥ waut.

The rest of this subsection and the next characterize properties of the optimal contract

at v = waut. This is useful for two reasons. First, it allows us to show that a variant

of the immiseration result, in which agents get stuck in autarky forever, does not follow

(Lemma 3 in Section 3.2). In other words, some risk sharing occurs at v = waut. Second,

it allows us to derive conditions under which the optimal contract does not assign the

value of autarky as a continuation value (Proposition 1 in Section 4). In this case, our

numerical simulations show that the mass of agents living in autarky in the limit can be

zero, which is in sharp contrast with the immiseration result.

The next lemma states that if an agent was promised the value of autarky in the previous

period, then he remains in autarky unless hit by the highest realization of the endowment,

θn. Moreover, transfers to the highest type are weakly negative, bn ≤ 0.

Lemma 2. If v = waut, then wj = waut and bj = 0 for j = 1, ..., n− 1. Moreover, (PC)
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also binds at j = n and bn ≤ 0.

Proof. Note that (PC) is binding for all j. Otherwise, (PK) would imply that

waut =

n∑
j=1

πj [(1− δ)u(θj + bj) + δwj ] >

n∑
j=1

πj [(1− δ)u(θj) + δwaut] = waut,

which yields a contradiction. Since (PC) is binding at j = 1, ..., n, then wj ≥ waut

implies bj ≤ 0. In addition, (PC) binding at j = n and Lemma 1 imply that bj ≥ 0 for

j = 1, ..., n− 1.

Lemma 2 shows that the interaction among (PK), (IC) and (PC) has a severe implica-

tion for risk sharing at v = waut. Unless the highest endowment shock is realized, the

principal cannot spread continuation values to provide incentives. Although the proof is

straightforward, the intuition rests on understanding how different combinations of the

constraints in the problem restrict transfers and continuation values. At autarky, (PK)

forces (PC) to be binding for all types. But if (PC) is binding for all types, given that

wj ≥ waut, transfers must be weakly negative for all types. What makes the highest

type special is the absence of another type with positive mass that has the incentive to

mimic him downward. Lemma 1 shows that the incentive of a binding type (j = n in this

case) to mimic lower types forces transfers to be weakly positive for these smaller types.

Hence, the only choice variables that are not pinned down by the set of constraints at

v = waut are bn ≤ 0 and wn ≥ waut.10 Finally, note that Lemmas 1 and 2 do not rely on

the objective function (or preferences) of the principal. They are still valid, for example,

if the discount factor of the principal differs from that of the agents.

The presence of (PC), which is the key difference between this paper and Phelan [1995],

is crucial to prove Lemma 2. In the absence of (PC) from the problem but imposing that

wj ≥ waut, which is akin to his setup, the principal could spread continuation values for

lower types without violating the remaining constraints.11 This does not mean that it

10One can show that the optimal contract at v = waut maximizes the principal’s profits from trans-
acting with j = n, −(1 − δ)bn + δW (wn), subject to (PC) binding at j = n, (1 − δ)u(θn + bn) + δwn =
(1− δ)u(θn) + δwaut.

11Indeed, fix wn > wn−1 > ... > w1 ≥ waut, and let b1 be free to adjust. Then, pick b2, ..., bn (as
“functions” of b1) such that downward incentive compatibility constraints are binding, i.e., (1− δ)u(θj +
bj) + δwj = (1− δ)u(θj + bj−1) + δwj−1. Hence, standard results imply that other incentive compatibility
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would be always optimal to do so. We provide a numerical example below showing that

even in the absence of (PC) from the problem, the principal could find it optimal to set

wj = waut for j = 1, ..., n− 1, but only if πn is high.

An immediate implication of Lemma 2 is that autarky is a highly persistent state if πn

is small, as expected in unequal societies. In particular, one may conjecture that πn = 0

makes autarky an absorbing state. This conjecture is wrong. A close inspection of the

proof of Lemma 2 reveals that πn > 0 is crucial to conclude that (PC) is biding at n, and

thus, to apply Lemma 1. In fact, by assuming that πn = 0, there would be redundancy

in the analysis, as j = n− 1 would play the role of the highest type in practice.12

In Appendix A, we consider a small departure from this environment that makes autarky

an absorbing state. In particular, we drop the assumption that the endowment θ takes

values in a finite space, and we assume, instead, that θ takes values in a compact set, say,

[θ, θ]. In principle, one may also allow for both discrete and continuous types. As the

arguments in this section and Appendix A suggest, for autarky to be an absorbing state,

the type space must be connected near its upper bound, say, θ. Indeed, when v = waut,

the interaction among (PC), (IC) and (PK) forces all discrete and almost all continuous

types to remain in autarky, including those slightly below θ.

Lastly, we consider in the online appendix the case of history-dependent endowments. In

particular, θ takes values in a finite space following a first-order Markov process. Then

the value of autarky wjaut varies with the previous realization of the income shock θj . We

show that Lemma 2 remains valid if wnaut ≤ w
j
aut for j = 1, ..., n− 1. That is, if the value

of autarky after the highest income shock is smaller than after any other shock. We note

that this sufficient condition is restrictive as it implies strong negative correlation at θn.

constraints are not violated. Finally, keeping in mind that b2, ..., bn are “continuous” and “monotone” in
b1, adjust b1 such that (PK) is satisfied at v = waut.

12This claim is not straightforward. Since πn = 0, the financial intermediary’s profits and (PK) do
not depend on wn and bn. Hence, one needs to show that there exist values for wn and bn that preserve
(IC) and (PC). Given that bn−1 ≤ 0 by Lemma 2, the concavity of u implies that this is accomplished
by setting wn = wn−1 and bn = bn−1.
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3.2 Risk Sharing

Despite the severe implication of Lemma 2, the following proposition shows that some

risk sharing occurs at v = waut. In fact, some intertemporal trade occurs between the

financial intermediary and the agents who draw θn. In particular, agents transfer part

of their endowment to the financial intermediary, bn < 0, in exchange for a promise of

life-time utility above the autarky value, wn > waut.

Lemma 3. If v = waut, then wn > waut and bn < 0.

Proof. Suppose v = waut, and consider the following contract, which is slightly different

from autarky. At some t, the principal receives ε > 0 if the highest endowment is realized.

At t+ 1, upon the realization of the highest endowment in the previous period, the agent

receives ξ > 0 in all possible states. In the remaining periods and contingencies, no

transfers occur. Set ε and ξ, such that:

(1− δ)u(θn − ε) + δ

n∑
j=1

πju(θj + ξ) = (1− δ)u(θn) + δ

n∑
j=1

πju(θj).

Clearly, this contract satisfies incentive compatibility and participation constraints. More-

over, the agent is indifferent between this contract and autarky forever. Take a first-order

Taylor approximation at the equation above around ε = 0 and ξ = 0. Thus,

−(1− δ)u′(θn)ε+ δ
n∑
j=1

πju
′(θj)ξ = 0 ⇐⇒ ε =

δ

1− δ

∑n
j=1 πju

′(θj)

u′(θn)
ξ >

δ

1− δ
ξ.

The inequality follows from u′′ < 0 and, thus,
∑n
j=1 πju

′(θj)

u′(θn)
> 1.

The principal’s net revenue obtained in this contract, πn[(1 − δ)ε − δξ], is positive for

both ε and ξ small enough. Hence, autarky is not optimal. Finally, Lemma 2 implies

that bn < 0 and wn > waut.

In words, despite the severe implication of Lemma 2, some risk sharing occurs in this

economy. A variant of this result is also present in Thomas and Worrall [1990], who

consider an extension in which both incentive compatibility and participation constraints
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interact. In particular, they assume that both the principal and the agents may renege

on the contract and, thus, are subject to participation constraints. They show that under

high enough discount factors, some risk sharing always occurs. Lemma 3 considers one-

sided commitment instead and is valid for all values of δ. More generally, an inspection

of the proof reveals that Lemma 3 is still valid if we assume different discount factors,

and the discount factor of the principal is lower.

This result also echoes Phelan [1995], who considers an economy with n = 2, constant

absolute risk aversion (CARA) preferences, and another modeling of the participation

constraints described above. In this case, he shows that some intertemporal trade occurs

when the promised value is at its lower bound. In contrast, Lemma 3 holds for generic

preferences as long as u satisfies strict concavity.

In related contexts with asymmetric information, whenever a lower bound on continu-

ation values is present, other papers derive similar implications. Wang [1995], Atkeson

and Lucas [1995] and Hertel [2004], for example, show that this lower bound is not an

absorbing state, and a non-degenerate invariant distribution exists (something we discuss

in the next section).

Despite similarities with previous contributions, Lemmas 2 and 3 say something novel.

Once in autarky, except for the highest type, the principal cannot spread continuation

values to provide incentives. Therefore, the agent only leaves autarky if the highest

possible realization of the endowment θn is drawn, which happens with probability πn. If

πn is small, as expected in many unequal economies, then autarky is a highly persistent

state. These two reasons, the impossibility of properly providing incentives and high

persistence, imply that autarky is a costly state. In the next section, we explore this

implication for the dynamics of the optimal contract.

4 Dynamics

In this section, we argue that for v > waut, the optimal contract prevents agents from

reaching autarky tomorrow if the probability of drawing the highest realization of the
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endowment πn is small enough. This is a direct implication of the fact that the autarky

state becomes costlier as πn gets smaller.

We also assume that δ is high enough. This assumption is used in the online appendix to

show that the value function of the principal, W , is strictly concave. Except through the

strict concavity of W , the results in this paper do not rely on this assumption. Hence,

any other set of assumptions that guarantees strict concavity of W would be sufficient.

The online appendix derives a Lagrange functional for the principal’s problem. We

show that one can attach Lagrange multipliers to the constraints (PK), (IC), (PC) and

wj ≥ waut and derive the set of optimality conditions.13 Let µ, λj,j−1, λj,j+1, ςj and δξj

be the Lagrange multipliers associated with (PK), (IC) that prevents j from mimicking

j − 1, (IC) that prevents j from mimicking j + 1,14 (PC) and wj ≥ waut, respectively.

The Lagrangian reads:

L =
n∑
j=1

πj (− (1− δ) bj + δW (wj)) + µ

 n∑
j=1

πj ((1− δ)u (θj + bj) + δwj)− v

 +

+
n∑
j=2

λj,j−1 [(1− δ)u (θj + bj) + δwj − ((1− δ)u (θj + bj−1) + δwj−1)] +

+

n−1∑
j=1

λj,j+1 [(1− δ)u (θj + bj) + δwj − ((1− δ)u (θj + bj+1) + δwj+1)] +

+

n∑
j=1

ςj [(1− δ)u (θj + bj) + δwj − (1− δ)u (θj)− δwaut] +

n∑
j=1

δξj(wj − waut),

with λ1,0 = λn,n+1 = λ0,1 = λn+1,n = 0.

Note that we do not account for the constraints wj ≤ wmax in the Lagrangian. A simple

argument shows that these constraints are never binding along the optimal contract path.

Indeed, the value function W (v) is bounded below by the normalized life-time profits

when the principal pays a constant amount for all types in all periods, i.e., −b̄(v) ≤W (v),

13To do so, we define a relaxed version of the program by allowing the principal to choose a joint
distribution probability over transfers and continuation values. In other words, we convexify the program
so that the maximization problem is well-defined and can be cast as a Lagrange functional. Then, we
show that W is differentiable and, if δ is high enough, strictly concave. Hence, the solution of the relaxed
version must be deterministic and, thus, feasible within the original program.

14A standard result states that the concavity of u implies that it is sufficient to account for local
upward and downward (IC) constraints.
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where b̄(v) solves
∑n

j=1 πju(θj + b̄) = v. Analogously, W (v) is bounded above by the

normalized life-time profits generated by the first-best unconstrained contract, which

guarantees full insurance by assuring constant consumption for all types in all periods,

i.e., W (v) ≤
∑n

j=1 πj [θj − c̄(v)], where c̄(v) = u−1(v). Since wmax = supu(c) <∞, these

bounds above imply that

lim
v→wmax

W (v) = lim
v→wmax

W ′(v) = −∞.

Consequently, if v < wmax, it is never optimal for the principal to set wj = wmax for

some j.

This result is used in the next proposition to show that W ′(waut) becomes arbitrarily

large as πn gets arbitrarily small. This guarantees that for each v > waut, there exists πn

small enough such that the optimal continuation value is interior, i.e., wj ∈ (waut, wmax).

In other words, once away from the autarky state today, the optimal contract prevents

the agent from reaching it tomorrow. We are ready to state our main result.

Proposition 1. For each v > waut, there exists π(v) such that wj > waut for j = 1, ..., n

and for all πn < π(v).

We sketch the proof below and fill in the details in Appendix B. After manipulating

the first-order conditions of the Lagrangian above with respect to wj , substituting µ =

−W ′(v) (envelope theorem; see Milgrom and Segal [2002]), and using Lemmas 2 and 3

to evaluate the resulting equation at v = waut, one obtains:

W ′(waut) = W ′(wn) +
1

πn

n∑
j=1

(ςj + ξj) ,

where wn, with a slight abuse of notation, is the optimal continuation value for type-n

at v = waut. Also, the multipliers are evaluated at v = waut.

At v = waut, we show that the optimality conditions imply that limπn→0
∑n

j=1 (ςj + ξj) >

0. Intuitively, in the absence of binding participation constraints, a well-known result

states that the principal spreads continuation values in order to provide incentives. Since

v = waut, then w1 < waut would violate one of the participation constraints of the
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problem. Moreover, the strict concavity of W , wn ∈ (waut, wmax) and limv→wmaxW
′(v) =

−∞ imply that W ′(wn) > −∞. Since this result is valid for all distributions of {πj}nj=1,

including those with πn → 0, then limπn→0W
′(wn) > −∞. Hence,

lim
πn→0

W ′(waut) =∞.

This kind of “Inada condition” guarantees that for each v > waut, in a neighborhood

of πn = 0 (i.e., for all πn < π(v)), the optimal contract prevents agents from being

“immiserated” (or “impoverished”) tomorrow, in the sense that the optimal contract

does not deliver the value of autarky, which is the greatest lower bound on the set of

feasible continuation values.

Intuitively, in a problem with asymmetric information, the possibility to spread contin-

uation values is a profitable tool to provide incentives. At v = waut, the financial inter-

mediary cannot vary continuation values unless the agent draws the highest endowment

θn. If the probability of such event, πn, is small enough, autarky is a persistent state,

which makes the impossibility to spread continuation values for lower types markedly

costly. In this case, the slope of the value function of the principal W ′ becomes positive

in the neighborhood of v = waut, as a v slightly above waut allows the principal to vary

continuation values for lower types. Hence, the principal chooses wj > waut for all j

whenever this choice is feasible, which it is for v > waut but not for v = waut.

Due to the immiseration result in the absence of (PC) from the problem, (PC) or wj ≥

waut must eventually bind at least at one j. An immediate implication of Lemma 1 and

Proposition 1 is that as long as a small enough πn implies wj > waut for all j, (PC)

cannot bind at j > 1.15 Therefore, the constraint that can prevent agents from being

“immiserated” is the one that makes the lowest type, j = 1, indifferent between living in

autarky forever and honoring the contract.

Another immediate implication of the steps in the proof of Proposition 1 is that due to

15Indeed, suppose that (PC) binds at some k > 1; then, Proposition 1 and (IC) imply that

(1− δ)u(θk) + δwaut = (1− δ)u(θk + bk) + δwk > (1− δ)u(θk + bj) + δwaut, for all j 6= k.

Hence, bj < 0 for j 6= k. But Lemma 1 implies that bj ≥ 0 for j = 1, ..., k − 1, a contradiction.
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the need to spread continuation values given the presence of (IC) in the problem, none

of the states reached is absorbing.16 In particular, wn > v for all v ∈ [waut, wmax).17

Importantly, this result does not rely on πn being small enough.

These two implications contrast with Ljungqvist and Sargent [2012]’s version of Thomas

and Worrall [1988], who leave (IC) out of the problem. In this case, v converges to a

finite value, an absorbing state that makes the highest type j = n, rather than the lowest

type j = 1, indifferent between living in autarky forever and honoring the contract.

Note that π depends on v. Our proof is silent on whether or not there exists a fixed π

(independent of v) such that for all v > waut and for all πn < π, then wj > waut for all

j. If this stronger result is valid, in the limit, the mass of agents living in autarky is zero

for all πn ∈ (0, π). Indeed, if v0 > waut, the mass of agents living in the autarky state

is always zero along the optimal contract path. If v0 = waut instead, Lemmas 2 and 3

imply that the mass of agents living in the autarky state at period t is (1− πn)t, which

converges to zero in the long run.18

Importantly, at least for a specific parameterization of the model, our numerical simu-

lations below suggest that the aforementioned stronger result holds (i.e., zero mass of

agents at the lower bound on the set of feasible continuation values in the limit). This

is in sharp contrast with Thomas and Worrall [1990], who consider the problem without

(PC) and, thus, without the set of constrains wj ≥ waut for all j. In this case, v converges

to its lower bound, −∞, almost surely (immiseration result). It also differs from Phelan

[1995], who considers a problem without (PC) but with a lower bound and an upper

bound (smaller than wmax) on the set of continuation values. In his model, these states

are recurrent along the optimal contract path, and the limit distribution has a positive

mass of agents, smaller than one, at its lower bound.

The next proposition shows that for every πn > 0, a non-degenerate invariant cross-

16Note that wmax is an absorbing state but is never reached along the optimal contract path.
17Indeed, suppose that wn ≤ v. Equation (2) in Appendix B, used to prove Proposition 1, and the

strict concavity of W imply that wj = v and ςj = ξj = 0 for all j. In this case, a well-known result states
that the principal would like to spread continuation values, w1 < v < wn, yielding a contradiction.

18Note that since W ′(waut) > 0 for πn small enough, both the financial intermediary and the agents
are better off by signing an optimal contract with v0 > waut rather than v0 = waut. Hence, none of the
agents would ever be in autarky.
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sectional distribution exists.19

Proposition 2. The Markov process {vt} implied by the optimal choices of {wj}nj=1 has

a non-degenerate invariant distribution.

Proof. Let wj(v) be the optimal continuation value when the promised value was v and

shock j was drawn. Let P be a transition function that maps elements of the compact

set [waut, wmax] into Borel sets of [waut, wmax]. In particular,

P (v,A) =
n∑
j=1

πj1{wj(v)∈A}, (1)

where A is a Borel set of [waut, wmax]. Note that 1 is the indicator function.

By the Theorem of Maximum, wj is continuous in v, and thus, P has the Feller property.

Theorem 12.10 in Stokey and Lucas [1989] implies that an invariant distribution exists.

Non-degeneracy follows from the fact that none of the states reached is absorbing.

Note that this proposition is silent on whether the invariant distribution is unique and

stable. Hence, convergence from any initial value, v0, toward this invariant distribution

is not guaranteed. This proposition could be strengthen if one shows that the transition

function, P , defined in (1), satisfies monotonicity. Hence, if wj is bounded above by some

w < wmax, Theorem 12.12 in Stokey and Lucas [1989] guarantees convergence from any

initial value towards the unique invariant distribution associated with (1).

For instance, if wj(v) is non-decreasing in v, which is satisfied in the numerical example

below, then P satisfies monotonicity. Although we could not prove it generally, the result

that wj(v) is non-decreasing in v also seems plausible in other contexts.20

Moreover, all results reported and discussed in this paper would follow if we impose an

upper bound smaller than wmax instead. This can be motivated by allowing limited

commitment on the side of the principal. In particular, the financial intermediary can

renege on the contract at a given (normalized) fixed cost C ∈ (0,∞) and then be ex-

19Appendix C.2 discusses to what extent Propositions 1 and 2 can be generalized if we assume that
the agents and the principal do not have the same discount factors.

20See, for instance, the discussion in Farhi and Werning [2007], page 383.
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cluded from the financial market forever. As in Phelan [1995], this assumption of limited

commitment generates an upper bound w < wmax on the space of continuation values

such that W (w) = −C.

The main difference between this paper and Phelan [1995] is the presence of (PC) in a

context with private information.21 To further understand the role of (PC), the next

section solves numerically for the optimal contract when preferences are CARA and

continuation values are bounded below by waut and above by w < wmax. The focus is on

the contrast between economies with and without (PC).

5 Numerical Example

In this section, we numerically solve the model with CARA preferences, i.e., u(c) =

− exp(−γc)
γ with γ > 0.22 The objective is to provide a simple numerical example that

complements the analytical results from previous sections. In particular, we show that

the mass of agents living in autarky can be zero in the limit, and we perform some

comparative statics on πn.

To highlight the importance of ex post participation constraints, we also consider the case

in which (PC) is left out of the financial intermediary problem but the set of constraints

wj ≥ waut for all j is kept in the problem. As explained above, this case is akin to Phelan

[1995], who assumes that the possibility to walk away from the contract occurs at the

beginning of a period. Hence, this numerical exercise also highlights the importance of

the timing assumed in this paper for the results.

We consider a simple parameterization aiming to generate clean figures that are easy to

visualize. We set γ = 1, δ = 0.8, n = 3, {π1, π2, π3} = {0.4, 0.4, 0.2} and {θ1, θ2, θ3} =

{0, 1, 2}. This parametrization implies that waut = −0.5742. As in Phelan [1995],

21There are, of course, other differences. For example, regarding preferences, Phelan [1995] assumes
CARA preferences, whereas we assume that δ is high enough in this section.

22To solve the problem numerically, we use the value function iteration method with interpolation.
We consider a tolerance of 10−6 for convergence. In all experiments, we allow for an equally spaced grid
between waut and w with 2001 gridpoints. Because waut varies with some parameters of the model, the
step size between adjacent gridpoints varies with the experiment. In each iteration, we use the sequential
quadratic programming algorithm embedded in the fmincon command in MATLAB. In addition, we
interpolate the value function using the shape-preserving piecewise cubic method embedded in the interp1
command in MATLAB.
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we assume an upper bound w < wmax on the space of continuation values such that

W (w) = −C. Otherwise, the numerical solution would be imprecise in the neighborhood

of wmax. We always choose C such that w = −0.04. Keeping in mind that it is impossible

to exhaust all possible parameterizations of the model, we focus the discussion on the

differences between the optimal contracts with and without (PC).

In Appendix C.1, we plot the optimal contracts and value functions for both models, with

and without (PC). Because participation constraints tend to bind only for lower promised

values v, the optimal contracts with and without (PC) prescribe similar allocations for

higher values of v. Hence, Figure 1 (top graphs) reproduces the behavior of optimal

continuation values for each type j, as functions of v, near their lower bound waut. It

also plots forty-five-degree lines (dashed-lines) and horizontal lines (dotted-lines) marking

the value of autarky. In addition, given the same initial promised value v0 set to maximize

the principal’s life-time profits in the model with (PC), Figure 1 (bottom graphs) shows

the trajectories of promised values over time after the realization of a sequence of the

lowest endowment shock θ1. The left graphs account for ex post participation constraints

in the problem, whereas the right ones ignore them.23

23Note that the optimal continuation values in the model with (PC) display kinks a bit above the
lower bound waut, although barely visible for w1 in Figure 1. These kinks are located at the threshold
value of v, such that (PC) ceases to bind at j = 1 for higher promised values. Above this threshold value,
the possibility that (PC) might bind tomorrow at j = 1 is encoded in the value function of the principal,
generating other kinks in the optimal contract, such as the clearly visible one for w1. It is worth to
mention that the clearly visible kinks for w1 in the models with and without (PC) are not located at
the same v. In the latter case, the kink is associated with the threshold value of v, such that w1 ≥ waut
ceases to bind for higher promised values.
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Figure 1: Optimal continuation values near waut. Top plots consider the optimal choices
of wj for all j as functions of v near v = waut. Full lines, dashed lines and dotted lines
represent wj for each endowment shock j, the forty-five degree line and the autarky
state, respectively. Bottom plots consider the path of promised values over time after the
realization of a sequence of the lowest endowment shock θ1. Left and right plots consider
the model with and without (PC), respectively.

Figure 1 establishes in the context of this simple example that once (PC) is accounted

for, the mass of agents living in autarky is zero in the limit, which is in sharp contrast

to the so-called immiseration result.

Consider the optimal contract in the right plots without (PC). The numerical solution

shows that for the lowest type, below a certain threshold value, waut is the optimal

continuation value. Hence, wj ≥ waut binds at j = 1 in the neighborhood of v = waut.

Given that w1 as a function of v is bounded above by the forty-five degree line, the autarky

state is reached with positive probability, after realizing a finite sequence of the lowest

endowment θ1.
24 Similarly, once in autarky, agents leave it with positive probability,

after drawing θ2 or θ3. In the long run, a positive mass of agents lives at the autarky

state.

In contrast, once (PC) is accounted for in the left plots, our numerical example shows that

24In our numerical example, the autarky state is reached after one period, but convergence could take
longer if the initial promised value were set higher.
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autarky cannot be reached with positive probability. Indeed, w1 is a strictly increasing

function of v, although not clearly visible in the figure. Moreover, (PC) binds at j = 1

slightly above v = waut, but wj ≥ waut does not bind. In this case, after realizing

a sequence of the lowest shock θ1, promised values converge to a lower bound strictly

above the autarky value in finite time.25 In the long run, the mass of agents living in

autarky is zero. Interestingly, as an agent gets closer to the autarky state, not only are

w2 and w3 as functions of v above the forty-five degree line, but they also become steeper.

Thus, in case θ2 or θ3 is drawn, this agent moves farther away from the autarky state,

meaning that even more consumption is postponed.

Again, given the same parameterization, these differences between optimal contracts

arise from the fact that autarky is a costlier state once (PC) is accounted for. First,

the principal cannot spread continuation values for types other than j = n in order to

provide incentives at the autarky state. Second, autarky is a more persistent state as

the agent leaves it whenever θn is drawn, which occurs with probability πn. In contrast,

once (PC) is left out of the problem, the principal can promise values higher than waut

for all types other than j = 1, and thus, agents leave autarky whenever any endowment

other than θ1 is drawn, which happens with probability 1− π1 > πn.

To inspect how the optimal contract changes with different values of πn, we allow π3 to

vary from 0.2 to 0.8, with a step size of 0.02, and we let π1 = π2 = (1− π3)/2. The top

graphs in Figure 2 plot the continuation values (near the lower bound waut) prescribed

by the optimal contract for π3 = 0.4 and π3 = 0.6 with (PC) present in the model.26

These two cases summarize how optimal contracts differ when πn is higher than a given

threshold, π3 ∈ (0.36, 0.38) in our example. The bottom graph shows how the mass of

agents at v = waut changes with π3 in the long run. Crosses (circles) represent the model

with (without) ex post participation constraints.

25Note that, in our numerical example, this lower bound is only a bit above the autarky value. There-
fore, it could be possible that this small difference is simply a numerical error. To address this concern, we
compute lower bounds for specifications with 2001, 5001, 10001 and 20001 gripoints, as well as different
interpolation methods, such as linear, piecewise cubic, cubic convolution and spline. We find that lower
bounds vary little in between -0.57358 and -0.57338, still strictly above the autarky value of -0.57422.
Hence, it is unlikely that the convergence to a value strictly above the autarky value is stemming from a
numerical error.

26Recall that the value of autarky changes with πj , j = 1, ..., n. In these cases, the autarky values are
equal to −0.4645 and −0.3548, respectively.
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Figure 2: Comparative statics: πn. Top graphs consider the optimal choices of wj for all
j as functions of v near v = waut for πn = 0.4 and πn = 0.6. Full lines, dashed lines and
dotted lines represent wj for each endowment shock j, the forty-five degree line and the
autarky state, respectively. Bottom graph plots the limit mass of agents at v = waut as a
function of πn. Crosses (circles) represent the model with (without) ex post participation
constraints.

Figure 2 highlights that for higher values of πn, the model with (PC) can generate a

positive mass of agents living in autarky in the long run. In this case, the autarky state

can be reached in finite time with positive probability. Indeed, if πn takes intermediate

values, i.e., π3 ∈ [0.38, 0.48] in our example, w1 becomes flat below a certain threshold

promised value. In addition, if πn takes high values, i.e., π3 ∈ [0.50, 0.80], both w1 and

w2 become flat below certain threshold promised values. Hence, waut is the optimal

continuation value below these thresholds, which is achieved in finite time given that w1

as a function of v is bounded above by the forty-five degree line.

Interestingly, in the latter case, optimal contracts with and without (PC) are identical.

Hence, (PC) never binds along the optimal contract path. Moreover, in the absence of

(PC), although it is feasible to spread continuation values for lower types, i.e., w1 < w2,

the principal optimally chooses not to do so. Intuitively, given that πn is high, this choice

does not severely impair risk sharing.
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Appendix C.2 discusses to what extent our analytical and numerical results can be gen-

eralized if we assume that the agents and the principal do not have the same discount

factors. In the context of this simple numerical example, our results are robust to a wide

range of discount factors. In particular, there exists a discount factor of the principal

above that of the agents, such that the aggregate consumption is equal to the aggregate

endowment in the limit. Hence, a market-clearing interest rate (embedded in the prin-

cipal’s discount factor) along with a stationary equilibrium arises without changing our

main conclusions.

Finally, in the online appendix, we consider a more standard calibration procedure, with

constant relative risk aversion (CRRA) utility, to show that models with and without

(PC) generate similar moments of the joint distribution of consumption and income

in the long-run, at least with i.i.d. endowment shocks.27 This quantitative result is

remarkably robust. The presence of (PC) has little impact on the moments computed

in several specifications that consider both partial and general stationary equilibriums.

Intuitively, the presence of (PC) alters substantially the optimal contract design only

near the autarky value, preventing agents from reaching it but not pushing them too

far from it. Hence, even if the mass of agents living in autarky is high in the calibrated

model without (PC) but zero in the model with (PC), the consumption dynamics and

risk sharing provisions are similar across models in the long-run.

6 Conclusion

This paper studies the implications of the interaction between private information and

one-sided commitment for risk sharing contracts. To the best of our knowledge, our re-

sults emphasize a novel force at play when designing these contracts that prevents agents

from being “impoverished”. Namely, the interaction between incentive compatibility con-

27Fernandes and Phelan [2000] show that serially correlated shocks increase the dimensionality of the
state space. In particular, the number of state variables is n+1 with shocks that follow a first-order Markov
process rather than one with shocks that are i.i.d. In this case, both the number of constraints and the
number of programs that need to be computed increase substantially with the number of shocks. Hence,
the assumption that n ≥ 3, which is crucial to deliver our main conclusions, poses some computational
challenges under the empirically relevant case of persistent income shocks. See also Doepke and Townsend
[2006].
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straints due to private information and ex post participation constraints severely impairs

the amount of risk sharing that can be provided when agents are at the autarky state

but still have access to financial markets. Indeed, we show that once at the autarky

state, the financial intermediary cannot spread continuation values to provide incentives

for agents unless they have been hit by the highest possible endowment shock. Hence,

the only possibility to leave autarky is to be hit by such a highly favorable shock. If the

probability of such an event is small, as in an environment with many income shocks (or

with an unequal distribution of shocks), autarky is a persistent state. These factors make

autarky a relatively costly state, and thus, the optimal contract prevents the agents from

reaching it.

We make several simplifying assumptions that allow us to derive and expose analytical

results in a standard environment that encompasses prominent contributions in the liter-

ature. We assume, for instance, that endowment shocks are independently and identically

distributed, that the nature of punishment after a default episode is living in autarky

forever, a partial equilibrium setup in which the principal and the agents have the same

discount factors, and so on. Note, however, that the limited possibility to spread contin-

uation values at the lower bound on the set of feasible continuation values, which is the

main driving force behind our results, is derived solely by manipulating the promise keep-

ing, incentive compatibility, and ex post participation constraints. Importantly, similar

constraints must be satisfied in any contracting environment with private information

regarding income and one-sided commitment allowing agents to renege on the contract

after the realization of the income shock. Hence, the aforementioned novel force at play,

which steers risk sharing contracts toward avoiding immiseration, is likely to be relevant

in more-general contracting environments.
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Appendix A: Continuous Types

In this appendix we show that, if θ follows a continuous distribution F , with f = F ′ > 0

and support [θ, θ], i.i.d. over time and agents, rather than a discrete distribution with

finite support, then autarky becomes an absorbing state, such that the principal cannot

spread continuation values at all.

The remaining ingredients of the model are the same. Under this stochastic process, the

principal’s problem can be rewritten as:

W (v) = max
{b(θ),w(θ)∈[waut,wmax]}θ

∫ θ

θ
[−(1− δ)b(θ) + δW (w(θ))] f(θ)dθ

subject to

(PK)

∫ θ

θ
[(1− δ)u(θ + b(θ)) + δw(θ)]f(θ)dθ = v,

(IC) (1− δ)u(θ + b(θ)) + δw(θ) ≥ (1− δ)u(θ + b(θ̂)) + δw(θ̂), for all θ, θ̂ ∈ [θ, θ]× [θ, θ],

(PC) (1− δ)u(θ + b(θ)) + δw(θ) ≥ (1− δ)u(θ) + δwaut, for all θ ∈ [θ, θ],

where waut =
∫ θ
θ u(θ)f(θ)dθ. This problem is basically the same as the problem described

in Section 2, except that we substitute summations by integrals in order to deal with

continuous types. The remainder of this appendix shows that waut is an absorbing state.

First, note that incentive compatibility requires that θ̂ = θ solves the following problem:

U(θ) = max
θ̂∈[θ,θ]

{
(1− δ)u(θ + b(θ̂)) + δw(θ̂)

}
, for all θ ∈ [θ, θ].

A standard lemma implies that (IC) is verified if and only if:

(LIC) U̇(θ) = (1− δ)u′(θ + b(θ)) almost everywhere,

(M) b is non-increasing,

where U̇ is the derivative of U with respect to θ. The first requirement is the local

incentive compatibility constraint, which follows from applying the envelope theorem

to the problem above (see Milgrom and Segal [2002]). The second requirement is the
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monotonicity condition that guarantees that (IC) is globally satisfied.

Second, note that given incentive compatibility, (PC) can be rewritten as

U(θ) ≥ (1− δ)u(θ) + δwaut, for all θ ∈ [θ, θ],

and define Ω to be the set of endowments for which the participation constraint is binding.

Formally,

Ω = {θ | U(θ) = (1− δ)u(θ) + δwaut}.

The following proposition shows that the interaction among (IC), (PC) and (PK) elim-

inates the possibility of risk-sharing when v = waut. Hence, waut is an absorbing state,

meaning that once in autarky, the agent remains in autarky almost surely. Algebraically,

at v = waut, w(θ) = waut and b(θ) = 0 almost everywhere. Therefore, W (waut) = 0.

Proposition 3. If v = waut, then w(θ) = waut and b(θ) = 0 almost everywhere.

Proof. Note that at v = waut, (PC) is binding almost everywhere. Otherwise, (PK)

would imply that

waut =

∫ θ

θ
[(1− δ)u(θ + b(θ)) + δw(θ)]f(θ)dθ >

∫ θ

θ
[(1− δ)u(θ) + δwaut]f(θ)dθ,

which contradicts waut =
∫ θ
θ u(θ)f(θ)dθ. Hence, almost every θ ∈ Ω.

Let Ω̊ be the interior of Ω, which is clearly not empty when v = waut. Note that

U̇(θ) = (1− δ)u′(θ) for all θ ∈ Ω̊. Hence, for each θ ∈ Ω̊, (LIC), u′′ < 0 and (PC) imply

that b(θ) = 0 and w(θ) = waut.

In an environment with continuous types, almost no one draws the highest type. Hence,

we conjecture that an extrapolation of Proposition 1 implies that, although an absorbing

state, autarky will never be reached in equilibrium by agents who are outside the autarky

state. Indeed, the same intuition applies. The impossibility of spreading continuation

values in autarky and thus providing some risk sharing should make the autarky state

even costlier in an environment with continuous types.
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Appendix B: Proof of Proposition 1

In this appendix, we prove Proposition 1. The first-order conditions (FOCs) of the

Lagrangian in Section 4 with respect to wj and bj are:

πj [W
′(wj) + µ] = λj+1,j − λj,j−1 + λj−1,j − λj,j+1 − ςj − ξj , and

πj [1− µu′(θj + bj)] = (λj,j−1 + λj,j+1 + ςj)u
′(θj + bj)− λj+1,ju

′(θj+1 + bj)− λj−1,ju′(θj−1 + bj),

respectively. Moreover, µ = −W ′(v) (envelope theorem; see Milgrom and Segal [2002]).

By summing the FOCs with respect to wj in j and substituting µ = −W ′(v), one obtains:

n∑
j=1

πjW
′(wj) +

n∑
j=1

(ςj + ξj) = W ′(v). (2)

By using Lemmas 2 and 3, evaluate the equation above at v = waut. After rearranging

the terms:

W ′(waut) = W ′(wn) +
1

πn

n∑
j=1

(ςj + ξj) ,

where wn, with a slight abuse of notation, is the optimal continuation value for type-n

at v = waut. Also, the multipliers are evaluated at v = waut.

We complete the proof in two steps. First, we show that at v = waut, the optimality

conditions imply that limπn→0
∑n

j=1 (ςj + ξj) > 0, such that28

lim
πn→0

W ′(waut) =∞.

Second, we show that the condition above implies that if v > waut, then waut is not

reachable within a neighborhood of πn = 0, i.e., there exists π(v) > 0 such that wj > waut

for all j and for all πn < π(v).

28Recall that strict concavity of W , wn ∈ (waut, wmax) and limv→wmax W
′(v) = −∞ imply that

W ′(wn) > −∞. Since this result is valid for all distributions of {πj}nj=1, including those with πn → 0,
then limπn→0W

′(wn) > −∞.
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Step 1. At v = waut, limπn→0
∑n

j=1 (ςj + ξj) > 0.

Proof. We prove that
∑n

j=1 (ςj + ξj) > 0 for all distributions {πj}nj=1, including those

with πn → 0. Suppose by contradiction that at v = waut,
∑n

j=1 (ςj + ξj) = 0. Hence,

ςj = ξj = 0 for all j. Note that the FOCs with respect to wj and bj (including j = n)

become:

πj [W
′(wj) + µ] = λj+1,j − λj,j−1 + λj−1,j − λj,j+1, and

πj [1− µu′(θj + bj)] = (λj,j−1 + λj,j+1)u
′(θj + bj)− λj+1,ju

′(θj+1 + bj)− λj−1,ju′(θj−1 + bj),

respectively. By summing the FOCs with respect to wj in j and substituting µ =

−W ′(waut), one obtains:

n−1∑
j=1

πjW
′(wj) + πnW

′(wn) = W ′(waut). (3)

Whether πn > 0 or πn → 0 does not matter for the arguments below. We break the

analysis into two cases: W ′(waut) < 0 and W ′(waut) ≥ 0.

Case 1: W ′(waut) < 0. Since W is strictly concave, waut ≤ w1 and wj ≤ wj+1, equation

(3) implies that wj = wj+1 = waut for j = 1, ..., n − 2. The FOCs with respect to wj

(excluding j = n) become:

λj+1,j − λj,j−1 + λj−1,j − λj,j+1 = 0.

Given that λ1,0 = λ0,1 = 0, a simple iterative argument implies that λj+1,j = λj,j+1 for

all j. Moreover, λj+1,j = λj,j+1 = 0.29 Hence, the FOCs with respect to bj (excluding

29Suppose this is not the case; then, the strict concavity of u, bj+1 ≤ bj and λj+1,j > 0 imply that

(1− δ)[u(θj + bj)− u(θj + bj+1)] > (1− δ)[u(θj+1 + bj)− u(θj+1 + bj+1)] = δ(wj+1 − wj).

Hence,

(1− δ)u(θj + bj) + δwj > (1− δ)u(θj + bj+1) + δwj+1,

and thus, λj,j+1 = 0, a contradiction.
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j = n) become:

u′(θj + bj) = − 1

W ′(waut)
> 0.

Hence, since u′′ < 0, bj > bj+1, for j = 1, ..., n − 2. But from (IC), wj = wj+1 implies

bj = bj+1, a contradiction.

Case 2: W ′(waut) ≥ 0. Since W is strictly concave, waut ≤ w1 and wj ≤ wj+1, equation

(3) implies that w1 = waut. Given that λ1,0 = λ0,1 = 0, the FOC with respect to w1 and

the arguments in footnote 29 imply that λ2,1 = λ1,2 = 0. Hence, the FOC with respect

to b1 becomes:

u′(θ1 + b1) = − 1

W ′(waut)
≤ 0,

in contradiction to u′ > 0.

Step 2. For each v > waut, limπn→0W
′(waut) = ∞ implies that there is π(v) such that

wj > waut for j = 1, ..., n and for all πn < π(v).

Proof. Suppose by contradiction that at v > waut, wj = waut is an optimal choice for

some j. Since waut ≤ w1 and wj ≤ wj+1, it must be the case that w1 = waut. Consider

the FOC with respect to w1 after plugging µ = −W ′(v) and evaluating at w1 = waut:

ξ1 + ς1 = π1[W
′(v)−W ′(waut)] + λ2,1 − λ1,2.

Given that the maximization problem is well-defined, λ2,1 < ∞ for all distributions

{πj}nj=1, including those with πn → 0. Hence, limπn→0W
′(waut) =∞ and limπn→0W

′(v) <

∞ (recall that v > waut and W is strictly concave) imply that ξ1 + ς1 < 0 in a neighbor-

hood of πn = 0, a contradiction.

Appendix C: Additional Results

Within the context of the simple numerical example described in Section 5, this appendix

reports the optimal contracts and value functions in the models with and without (PC).

Then, with some algebra and the simple numerical example, we discuss to what extent
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our conclusions can be generalized if we assume that the agents and the principal do not

have the same discount factors.

C.1 Numerical Example: Optimal Contracts and Value Functions

In this section, within the context of the simple numerical example from Section 5, we

show the optimal contracts and the principal’s value functions that arise in the models

with and without (PC).

Figure 3 plots the optimal contract (continuation values and transfers) for each type,

along with forty-five-degree lines (dashed lines) and horizontal lines (dotted lines) high-

lighting the autarky state. Because participation constraints tend to bind for lower values

of v, the optimal contracts with and without (PC) are similar for higher values of v. Fig-

ure 1 in the main text plots in larger-scale optimal continuation values as functions of v

near its lower bound, waut.
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Figure 3: Optimal contract. The top and bottom plots consider the optimal choices
of wj and bj for all j as functions of v, respectively. The left and right plots consider
the model with and without (PC), respectively. Full lines, dashed lines and dotted lines
represent the optimal contract for each endowment shock j, the forty-five-degree line and
the autarky state, respectively.
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The left graph of Figure 4 plots the value functions of the principal in the models with and

without (PC), represented by the full and dashed lines, respectively. Because differences

between them are not visible, the right graph reproduces at a larger scale their shape

near the lower bound waut. Note that slightly above waut, the slope of the value function

is positive in the model with (PC) but negative in the model without (PC). Given that

spreading continuation values becomes markedly costly near waut once (PC) is accounted

for, the principal can increase his profits by promising more consumption to the agent in

the future.
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Figure 4: Value functions of the principal. Full and dashed lines represent the models
with and without (PC), respectively. The left graph plots the value functions, whereas
the right graph plots them at a larger scale near v = waut.

C.2 Different Discount Factors

Assume that the discount factor of the principal, say β, differs from that of the agents,

δ.30 Because Lemmas 1 and 2 do not rely on the preferences of the principal, they are still

valid even if β 6= δ. Hence, the impossibility of spreading continuation values at v = waut

for lower realizations of the endowment shocks, which is the main driving force behind

our results, is still present if discount factors are allowed to differ freely. In addition, if

we assume that the agents are more patient than the principal, i.e., β < δ, an inspection

of the proof of Lemma 3 reveals that this lemma remains valid.

In this section, we discuss to what extent Propositions 1 and 2 can be generalized if

β < δ. It turns out that they are fairly robust. Intuitively, if the agents are more patient,

30Other papers in the literature also allow for different discount factors in related environments. Wang
[2005], for instance, considers a model of dynamic risk sharing with private information and costly state
verification. Opp and Zhu [2015] study the dynamics of long-term contracts when the agent is impatient
in a general setting that nests Thomas and Worrall [1988], among others.
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the force at play to postpone consumption near autarky is reinforced. This does not

mean that our conclusions would not be valid if the opposite holds. Even if β > δ, due to

Lemmas 1 and 2, the main driving force behind our analytical results still applies. On the

one hand, the impossibility of properly spreading continuation values at the autarky state

introduces a force to backload consumption. On the other hand, more-impatient agents

introduce a motive to frontload consumption. We provide a numerical example showing

that the force to backload dominates near the autarky state. Hence, our conclusions can

still be valid even if the principal is more patient.

A close inspection of the online appendix reveals that the intermediate steps used to derive

a Lagrangian functional for the principal’s problem still apply. Hence, the Lagrangean

would be analogous to that in the main text, except that β substitutes δ in the principal’s

objective function. Following the steps outlined in Appendix B, one can sum the first-

order conditions with respect to wj , substitute the envelope condition µ = −W ′(v), and

use Lemma 2 to evaluate the resulting equation at v = waut to obtain

W ′(waut) =
πn

β
δ

1− (1− πn)βδ
W ′(wn) +

1

1− (1− πn)βδ

n∑
j=1

(ςj + ξj), (4)

where wn, with a slight abuse of notation, is the optimal continuation value for type-n

at v = waut. Multipliers are also evaluated at v = waut.

If δ = β, the equation above collapses to the one in the main text. Assume β < δ instead,

such that Lemma 3 is still valid. In this case, one can follow similar steps as those in

Appendix B to show that

lim
πn→0

W ′(waut) =
1

1− β
δ

n∑
j=1

(ςj + ξj) > 0.

Since this limit is not infinity, this result does not generalize Proposition 1. However,

as we argue in the main text, it is the possibility to make positive profits by increasing

continuation values that prevents the principal from promising the autarky value in the

next period. Hence, this force at play behind Proposition 1 is still present in this case.

Proposition 2 states that a non-degenerate invariant distribution exists. The part of the
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proof regarding the existence of an invariant distribution easily generalizes to different

discount factors. The non-degeneracy follows from Lemma 3, which guarantees that none

of the states reached is absorbing.

In principle, as equation (4) highlights, different values of β, δ and πn could make the

slope of profits, W ′, positive near v = waut, even if the principal is more patient than

the agents. Indeed, as we show below, this is true in our simple numerical example for a

wide range of discount factors. In this context, the main conclusions of this paper still

apply, even if β > δ. As we argued above, the motive to postpone consumption near the

atuarky state can dominate the motive to anticipate it due to impatience.

Figure 5 (top graphs) reproduces the behavior of optimal continuation values, as functions

of v, near waut for β = 0.7 (left graphs) and β = 0.9 (right graphs). Recall that we

set δ = 0.8. The figure also plots forty-five-degree lines (dashed lines) and horizontal

lines (dotted lines) highlighting the autarky state. Note that continuation values are

still strictly increasing functions of promised values, although not clearly visible in the

right graph. Figure 5 (bottom graphs) also shows the trajectory of promised values over

time after the realization of a sequence of the lowest endowment shock θ1. The initial

promised value v0 was such that it maximizes the principal’s profits in the benchmark

parametrization with β = 0.8. Again, promised values converge to a lower bound strictly

above the autarky value in finite time. These numerical results generalize for a wide

range of values for β.
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Figure 5: Optimal continuation values near waut. The top plots consider the optimal
choices of wj for all j as functions of v near v = waut. Full lines, dashed lines and dotted
lines represent wj for each endowment shock j, the forty-five-degree line and the autarky
state, respectively. The bottom plots consider the path of promised values over time after
the realization of a finite sequence of the lowest endowment shock θ1. The left and right
plots consider the model with β = 0.7 and β = 0.9, respectively.

Hence, even if the principal is more patient than the agents, the conclusions from Lemma

3 and Proposition 1 still apply in the context of this simple numerical example. Namely,

some intertemporal trade occurs between the financial intermediary and the agents who

draw θn, and the optimal contract prevents the agents from reaching the autarky state.

Indeed, Figure 6 (top graph) plots the numerical right-derivative of W at v = waut

as a function of β, ranging from 0.7 to 0.9, with step size 0.01. Recall that we set

πn = 0.2. In all cases, the slope of W (waut) is positive, implying that the mass of agents

living in autarky is zero according to our numerical simulations. This slope increases

as the financial intermediary becomes more impatient. Hence, as the discussion above

emphasizes, the force at play behind our main results is stronger for lower values of β.
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Figure 6: Comparative statistics: β. The top graph plots the numerical right-derivative
of W at v = waut as a function of β. The bottom graph plots the limit aggregate transfers
as a function of β.

Figure 6 (bottom graph) also plots aggregate transfers, computed using the limit invariant

joint distribution of types and values. Transfers decrease with the principal’s degree of

patience. Moreover, there exists β above δ, such that aggregate transfers are zero. In

particular, β ≈ 0.82. Hence, if we allow the interest rate embedded in the principal’s

discount factor to adjust to equalize aggregate consumption and aggregate endowment,

a market-clearing interest rate along with a stationary equilibrium arises in the context

of this simple numerical example without changing our main conclusions. Again, as the

main driving force behind our results is still present if discount factors are allowed to

differ freely, this numerical result is likely to be valid more generally.
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