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Abstract

This paper studies optimal targeting policies, consisting of eliminating (preserving) a set of
agents in a network and aimed at minimizing (maximizing) aggregate effort levels. Different
from the existing literature, we allow the equilibrium network to adapt after a network
intervention and consider targeting of multiple agents. A simple and tractable adjustment
process is introduced. We find that allowing the network to adapt may overturn optimal
targeting results for a fixed network and that congestion/competition effects are crucial to
understanding differences between the two settings.
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1 Introduction

Important policy considerations are related to optimal targeting and, more precisely, the elim-
ination and preservation of agents in a network. For the former, consider crime control. Law
enforcement agencies may wish to minimize aggregate crime levels by removing agents from a
crime network. For the latter, consider production choices of firms engaging in bilateral R&D
agreements. In times of crisis, governments may wish to keep aggregate production levels as
high as possible by saving a subset of firms in financial distress. We show in this paper that
optimal targeting in an adaptive network may be very different from optimal targeting in a
fixed network. Not taking changes in agents’ linking behavior into account may imply not only
suboptimal policies, but can have unintended and undesired consequences. In crime networks,
for example, following an optimal targeting policy under the assumption that the network is
fixed, when in fact it adapts, may lead to an increase in aggregate crime levels. We show that
at the heart of differences between optimal targeting in fixed vs. adaptive networks lie conges-
tion and competition effects. A more detailed discussion of targeting policies, including their
implementability in practice, is provided in a separate section toward the end of the paper.

To study targeting policies in an adaptive network, we assume the linear quadratic payoff
specification proposed in Ballester et al. (2006), which is also commonly used to study crime and
R&D networks. Agents are embedded in a network and can choose a continuous, non-negative
effort level. Locally, effort levels are strategic complements and induce positive externalities,
while globally effort levels are strategic substitutes and induce a negative externality.1 A planner
may eliminate up to, but not necessarily equal to, a given number of agents from a network.2

Thereafter, a simple and tractable adaption process with the following properties ensues. Agents
are assumed to be myopic and, as in pairwise Nash equilibrium and pairwise stability, link
formation is separated from link deletion. In the link formation stage, any link is added that is
profitable for a pair of agents in isolation, given the current network and the corresponding vector
of Nash equilibrium effort levels. In the link deletion stage, agents best respond to the current
network by deleting any subset of links. In between link formation and link deletion stages, agents
adjust their effort levels to the Nash equilibrium effort level of the current network, i.e., after
links were added or deleted. We call this process pairwise best response dynamics. An optimal
targeting policy then prescribes eliminating sets of agents such that the sum of discounted effort
levels is minimal, where we allow for the option to not intervene at all.

The initial configuration is assumed to be a pairwise Nash equilibrium. These equilibria are
relevant for two reasons. First, pairwise best response dynamics only converge to a pairwise Nash

1We provide formal derivations of the payoff function for the two main applications in the appendix.
2Optimal elimination policies with multiple agents are known to be a particularly difficult problem for fixed

networks. Ballester et al. (2010) show that finding a “key group” is NP-hard. The authors provide a greedy
algorithm to find such a group.
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equilibrium. Second, all pairwise Nash equilibria display nested split graphs (see Hiller, 2020).3

Nested split graphs are a particular type of core-periphery network in which agents with a higher
number of links are connected to all agents to which agents with fewer links are connected. These
networks are of interest in our context because they have empirical support for the applications
considered.4 Note that we assume that agents do not anticipate being targeted. The planner’s
targeting decision therefore does not enter agents’ payoff functions. Although interesting, we
follow the literature in this respect and the latter considerations are outside the scope of the
present paper.5

We show that if the parameter governing global substitution effects is sufficiently small (and
the network is not empty), then optimal targeting boils down to the following simple policy:
Eliminate the maximum number of agents and target those agents that are most central. In a
nested split graph the most central agents are also the ones with the highest number of links
and display the highest effort levels. That is, in this case the optimal policy provides a sufficient
statistic that does not require knowledge of the whole network. The intuition for this result is
that with small substitution/congestion effects no pair of agents finds it profitable to create a link
in any time period after the elimination, while agents’ incentives to delete links are largest. The
network is (weakly) sparsest and consists of the minimal number of agents in any time period.
One can show that discounted aggregate effort levels are therefore also lowest. The optimal
targeting policy then coincides with the case when the network does not adapt. Note, however,
that this is due to the absence of targeting cost. Not taking subsequent link deletions into account
underestimates the effect of targeting on aggregate effort levels. Therefore, with costly targeting,
the optimal policy may differ from the fixed network case even in the absence of substitution
effects. We provide an example in the main part of the paper (Example 1). If, on the other hand,
the parameter governing global substitution effects is large, then agents may have incentives to
create new links in subsequent periods. In particular, it may now not be optimal to target the
most central agents. We first provide a sufficient condition such that, if the parameter governing
global substitution effects is sufficiently large, then there exists a pairwise Nash equilibrium for
which it is optimal to eliminate an agent that is the least central (displays the lowest number
of links). We then focus on the star network and provide a characterization for the case when
the parameter governing global substitution effects is equal to the parameter governing local
complementarities. For simplicity we assume that up to two agents may be eliminated and that
the discount factor is close to 1. We show that if only one agent can be eliminated, then it is
always optimal to eliminate the central agent. But when two agents can be eliminated, it may

3Hiller (2020) also shows that a pairwise Nash equilibrium always exists for the parameter values considered.
4For crime networks, see Canter (2004), Dorn and South (1990), Dorn, Murji and South (1992), Ruggiero

and South (1997) and Johnston (2000). For R&D networks see Tomasello et al. (2017), Kitsak et al. (2010),
Rosenkopf and Schilling (2007).

5See for example Ballester et al. (2006), Galeotti et al. (2020), Demange (2017).
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be optimal to eliminate only one agent, rather than two. The intuition is that eliminating two
agents may lead to more link additions. A denser network of fewer agents may then yield higher
aggregate effort levels than a sparser network with more agents. For the same reason, applying
the optimal targeting policy for a fixed network, when in fact the network adapts, may lead to
worse outcomes than not intervening at all. Finally, we consider the case in which a planner aims
to maximize the discounted sum of aggregate effort levels and can preserve a subset of agents in
distress. We show that, if global substitution effects are sufficiently small, then, in analogy to
our previous results, it is optimal to save the distressed agents that are most central.

Next we briefly discuss our adaption process more generally. Note first that there exists
a strand of the literature that takes a dynamic and long-run approach to network formation
(for two-sided network formation, see Jackson and Watts, 2002a and 2002b).6 These papers
assume an adjustment process with noise and characterize the limit invariant distribution. Note,
however, that the distribution is independent of initial conditions. That is, it is not possible
to address questions related to the targeting of different agents in a network. In contrast, the
simple adjustment process presented here allows us to provide analytical results and to easily
calculate numerical examples. Regarding convergence properties, recall that pairwise best re-
sponse dynamics only converge to pairwise Nash equilibria. If global strategic substitutes are
sufficiently small, then it follows directly that pairwise best response dynamics converge to a
pairwise Nash equilibrium. The reason is that no new links are created in any time period, while
agents may delete links. The process is therefore bounded below by the empty network, which
guarantees that the process converges. For the case when global substitution effects are large,
we show convergence when needed and do not provide general convergence results. However,
a one-sided link formation version of the model, for which the corresponding adaption process
always converges, is presented in the online appendix.7 There, we also provide an example that
shows that intervening may be detrimental with large congestion effects. This is in the spirit of
Proposition 4 of the main part of the paper. The reason to not adopt the one-sided approach is
that the applications are generally thought to be two-sided. Moreover, introducing directed links
introduces additional complications, without adding any interesting insights for the applications
considered.

Our paper contributes to the literature on targeting, which is an active and growing area
of study, not only in economics, but also in computer science and sociology.8 Ballester et al.
(2006) is an early contribution in economics and the authors characterize the optimal elimination
policy of a single agent on a fixed network.9 Galeotti et al. (2020) present a model in which a

6For one-sided network formation, see Bala and Goyal (2000).
7More precisely, one can show that the game is a potential game and we can therefore rely on the convergence

results under fictitious play, as shown in Shapley and Monderer (1996).
8For introductions, see Borgatti (2006) and Valente (2012).
9For a good review of the literature on key players, see Zenou (2016).
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budget constrained planner can alter the incentives of agents to exert effort at a cost on a fixed
network. Effort levels are either strategic complements or strategic substitutes. The authors then
characterize the set of agents to be targeted via a decomposition into principal components, which
are determined by the network.10 Belhaj and Deroian (2019) solve a principal agent problem in
which a planner contracts with agents on a fixed network. It is shown that the principal may
not contract with all agents and that the planner may refrain from contracting with agents that
are most central. Our analysis can be thought of as complementary to this body of work and, to
the best of our knowledge, the present paper is the first to provide analytic results for targeting
policies when the network may adapt and to highlight the role of competition/congestion effects.11

The paper is organized as follows. Section 2 provides the model description. Section 3 presents
our main results. Section 4 provides a more detailed discussion of our main applications, including
the implementability of targeting policies. Section 5 concludes. A formal derivation of the payoff
function for crime and R&D networks is provided in the appendix. In the online appendix, we
relate our payoff function in detail to Ballester et al. (2006), present the one-sided link formation
model and provide the proof of Proposition 3. All remaining proofs are relegated to the appendix.

2 The Model

We assume that the initial configuration is a pairwise Nash equilibrium and start by defining
the corresponding network formation game. Note that the deviations considered are also the
relevant deviations for our pairwise best response dynamics. Moreover, effort levels at each time
period correspond to the Nash equilibrium effort levels given the prevailing network. We then
introduce pairwise best response dynamics and further useful concepts formally.

2.1 Payoffs, Pairwise Nash Equilibrium and Some Notation

Let N = {1, 2, ..., n} be the set of players with n ≥ 3. Each agent i chooses an effort level xi ∈ X
and announces a set of agents to whom the agent wishes to be linked, which is represented by
a row vector gi = (gi,1, ..., gi,i−1, gi,i+1, ..., gi,n), with gi,j ∈ {0, 1} for each j ∈ N\{i}. An entry
gi,j = 1 in gi is interpreted as agent i announcing a link to agent j, while an entry gi,j = 0 in gi

is taken to mean that agent i does not announce a link to agent j. Assume X = [0,+∞) and
gi ∈ Gi = {0, 1}n−1. The set of agent i’s strategies is denoted by Si = X × Gi and the set of
strategies of all players by S = S1×S2× ...×Sn. A strategy profile s = (x,g) ∈ S then specifies
each player’s individual effort level, x = (x1, x2, ..., xn), and intended links, g = (g1,g2, ...,gn).

10For a model with targeting on a fixed network and strategic complementarities, also see Demange (2017).
11Targeting is also studied in models of optimal pricing with interdependent consumers. See, for example,

Bloch and Querou (2013) and Fainmesser and Galeotti (2017). A further strand of the literature is concerned
with seeding and diffusion in networks. See Galeotti and Goyal (2009) and Galeotti and Rogers (2013).
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A link between agents i and j, denoted by ḡi,j = 1, is created if and only if both agents i and
j announce the link. That is, ḡi,j = 1 if and only if gi,j = gj,i = 1 (and ḡi,j = 0 otherwise) and
therefore ḡi,j = ḡj,i. The undirected graph ḡ is defined as ḡ = {{i, j} ∈ N : ḡi,j = 1}. That is, ḡ

is a collection of links, which are listed as subsets of N of size 2. Denote the set of i’s neighbors
in ḡ with Ni(ḡ) = {j ∈ N : ḡi,j = 1} and the corresponding cardinality with ηi(ḡ) = |Ni(ḡ)|.12

Given a network ḡ, ḡ + ḡi,j and ḡ − ḡi,j have the following interpretation. When ḡi,j = 0 in ḡ,
then ḡ + ḡi,j adds the link ḡi,j = 1, while if ḡi,j = 1 in ḡ, then ḡ + ḡi,j = ḡ. Similarly, if ḡi,j = 1

in ḡ, then ḡ − ḡi,j deletes the link ḡi,j, while if ḡi,j = 0 in ḡ, then ḡ − ḡi,j = ḡ.
In order to compare different networks we write ḡ ⊂ ˆ̄g to indicate that {{i, j} ∈ N : {i, j} ∈

ḡ} ⊂ {{i, j} ∈ N : {i, j} ∈ ˆ̄g}. Similarly, we write ḡ = ˆ̄g for {{i, j} ∈ N : {i, j} ∈ ḡ} = {{i, j} ∈
N : {i, j} ∈ ˆ̄g}, and ḡ ⊆ ˆ̄g for {{i, j} ∈ N : {i, j} ∈ ḡ} ⊆ {{i, j} ∈ N : {i, j} ∈ ˆ̄g}. The network
is called empty and denoted by ḡe if ḡi,j = 0 ∀i, j ∈ N , while it is called complete and denoted
by ḡc if ḡi,j = 1 ∀i, j ∈ N such that i 6= j.

Payoffs to player i under strategy profile s = (x,g) are given by

Πi(s) = πi(x,ḡ)− ηi(ḡ)κ,

where κ denotes linking cost with κ > 0. Gross payoffs, i.e. payoffs excluding linking cost,
πi(x,ḡ), are given by the frequently employed linear-quadratic payoff function with local com-
plementarities and global substitutes (Ballester et al., 2006). That is,

πi(x,ḡ) = αxi − 1
2
(β + γ)x2

i + λxi
∑

j∈Ni(ḡ) xj − γxi
∑

j∈N\{i} xj ∀i ∈ N .

To guarantee existence and uniqueness of a Nash equilibrium in effort levels for any fixed
network ḡ, we can resort to Ballester et al. (2006) and assume that β > (n − 1)λ. The best
response and value function are defined as follows.

Best response function. The unique best response of player i to the vector of effort levels x−i

in network ḡ is given by

x̄i(x−i, ḡ) = x̄i(yi(ḡ), zi(ḡ)) = 1
β+γ

(
α + λ

∑
j∈Ni(ḡ) xj − γ

∑
j∈N\{i} xj

)
.

Value function. The maximized gross payoff for x−i in network ḡ is given by

πi(x̄i,x−i, ḡ) = vi(yi(ḡ), zi(ḡ)) = 1
2(β+γ)

(
α + λ

∑
j∈Ni(ḡ) xj − γ

∑
j∈N\{i} xj

)2

.

The aggregate effort level of agent i’s neighbors in ḡ, which we sometimes call agent i’s effort
level “accessed”, is written as yi(ḡ) =

∑
j∈Ni(ḡ) xj. The aggregate effort level of all agents other

12Note that agents are not linked to themselves and therefore not included in their own neighborhood.
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than i is written as zi(ḡ) =
∑

j∈N\{i} xj. We sometimes write xi, yi, zi, πi, x̄i and vi to simplify
notation. Likewise, at times we drop the subscripts when it is clear from the context.

Next we define pairwise Nash equilibrium (PNE). When agents i and j deviate to create a
link, then deviation effort levels are assumed to be mutual best responses (while the remaining
agent’s effort levels remain unchanged). The corresponding deviation effort levels are denoted by
x′i = x̄(yi(ḡ) + x′j, zi(ḡ) + x′j − xj). We sometimes write x′i(ḡ + ḡi,j) to denote agent i’s deviation
effort level when creating a link with agent j.

A strategy profile s = (x,g) is a pairwise Nash equilibrium iff

• for any i ∈ N and every si ∈ Si, Πi(s) ≥ Πi(si, s−i);

• for all ḡi,j = 0, if Πi(x
′
i, x
′
j,x−i,−j, ḡ + ḡi,j) > Πi(s),

then Πj(x
′
i, x
′
j,x−i,−j, ḡ + ḡi,j) < Πj(s).

A pairwise Nash equilibrium is both a Nash equilibrium and pairwise stable and therefore
refines Nash equilibrium. Pairwise Nash equilibrium allows for deviations where a pair of agents
creates a link (and deviating agents best respond to each other’s effort level). Furthermore, pair-
wise Nash equilibrium allows for deviations in which an agent deletes any subset of existing links
(and adjusts her effort level). However, deviations where a pair of agents creates a link and/or
adjusts effort levels and simultaneously deletes any subset of existing links are not considered.
We write (x(ḡ), ḡ) to denote a network ḡ and the corresponding vector of Nash equilibrium effort
levels, x(ḡ). The configuration (x(ḡ), ḡ) is a pairwise Nash equilibrium if and only if the above
conditions are satisfied for all agents/pairs of agents.

Hiller (2020) shows that if λ ≥ γ ≥ 0 and λ > 0, then any pairwise Nash equilibrium network
is a nested split graph and a pairwise Nash equilibrium always exists. These assumptions are
in line with the applications considered and we adopt them throughout the paper.13 A formal
definition of a nested split graph and the corresponding equilibrium characterization are presented
below.

Definition 1: A network ḡ is a nested split graph if and only if
[ḡi,l = 1 and ηk(ḡ) ≥ ηl(ḡ)]⇒ ḡi,k = 1.

Proposition 1 (Hiller, 2020). In any PNE, (x, ḡ), the network ḡ is a nested split graph such
that xi < xk ⇔ ηi(ḡ) < ηk(ḡ)⇔ v(yi(ḡ), zi(ḡ)) < v(yk(ḡ), zk(ḡ)) holds.

It is sometimes convenient to write equilibrium and deviation payoffs as a function of γ and
we adopt the following notation. We write x(ḡ, γ) for the vector of Nash equilibrium effort levels

13For example, for the case of R&D networks, König et al. (2019) provide estimates for λ and γ and show that
λ > γ > 0. See Pattacchini and Zenou (2012) for peer effects in crime.
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as a function of the network and γ, while suppressing the remaining parameters. Likewise, we
denote agent i’s Nash equilibrium effort level by xi(ḡ, γ) and write agent i’s deviation effort
level when creating a new link with agent j as x′i(ḡ+ḡi,j, γ). With some abuse of notation we
write equilibrium gross payoffs as vi(ḡ, γ). We denote the (gross) marginal deviation payoffs
of agent i when creating a link with agent j with ∆vi(ḡ + ḡi,j, γ), where ∆vi(ḡ + ḡi,j, γ) =

vi(ḡ + ḡi,j, γ)− vi(ḡ, γ).
For our analysis it is useful to define paths and components. A path of length k from i to

j is a sequence i0, ..., ik of players such that i0 = i and ik = j, ip 6= ip+1 and ḡip,ip+1 = 1 for all
0 ≤ p ≤ k−1. Components are maximal subsets of agents N s ⊆ N , such that for every i, j ∈ N s

(with i 6= j), there exists a path between i and j.14 A component N s is called complete if a link
is present for every i, j ∈ N s (with i 6= j). Note that the binary relationship of “being connected
by a network path” is an equivalence relationship and therefore components partition the set of
agents. We write k ∈ N i(ḡ) to denote that agent k lies in agent i’s component in network ḡ (and
there therefore exists a path between agents i and k in ḡ). A network is said to be connected if
there exists only one component.15

2.2 Optimal Targeting Policies: Preliminaries

In the following we present a simple infinite horizon adjustment process, which we call pairwise
best response dynamics. Pairwise best response dynamics mirror pairwise stability and pairwise
Nash equilibrium in the following sense: pairs of agents can either create links, or delete links,
but the process does not allow for the simultaneous creation and deletion of links. We then
define optimal targeting policies formally and introduce a relabeling procedure, which allows us
to compare networks after different sets of agents were eliminated from the network. Finally, we
introduce minimal deletion best responses, which simplify the exposition but are not necessary
for our results.

Starting from a pairwise Nash equilibrium, (x(g),g), denote the network after a set of agents
E is eliminated from g by g−E0 . Agents adjust their efforts to the Nash equilibrium effort lev-
els of the new network g−E0 , which yields x(g−E0 ). In time period one, given the configuration
(x(g−E0 ),g−E0 ), all links are added to the network that constitute a profitable deviation in isola-
tion.16 That is, any link not already present, such that a pair of agents can profitably deviate
by creating a link, given x(g−E0 ) and g−E0 , is added to the network g−E0 . This yields the network
g−E1 . Agents again update their effort levels to Nash equilibrium effort levels, x(g−E1 ), given the
network g−E1 . In time period two agents best respond by deleting links given the configuration

14Singleton agents are assumed to form trivial components of size one.
15For definitions of paths and components also see Jackson (2010) and Vega-Redondo (2007).
16From the definition of pairwise Nash equilibrium, for a link between i and j to be profitable, i and j’s

deviation payoff of creating a link among themselves in (x(g−E0 ),g−E0 ) is weakly positive for both agents and
strictly positive for at least one agent.
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(x(g−E1 ),g−E1 ), which yields the network g−E2 and corresponding Nash equilibrium effort levels
x(g−E2 ).17 The link creation and link deletion stages of time period one and two are then assumed
to alternate indefinitely. Below we provide a summary of our adjustment process.

Start with ḡ−E0 and x(ḡ−E0 ) and define ḡ−Et and x(ḡ−Et ) iteratively as follows.

Pairwise best response dynamics:

Step 1: Add all profitable links given ḡ−Et and x(ḡ−Et ) ⇒ ḡ−Et+1.

Step 2: Allow for link deletions given ḡ−Et+1 and x(ḡ−Et+1) ⇒ ḡ−Et+2

Repeat Steps 1 and 2 ad infinitum, letting t→∞.

Finally, an optimal targeting policy identifies the set of agents for which the discounted sum
of aggregate effort levels is minimal.18 Denote the discount factor by δ and denote by P(N)

the power set of N . Denote the set of eliminated agents by E, with E ∈P(N). The maximum
number of agents that can be eliminated from the network is given by e with 1 ≤ e < n. Note
that this allows for the possibility that no agent is targeted.

Optimal targeting policy: Pick a set of agents E such that

minE⊂N{
∑∞

t=0 δ
t
∑

j∈N\E xj(g
−E
t ) | E ∈P(N) and | E |≤ e}.

Relabeling Procedure

In order to be able to compare different networks after different sets of agents (with same car-
dinality) are eliminated from the network, we need to relabel agents so that the sets of the
remaining agents are the same. To illustrate this, consider first the case when only one agent is
eliminated and assume we want to compare ḡ−k and ḡ−l. We can then relabel agent l in ḡ−k as,
say, r, while we relabel agent k in ḡ−l as r. This yields the same set of agents in ḡ−k and ḡ−l, i.e.
{N \ {k, l}} ∪ {r}, which then allows us to directly compare the two networks. The relabeling
procedure is more complicated when considering the elimination of multiple agents. Assume that
different sets of agents, Ei and Ej, are eliminated from ḡ and denote the resulting networks with
ḡ−Ei and ḡ−Ej . We will be interested in the deletion of sets of equal size and therefore assume
that | Ei |=| Ej |. Note that an agent k ∈ N such that k ∈ Ei∩Ej is eliminated in both ḡ−Ei and
ḡ−Ej and we can therefore disregard any such agent in our relabeling procedure. Define Ẽi and
Ẽj as follows, Ẽi = Ei \ Ej and, similarly, Ẽj = Ej \ Ei. Denote ẽ =| Ẽi |=| Ẽj |. Next, choose
any ranking of agents in Ẽi such that η(1,Ẽi)

k (g) ≤ η
(2,Ẽi)
l (g) ≤ ... ≤ η

(ẽ,Ẽi)
m (g), where the subscript

17Note that we assume that agents best respond via minimal deletion best responses, which are defined formally
only later. While this assumption simplifies the analysis and notation, it should be noted that our results do not
depend on it.

18Alternatively one could define the optimal targeting policy in terms of the overtaking criterion. Note that
our results go through for the overtaking criterion as well.
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denotes the label of the agent in g, the first entry in the superscript denotes the agent’s position
in the chosen ranking and the second entry signifies that the agent is in the set Ẽi. Similarly,
choose any ranking of agents in Ẽj such that η(1,Ẽj)

s (g) ≤ η
(2,Ẽj)
t (g) ≤ ... ≤ η

(ẽ,Ẽj)
u (g). To simplify

notation, we sometimes drop the subscript. Note that Ẽi ∩ Ẽj = ∅ by construction. Agents are
then relabeled in the following way. For a pair of agents k and s with the same superscript x,
η

(x,Ẽi)
k (g) and η

(x,Ẽj)
s (g), we relabel s as rx in ḡ−Ei and k as rx in ḡ−Ej . We write rx(g−Ei) to

denote agent rx in network g−Ei and write rx(g−Ej) for agent rx in network g−Ej . Note also that
the agent relabeled in each instance is the agent that is not eliminated in the respective network:
s in the case of ḡ−Ei and k in the case of ḡ−Ej . Define the set of agents after elimination and
relabeling as N(Ei) and N(Ej) and note that N(Ei) = N(Ej) = {N \{Ei∪Ej}}∪{r1, r2, ..., rẽ}.
This allows us to compare the networks ḡ−Ei and ḡ−Ej directly.

To show our results, it is useful to define the following preorder, denoted by %.

Definition 2: Ẽi % Ẽj if and only if η(x,Ẽi)(g) ≥ η(x,Ẽj)(g) for all x ∈ {1, ..., ẽ}.

Note that % does not depend on which particular ranking is chosen for Ẽi and Ẽj. Define
Ẽi ∼ Ẽj as follows: Ẽi ∼ Ẽj if and only if Ẽi % Ẽj and Ẽj % Ẽi. Likewise, define Ẽi � Ẽj

as Ẽi � Ẽj if and only if Ẽi % Ẽj and not Ẽj % Ẽi. Finally, note that when Ei ∈ E (e) and
Ej /∈ E (e), then Ẽi � Ẽj, while if Ei, Ej ∈ E (e), then Ẽi ∼ Ẽj.

Minimal Deletion Best Responses

To simplify the exposition we assume that agents play minimal deletion best responses. More
precisely, if an agent’s current linking strategy gi in configuration (x(ḡ), ḡ) is (part of) a best
response, then we assume that the agent does not deviate and the minimal deletion best response
is simply gi (together with the corresponding best response effort level x̄i(ḡ)). If, however, the
current linking strategy gi is not part of a best response and multiple profitable deletion deviation
best responses exist, then the strategy chosen is such that, loosely speaking, the number of links
remaining after an agent’s deviation strategy is minimal. Assuming that agents play minimal
best responses allows for a cleaner analysis and to calculate examples more easily. However, it
is important to note that our results do not depend on this assumption.19

Consider a deletion best response by agent i, written as g′i and x̄i(g
′
i, ḡ), where x̄i(g′i, ḡ) is

the best response effort level of agent i when deviating to linking strategy g′i in (x(ḡ), ḡ). To
simplify notation, we often simply write g′i for a deletion best response and it is implicit that agent
i plays the corresponding best response effort level x̄i(g′i, ḡ). Denote the network after proposed
deviation by ḡ′i. Again we drop the subscript when it is clear from the context. Deviation payoffs

19They also go through, for example, if we were to assume that agents choose randomly among their best
responses when deleting links and that the planner aims to minimize the expected discounted stream of aggregate
effort levels.
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are defined by Πi(g
′
i, ḡ) = πi(x̄i(g

′
i, ḡ),x−i(ḡ),ḡ′) − ηi(ḡ′)κ. Write g′i ⊆ gi if for all j ∈ N \ {i}

with g′i,j = 1 in g′i, gi,j = 1 also holds in gi. For configuration (x(ḡ), ḡ) we then define agent i’s
minimal deletion best response, g′mi , as follows.

Definition 3: Minimal Deletion Best Responses.

If gi ∈ argmaxg′i: g′i⊆gi
Πi(g

′
i, ḡ), then g′mi : g′mi = gi.

If gi /∈ argmaxg′i: g′i⊆gi
Πi(g

′
i, ḡ), then g′mi : i) g′mi ∈ argmaxg′i: g′i⊆gi

Πi(g
′
i, ḡ) and

ii) g′mi ⊆ g′i ∀g′i ∈ argmaxg′i: g′i⊆gi
Πi(g

′
i, ḡ).

That is, if gi is (part of) a best response in configuration (x(ḡ), ḡ), then g′mi = gi, while
if gi is not (part of) a best response, then g′mi selects the deletion best response that can be
considered minimal. A minimal deletion best response always exists and is unique (Lemma 7).
Note that, due to strategic complementarities, x̄i(g′i, ḡ) is then also minimal. We denote the
network after a minimal deletion best response by agent i in ḡ with ḡ′i

m. Again, we drop the
subscript when it is clear from the context. Finally, denote the set of agents to which i deletes
a link in ḡ with Di(g

′
i, ḡ) = {j ∈ N : j ∈ Ni(ḡ) and j /∈ Ni(ḡ

′)}.

3 Optimal Targeting Policies

We consider the problem of a planner, who aims to minimize the discounted flow of aggregate
effort levels by eliminating agents from the network. We first present results for the case when
competition or congestion effects are small.

3.1 Small Competition/Congestion Effects

Proposition 2 shows that, if the parameter governing global substitution effects is sufficiently
small, then optimal targeting prescribes eliminating e agents with the highest number of links.
More precisely, the optimal targeting policy is characterized in terms of a family of sets E (e),
which consists of all sets of agents Ei, such that any agent in Ei displays a (weakly) higher
number of links than any agent not in the set. A formal definition is provided below.

Definition 4: E (e) = {Ei ⊂ N : | Ei |= e and ηj(g) ≥ ηk(g) ∀j, k : j ∈ Ei, k /∈ Ei}.

For Proposition 2 we assume that the maximum number of agents that can be eliminated,
e, is such that it is not possible to obtain the empty network in t = 0 via the elimination of
agents. The reason for this assumption is that when e is larger than this threshold, denoted by
t(ḡ) (and derived in Lemma 1), then for γ sufficiently small any set of agents E such that ḡ−E

is the empty network is an optimal targeting policy, including any Ei ∈ E (e). To simplify the
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exposition we therefore focus on the case when e < t(ḡ). Moreover, we assume that the network
is not empty and only briefly comment on this case here. If g is empty, then one can show easily
that for γ = 0 no new links will be formed in any time period and optimal targeting prescribes
eliminating any set of e agents. If, however, γ > 0, then marginal benefits of creating links in
the empty network are larger, the smaller the number agents. That is, for any γ > 0, there are
linking cost such that agents find it profitable to create new links after an elimination and it may
then be optimal to not intervene.

Proposition 2: Assume ḡ /∈ {ḡe} and e < t(ḡ). If γ is sufficiently small, then an optimal
targeting policy prescribes eliminating a set of agents Ei ∈ E (e) for any value of δ.

We first provide intuition and a brief summary of the main arguments used to show Proposi-
tion 2. The following result, presented in Theorem 2 in Ballester et al. (2006), will be useful for
our analysis: if one network covers another, i.e. if g1 ⊂ g2 holds, then the sum of Nash equilib-
rium effort levels is strictly lower in g1 than in g2. First we present the arguments allowing us to
show that, conditional on eliminating e′ agents (with e′ ≤ e < t(ḡ)), optimal targeting prescribes
eliminating a set of agents Ei such that Ei ∈ E (e′). Only later is the optimal number of targeted
agents discussed. We start by showing that for any pairwise Nash equilibrium network g and
for any e′, if Ei ∈ E (e′) and Ej /∈ E (e′), then g−Ei

0 ⊂ g
−Ej

0 holds (Lemma 3). That is, in time
period zero, aggregate effort levels are strictly lower when eliminating a set of agents Ei ∈ E (e′)

than when eliminating a set of agents Ej /∈ E (e′). We next show that payoffs are continuous in
γ (Lemma 4) and then, via simple best response dynamics, that for γ = 0 effort levels always
decrease strictly for some agents and weakly for all agents when deleting links or eliminating
agents from a network (Lemma 5 and Lemma 6). The latter results, together with the continuity
of payoffs in γ, can then be shown to be relevant for γ sufficiently small as well. Moreover, for
γ sufficiently small, no new links are created in any time period, no matter which set of agents
is eliminated (Lemma 9 and Lemma 10). Regarding link deletions, we assume that agents select
minimal deletion best responses, as outlined above. We show that if g−Ei

0 ⊂ g
−Ej

0 , then in any
time period t, if a link is deleted in g

−Ej

t , then it is also deleted in g−Ei
t (Lemma 8). That is,

g−Ei
t ⊆ g

−Ej

t holds for all time periods t ≥ 0 and the set inclusion is strict for t = 0. Therefore,
the optimal targeting policy, conditional on e′ agents being eliminated, prescribes eliminating
a set of agents Ei such that Ei ∈ E (e′). To show that it is optimal to eliminate e agents, we
compare eliminating Ei ∈ E (e) with Ek ∈ E (e′) and assume that e′ < e. Note that the number
of agents eliminated in Ei is strictly larger than in Ek. One can then show that in any time
period t there exists an intermediary network that can be obtained from g−Ei

t by adding a set
of singletons. Moreover, the intermediary network is covered by g−Ek

t . Finally, for γ sufficiently
small, aggregate effort levels in g−Ei

t are strictly smaller than in the corresponding intermediary
network and, since the intermediary network is covered by g−Ek

t , optimal targeting prescribes
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eliminating a set of agents Ei such that Ei ∈ E (e).
Note that, since the initial pairwise Nash equilibrium network g is a nested split graph,

the agents with the highest number of links are also those which display the highest Bonacich
centrality and the highest inter-centrality. That is, as long as γ is sufficiently small and e = 1, the
optimal targeting policy in Proposition 2 coincides with the key player policy in Ballester et al.
(2006). The following example illustrates that if targeting is costly, then the optimal targeting
policies in a fixed vs. an adaptive network may differ even in the absence of global substitution
effects. The reason is that if the network adapts, then the initial elimination of agents may cause
subsequent link deletions, leading to a sparser network and lower aggregate effort levels. Note
that in evaluating the optimal targeting policy, we treat targeting cost c the same as crime effort
in time period zero.

Example 1: Assume n = 14, α = 70, β = 24, λ = 0.2, γ = 0, κ = 1.86, c = 40, δ = 0.9.
Then a complete core-periphery network with 4 agents in the core and 10 agents in the periphery,
as depicted in g above, is a pairwise Nash equilibrium. The discounted stream of effort levels is
432.5. If the network is fixed, then the discounted stream of effort levels is 396.3. With a targeting
cost of 40 it is therefore optimal to not intervene. If, however, the network adapts, then in t = 2

core agents delete their links to all agents in the periphery, yielding a group dominant network.
Then, in t = 4 core agents delete all their remaining links, yielding the empty network from then
onward. The discounted stream of efforts is 382.7. With a targeting cost of 40 it is therefore
optimal to eliminate a central agent.

We briefly provide general comments regarding Proposition 2. Note first that we propose
a particularly simple adjustment process, so as to obtain a tractable model and to be able to
calculate examples easily. However, one could in principle assume a different adjustment process,
where, for example, agents/pairs of agents are chosen at random to update their strategy. Since

13



the initial network is minimal when eliminating a set of agents Ei ∈ E (e) and it is never profitable
to create links, in expectation the network and aggregate effort levels are minimal at each time
period as well. That is, the optimal targeting policy characterized in Proposition 2 also applies.
Moreover, our result does not depend on whether the process starts with a link creation or a link
deletion stage. To see this, note that no links are created in any time period and, if g−Ei

0 ⊂ g
−Ej

0 ,
then again in any time period (weakly) more links are deleted in g−Ei

t than in g
−Ej

t . Finally, since
there can only be link deletions and there are no link additions, and since the number of links is
bounded below by zero, the adjustment process converges. In fact, it converges to a nested split
graph.20

Having studied the elimination of multiple agents allows us to provide a corollary for Propo-
sition 2. Assume the planner is concerned with maximizing, rather than minimizing, the dis-
counted stream of aggregate effort levels. Moreover, assume that, rather than eliminating a set
of agents, the planner is now concerned with saving a set of firms S, with cardinality | S |≤ s,
which in turn is a subset of failing firms, F , with | F |= f . That is, S ⊆ F ⊆ N and
1 ≤ s ≤ f . Assume further that failing firms close down if they are not saved. Define the set
S(s) = {Si ⊆ F : | Si |= s and ηj(g) ≥ ηk(g) ∀j, k ∈ F : j ∈ Si, k /∈ Si}. We can then
write Ei = F \ Si, i.e. if agents in Si are saved, then the remaining agents, not saved in F , are
eliminated from the network. Similarly, define Ej = F \ Sj. Note next that when Si ∈ S(s)

and Sj /∈ S(s), then Ẽj % Ẽi. From the first part of Lemma 3 it follows directly that then
g−Ẽi ⊇ g−Ẽj . That is, if Si ∈ S(s) and Sj /∈ S(s), then g−F\Si ⊇ g−F\Sj . Assume that g is not
empty.21 We can then use the same arguments as the ones used in Proposition 2 to show that
S(s) is an optimal targeting policy.

Corollary to Proposition 2: Assume ḡ /∈ {ḡe}. If γ is sufficiently small, then saving a set of
failing agents Si ∈ S(s) is an optimal targeting policy for any value of δ.

3.2 Large Competition/Congestion Effects

We next analyze optimal targeting when competition or congestion effects may be considered
large. Prescriptions for a network that adapts may now differ from the case when the network
does not adapt (even in the absence of targeting cost). The reason is that the elimination of a
most central agent, who therefore also displays the highest effort level, decreases congestion by
the most. The remaining agents may create new links in subsequent time periods and a denser
network in later periods may outweigh the effect of an initially sparse network.

20To see this, assume to the contrary that the adjustment process converges to a network g that is not a nested
split graph. We know that no agent has an incentive to create a link (by the arguments provided above) and no
agent finds it profitable to delete any subset of links (since we assume that the adjustment process converged).
Then g is a pairwise Nash equilibrium network that is not a nested split graph, which contradicts Proposition 1.

21Note that we disregard ḡe for similar reasons as in Proposition 2.
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The following example illustrates some of the intricacies involved with this case. We show
that for the same parameter values and two networks, which display the same type of network
structure, different targeting policies are optimal. More precisely, assume e = 1 and consider
two dominant group networks with different core sizes. In one case optimal targeting prescribes
eliminating an agent in the core, thereby coinciding with the key player policy when the network
is fixed. In the other case optimal targeting prescribes eliminating an agent in the periphery,
thereby differing from the optimal targeting policy when the network is fixed.22

Example 2: Assume that n = 8, α = 1, β = 1, λ = 0.125, γ = 0.124, κ = 0.045 and δ is
sufficiently large. Consider two dominant group networks: ḡ is such that the size of the core is
5 and ˆ̄g such that the size of the core is 6. One can show that both, ḡ and ˆ̄g, are pairwise Nash
equilibrium networks. For ḡ, the configuration after eliminating a peripheral agent, (x(ḡ−p0 ), ḡ−p0 ),
is also a pairwise Nash equilibrium, so that ḡ−pt = ḡ−p0 ∀t ≥ 0. In contrast, in the configuration
after eliminating a core agent in ḡ, (x(ḡ−c0 ), ḡ−c0 ), all agents not connected find it profitable to
create a link and the network stays complete thereafter. That is, ḡ−ct = ḡc ∀t ≥ 1. For δ
sufficiently large, optimal targeting then prescribes eliminating an agent in the periphery for
ḡ. In the case of ˆ̄g, however, both (x(ˆ̄g−p0 ), ˆ̄g−p0 ) and (x(ˆ̄g−c0 ), ˆ̄g−c0 ) are pairwise Nash equilibria.
Since ˆ̄g−c ⊂ ˆ̄g−p holds by Lemma 3, it is optimal to target an agent in the core.

Below we provide sufficient conditions for a pairwise Nash equilibrium to exist such that
the optimal targeting policy with an adaptive network differs from the fixed network case. The
proof, together with a more detailed description, is provided in the online appendix. As in
Ballester et al. (2006) we assume that e = 1. Assume further that λ − γ ≥ 0 is sufficiently
small and that δ is sufficiently large. There are then bounds on linking cost such that a pairwise
Nash equilibrium exists in which it is optimal to eliminate a least central agent (with the fewest
links and lowest inter-centrality). The intuition is again that eliminating a more central agent
diminishes congestion effects more. This leads to the creation of new links and denser networks
with higher aggregate effort levels in later time periods.

Proposition 3: Assume e = 1. If λ − γ ≥ 0 is sufficiently small, δ is sufficiently large and
κ′1 < κ < κ′2, then there exists a pairwise Nash equilibrium, such that the optimal targeting policy
prescribes eliminating an agent with the fewest links.

In the following we present the simplest case, a star network, that allows us to highlight the
issues that may arise when γ is large. For simplicity we assume that λ = γ and that e = 1

or e = 2. However, from our analysis it is clear that analogous results can be obtained for γ
22A network ḡ is a core-periphery network if the set of agents N can be partitioned into two sets, C(ḡ) (the

core) and P (ḡ) (the periphery), such that ḡi,j = 1 ∀i, j ∈ C(ḡ) and ḡi,j = 0 ∀i, j ∈ P (ḡ). A group dominant
network is a core-periphery network such that ḡi,j = 0 ∀i, j : i ∈ C(ḡ), j ∈ P (ḡ).
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sufficiently close to λ. Moreover, conditions for e > 2 can easily be derived. We show that
optimal targeting policies differ from the fixed network case and, in particular, that it may be
optimal to not eliminate the maximum number of agents. Furthermore, following an optimal
targeting policy under the assumption that the network is fixed, when in fact it adapts, may lead
to a worse outcome than not intervening at all.

Denote by κen−x the marginal payoffs of two agents creating a link in the empty network of
size n − x. Note that if κ < κen−x, then any pair of agents finds it profitable to create a link
in the empty network of size n − x, while if κ ≥ κen−x, then no pair of agents finds it profitable
to create a link in the empty network of size n − x. Denote by κsn and κsn the relevant bounds
on κ such that for κ ∈ [κsn, κ

s
n] the star network of n agents is a pairwise Nash equilibrium. All

relevant linking cost are formally defined in the appendix (Definition 8). As it turns out, some
of the conditions are simpler for n ≥ 8 and we adopt this assumption throughout Proposition 4.

Proposition 4: Assume g is a pairwise Nash equilibrium, δ is sufficiently large and λ = γ, then
the optimal targeting policy prescribes:
i) if e = 1, eliminate the central agent;
ii) if e = 2 and κ ∈ [κen−2, κ

s
n], eliminate the center and a peripheral agent;

if e = 2, κ ∈ [κsn, κ
e
n−2) and λ < β/(n2 − 4n+ 3), eliminate the central and a

peripheral agent;
if e = 2, κ ∈ [κsn, κ

e
n−2) and λ ≥ β/(n2 − 4n+ 3), eliminate the central agent.

We briefly describe the results provided in Proposition 4. Assume first that e = 1. One can
then show that κen−1 = κsn and therefore no new links are created after eliminating the central
agent. The network is then empty and remains empty for all future time periods (Lemma 13).
In contrast, the network is a star of size n− 1 in time period zero when eliminating a peripheral
agent. Note that the empty network of n−1 agents is the network with the lowest aggregate effort
levels for n−1 agents and that aggregate effort levels are also lower than in a star of n agents. It
is therefore optimal to eliminate the central agent. If e = 2 and κ ∈ [κen−2, κ

s
n], then the network

stays empty after eliminating the central and a peripheral agent. The optimal targeting policy
therefore prescribes eliminating the central and a peripheral agent by the arguments described
above. Assume next that e = 2 and κ ∈ [κsn, κ

e
n−2). In this case, when eliminating the central

and a peripheral agent, there are n−2 agents and the network is empty in t = 0 and complete for
t ≥ 1. When eliminating the central agent only, there are n− 1 agents and the network is empty
for t ≥ 0. The aggregate effort level of the complete network of n−2 agents is strictly smaller than
the aggregate effort level of the empty network of n−1 agents if and only if λ < β/(n2−4n+ 3).
Therefore, if λ < β/(n2− 4n+ 3) and δ is sufficiently large, it is optimal to eliminate the central
and a peripheral agent. If λ ≥ β/(n2 − 4n + 3), then optimal targeting prescribes eliminating
the central agent only.
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Note that in the last case of Proposition 4, although two agents can be eliminated, it is
optimal to target only one agent. This stands in contrast with the optimal targeting policy when
the network is fixed, which prescribes eliminating the central and a peripheral agent, yielding
an empty network of n − 2 agents. Moreover, following the optimal targeting policy for a fixed
network, when in fact the network adapts, may then be worse than not intervening at all. A
general condition can be derived.23 We provide an example below. Note that these results are not
only relevant when γ is equal to λ and one can construct corresponding examples for λ > γ > 0.24

Example 3: Assume that e = 2, n = 8, α = 7, β = 8, λ = 1, γ = 1, κ = 0.25 and δ is
sufficiently large. From the conditions in Proposition 4 it follows that the optimal targeting
policy prescribes eliminating the central agent only, which yields the empty network of n − 1

agents. The aggregate effort level for this network is approximately 3.3. The optimal targeting
policy when the network is fixed is to eliminate the central and a peripheral agent. This policy
leads to an initially empty network of n− 2 agents and an aggregate effort level of 3. However,
when the network adapts, then the network is complete from time period t = 1 onward, yielding
an aggregate effort level of approximately 4.7. In comparison, the aggregate effort level in a star
of n agents displays an aggregate effort level of approximately 4. That is, for δ sufficiently large,
applying the optimal targeting policy of a fixed network when in fact the network adapts, may
lead to worse outcomes than no intervention.

23For n ≥ 8 we need, in addition to the above conditions, that β < (9 +
∑i=n−3
i=5 i)λ holds.

24For an example analogous to the one above, assume that e = 2, n = 8, α = 9
2 , β = 59

8 , λ = 1, γ = 3
4 ,

κ = 5
32 and δ is sufficiently large. One can show that the star of n agents is a pairwise Nash equilibrium and

linking behavior coincides with the last case of Proposition 4. The (rounded) aggregate effort levels are given by,
the empty network of n − 1 agents: 2.5; the empty network of n − 2 agents: 2.3; the complete network of n − 2
agents: 3.9; and the star of n agents: 3.2.
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4 Discussion

In the following we briefly comment on targeting policies for the applications that are best
captured by our model: crime networks and R&D collaborations of firms.25 The need for targeting
in the context of crime arises from the high cost of crime control and incarceration, as well as large
prison populations. For example, in the U.S. yearly expenditure on crime control amounts to
approximately $270 billion, of which more than $80 billion is spent on incarceration alone, with
currently 2.2 million imprisoned individuals nationwide.26 Empirical studies have shown that
targeting policies can be fruitfully applied to crime networks, providing more effective means to
combat crime and that, in particular, these policies outperform traditional approaches.27 At this
point it is worthwhile to briefly discuss the implementability of targeting policies in the context
of crime. One requirement is knowledge of the network and it may appear that this is difficult to
obtain in the case of crime networks. However, such data exists or can often be retrieved.28 Once
a criminal network is mapped, there are different approaches to implementing a targeting policy
in practice. While criminals are not to be imprisoned unless proven guilty of a crime, targeted
criminals may be offered incentives to leave the network. This can be accomplished through
heightened monitoring, providing job opportunities, employment and educational training, or
even organizing geographic relocation. Policies of this sort have already been implemented for
some time in the U.S. and Canada (see Tremblay et al., 1996).

Targeting is also relevant when deciding which subset of failing agents to save. A prominent
example is the decision to save General Motors by the U.S. government in 2008. More generally,
consider firms that engage in bilateral R&D partnerships, so as to benefit from cost-reducing
technology spillovers, and compete in product markets.29 These type of R&D partnerships are
a common feature in many industries, particularly in those with rapid technological change.
Examples include the pharmaceutical, chemical, computer and automotive industry.30 Data

25Note that trade, as well as interbank lending networks, are typically thought of as directed and weighted
and therefore a model featuring directed and weighted links is better suited for these applications. However, the
adjustment process and more generally the approach presented here will be useful when studying these applications
as well.

26See https://obamawhitehouse.archives.gov/sites/default/files/page/files/20160423_cea_incarceration_
criminal_justice.pdf
27See Lindquist and Zenou (2014).
28For example, Sarnecki (2001) constructs a criminal network in Sweden by using police records, which register

each time two (or more) individuals are suspected of a crime. Similar data is available in many countries. Tayebi
et al. (2011) use a data set provided by the Royal Canadian Mounted Police (RCMP), which comprises five years
of arrest-data and is available for research purposes. Coplink (Hauck et al., 2002) is a large scale research project
in crime data mining in the United States. It uses information from various sources, such as habits of criminals
and close associations in crime to capture network connections. Mastrobuoni and Patacchini (2012) use a data set
from the Federal Bureau of Narcotics on U.S. mafia members, which allows the authors to construct a criminal
network.

29See D’Aspremont and Jacquemin (1988) and Goyal and Moraga-Gonzalez (2001).
30See, for example Ahuja (2000), Hagedoorn (2002), Powell et al. (2005), Riccaboni and Pammolli (2002),

Roijakkers and Hagedoorn (2006), König et al. (2014).
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for R&D collaborations is, of course, readily available (e.g., via CATI and Compustat). An
interesting study regarding the chemical and pharmaceutical sector is Hsie et al. (2018). The
authors present a structural model and run counterfactual simulations regarding the exit of a
single firm. They find that the most relevant firm, Pfizer Inc., displays the highest number of
links.

5 Conclusion

This paper studies optimal targeting policies when agents may not only adjust effort levels, but
also linking decisions after a set of agents is eliminated. A simple and tractable adjustment
process is introduced and the following planner problem is defined: eliminate a set of up to e
agents from an equilibrium network, such that the discounted aggregate effort level is minimal.
We highlight the role of competition and congestion effects for targeting policies in settings where
the network may adapt after agents were targeted. More precisely, if the parameter governing
global strategic substitutes is sufficiently small, then the optimal targeting policy when the
network adapts coincides with the fixed network case. This translates into a particularly simple
policy for the equilibrium networks considered: remove the (sets of) agent(s) with the highest
number of links (i.e., the most central agents). However, if the parameter governing global
strategic substitutes is large, then allowing for an endogenous and adaptive network may overturn
optimal targeting results for fixed networks. We provide conditions such that it may be optimal
to target less central agents and such that it may be optimal to not eliminate the maximum
number of agents. Moreover, we show that applying the optimal targeting policy of a fixed
network to one that is, in fact, adaptive, may result in worse outcomes than not intervening at
all.
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6 Appendix

Derivation of payoff function: Crime

Before defining pairwise Nash equilibrium, the above payoff function is derived, based on Jackson
and Zenou (2014) in the context of crime. Assume that expected gains of crime to agent i are
given by

πi(x,g) = bi(x)− pi(x,g)f ,

with bi(x) = α′xi − 1
2
(β − γ)x2

i − γxi
∑

j∈N xj

pi(x,g) = p0xi(A− λ′
∑

j∈Ni(ḡ) xj).

Expected cost of criminal activity, pi(x,g)f , increases in own criminal activity, xi, since being
involved in more criminal activities increases the chance of being caught. Local strategic comple-
mentarities stem from a decrease in the apprehension probability in direct neighbors’ involvement
in crime, due to a direct know-how transfer. Note that A is assumed to be sufficiently large, so
that the apprehension probability is always positive for all criminals.31 Finally, global strategic
substitutes are due to congestion effects for crime opportunities, captured by γxi

∑
j∈N xj in the

expression for bi(x).32

Direct substitution yields

πi(x,g) = (α′ − p0fA)xi − 1
2
βx2

i + p0fλ
′xi
∑

j∈Ni(ḡ) xj − γxi
∑

j∈N\{i} xj.

For α = α′ − p0fA > 0 and λ = p0fλ
′ these payoffs are equivalent to the specification used in

Ballester et al. (2006).

Derivation of payoff function: Research and Development

We present here the arguably simplest derivation of the payoff specification in Ballester et al.
(2006) in the context of R&D collaborations. For alternative derivations which include R&D
efforts and explicitly model consumers and multiple markets see, for example, König (2016).
Firms may enter into R&D collaborations, which cause knowledge spillovers due to learning-by-
doing effects. Cost reduction depends on a firm’s own production level and on the production
level of collaborating firms. Given production level qi, marginal cost of firm i, ci, are given by

31See König, Liu and Zenou (2014) for how to calculate an appropriate lower bound on A.
32One way to argue for as to why congestion effects should affect agents with higher criminal activity more, as

reflected in the term γxi
∑
j∈N xj , is that when aggregate crime levels are higher, the public may become more

vigilant, which in turn has a higher impact on agents with high individual levels of criminal activity.
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ci = c− µqi − λ
∑

j∈Ni(g) qj

Firm i’s profits are given by

πi = piqi − ciqi.

Assume inverse demand for the good qi is given by pi = a − bqi − γ
∑

j 6=i qj. Substituting into
firm i’s profits we obtain

πi = (ai − bqi − γ
∑

j 6=i qj)qi − (ci − gqi − λ
∑

j∈Ni(g) qj)qi.

Collecting terms yields

πi = (a− c)qi − (b− g)q2
i + λqi

∑
j∈Ni(g) qj − γqi

∑
j 6=i qj.

Setting a, c, b and g such that (a− c) = α, (b− g) = β + γ then yields the specification used in
Ballester et al. (2006).

Definition 5: (Mahadev and Peled, 1995). Let ḡ be a graph whose distinct positive degrees
are η(1)(ḡ) < η(2)(ḡ) < ... < η(k)(ḡ) and let d0(ḡ) = 0 (even if no agent with degree 0 exists
in ḡ). Define Dj(ḡ) = {i ∈ N : ηi(ḡ) = η(j)(ḡ)} for j = 0, ..., k. Then the set-valued vector
D(ḡ) = (D0(ḡ),D1(ḡ), ...,Dk(ḡ)) is called the degree partition of ḡ.

Definition 6: (Mahadev and Peled, 1995). Consider a nested split graph ḡ and let D(ḡ) =

(D0(ḡ),D1(ḡ), ...,Dk(ḡ)) be its degree partition. Then the nodes N can be partitioned in in-
dependent sets Dj, j = 1, ..., bk/2c and a dominating set ∪kj=bk/2c+1Dj in the graph ḡ−D0 .33

Moreover, the neighborhoods are nested. In particular, for each node i ∈ Dj, j = 1, ..., k,

Ni(ḡ) =

∪
j
l=1Dk+1−l(ḡ) if j = 1, ..., bk/2c

∪jl=1Dk+1−l(ḡ) \ {i} if j = bk/2c+ 1, ..., k.

To simplify notation we denote I(ḡ) = ∪bk/2cj=1 Dj and D(ḡ) = ∪kj=bk/2c+1Dj. Note that when ḡ is
empty, then in the graph ḡ−D0 the set of agents N \D0 is empty and therefore D(ḡ) is empty.
Next we define a threshold, t(ḡ), which depends on the degree partition as follows.

Definition 7: t(ḡ) =

| D(ḡ) | if k is even

| D(ḡ) | −1 if k is odd

33A dominating set for a graph is a subset D of N such that every node not in D is adjacent to at least one
node in D. An independent set for a graph is a subset I of N such that for every two nodes in I, there is no link
between the two.
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Lemma 1: Assume ḡ is a nested split graph such that ḡ /∈ {ḡe, ḡc}. There exists a set E such
that ḡ−E is the empty network if and only if e =| E |≥ t(ḡ). Moreover,

i) if k is even, then ḡ−E is the empty network if and only if E is such that either

D(ḡ) ⊆ E or

{{D(ḡ) \m} ∪Nm(ḡ)} ⊆ E and m ∈ D(ḡ);

ii) if k is odd, then ḡ−E is the empty network if and only if E is such that either

{D(ḡ) \m} ⊆ E and m ∈ Db k
2
c+1(ḡ) or

{{D(ḡ) \m} ∪Nm(ḡ)} ⊆ E and m ∈ D(ḡ) \ Db k
2
c+1(ḡ).

Proof. We first consider the case when k is even. If k = 0 then the dominating set D(ḡ) is
the empty set and ḡ is empty. Assume therefore that k ≥ 2. Assume first that D(ḡ) ⊆ E. To see
that then ḡ−E is empty, note that each of the remaining agents in ḡ−E is either a singleton agent
in ḡ or in some independent set Dj with j = 1, ..., bk/2c in ḡ. From Definition 6 it follows directly
that there are no links among any of these agents in ḡ and therefore ḡ−E is empty. Next we show
that if k is even, {{D(ḡ) \m} ∪ Nm(ḡ)} ⊆ E and m ∈ D(ḡ), then ḡ−E is the empty network.
If m ∈ E, then D(ḡ) ⊆ E also holds and ḡ−E is empty by the previous argument. Assume next
thatm /∈ E. Since Nm(ḡ) ⊆ E, m is a singleton in ḡ−E. Note also that, since {D(ḡ)\m} ⊆ E, all
agents in ḡ−E other than m are in some independent set Dj for j = 1, ..., bk/2c in ḡ, or singletons
in ḡ. From Definition 6 it follows that there are then no links among any of these agents in ḡ

and therefore ḡ−E is empty. We next show by contraposition that, if ḡ−E is empty, then E must
satisfy one of the two (or both) conditions in i). Assume therefore that ḡ−E is not empty. Note
that from Definition 6 we know that there are only two types of links. Those between agents
i, j with i, j ∈ D(ḡ), and links between i, j such that i ∈ D(ḡ) and j ∈ I(ḡ). Note that from
Definition 6 we also know that, since k ≥ 2 and k is even, that each agent in D(ḡ) is linked to
some agent in I(ḡ) and, since we assume in i) that m ∈ D(ḡ), we know that Nm(ḡ) \D(ḡ) 6= ∅.
Therefore, for ḡ−E to not be empty, there either exists a pair of agents i, j ∈ D(ḡ) such that
i, j /∈ E, or there exists a pair of agents m ∈ D(ḡ) and i ∈ Nm(ḡ) \ D(ḡ) such that m, i /∈ E.
But then either D(ḡ) ⊆ E, or {{D(ḡ) \m} ∪ Nm(ḡ)} ⊆ E and m ∈ D(ḡ) does not hold. Next
we show that there exists a set E such that ḡ−E is empty if and only if e ≥ t(ḡ). Recall that if k
is even and k ≥ 2, then by Definition 6 each agent in D(ḡ) is connected to at least one agent not
in D(ḡ). Therefore, | {{D(ḡ) \m} ∪ Nm(ḡ)} |≥| D(ḡ) |. That is, if e < t(ḡ) =| D(ḡ) | neither
D(ḡ) ⊆ E, nor {{D(ḡ) \ m} ∪ Nm(ḡ)} ⊆ E and m ∈ D(ḡ) can hold. If, however, e ≥ t(ḡ),
then | E |>| D(ḡ) | and for any set E such that D(ḡ) ⊆ E, the resulting network ḡ−E is empty.
That is, there exits a set E such that ḡ−E is empty if and only if e ≥ t(ḡ). We consider next the
case when k is odd. Assume first that {D(ḡ) \m} ⊆ E and m ∈ Db k

2
c+1(ḡ). To see that then

ḡ−E is empty, note that if k is odd, then from Definition 6 we know that agents in Db k
2
c+1(ḡ)
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only sustain links to agents in D(ḡ). Therefore, if m ∈ Db k
2
c+1(ḡ) and {D(ḡ) \ m} ⊆ E, then

m is a singleton agent in ḡ−E. Each of the remaining agents in ḡ−E is either a singleton agent
in ḡ or is in some independent set Dj for j = 1, ..., bk/2c in ḡ. From Definition 6 it follows
that there are no links among any of these agents in ḡ and therefore ḡ−E is empty. The case
for {{D(ḡ) \m} ∪ Nm(ḡ)} ⊆ E and m ∈ D(ḡ) \ Db k

2
c+1(ḡ) is analogous to the case when k is

even and E is such that {{D(ḡ) \m} ∪ Nm(ḡ)} ⊆ E and m ∈ D(ḡ) and is omitted. Next we
show by contraposition that if ḡ−E is empty, then E must satisfy one of the two conditions (or
both) in ii). Assume therefore that ḡ−E is not empty. Note that from Definition 6 we know that
there are only two types of links. Those between agents i, j with i, j ∈ D(ḡ), and links between
i, j such that i ∈ D(ḡ) and j ∈ I(ḡ). Note further that from Definition 6 we also know that
each agent in D(ḡ) is linked to some agent in I(ḡ), with the exception of agents in Db k

2
c+1(ḡ),

who are only linked to agents in D(ḡ). Therefore, for ḡ−E to not be empty, there either exist
two agents i, j ∈ D(ḡ) such that i, j /∈ E, or there exists a pair of agents m ∈ D(ḡ) \ Db k

2
c+1(ḡ)

and i ∈ Nm(ḡ) \ D(ḡ) such that m, i /∈ E. (Note that for an agent m ∈ Db k
2
c+1(ḡ), the set

Nm(ḡ) \ D(ḡ) is the empty set). But then either {D(ḡ) \ m} ⊆ E and m ∈ Db k
2
c+1(ḡ), or

{{D(ḡ) \ m} ∪ Nm(ḡ)} ⊆ E and m ∈ D(ḡ) \ Db k
2
c+1(ḡ) does not hold. Next we show for k

odd that there exists a set E such that ḡ−E is empty if and only if e ≥ t(ḡ). Since each agent
in D(ḡ) \ Db k

2
c(ḡ) is connected to at least one agent not in D(ḡ), while agents in Db k

2
c(ḡ) are

only connected to agents in D(ḡ), we know that | {{D(ḡ) \m} ∪ Nm(ḡ)} |≥| D(ḡ) | −1 holds.
Therefore, if e < t(ḡ) =| D(ḡ) | −1, then neither {D(ḡ) \ m} ⊆ E and m ∈ Db k

2
c+1(ḡ) nor

{{D(ḡ) \ m} ∪ Nm(ḡ)} ⊆ E and m ∈ D(ḡ) \ Db k
2
c+1(ḡ) can hold. If, however, e ≥ t(ḡ), then

there exists a set E (with | E |≥ t(ḡ)) such that {D(ḡ) \m} ⊆ E and m ∈ Db k
2
c(ḡ) and ḡ−E is

empty. That is, there exists a set E such that ḡ−E is empty if and only if e ≥ t(ḡ). Q.E.D.

Lemma 2: Assume ḡ is a nested split graph. If k is even, then | Db k
2
c(ḡ) |≥ 2 and if k is odd,

then | Db k
2
c+1(ḡ) |≥ 2.

Proof. Assume first that k is even. If k = 0, then ḡ is the empty network and Db k
2
c(ḡ) =

D0(ḡ) = N . Since n ≥ 3, | Db k
2
c(ḡ) |≥ 2 holds. Assume next that k is even and k ≥ 2. From

Definition 6 we know that all agents in Db k
2
c(ḡ) are connected to all agents in the dominating

set D(ḡ), while agents in Db k
2
c+1(ḡ) are connected to all agents in the dominating set D(ḡ) and

to all agents in Db k
2
c(ḡ). Assume that | Db k

2
c(ḡ) |= 1. Then ηi(ḡ) = ηj(ḡ) for i ∈ Db k

2
c+1(ḡ)

and j ∈ Db k
2
c(ḡ) and we have reached a contradiction. Assume next that k is odd. Assume first

that k = 1 and, contrary to the above, that | Db k
2
c+1(ḡ) |= 1. But then | D1(ḡ) |= 1 and agent

i ∈| D1(ḡ) | is therefore a singleton. That is, all agents are singletons, so that k = 0 and we have
reached a contradiction. Assume next that k is odd and k ≥ 3. Note that from Definition 6 we
know that agents in the independent set Db k

2
c(ḡ) are linked to all agents in D(ḡ)\Db k

2
c+1(ḡ), but

not to any agents in Db k
2
c+1(ḡ), while agents in Db k

2
c+1(ḡ) are linked to all agents in D(ḡ) (and
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not to any agents in I(ḡ)). But then, if | Db k
2
c+1(ḡ) |= 1, then ηi(ḡ) = ηj(ḡ) for i ∈ Db k

2
c+1(ḡ)

and j ∈ Db k
2
c(ḡ) and we have again reached a contradiction. Q.E.D.

Lemma 3: Assume g is a nested split graph, g /∈ {ge} and e < t(g). If Ei ∈ E (e) and
Ej /∈ E (e), then g−Ei ⊂ g−Ej .

Proof. Note first that if Ei ∈ E (e) and Ej /∈ E (e), then it follows directly from the definition of
E (e) that Ẽi � Ẽj holds (and therefore Ẽi % Ẽj). We first show that if Ei ∈ E (e) and Ej /∈ E (e),
then any link that is present in g−Ei is also present in g−Ej . Since any agents in Ei ∩ Ej are
eliminated in both Ei and Ej, we can disregard any links involving an agent in this set. Note next
that, since linking behavior between pairs of agents k, l /∈ Ei ∪Ej remains unchanged and is the
same in both g−Ei and g−Ej , we can disregard links between these pairs of agents as well. Next
consider the link between an agent that is neither eliminated nor relabeled in g−Ei and g−Ej , and
a relabeled agent in g−Ei and g−Ej , respectively. That is, consider the link between an agent k /∈
Ei∪Ej and agent rx(g−Ei) in g−Ei , and the link between k /∈ Ei∪Ej and agent rx(g−Ej) in g−Ej .
Recall that Ẽ1 ∩ Ẽ2 = ∅ and, since Ẽi % Ẽj, that η(x,Ẽi)(g) ≥ η(x,Ẽj)(g) holds ∀x ∈ {1, ..., ẽ}. Fix
x, so that we can write η(x,Ẽi)

l (g) ≥ η
(x,Ẽj)
m (g). Note that then rx(g−Ei) = m, while rx(g−Ej) = l.

Since g is a nested split graph and η(x,Ẽi)
l (g) ≥ η

(x,Ẽj)
m (g) holds, we know that if gk,m = 1, then

gk,l = 1 ∀k /∈ {l,m} in g. Therefore, if g−Ei

k,rx(g−Ei )
= 1 in g−Ei , then g

−Ej

k,rx(g−Ej )
= 1 in g−Ej .

Next, consider links between relabeled agents in g−Ei and g−Ej , respectively. That is, assume
x 6= x′ and consider the link between a pair of agents rx(g−Ei) and rx′(g−Ei) in g−Ei and the link
between a pair of agents rx(g−Ej) and rx′(g−Ej) in g−Ej . Fixing x and x′, we know from Ẽi % Ẽj

that η(x,Ẽi)
l (g) ≥ η

(x,Ẽj)
m (g) and η(x′,Ẽi)

s (g) ≥ η
(x′,Ẽj)
t (g). From Ẽ1 ∩ Ẽ2 = ∅ we know that l,m, s, t

are distinct. Note that rx(g−Ei) = m and rx′(g−Ei) = t, while rx(g−Ej) = l and rx′(g−Ej) = s.
Again, since g is a nested split graph and η(x,Ẽi)

l (g) ≥ η
(x,Ẽj)
m (g) and η(x′,Ẽi)

s (g) ≥ η
(x′,Ẽj)
t (g) holds,

we know that if g−Ei

rx(g),rx′ (g
−Ei )

= 1 in g−Ei , then g−Ej

rx(g−Ej ),rx′ (g
−Ej )

= 1 in g−Ej . Therefore, all links

that are present in g−Ei are also present in g−Ej and g−Ei ⊆ g−Ej . To show that g−Ei ⊂ g−Ej

holds, it is sufficient to show that the number of links that are deleted when eliminating Ei is
strictly higher than when eliminating Ej from g. Note first that since e < t(g) and Ei ∈ E (e),
we know that Ei ⊂ D(g). We distinguish two cases. Assume first that Ej ⊂ D(g). Note that all
pairs of agents in D(g) are connected, and if there exists a pair of agents l,m ∈ D(g) such that
ηl(g) > ηm(g), then there must exist at least one agent in I(g) to which l is connected, while m
is not. Moreover, since g is a nested split graph, Nl(g) \ {k} ⊂ Nk(g) \ {l} holds. From Ẽi � Ẽj

we know that η(x,Ei)(g) ≥ η(x,Ej)(g) ∀x and there exists a x′ such that η(x′,Ei)
l (g) > η

(x′,Ej)
m (g).

Therefore, for any such x′, eliminating l ∈ Ei deletes the same number of links to agents in D(g)

as m ∈ Ej. Moreover, l ∈ Ei deletes all links to agents to which m ∈ Ej is connected and at
least one link to an agent to which m ∈ Ej is not connected in I(g). By the same argument all
links that are deleted in Ej are also deleted in Ej (and possibly more) for all x ∈ {1, 2, ..., ẽ}.
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Therefore, a strictly higher number of links is deleted when eliminating Ei than when eliminating
Ej. Next consider the case when Ej ⊂ D(g) does not hold. Assume first that there is a single
agent l ∈ Ej such that l ∈ I(g). We distinguish two cases. Assume l ∈ D0(ḡ) (i.e., l is a
singleton) and consider the set E ′j, given by E ′j = {Ej \ l} ∪m with m : m ∈ D(g) and m /∈ Ej.
Note that such an agent m exists, since e < t(g). E ′j deletes a strictly higher number of links
than Ej, since m is connected to all agents in D(g), while no links are deleted when eliminating
the singleton agent l. Note further that E ′j ⊆ D(g). If E ′j ∈ E (e), then the same number of links
are eliminated in E ′j as in Ei, since then Ẽi ∼ Ẽj and g−Ei = g−Ej . To see the latter, note that

if Ẽi ∼ Ẽj, then η
(x,Ẽi)
l (g) = η

(x,Ẽj)
m (g) for all x ∈ {1, 2, ..., ẽ}. Since g is a nested split graph,

gk,m = 1 if and only if gk,l = 1 ∀k /∈ {m, l} and therefore g−Ei = g−Ej . If E ′j /∈ E (e), then Ei
deletes a strictly higher number of agents than E ′j, as shown above. Therefore, a strictly higher
number of links are eliminated in Ei than in Ej. Assume next that there is a single agent l ∈ Ej
such that l ∈ I(g), but l /∈ D0(ḡ). We distinguish two subcases. Assume first that k is odd.
From Definition 6 we know that Db k

2
c+1(ḡ) ∈ D(g) and that there are no links between agents in

Db k
2
c+1(ḡ) and agents in I(g). From | Db k

2
c+1(ḡ) |≥ 2 (Lemma 2) it therefore follows that each

agent in I(g) is not linked to at least two agents in D(g), while all agents in D(g) are connected
among each other. Therefore, E ′j, given by E ′j = {Ej \ l} ∪m with m : m ∈ D(g) and m /∈ Ej,
deletes a strictly higher number of links than Ej. To see this, note that m ∈ D(g) is connected to
all agents to which l is connected. Moreover, m is connected to at least one agent in Db k

2
c+1(ḡ),

while l is not connected to any agent in Db k
2
c+1(ḡ). Therefore, a strictly higher number of links

is deleted in E ′j than in Ej. Since E ′j ⊂ D(g) we know by the above argument that a strictly
higher number of links is deleted when eliminating Ei than Ej. Assume next that k is even,
l ∈ I(g), but l /∈ D0(ḡ). Note that from Definition 6 we know that the set Db k

2
c(ḡ) ∈ I(g), that

each agent in D(g) is linked to all agents in Db k
2
c(ḡ), and that | Db k

2
c(ḡ) |≥ 2 (by Lemma 2).

Again the set E ′j, given by E ′j = {Ej \ l} ∪m with m : m ∈ D(g) and m /∈ Ej, deletes a strictly
higher number of links than Ej. To see this, note that m ∈ D(g) is connected to all agents that
are linked to l. Moreover, since | Db k

2
c(ḡ) |≥ 2, m ∈ D(g) is connected to all agents in Db k

2
c(ḡ),

while l is not connected to any agent in Db k
2
c(ḡ). (Note that we allow for the possibility that

l ∈ Db k
2
c(ḡ)). Therefore, a strictly higher number of links is deleted in E ′j than in Ej. Since

E ′j ⊂ D(g), we know from the above argument that a strictly higher number of links is deleted
when eliminating Ei than Ej. Assume next that there are is a set of at least two agents, denoted
by Ĩ(g), such that Ĩ(g) ⊆ Ej and Ĩ(g) ⊆ I(g). Then the set E ′j, given by E ′j = {Ej \ Ĩ(g)}∪D̃(g)

with D̃(g) ⊆ D(g) and D̃(g) ∩ Ej = ∅, deletes a strictly higher number of links than Ej. Note
that such a set D̃(g) exists, since e < t(g). Note first that we can disregard any links between
pairs of agents k, l such that in k ∈ D̃(g) and l ∈ Ĩ(g), as these links are deleted in Ej and
E ′j. Moreover, any agent k ∈ D̃(g) is connected to any third agent to which any agent l ∈ Ĩ(g)

is connected. However, while any pair of agents in Ĩ(g) is not connected, any pair of agents
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in D̃(g) is connected. Therefore, a strictly higher number of links is deleted in E ′j than in Ej.
Since E ′j ⊂ D(g) we know again by the above argument that a strictly higher number of links is
deleted when eliminating Ei than Ej. Q.E.D.

Lemma 4: The vector of Nash equilibrium effort levels, x(ḡ, γ), agents’ equilibrium payoffs
vi(ḡ, γ) and deviation effort levels, x̄′i(ḡ+ḡi,j, γ) and x̄′i(ḡ−

∑
j∈Di(g′i,ḡ) ḡi,j, γ) and corresponding

deviation payoffs ∆vi(ḡ + ḡi,j, γ) and ∆vi(ḡ −
∑

j∈Di(g′i,ḡ) ḡi,j, γ) are continuous in γ.

Proof. From Ballester et al. (2006) we know that Nash equilibrium effort levels can be writ-
ten as xi(ḡ, γ) = αbi(ḡ, λ/β)/ (β + γb(ḡ, λ/β)).34 That is, given our assumptions on parameters,
Nash equilibrium effort levels are continuous in γ. For a given network ḡ, we can then write the
relevant expressions in terms of the characterization of Ballester et al. (2006) as functions of γ.
In the following we show the case for vi(ḡ, γ), but the same arguments can be used to show that
x̄i(ḡ −

∑
j∈Di(g′i,ḡ) ḡi,j, γ) is continuous as well. For each agent j write xj(γ) : [0, λ] → R with

xj(ḡ, γ) = αbj(ḡ, λ/β)/ (β + γb(ḡ, λ/β)), define f(γ) : [0, λ]→ R with f(γ) = γ. Since the prod-
uct of two continuous functions is continuous, we know that γxj(ḡ, γ) is continuous in γ. Since the
sum of two continuous functions is continuous, we know that α+λ

∑
j∈Ni(ḡ) xj(γ)−γ

∑
j 6=i xj(γ)

is continuous. Define h(γ) : [0, λ] → R as h(γ) = α + λ
∑

j∈Ni(ḡ) xj(γ) − γ
∑

j 6=i xj(γ). Finally,
define g(x) : R→ R with g(x) = x2. We can then write vi(ḡ, γ) = (g ◦ h)(γ). Since the compo-
sition of two continuous functions is continuous, vi(ḡ, γ) is continuous in γ. The expression for
x̄′i(ḡ+ḡi,j, γ) is given by

x̄′i(ḡ+ḡi,j, γ) = a (b− czi(ḡ, γ) + d(γzj(ḡ, γ)− λyj(ḡ, γ)) + eyi(ḡ, γ)),

where a = 1/ ((β + γ)(β + 2γ − λ)(β + λ)), b = α(β + 2γ)(β + γ), c = γ(β2 + 2β + γλ), d =

−λ(β + γ), e = (β2 + 2β + λγ). Since we can again write zi(ḡ, γ), zj(ḡ, γ), yi(ḡ, γ) and yj(ḡ, γ)

in terms of the Bonacich centralities, it follows by the above arguments that x̄′i(ḡ+ḡi,j, γ) is
continuous in γ. We can then use the same arguments as above to show that ∆vi(ḡ + ḡi,j, γ) is
continuous in γ. Q.E.D.

34Ballester et al. (2006) characterize the Nash equilibrium effort levels for fixed ḡ in terms of agents’ Bonacich
centralities as follows. Denote by ḡ[k]i,j ≥ 0 the number of paths between i and j of length k in ḡ. Let mi,j(ḡ,

λ
β ) =∑∞

k=0(λβ )kḡ
[k]
i,j . That is mi,j(ḡ,

λ
β ) counts the number of paths that start at i and end at j and paths of length

k are weighted by (λβ )k. The Bonacich centrality of a node i is then given by bi(ḡ, λβ ) =
∑n
j=1mi,j(ḡ,

λ
β ). Note

that bi(ḡ, λβ ) = mi,i(ḡ,
λ
β ) +

∑
j 6=imi,j(ḡ,

λ
β ). By definition mi,i(ḡ,

λ
β ) ≥ 1 and therefore bi(ḡ, λβ ) ≥ 1. Denote

the sum of Bonacich centralities by b(ḡ, λβ ) =
∑n
j=1 bj(ḡ,

λ
β ). Given our assumptions on parameters, a Nash

equilibrium on a fixed network ḡ always exists and the unique Nash equilibrium effort level of an agent i is given
by xi(ḡ) = αbi(ḡ,

λ
β )/

(
β + γb(ḡ, λβ )

)
(Ballester et al. (2006), Proposition 1).
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Lemma 5: If γ = 0, then xk(ḡ, 0)− xk(ḡ−E, 0) > 0 for all k ∈ N \ E such that there exists an
agent i ∈ E and k ∈ N i(ḡ), while xk(ḡ, 0)−xk(ḡ−E, 0) = 0 for all k such that there does not exist
an agent i ∈ E such that k ∈ N i(ḡ). Furthermore, for γ sufficiently small xk(ḡ, γ)− xk(ḡ−E, γ)

is arbitrarily close to xk(ḡ, 0)− xk(ḡ−E, 0) for all k ∈ N \ E.

Proof. Assume first that γ = 0. Note that then x̄i(0, zi) = x̄i(0, 0) ∀zi and effort levels
are bounded below by x̄i(0, 0) = x̄(0, 0). Moreover, ∂x̄(y, z)/∂y > 0, while ∂x̄(y, z)/∂z = 0

∀y, z. Note next that, since γ = 0, we can treat different components in ḡ in isolation. Assume
first that there exists an agent i ∈ E such that k ∈ N i(ḡ). Then for any agent l such that
l ∈ N i(ḡ) and ḡl,m = 1 for some m ∈ E, we have that yl(ḡ−E, 0) =

∑
j∈Nl(ḡ−E) xj(ḡ, 0) <∑

j∈Nl(ḡ) xj(ḡ, 0) = yl(ḡ, 0). Iterating on best responses, effort levels of each agent k ∈ N i(ḡ)

in ḡ−E are a weakly decreasing sequence of real numbers numbers, such that each agent strictly
decreases her effort level in some iteration. Since the sequence is bounded below by x̄(0, 0), effort
levels converge to the unique Nash equilibrium effort levels in ḡ−E with xk(ḡ−E, 0) < xk(ḡ, 0) for
all k ∈ N i(ḡ). Note next that for any agent k such that there does not exist an agent i ∈ E such
that k ∈ N i(ḡ),

∑
j∈Nk(ḡ−E) xj(ḡ, 0) =

∑
j∈Nk(ḡ) xj(ḡ, 0) holds and no agent has an incentive to

adjust effort levels. That is, xk(ḡ−E, 0) = xk(ḡ, 0) for all agents k such that there does not exist
an agent i ∈ E such that k ∈ N i(ḡ). Assume next that γ is sufficiently small. From Lemma
4 we know that the vector of Nash equilibrium effort levels, x(ḡ, γ), changes continuously in
γ for any ḡ. The second statement then follows directly from limγ→0xk(ḡ, γ) = xk(ḡ, 0) and
limγ→0xk(ḡ

−E, γ) = xk(ḡ
−E, 0). Q.E.D.

Lemma 6: If γ = 0 and ˆ̄g ⊂ ḡ, then for any agent k such that there exists an agent i ∈ Nk(ḡ)

with ḡi,j = 1 and ˆ̄gi,j = 0, xk(ḡ, 0) − xk(ˆ̄g, 0) > 0 holds, while for any agent k such that there
does not exist an agent i ∈ Nk(ḡ) with ḡi,j = 1 and ˆ̄gi,j = 0, xk(ḡ, 0) − xk(ˆ̄g, 0) = 0 holds.
Furthermore, for γ sufficiently small xk(ḡ, γ)− xk(ˆ̄g, γ) is arbitrarily close to xk(ḡ, 0)− xk(ˆ̄g, 0)

for any agent k ∈ N .

Proof. Assume first that γ = 0. Note that then again x̄i(0, zi) = x̄i(0, 0) ∀zi and effort levels
are bounded below by x̄i(0, 0) = x̄(0, 0). Moreover, ∂x̄(y, z)/∂y > 0, while ∂x̄(y, z)/∂z = 0 ∀y, z.
Note also that, since ˆ̄g ⊂ ḡ, ˆ̄g can be obtained from ḡ by deleting any links such that ḡi,j = 1 and
ˆ̄gi,j = 0. Moreover, since γ = 0 and ˆ̄g ⊂ ḡ, we can again analyze components in ḡ in isolation.
If there does not exist an agent i ∈ Nk(ḡ) with ḡi,j = 1 while ˆ̄gi,j = 0, then Nk(ḡ) = Nk(ˆ̄g)

and xk(ˆ̄g, 0) = xk(ḡ, 0). To analyze effort levels of agents k such that there exists an agent
i ∈ Nk(ḡ) with ḡi,j = 1 and ˆ̄gi,j = 0, we consider agents’ best responses to the Nash equilibrium
effort levels for ḡ, x(ḡ, 0), when the network is ˆ̄g. There then exists an agent i ∈ Nk(ˆ̄g) (where
we allow for i = k) such that

∑
j∈Ni(ˆ̄g) xj(ḡ, 0) <

∑
j∈Ni(ḡ) xj(ḡ, 0). Again iterating on best

responses, effort levels of each agent l ∈ Nk(ˆ̄g) in ˆ̄g are a weakly decreasing sequence of real
numbers numbers, where each agent strictly decreases her effort level in some iteration. Since the
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sequence is bounded below by x̄(0, 0), effort levels converge to the unique Nash equilibrium effort
levels for ˆ̄g with xk(ˆ̄g, 0) < xk(ḡ, 0) for all l ∈ Nk(ˆ̄g) and therefore xk(ˆ̄g, 0) < xk(ḡ, 0). Assume
next that γ is sufficiently small. From Lemma 4 we know that the vector of Nash equilibrium
effort levels, x(ˆ̄g, γ), changes continuously in γ for any ˆ̄g, so that the second statement follows
directly from limγ→0xk(ˆ̄g,γ) = xk(ˆ̄g, 0) and limγ→0xk(ḡ,γ) = xk(ḡ, 0). Q.E.D.

Lemma 7: Assume agents play their Nash equilibrium effort levels, x(ḡ), in network ḡ. Then a
minimal deletion best response, g′mi , always exists and is unique for every agent i ∈ N . Further-
more, if g′i is such that k ∈ Ni(ḡ

′) and l ∈ Di(g
′
i, ḡ), then xk(ḡ) > xl(ḡ). Moreover, if g′mi and

another deletion best response g′i are such that | Ni(ḡ
′m) |=| Ni(ḡ

′) |, then Ni(ḡ
′m) = Ni(ḡ

′),
while if | Ni(ḡ

′m) |<| Ni(ḡ
′) | then Ni(ḡ

′m) ⊂ Ni(ḡ
′).

Proof. Recall that zi(ḡ) =
∑

j∈N\{i} xj, so that in any deviation by agent i, zi(ḡ) = zi(ḡ
′)

holds. We can therefore treat v(yi, zi) as a strictly convex function in yi when considering
deletion strategies. From g′mi ⊆ gi we know that Ni(ḡ

′) ⊆ Ni(ḡ) holds. We next show in
two steps that any deletion best response g′i ∈ argmaxg′i: g′i⊆gi

Πi(g
′
i, ḡ) is such that for all j

and k with j ∈ Ni(ḡ
′) and k ∈ Di(g

′
i, ḡ), xj(ḡ) > xk(ḡ) holds. Assume that g′i is a deletion

best response, such that there exists a pair of agents j and k with xj(ḡ) > xk(ḡ) and j ∈
Di(g

′
i, ḡ) and k ∈ Ni(ḡ

′). But then deletion strategy g′′i = g′i + gi,j − gi,k yields strictly higher
deviation payoffs, since yi(ḡ′′) > yi(ḡ

′), while zi(ḡ′′) = zi(ḡ
′) and ∂v(yi, zi)/∂yi > 0. Next

we show that for any deletion best response, if j ∈ Di(g
′
i, ḡ), then for any k ∈ Ni(ḡ) such

that xk(ḡ) = xj(ḡ), k ∈ Di(g
′
i, ḡ) also holds. Assume that g′i is a deletion best response and,

contrary to the above, that j ∈ Di(g
′
i, ḡ), but k /∈ Di(g

′
i, ḡ) and k ∈ Ni(ḡ) with xk(ḡ) = xj(ḡ).

Since g′i is a deletion best response and j ∈ Di(g
′
i, ḡ), it must be the case that κ ≥ v(yi(ḡ

′) +

xj(ḡ), zi(ḡ))− v(yi(ḡ
′), zi(ḡ) holds. However, since v is strictly convex in yi and xk(ḡ) = xj(ḡ),

v(yi(ḡ
′) + xj(ḡ), zi(ḡ))− v(yi(ḡ

′), zi(ḡ) > v(yi(ḡ
′), zi(ḡ))− v(yi(ḡ

′)− xk(ḡ), zi(ḡ) also holds and
therefore κ > v(yi(ḡ

′), zi(ḡ))−v(yi(ḡ
′)−xk(ḡ), zi(ḡ) holds. That is, deviation payoffs are strictly

larger in the deviation g′′i = g′i− gi,k than in g′i, and g′i is not a deletion best response. Therefore,
in any deletion best response g′i ∈ argmaxg′i: g′i⊆gi

Πi(g
′
i, ḡ), if k ∈ Di(g

′
i, ḡ) and j ∈ Ni(ḡ

′), then
xj(ḡ) > xk(ḡ). Note that then in any deletion best response g′i with agents j and k such that
j, k ∈ Ni(ḡ) and xk(ḡ) = xj(ḡ), either j, k ∈ Di(g

′
i, ḡ) or j, k /∈ Di(g

′
i, ḡ). The above then allows

us to characterize minimal deletion best responses as follows. Partition the set of agents in Ni(ḡ)

by their effort levels in ḡ. Assume that there are m distinct effort levels in Ni(ḡ). Denote by
N1
i (ḡ) the set of agents with the lowest effort levels in Ni(ḡ), N2

i (ḡ) is the set of agents with the
second lowest effort levels in Ni(ḡ), and so forth, until Nm

i (ḡ), the set of agent with the highest
effort levels in Ni(ḡ). From the above we know that any deletion best response, g′i, is such that
either Di(g

′
i, ḡ) = ∅, or Di(g

′
i, ḡ) = ∪kj=1N

j
i (ḡ) for some integer k with 1 ≤ k ≤ m. Finally, the

unique g′mi is then such that k is maximal, g′mi,j = 0 ∀j /∈ Ni(ḡ
′). Note that we then also know
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that, if k ∈ Ni(ḡ
′m) and l ∈ Di(g

′m
i , ḡ), then xk(ḡ) > xl(ḡ). Finally, it follows directly from the

above that, if g′i and g′mi are such that | Ni(ḡ
′m) |=| Ni(ḡ

′) |, then Ni(ḡ
′m) = Ni(ḡ

′), while if
| Ni(ḡ

′m) |<| Ni(ḡ
′) |, then Ni(ḡ

′m) ⊂ Ni(ḡ
′). Q.E.D.

Lemma 8: If γ is sufficiently small, ˆ̄g ⊆ ḡ and agents play their Nash equilibrium effort levels,
x(ˆ̄g) and x(ḡ), then an agent i’s minimal deletion best response in ˆ̄g, ĝ′mi , and agent i’s minimal
deletion best response in ḡ, g′mi , are such that Ni(ˆ̄g

′
) ⊆ Ni(ḡ

′).

Proof. Assume first that ˆ̄g = ḡ and γ is sufficiently small. By Lemma 7 the minimal deletion
best response is unique and therefore Ni(ˆ̄g

′
) = Ni(ḡ

′). Assume next that ˆ̄g ⊂ ḡ holds and that γ
is sufficiently small. Note first that since ˆ̄g ⊂ ḡ, ηi(ḡ) ≥ ηi(ˆ̄g) holds ∀i ∈ N . Note next that the
above statement holds trivially if either ηi(ḡ) = 0, ηi(ˆ̄g) = 0, or ηi(ˆ̄g

′
) = 0. We therefore assume

that ηi(ḡ) ≥ 1, ηi(ˆ̄g) ≥ 1 and ηi(ˆ̄g′) ≥ 1. Denote by ˆ̄g
′m the network that is obtained from

agent i’s minimal deletion best response, ĝ′mi , in ˆ̄g, while ḡ′m is obtained from agent i’s minimal
deletion best response, g′mi , in ḡ. Pick a ranking of agents in the set of agent i’s neighbors after
proposed deviation in ˆ̄g, Ni(ˆ̄g

′m
), such that x1(ˆ̄g

′m
) ≥ x2(ˆ̄g

′m
) ≥ ... ≥ xηi(ˆ̄g′m)(ˆ̄g

′m
), where

we use the subscript to refer to the position in the ranking rather than to an agent’s label in
the set N . Denote this ranking by r(Ni(ˆ̄g

′m
)). Similarly, pick a ranking of agents in the set of

agent i’s neighbors prior to proposed deviation in ḡ, Ni(ḡ), such that x1(ḡ) ≥ x2(ḡ) ≥ ... ≥
xηi(ḡ)(ḡ). Denote this ranking with r(Ni(ḡ)). Note that since ˆ̄g ⊂ ḡ holds and g′m is a deletion
best response, Ni(ˆ̄g

′m
) ⊆ Ni(ḡ) holds. Pick an agent j ∈ Ni(ˆ̄g

′m
) such that xk(ḡ) ≥ xj(ḡ)

∀k ∈ Ni(ˆ̄g
′m

), i.e. pick an agent j in Ni(ˆ̄g
′m

), such that j’s effort level in the network ḡ is
weakly smaller than the effort level of any other agent in Ni(ˆ̄g

′m
) in the network ḡ. Out of all

agents in the ranking r(Ni(ḡ)) with effort level equal to xj(ḡ), pick the agent with the largest
subscript in r(Ni(ḡ)) and denote the corresponding subscript by t. Defined a truncated ranking
of r(Ni(ḡ)), denoted by rt(Ni(ḡ)), such that x1(ḡ) ≥ x2(ḡ) ≥ ... ≥ xt−1(ḡ) ≥ xt(ḡ). Note that,
since xj(ḡ) was chosen such that all agents in Ni(ˆ̄g

′m
) display weakly higher effort levels in ḡ,

and since t is the agent with the highest subscript in r(Ni(ḡ)) such that xt(ḡ) = xj(ḡ), all agents
in Ni(ˆ̄g

′m
) are included in the ranking rt(Ni(ḡ)). We next show that xt(ḡ) > xηi(ˆ̄g′m)(ˆ̄g

′m
).

Assume first that j ∈ Ni(ˆ̄g
′m

) is an agent with the (weakly) lowest effort level in r(Ni(ˆ̄g
′m

)),
i.e. xj(ˆ̄g

′m
) = xηi(ḡ)(ḡ). Since ˆ̄g ⊆ ḡ and j is in the same component as i in ḡ, we know from

Lemma 6 that effort levels for each agent are strictly lower in ˆ̄g than in ḡ for γ sufficiently small.
Therefore xj(ḡ) > xj(ˆ̄g

′m
) = xηi(ḡ)(ḡ). Assume next that j ∈ Ni(ˆ̄g

′m
) is not an agent with the

(weakly) lowest effort level in r(Ni(ˆ̄g
′m

)), i.e. xj(ˆ̄g
′m

) > xηi(ḡ)(ḡ). But then by the previous
argument xj(ḡ) > xj(ˆ̄g

′m
) > xηi(ḡ)(ḡ). Note next that, since ĝ′mi is agent i’s minimal deletion

best response in ˆ̄g, agent i does not find it profitable to delete any further links in Ni(ˆ̄g
′m). From

Lemma 7 we know that we only need to consider deviations ĝ′i such that xk(ˆ̄g) > xl(ˆ̄g) holds
∀k, l : k ∈ Ni(ˆ̄g) and l ∈ Di(ĝ

′
i, ˆ̄g) and we can therefore summarize the conditions, such that
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agent i does not find it profitable to delete any links in Ni(ˆ̄g
′m) as follows:

(A)
v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ˆ̄g
′m

), zi(ˆ̄g
′m

))− v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ˆ̄g
′m

)−
∑k

j=0 xηi(ˆ̄g′m)−j(ˆ̄g
′m

), zi(ˆ̄g
′m

))

k + 1

> κ

for all k ∈ N : 0≤ k ≤ ηi(ˆ̄g′m)− 1. To see this, note first that if

κ >

v(
∑ηi(ˆ̄g′m)

j=1 xj(ˆ̄g
′m

), zi(ˆ̄g
′m

))− v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ˆ̄g
′m

)−
∑k

j=0 xηi(ˆ̄g′m)−j(ˆ̄g
′m

), zi(ˆ̄g
′m

))

k + 1

for some k ∈ N : 0 ≤ k ≤ ηi(ˆ̄g′m)−1, then agent i can increase deviation payoffs by deleting links
to some subset of agents in Ni(ˆ̄g

′m
). Therefore, ĝ′mi is not optimal and hence not a minimum

deletion best response. If

κ =

v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ˆ̄g
′m

), zi(ˆ̄g
′m

))− v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ˆ̄g
′m

)−
∑k

j=0 xηi(ˆ̄g′m)−j(ˆ̄g
′m

), zi(ˆ̄g
′m

))

k + 1

for some k ∈ N : 0 ≤ k ≤ ηi(ˆ̄g
′ m

) − 1, then there exists a deviation, g̃′i, that yields the same
deviation payoffs as ĝ′mi , but g̃′i ⊂ ĝ′mi holds and ĝ′mi is therefore not a minimal deletion best
response. Next we show that the conditions in (A) imply that a deviation by agent i in ḡ, g′i,
such that agent i keeps his links with the first ηi(ˆ̄g

′m
) agents in the ranking r(Ni(ḡ)), but deletes

all other links, yields strictly higher payoffs than a deviation where any further links in Ni(ḡ)

are deleted. The appropriate conditions are given by

(B)
v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ḡ), zi(ḡ))− v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ḡ)−
∑k

j=0 xηi(ˆ̄g′m)−j(ḡ), zi(ḡ))

k + 1
> κ

for all k ∈ N : 0≤ k ≤ ηi(ˆ̄g′)− 1. To see that the conditions in (A) imply the conditions in (B),
recall that Ni(ˆ̄g

′m
) ⊆ Ni(ḡ). Note further that, since ˆ̄g ⊂ ḡ, ηj(ˆ̄g

′m
) ≥ 1 ∀j ∈ Ni(ˆ̄g

′m
) and, since

γ sufficiently small, we know from Lemma 6 that all agents j ∈ Ni(ˆ̄g
′m

) display strictly lower
effort levels in ˆ̄g than in ḡ. Since Ni(ˆ̄g

′m
) ⊆ Ni(ḡ) also holds, we know that the first ηi(ˆ̄g

′m
)

agents in the ranking rt(Ni(ḡ)) display strictly higher effort levels than agents with the same
rank (i.e. the same subscript) as agents in r(Ni(ˆ̄g

′m
)). Note next that v(y, z) is strictly convex

in y and, for γ = 0, v(y, z) can be treated as a function of only the first argument. Since the
conditions hold strictly in (A), and since effort levels are strictly larger in (B), we know from the
convexity of the value function that they also hold strictly for (B). From Lemma 4 it then follows
that they also hold strictly for γ sufficiently small. That is, a deviation strategy, in which all
links, except for the first ηi(ˆ̄g

′m
) agents in the ranking rt(Ni(ḡ)) yields strictly higher deviation
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payoffs than deleting any further agents. Note that if t = ηi(ˆ̄g
′m

), then Ni(ˆ̄g
′m

) ⊆ Ni(ḡ
′m).

Assume next that t > ηi(ˆ̄g
′m

) holds. Consider the condition for k = 0 in (A), which reads

v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ˆ̄g
′m

), zi(ˆ̄g
′m

))− v(
∑ηi(ˆ̄g

′m
)

j=1 xj(ˆ̄g
′m

)− xηi(ˆ̄g′m)(ˆ̄g
′m

), zi(ˆ̄g
′m

)) > κ.

Note that
∑ηi(ˆ̄g

′m
)

j=1 xj(g
−Ek ḡ) >

∑ηi(ˆ̄g
′m

)
j=1 xj(ˆ̄g

′m
) and, since xt(ḡ) > xηi(ˆ̄g′m)(ˆ̄g

′m
) and xt(ˆ̄g

′m
)

is the weakly lowest effort level of agents in rt(Ni(ḡ)), we know that xj(ḡ) > xηi(ˆ̄g′m)(ˆ̄g
′m

) for
all agents j listed in the ranking rt(Ni(ḡ)). We can then use again the conditions in (A) and
the convexity of the value function to show that deleting links to agents from agent t to the
ηi(ˆ̄g

′m
)-th agent in rt(Ni(ḡ)) decreases deviation payoffs. That is

v(
∑t

j=1 xj(ḡ), zi(ḡ))− v(
∑t

j=1 xj(ḡ)−
∑k

j=0 xt−j(ḡ), zi(ḡ))

k + 1
> κ

holds for all k ∈ N : 0≤ k ≤ t − ηi(ˆ̄g
′m

) − 1. Therefore, keeping all links in the ranking
rt(Ni(ḡ)) yields strictly higher payoffs than deleting (any subset) of links in rt(Ni(ḡ)) and there-
fore Ni(ˆ̄g

′m
) ⊆ Ni(ḡ

′m). Q.E.D.

Lemma 9: Assume γ is sufficiently small, (x, ḡ) is a pairwise Nash equilibrium with ḡ /∈ {ḡe}
and E ∈ E (e). Then there does not exist a pair of agents j,k ∈ N \ E in any configuration
(x(ˆ̄g−E), ˆ̄g−E) with ˆ̄g−E ⊆ ḡ−E, such that ḡj,k = 0 in ḡ and j and k find it profitable to create a
link in configuration (x(ˆ̄g−E), ˆ̄g−E).

Proof. Note that, since ḡ is a pairwise Nash equilibrium network, we know from Proposition 1
that ḡ is a nested split graph. Therefore, there is at most one non-trivial component (i.e., at most
one component that does not consist of only a singleton agent). Consider first the case such that
γ = 0 and assume that j and k are in the non-trivial component in ḡ. Since E ∈ E (e) we know
that there exists an agent i ∈ E such that j, k ∈ N i(ḡ). We show that if ˆ̄g−Ej,k = 0, then an agent’s
marginal payoff of creating the link ˆ̄g−Ej,k

′ = 1 is strictly lower in ˆ̄g−E than when creating the link
ḡ′j,k = 1 in ḡ. Note first that from Lemma 5 and Lemma 6 we know that xl(ˆ̄g−E, 0) < xl(ḡ, 0)

for all agents l ∈ N i(ḡ) and therefore yl(ˆ̄g−E, 0) < yl(ḡ, 0) for all agents l ∈ N i(ḡ). Note further
that x′j(ˆ̄g−E + ḡj,k, 0) < x′j(ḡ + ḡj,k, 0) and x′k(ˆ̄g−E + ḡj,k, 0) < x′k(ḡ + ḡj,k, 0) holds. To see this,
note that when γ = 0, then we can derive the following expressions,

x′j(ḡ + ḡj,k, 0)− x′j(ˆ̄g−E + ḡj,k, 0) = a
(
β(yj(ḡ, 0)− yj(ˆ̄g−E, 0)) + λ(y′k(ḡ, 0)− y′k(ˆ̄g−E, 0)

)
and

x′k(ḡ + ḡj,k, 0)− x′k(ˆ̄g−E + ḡj,k, 0) = a
(
β(yk(ḡ, 0)− yk(ˆ̄g−E, 0)) + λ(y′j(ḡ, 0)− y′j(ˆ̄g−E, 0)

)
,

where we set a = λ/(β2−λ2). Note that a > 0 since β > (n−1)λ. From yj(ˆ̄g−E, 0) < yj(ḡ, 0) and
yk(ˆ̄g−E, 0) < yk(ḡ, 0) it then follows that x′j(ˆ̄g−E + ḡj,k, 0) < x′j(ḡ+ ḡj,k, 0) and x′k(ˆ̄g−E + ḡj,k, 0) <
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x′k(ḡ+ḡj,k, 0) also hold. Note next that for γ = 0, we can write the marginal payoffs of agent j and
k when creating a link in ḡ and ˆ̄g−E, denoted by ∆vj(ḡ+ḡj,k, 0), ∆vk(ḡ+ḡj,k, 0), ∆vj(ˆ̄g−E+ḡj,k, 0)

and ∆vk(ˆ̄g−E + ḡj,k, 0), as follows

∆vj(ḡ + ḡj,k, 0) = 1
2(β+γ)

(
(α + λyj(ḡ, 0) + λx′k(ḡ + ḡj,k, 0)))2 − (α + λyj(ḡ, 0))2),

∆vk(ḡ + ḡj,k, 0) = 1
2(β+γ)

((
α + λyk(ḡ, 0) + λx′j(ḡ + ḡj,k, 0))

)2 − (α + λyk(ḡ, 0))2
)
,

∆vj(ˆ̄g−E + ḡj,k, 0) = 1
2(β+γ)

((
α + λyj(ˆ̄g−E, 0) + λx′k(ˆ̄g−E + ḡj,k, 0))

)2 −
(
α + λyj(ˆ̄g−E, 0)

)2
)
,

∆vk(ˆ̄g−E + ḡj,k, 0) = 1
2(β+γ)

((
α + λyk(ˆ̄g−E, 0) + λx′j(ˆ̄g−E + ḡj,k, 0))

)2 −
(
α + λyk(ˆ̄g−E, 0)

)2
)
.

Note that ∆vj(ḡ + ḡj,k, 0) > ∆vj(ˆ̄g−E + ḡj,k, 0) since x′k(ḡ + ḡj,k, 0) > x′k(ˆ̄g−E + ḡj,k, 0) and
yj(ḡ, 0) > yj(ˆ̄g−E, 0). Likewise, ∆vk(ḡ + ḡj,k, 0) > ∆vk(ˆ̄g−E + ḡj,k, 0) since x′j(ḡ + ḡj,k, 0) >

x′j(ˆ̄g−E + ḡj,k, 0) and yk(ḡ, 0) > yk(ˆ̄g−E, 0). Since ḡ is a PNE network, either κ ≥ ∆vj(ḡ+ ḡj,k, 0)

or κ ≥ ∆vk(ḡ + ḡj,k, 0) holds. Therefore, κ > ∆vj(ˆ̄g−E + ḡj,k, 0) or κ > ∆vk(ˆ̄g−E + ḡj,k, 0)

holds for any ˆ̄g−E ⊆ ḡ−E. Assume next that γ is sufficiently small. From Lemma 4 we know
that equilibrium payoffs and deviation payoffs change continuously in γ. Since marginal payoffs
from creating a link are strictly smaller in ˆ̄g−E than in ḡ for γ = 0, and creating the link is
not profitable in ḡ (as ḡ is assumed to be a pairwise Nash equilibrium network), the deviation
is also not profitable in ˆ̄g−E for γ sufficiently small. Assume next that γ = 0 and that j and
k are singletons in ḡ, i.e. j and k are not in the non-trivial component in ḡ. Recall that
ḡ /∈ {ḡe} and therefore there exists an agent m such that ηm(ḡ) ≥ 1. We first show that creating
the link ḡ′j,k = 1 incurs strictly lower marginal payoffs than creating the link ḡ′j,m = 1. Note
that, since ḡ is a PNE network and ḡm,k = 0, either m does not find it profitable to create
a link with k in ḡ, or k does not find it profitable to create a link with m in ḡ (or both).
Assume first that agent m does not find it profitable to create the link with k in ḡ. Next we
show that the marginal payoffs to m when linking to k are strictly higher than when agent j
links to k in ḡ. Since ηm(ḡ) ≥ 1 and ηj(ḡ) = ηk(ḡ) = 0, we know from Proposition 1 that
xm(ḡ, 0) > xj(ḡ, 0) and therefore ym(ḡ, 0) > yj(ḡ, 0). We can derive the following expression,
x′k(ḡ + ḡm,k, 0) − x′k(ḡ + ḡj,k, 0) = (λ2/(β2 − λ2)) (ym(ḡ, 0)− yj(ḡ, 0)) > 0, where the inequality
follows from β > (n− 1)λ and ym(ḡ, 0) > yj(ḡ, 0). Marginal payoffs of agent m, when linking to
agent k in ḡ, and of agent j when linking to k, denoted by ∆vm(ḡ + ḡm,k, 0) and ∆vj(ḡ + ḡj,k, 0),
respectively, are given by

∆vm(ḡ + ḡm,k, 0) = 1
2(β+γ)

(
(α + λym(ḡ, 0) + λx′k(ḡ + ḡm,k, 0))2 − (α + λym(ḡ, 0))2)

and

∆vj(ḡ + ḡj,k, 0) = 1
2(β+γ)

(
(α + λyj(ḡ, 0) + λx′k(ḡ + ḡj,k, 0))2 − (α + λyj(ḡ, 0))2).
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Note next that, since xm(ḡ, 0) > xj(ḡ, 0) (by Proposition 1), we know from the best response
functions that α + λym(ḡ, 0) > α + λyj(ḡ, 0) holds and since x′k(ḡ + ḡm,k, 0) > x′k(ḡ + ḡj,k, 0),
∆vm(ḡ + ḡm,k, 0) > ∆vj(ḡ + ḡj,k, 0) holds. Since we assumed that m does not find it profitable
to create the link with k in ḡ, κ ≥ ∆vm(ḡ + ḡm,k, 0) holds and therefore κ > ∆vj(ḡ + ḡj,k, 0)

also holds. Note that, since j and k are singletons and γ = 0, we know that ∆vj(ḡ + ḡj,k, 0) =

∆vj(ˆ̄g−E + ḡj,k, 0) and therefore κ > ∆vj(ˆ̄g−E + ḡj,k, 0) holds for any ˆ̄g−E ⊆ ḡ−E. From Lemma
4 it follows that, for γ sufficiently small, ∆vj(ˆ̄g−E + ḡj,k, γ) is arbitrarily close to ∆vj(ḡ + ḡj,k, 0)

and therefore κ > ∆vj(ˆ̄g−E + ḡj,k, γ) holds for any ˆ̄g−E ⊆ ḡ−E and any γ sufficiently small.
Assume next that agent k does not find it profitable to create the link with m in ḡ. One can
then use an argument analogous to the one above to show that x′m(ḡ + ḡm,k, 0) > x′j(ḡ + ḡj,k, 0)

and that ∆vk(ḡ + ḡm,k, 0) > ∆vk(ḡ + ḡj,k, 0) holds. Since k does not find it profitable to create
the link with m, κ ≥ ∆vk(ḡ + ḡm,k, 0) and therefore κ > ∆vk(ḡ + ḡj,k, 0). Since j and k

are singletons and γ = 0, we know that ∆vk(ḡ + ḡj,k, 0) = ∆vk(ˆ̄g−E + ḡj,k, 0) and therefore
κ > ∆vk(ˆ̄g−E + ḡj,k, 0) holds for any ˆ̄g−E ⊆ ḡ−E. From Lemma 4 it then again follows that,
for γ sufficiently small, ∆vk(ˆ̄g−E + ḡj,k, γ) is arbitrarily close to ∆vk(ḡ + ḡj,k, 0) and therefore
κ > ∆vk(ˆ̄g−E + ḡj,k, γ) for any ˆ̄g−E ⊆ ḡ−E and γ sufficiently small. Finally, consider the last
case, in which j is in the non-trivial component in ḡ, while k is a singleton and γ = 0. From
Lemma 5 and Lemma 6 we know that xj(ˆ̄g−E, 0) < xj(ḡ, 0), while xk(ˆ̄g−E, 0) = xk(ḡ, 0). One
can then show by the same arguments as above that ∆vj(ˆ̄g−E + ḡj,k, 0) < ∆vj(ḡ + ḡj,k, 0) and
∆vk(ˆ̄g−E + ḡj,k, 0) < ∆vk(ḡ + ḡj,k, 0) and, since ḡ is a pairwise Nash equilibrium we know that
either κ ≥ ∆vj(ḡ + ḡj,k, 0) or κ ≥ ∆vk(ḡ + ḡj,k, 0) holds and therefore κ > ∆vj(ˆ̄g−E + ḡj,k, 0) or
κ > ∆vk(ˆ̄g−E + ḡj,k, 0). That is, creating the link between j and k is not profitable for at least
one of the agents in any ˆ̄g−E ⊆ ḡ−E. It then follows again from Lemma 4 that j and k do not
find it profitable to create a link in any ˆ̄g−E ⊆ ḡ−E for γ sufficiently small. Q.E.D.

Lemma 10: If γ is sufficiently small and l ∈ Di(g
′m
i , ḡ) in configuration (x(ḡ), ḡ), then creating

the link ḡi,l = 0 is not profitable for agent i in any configuration (x(ˆ̄g), ˆ̄g) with ˆ̄g ⊆ ḡ′i
m.

Proof. Assume first that l ∈ Di(g
′m
i , ḡ) and | Di(g

′m
i , ḡ) |= 1. Then v(y(ḡ), zi(ḡ))− v(y(ḡ)−

xl(ḡ), zi(ḡ)) < κ must hold, as otherwise g′mi is not a minimal deletion best response. To see this,
note that for any minimal best response other than gi, marginal deviation payoffs are strictly
positive by Definition 3. Assume first that γ = 0. From Lemma 6 and ˆ̄g ⊆ ḡ′i

m it follows directly
that y(ˆ̄g) + xl(ḡ) ≤ y(ḡ). Next, define ˜̄g = ḡ − ḡi,l. From strategic complementarities it follows
that xl(ḡ) ≥ x′l(˜̄g + ḡi,l) and from the arguments used in Lemma 9 that x′l(˜̄g + ḡi,l) ≥ x′l(ˆ̄g + ḡi,l)

and therefore xl(ḡ) ≥ x′l(ˆ̄g + ḡi,l). Note that then y(ˆ̄g) + x′l(ˆ̄g + ḡi,l) ≤ y(ḡ) also holds. From
the convexity of the value function and γ = 0 it then follows that v(y(ˆ̄g) + x′l(ˆ̄g + ḡi,l), zi(ˆ̄g))−
v(y(ˆ̄g), zi(ˆ̄g)) ≤ v(y(ḡ), zi(ḡ)) − v(y(ḡ) − xl(ḡ), zi(ḡ)) < κ holds for any ˆ̄g such that ˆ̄g ⊆ ḡ′i

m.
From Lemma 4 we know that v(y(ˆ̄g) + x′l(ˆ̄g + ḡi,l), zi(ˆ̄g)) − v(y(ˆ̄g), zi(ˆ̄g)) < κ also holds for γ

33



sufficiently small. Therefore, agent i does not find it profitable to create a link with l in any
configuration (x(ˆ̄g), ˆ̄g) with ˆ̄g ⊆ ḡ′i

m. Assume next that l ∈ Di(g
′m
i , ḡ) and | Di(g

′m
i , ḡ) |> 1.

Then, for g′mi to be a minimal deletion best response, v(y(ḡ)−
∑

j∈Di(g′mi ,ḡ) xj(ḡ)+xl(ḡ), zi(ḡ))−
v(y(ḡ) −

∑
j∈Di(g′mi ,ḡ) xj(ḡ), zi(ḡ)) ≤ κ must hold. To see this, note that otherwise the deletion

strategy g′mi + gi,l yields a strictly higher deviation payoff than g′mi and g′mi is not a deletion
best response. Assume first that γ = 0. Since l ∈ Di(g

′m
i , ḡ), agent i and l are in a (non-

trivial) connected component in ḡ. We therefore know from Lemma 6 and ˆ̄g ⊆ ḡ′i
m that y(ˆ̄g) <

y(ḡ)−
∑

j∈Di(g′mi ,ḡ) xj(ḡ). Define ˜̄g = ḡ−
∑

j∈Di(g′mi ,ḡ) ḡi,j and note that from the above arguments
it follows again that xl(ḡ) ≥ x′l(ˆ̄g + ḡi,l). From the convexity of the value function and γ = 0 we
know that v(y(ˆ̄g)+x′l(ˆ̄g+ḡi,l), zi(ˆ̄g))−v(y(ˆ̄g), zi(ˆ̄g)) < v(y(ḡ)−

∑
j∈Di(g′mi ,ḡ) xj(ḡ)+xl(ḡ), zi(ḡ))−

v(y(ḡ)−
∑

j∈Di(g′mi ,ḡ) xj(ḡ), zi(ḡ)) ≤ κ holds. Since the inequality in v(y(ˆ̄g)+x′l(ˆ̄g+ ḡi,l), zi(ˆ̄g))−
v(y(ˆ̄g), zi(ˆ̄g)) < κ is strict, it then follows again from Lemma 4 that the inequality also holds for
γ sufficiently small. Therefore, agent i does not find it profitable to create a link with l in any
configuration (x(ˆ̄g), ˆ̄g) with ˆ̄g ⊆ ḡ′i

m. Q.E.D.

Lemma 11: If g′ml is a minimal deletion best response in configuration (x(ḡ, γ), ḡ) for γ = 0,
then g′ml is a minimal deletion best response in configuration (x(ḡ, γ), ḡ) for γ sufficiently small.

Proof. Recall that from Lemma 7 we know that a minimal deletion best response is unique, but
there may be other deletion best responses. Note that, since any deletion deviation strategy that
is not a deletion best response yields strictly lower deviation payoffs, and since equilibrium and
deviation payoffs are continuous by Lemma 4, we only need to consider deletion best responses.
Assume first that the minimal deletion best response, g′ml , is the only deletion best response in
(x(ḡ, γ), ḡ) with γ = 0. From Lemma 4 it then follows directly that g′ml is also the minimal
deletion best response in (x(ḡ, γ), ḡ) for γ sufficiently small. Assume next that the minimal
deletion best response, g′ml , is not the only deletion best response in (x(ḡ, γ), ḡ) for γ = 0. We
distinguish two cases. Assume first that the number of links deleted in g′ml is the same as in any
other deletion best response g′l. From Lemma 7 we know that then the set of neighbors after
proposed deviations must be the same, i.e. Nl(g

′m
l ) = Nl(g

′
l) for any deletion best response g′l.

Note that marginal payoffs of deletion best responses g′ml and g′l are equal by assumption and
can be written as follows. For g′ml they are given by

1
(β+γ)

(
α + λ

∑
j∈Nl(g

′m
l ) xj(g, γ)− γzl(g, γ)

)2

− 1
(β+γ)

(
α + λ

∑
j∈Nl(g) xj(g, γ)− γzl(g, γ)

)2

+ (η(g)− η(g′ml ))κ,

while for g′l they are given by

1
(β+γ)

(
α + λ

∑
j∈Nl(g

′
l)
xj(g, γ)− γzl(g, γ)

)2

− 1
(β+γ)

(
α + λ

∑
j∈Nl(g) xj(g, γ)− γzl(g, γ)

)2

+ (η(g)− η(g′l))κ.
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The second term is equal in both expressions, while the third term is independent of γ, so
that we can focus on the first term. Since Nl(g

′m
l ) = Nl(g

′
l), the marginal payoffs of g′ml and

g′l are also equal for γ > 0. That is, if g′ml is the minimal deletion best response in (x(ḡ, γ), ḡ)
for γ = 0, then g′ml is also the minimal deletion best response in (x(ḡ, γ), ḡ) for γ sufficiently
small. Assume next that there exists a deletion best response g′l such that the number of links
deleted in g′ml differs from g′l in (x(ḡ, γ), ḡ) for γ = 0. Note that by the above argument we can
disregard any deletion best responses, such that the number of links deleted in g′ml is the same
as in g′l in (x(ḡ, γ), ḡ) for γ = 0. We therefore consider deletion best responses g′l, such that
g′ml ⊂ g′l and | Nl(g

′m
l ) |<| Nl(g

′
l) | holds. From Lemma 7 we know that then Nl(g

′m
l ) ⊂ Nl(g

′
l)

also holds. We next show that for any such g′l, the marginal payoffs of g′ml are larger than for
g′l in (x(ḡ, γ), ḡ) for γ > 0 sufficiently small. Note first that marginal payoffs for g′ml and g′l are
again given by the above expressions and equal for γ = 0 by definition. Since the second term is
equal in both expressions, while the third term is independent of γ, we can again focus on the
first term. Note next that Nash equilibrium effort levels are decreasing in γ. To see this, we write
an agent’s effort level for a given network g as xi(ḡ) = αbi(ḡ,

λ
β
)/
(
β + γb(ḡ, λ

β
)
)
(by Theorem

1 in Ballester et al., 2006), where bi(ḡ, λβ ) is an agent’s Bonacich centrality, given ḡ and λ
β
, and

b(ḡ, λ
β
) is the sum of agents’ Bonacich centralities. Since bi(ḡ, λβ ) and b(ḡ, λ

β
) are independent

of γ, Nash equilibrium effort levels are strictly decreasing in γ. From Nl(g
′m
l ) ⊂ Nl(g

′
l) it then

follows directly that marginal deviation payoffs are strictly larger in g′ml than in g′l for γ > 0.
Therefore, g′ml is the minimal deletion deletion best response in (x(ḡ, γ), ḡ) for γ sufficiently
small. Q.E.D.

Proposition 2: Assume ḡ /∈ {ḡe} and e < t(ḡ). If γ is sufficiently small, then the optimal
targeting policy prescribes eliminating a set of agents Ei ∈ E (e) for any value of δ.

Proof. Recall that from Lemma 9 we know that after the elimination of a set of agents
E, any link ḡj,k = 0 that is not present in the pairwise Nash equilibrium network ḡ, is not
profitable, neither in the configuration (x(ḡ−E), ḡ−E), nor in any configuration (x(ˆ̄g−E), ˆ̄g−E)

with ˆ̄g−E ⊆ ḡ−E for γ sufficiently small. Similarly, from Lemma 10 we know that if an agent i
deletes a link to an agent l in a minimal deletion best response g′mi in configuration (x(ḡ), ḡ),

then agent i does not find profitable to create a link with l in any configuration (x(ˆ̄g), ˆ̄g) with
ˆ̄g ⊆ ḡ′i

m for γ sufficiently small. In time period t = 0 no links are created in ḡ−E0 by Lemma 9
and therefore ḡ−E1 = ḡ−E0 . In time period t = 1 agents may delete links and therefore ḡ−E2 ⊆ ḡ−E1 .
In time period t = 2, the creation of a link that was not in place in t = 0 is not profitable by
Lemma 9, while the creation of any link that was deleted in t = 1 is not profitable by Lemma
10. Therefore, ḡ−E3 = ḡ−E2 . Applying the argument iteratively implies that no links are created
in any time period t and we can disregard the creation of links. We next show that for any
fixed number of eliminated agents e′ with e′ ≤ e < t(g), it is optimal to eliminate a set of
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agents Ei such that Ei ∈ E (e′) and in a second step that it is optimal to target e′ = e agents,
i.e. to delete the maximum number of agents. Assume therefore that Ei ∈ E (e′), Ek /∈ E (e′)

and | Ei |=| Ek |= e′ ≤ e. From Lemma 3 we know that then g−Ei
0 ⊂ g−Ek

0 holds, while from
Theorem 2 in Ballester et al. (2006) we know that if g1 ⊂ g2, then

∑
j∈N x(g1) <

∑
j∈N x(g2)

holds. Therefore,
∑

j∈N(Ei)
xj(g

−Ei
0 ) <

∑
j∈N(Ek) xj(g

−Ek
0 ) holds in time period t = 0. From the

above we know that no links are created in t = 0 and therefore g−Ei
1 = g−Ei

0 and g−Ek
1 = g−Ek

0 .
Note that, since g−Ei

1 ⊂ g−Ek
1 , we know from Lemma 8 that the minimal best responses of an

agent l in g−Ei
1 and g−Ek

1 , given by g−Ei
1

′
l
m and g−Ek

1
′
l
m, are such that Nl(g

−Ei
1

′
l
m) ⊆ Nl(g

−Ek
1

′
l
m).

Therefore, g−Ei
2 ⊆ g−Ek

2 holds. Again, from the above we know that no links are created in
t = 2. Applying the argument iteratively then yields g−Ei

t ⊆ g−Ek
t ∀t ≥ 1. From Theorem 2

in Ballester et al. (2006) it follows that
∑

j∈N(Ei)
xj(g

−Ei
t ) ≤

∑
j∈N(Ek) xj(g

−Ek
t ) ∀t ≥ 1, and

therefore
∑∞

t=0 δ
t
∑

j∈N(Ei)
xj(g

−Ei
t ) <

∑∞
t=0 δ

t
∑

j∈N(Ek) xj(g
−Ek
t ) holds for any δ ∈ (0, 1). Next

we show that it is optimal to eliminate e agents and it is therefore optimal to target a set of agents
Ei ∈ E (e). Take any set Ek ∈ E (e′) with e′ < e < t(ḡ) and consider a corresponding second set
Ei ∈ E (e) such that Ek ⊂ Ei. From the definition of E (·) it is easy to see that such a set Ei
always exists. Note that since the number of remaining agents are different when eliminating Ei
and Ek, we cannot compare g−Ei

t and g−Ek
t directly. Consider therefore an intermediary network

g̃0, which is obtained from adding a set S of | Ei | −| Ek | singletons to g−Ei
0 . We allocate the

labels of agents in the set Ei \ Ek to the agents in S. Note that then the set of agents in g̃0

and g−Ek
0 is the same, i.e. N(g̃0) = N(g−Ek

0 ). Moreover, g̃0 ⊆ g−Ek
0 holds. Recall from the

above that for γ sufficiently small no links are created in g−Ei
t , g̃t and g−Ek

t in any time period
t. We next show that in any time period t, g̃t can be obtained from g−Ei

t by adding a set S of
| Ei | −| Ek | singletons. Assume first that γ = 0. By Lemma 9 no links are created in t = 0 and
therefore g−Ei

1 = g−Ei
0 and g̃1=g̃0. Since γ = 0, incentives to delete links are the same in g−Ei

1

andg̃1 and minimal deletion best responses are such that g̃1
′m
l,j = g−Ei

1
′
l,j
m ∀l, j ∈ N \ Ei, while

g̃1
′m
l,j = 0 ∀l, j : l ∈ N \ Ei and j ∈ S, and g̃1

′m
l,j = 0 ∀l ∈ S. That is, for an agent l ∈ N \ Ei the

minimal deletion best response in g̃1 can be obtained from the minimal deletion best response
in g−Ei

1 by adding zero entries for any agent in S, while minimal deletion best responses for
agents in S in g̃1 are zero vectors. Therefore, g̃2 can be obtained from g−Ei

2 by adding a set
S of singleton agents. Since no links are created in any time period, we can use the previous
argument iteratively. Therefore, g̃t can be obtained from g−Ei

t by adding a set S of singletons
in any time period t. Note next that the sum of effort levels is always strictly smaller in g−Ei

t

than in g̃t. To see this, note that, since γ = 0, xj(g−Ei) = xj(g̃) ∀j ∈ N \ Ei, while from the
best response functions we know that for agents in S effort levels are strictly positive and given
by xj(g̃) = α/β > 0 ∀j ∈ S. Therefore,

∑∞
t=0 δ

t
∑

j∈N(Ei)
xj(g

−Ei
t ) <

∑∞
t=0 δ

t
∑

j∈N(Ek) xj(g̃t).
Since g̃0 ⊆ g−Ek

0 we know by Lemma 8, 9, 10 that g̃t ⊆ g−Ek
t holds ∀t. Together with the former

inequality it then follows that
∑∞

t=0 δ
t
∑

j∈N(Ei)
xj(g

−Ei
t ) <

∑∞
t=0 δ

t
∑

j∈N(g
−Ek
t )

xj(g
−Ek
t ). It is
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therefore optimal to eliminate a set of agents Ei such that Ei ∈ E (e). Assume next that γ > 0 is
sufficiently small. From Lemma 11 we know that if g−Ei

1
′
l
m is a minimal deletion best response

in (x(g−Ei
1 ),g−Ei

1 ) for γ = 0, then it is also a minimal deletion best response in in (x(g−Ei
1 ),g−Ei

1 )

for γ sufficiently small. Likewise, if g̃1
′m
l is a minimal deletion best response in (x(g̃1), g̃1) for

γ = 0, then it is also a minimal deletion best response in in (x(g̃1), g̃1) for γ sufficiently small.
That is, minimal deletion best responses are again the same in g−Ei

1 and g̃1 for γ > 0 sufficiently
small. We can then use the same iterative argument as above to show that g̃t can be obtained
from g−Ei

t by adding a set S of singletons in any time period t. Since the sum of effort levels
is strictly smaller in g−Ei

t than in g̃t in any time period t for γ = 0, it follows from Lemma 4
that the sum of effort levels is also strictly smaller in g−Ei

t than in g̃t in any time period t for
γ sufficiently small. Since g̃t ⊆ g−Ek

t ∀t,
∑∞

t=0 δ
t
∑

j∈N(Ei)
xj(g

−Ei
t ) <

∑∞
t=0 δ

t
∑

j∈N(Ek) xj(g
−Ek
t )

again holds for any δ ∈ (0, 1) for γ > 0 sufficiently small. Q.E.D.

Definition 8: k
s

n = (α2λ(2β + (n− 1)λ)) / (2(β + λ)(β + (n− 1)λ)2)

ksn = (α2λ(2β + 3λ)) / (2(β + λ)(β + (n− 1)λ)2)

ken−x = α2λ(2β + 3λ)/ (2(β + λ)(β + (n− x)λ)2)

Lemma 12: If γ = λ, then the star network is a pairwise Nash equilibrium network if and only
if k ∈ [ksn, k

s

n].

Proof. This follows directly from the relevant bounds derived in Definition 8. Q.E.D.

Lemma 13: Assume (x(g),g) is a pairwise Nash equilibrium, g is a star network, γ = λ and
e = 1. If g−i

t̃
is complete (empty) for some t̃ ≥ 0, then g−it is complete (empty) for all g−it with

t ≥ t̃.

Proof. We start by showing the statement for g−i
t̃

complete. The average marginal benefit of
being linked to n − 2 agents in a complete network of n − 1 agents is given by α2λ(2β − (n −
4)λ)/ (2(β + λ)3). One can show by algebraic manipulation that this expression is strictly larger
than ksn for γ = λ.35 Therefore, if (x(g),g) is a pairwise Nash equilibrium, g is a star network
and g−i

t̃
is complete for some t̃ ≥ 0, then g−it is complete for all t ≥ t̃. Note next that from

Definition 8 we know that for λ = γ the marginal benefits of creating a link the empty network
of n − 1 agents are equal to ksn. Since (x(g),g) is a pairwise Nash equilibrium such that g is a
star network, we know that k ≥ ksn must hold. Therefore, if g−i

t̃
is empty for some t̃ ≥ 0, then

g−it is empty for all t ≥ t̃. Q.E.D.
35These calculations were conducted in Mathematica and are available from the author.

37



Proposition 4: Assume g is a pairwise Nash equilibrium, δ is sufficiently large and λ = γ, then
the optimal targeting policy prescribes:
i) if e = 1, eliminate the central agent;
ii) if e = 2 and κ ∈ [κen−2, κ

s
n], eliminate the center and a peripheral agent;

if e = 2, κ ∈ [κsn, κ
e
n−2) and λ < β/(n2 − 4n+ 3), eliminate the central and a

peripheral agent;
if e = 2, κ ∈ [κsn, κ

e
n−2) and λ ≥ β/(n2 − 4n+ 3), eliminating the central agent.

Proof. Assume first that e = 1. Denote the central agent with c and denote one peripheral
player with p. If the planner eliminates agent c, then g−c0 is the empty network, while when the
planner eliminates p, then g−p0 is a star of n− 1 agents. Therefore, g−c0 ⊂ g−p0 and, by Theorem
2 in Ballester et al. (2006), we know that then the sum of Nash equilibrium effort levels is
strictly lower in g−c0 than in g−p0 . From Lemma 13 we know that g−ct is also empty for all t ≥ 1.
Therefore, g−ct ⊆ g−pt for all t ≥ 1 and

∑∞
t=0 δ

t
∑

j∈N\{c} xj(g
−c
t ) <

∑∞
t=0 δ

t
∑

j∈N\{p} xj(g
−p
t ).

Next we compare eliminating a central agent with not intervening. Note first that the sum of
effort levels in the empty network of n agents is given by nα/(β + nγ) and the first derivative
with respect to n is given by αβ/(β+nγ)2 > 0. Note next that g−ct is the empty network of n−1

agents in, while ge is the empty network of n agents, so that
∑

j∈N\c xj(g
−c
t ) <

∑
j∈N xj(g

e)

holds. From
∑

j∈N xj(g
e) ≤

∑
j∈N xj(g) ∀g it then follows that the optimal targeting policy

prescribes eliminating the central agent. Assume next that e = 2 and κ ∈ [κen−2, κ
s
n]. That is, in

an empty network of n− 2 agents no new links will be created. From an argument analogous to
the one above, one can show that the optimal targeting policy prescribes eliminating the central
and a peripheral agent. Assume next that e = 2 and κ ∈ [κsn, κ

e
n−2). Denote a second peripheral

player with p′. Note first that from the expressions for κen−2 and κsn−2 it follows directly that
κen−2 < κsn−2. That is, if κ ∈ [κsn, κ

e
n−2), then for E = {c, p} and E ′ = {p, p′} we have that the

network is complete for all t ≥ 1. Since in t = 0 for E = {c, p} the network is empty, while for
E ′ = {p, p′} it is a star network, the planner prefers E = {c, p} over E ′ = {p, p′}. That is, we
know that E = {p, p′} is not an optimal targeting policy. From the above it follows that if e = 1,
then eliminating the central agent is optimal. We next compare eliminating E = {c, p} and
E ′ = {c}. If E = {c, p}, then the network is the empty network of n− 2 agents in t = 0 and the
complete network of n− 2 agents in t = 1. One can show via algebraic manipulation (and using
β > (n− 1)λ) that the average marginal benefits of keeping n− 3 links in the complete network
of n−2 agents is strictly larger than κsn and the network therefore remains complete for all t ≥ 1.
In contrast, if E ′ = {c}, then for all time periods, the network is the empty network of n − 1

agents. The sum of payoffs in the complete network of n− 2 agents is given by (n− 2)α/(β+λ),
while for the empty network of n − 1 agents it is given by (n − 1)α/(β + (n − 1)λ). The latter
is weakly larger than the former if and only if λ ≤ β/(n2 − 4n+ 3) and ii) follows directly from
the assumption that δ is sufficiently large. Q.E.D.
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8 ONLINE APPENDIX: TARGETING WHEN THE NET-

WORK IS ENDOGENOUS

Timo Hiller

Abstract

We first formally relate the payoff function in Ballester et al. (2006) to the one presented
in the main part of the paper. Then we provide the proof of Proposition 3 and introduce
the one-sided network formation model.

8.1 The relationship with Ballester et al. (2006)

Ballester et al. (2006) start by assuming the utility function below

ui(x1, ..., xn) = αxi + 1
2
σx2

i +
∑

j 6=i σijxixj,

with α > 0 and σ < 0. By defining σ = min{σij | i 6= j} and σ = max{σij | i 6= j}, the utility
functions is rewritten as follows

ui(x) = αxi − 1
2
(β − γ)x2

i − γxi
∑

j∈N xj + λ
∑

j∈N gijxixj,

where γ = −min{σ, 0} ≥ 0, λ = σ + γ ≥ 0. The authors assume λ > 0 (and thereby rule out
the case when σ =σ) and interpret gij = (σij + γ)/λ as a directed link from i to j in network g.
Note that ui(x) can then be rearranged and rewritten as

ui(x) = αxi − 1
2
(β + γ)x2

i − γxi
∑

j∈N\{i} xj + λ
∑

j∈N gijxixj.

When σij ∈ {σ, σ} for all i 6= j, then adjacency matrix corresponding to g is a symmetric
(0, 1)-matrix and g is undirected and unweighted. We further assume that λ ≥ γ, which yields
strategic complementarities in effort levels for connected agents. In the context of Ballester et
al. (2006) this corresponds to σ ≥ 0. Finally, note that when σ = 0, then λ = γ > 0.
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8.2 Proof of Proposition 3

In Proposition 3 we present a sufficient condition for a pairwise Nash equilibrium to exists, such
that the optimal targeting policy prescribes eliminating an agent with the lowest number of links
and lowest effort level. It is sufficient that λ − γ ≥ 0 is sufficiently small (or put differently,
that γ is sufficiently large, given our restrictions on parameters), δ is sufficiently large and that
linking cost κ is between two bounds, κ′ and κ′, defined below. Note also that for the following
we assume that n ≥ 5.

Below we define the bounds on linking cost used in Proposition 3.

Definition 9:

κ′1 = (α2βλ(2β2 − (2n− 9)βλ− 2(n− 3)λ2) / (2(β + λ)(β2 + 2βα− (n− 3)α)2)

κ′2 = (α2βλ(2β2 − (2n− 11)βλ− 2(n− 4)λ2)) / (2(β + λ)β2 + 4βλ− 3(n− 4)λ2)2)

Proposition 3: Assume e = 1. If λ − γ ≥ 0 is sufficiently small, δ is sufficiently large and
κ′1 < κ < κ′2, then there exists a pairwise Nash equilibrium, such that the optimal targeting policy
prescribes eliminating an agent with the fewest links.

Proof. For the following, take ḡ to be a dominant group network with a core of size c = n−2.
Denote by ḡ−c0 the network when a core agent is eliminated from ḡ and denote by ḡ−p0 the network
when a periphery agent is eliminated from ḡ. The corresponding Nash equilibrium effort levels
of agents in the core are denoted by xc(ḡ) and in the periphery by xp(ḡ). Deviation effort levels
are written in the following way. For example, x′c(ḡ

−p
0 + ḡc,p) is the deviation effort level of a

core agent in configuration (x(ḡ−p0 ), ḡ−p0 ), when creating a link to an agent in the periphery.
The remaining deviation effort levels are defined analogously. We start by assuming that λ = γ.
Consider the following two conditions, (1) and (2), which ensure that (x(ḡ), ḡ) is a pairwise Nash
equilibrium.

(1) (v((c− 1)xc(ḡ), (c− 1)xc(ḡ) + 2xp(ḡ))− v(0, (c− 1)xc(ḡ) + 2xp(ḡ))) / (c− 1) =

= α2β2λ(2β+2γ+λ−nλ)
2(β+γ)(β(β+(c+n)γ)−(n−1)(β+cγ)λ)2

> κ

(2) v(x′c(ḡ + ḡc,p), (c− 1)xc(ḡ) + x′c(ḡ + ḡc,p) + xp(ḡ))− v(0, cxc(ḡ) + xp(ḡ)) =

= α2(β+γ)λ(β2+βλ+(n−1)(γ−λ)λ)(2β3−(n−1)(3γ−λ)λ2−βλ(4(n−2)γ+λ)+β2(4γ+(3−2n)λ))
2(β+2γ−λ)2(β+λ)2(β(β+(n+c)γ)−(n−1)(β+cγ)λ)2

< κ

More precisely, the left hand side of condition (1) is given by the average marginal benefits per
link of an agent in the core deleting all links. Since the value function is convex, condition (1) is
sufficient for there to be no profitable deviation that involves deleting links in (x(ḡ), ḡ). The left
hand side of condition (2) is given by the marginal benefit of an agent in the periphery linking
to an agent in the core. Note that from the arguments used Lemma 9 it follows directly that,
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if an agent in the periphery does not find it profitable to an agent in the core, then two agents
in the periphery do not find it profitable to create a link. That is, condition (2) ensures that
there is not profitable deviation that involves creating a link. Therefore, if conditions (1) and (2)
hold, (x(ḡ), ḡ) is a pairwise Nash equilibrium. Conditions (3) and (4) for (x(ḡ−p0 ), ḡ−p0 ) below are
analogous to condition (1) and (2). That is, if conditions (3) and (4) hold, then the configuration
after eliminating an agent in the periphery, (x(ḡ−p0 ), ḡ−p0 ), is a pairwise Nash equilibrium.

(3) (v((c− 1)xc(ḡ
−p), (c− 1)xc(ḡ

−p) + xp(ḡ
−p))− v(0, (c− 1)xc(ḡ) + xp(ḡ))) / (c− 1) =

= α2β2λ(2β+2γ+2λ−λn)
2(β+γ)(β(β+(c+n−1)γ)−(n−2)(β+cγ)λ)2

> κ

(4) v(x′c(ḡ
−p + ḡc,p), (c− 1)xc(ḡ

−p) + x′c(ḡ
−p + ḡc,p))− v(0, cxc(ḡ)) =

= α2(β+γ)λ(β2+βλ+(n−2)(γ−λ)λ)(2β3−(n−2)(3γ−λ)λ2−βλ(4(n−3)γ+λ)+β2(4γ+(5−2n)λ))
2(β+2γ−λ)2(β+λ)2(β(β+(n+c−1)γ)−(n−2)(β+cγ)λ)2

< κ

The left hand side of condition (5) yields the marginal payoffs of an agent in the periphery
creating a link with another agent in the periphery in (x(ḡ−c), ḡ−c). From the arguments in
Lemma 9 it again follows directly that then also all links between agents in the core and the
periphery in (x(ḡ−c0 ), ḡ−c0 ) are profitable and ḡ−c1 is therefore the complete network of n − 1

agents. Finally, the left hand side condition (6) is given by the average marginal payoff per link
of an agent in configuration (x(ḡ−c1 ), ḡ−c1 ) (where ḡ−c1 is the complete network of n − 1 agents).
That is, (x(ḡ−c1 ), ḡ−c1 ) is a pairwise Nash equilibrium.

(5) v(x′p(ḡ
−c + ḡp,p), (c− 1)xc(ḡ

−c) + x′p(ḡ
−c + ḡp,p))− v(0, (c− 1)xc(ḡ

−c)) =

= α2(β+γ)(β+(n−1)(γ−λ))λ(2β2−(n−1)(3γ−λ)+β(4γ+λ−2nλ))
2(β+2γ−λ)2(β+(n+c−1)γ)−(n−1)(β+(c−1)γ)λ)2

> κ

(6) v((n−2)x(ḡ−c
1 ),(n−2)x(ḡ−c

1 ))−v(0,(n−2)x(ḡ−c
1 ))

n−2
=

= α2λ(2(β+γ)−(n−2)λ)
2(β+γ)(β+(n−1)γ−(n−2)λ)2

> κ

One can show that the above conditions hold simultaneously with strict inequality for λ =

γ > 0 and κ′1 < κ < κ′2.36 That is, if the above conditions hold, then ḡ is a pairwise Nash
equilibrium, and ḡ−pt = ḡ−p ∀t ≥ 0, while ḡ−c0 = ḡ−c and ḡ−ct = ḡc ∀t ≥ 1. That is,
ḡ−c0 ⊂ ḡ−p0 by Lemma 3, while ḡ−pt ⊂ ḡ−ct ∀t ≥ 1. By Proposition 2 of Ballester et al. (2006)∑

j∈N\p xj(ḡ
−p
t ) >

∑
j∈N\c xj(ḡ

−c
t ) for t = 0 and

∑
j∈N\p xj(ḡ

−p
t ) <

∑
j∈N\c xj(ḡ

−c
t ) ∀t ≥ 1.

Therefore,
∑∞

t=0 δ
t
∑

j∈N\p xj(ḡ
−p
t ) <

∑∞
t=0 δ

t
∑

j∈N\c xj(ḡ
−c
t ) for δ sufficiently close to 1. Note

next that since the relevant conditions hold with strict inequality, we know from Lemma 4 that
the above statement also holds for λ− γ ≥ 0 sufficiently small. Q.E.D.

36The calculations were executed in Mathematica and are available from the author upon request.
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8.3 One-sided Link Formation and Convergence

We assume that network formation is one-sided with two-sided flow. That is, it is sufficient for
only one agent to extend a link in order for both agents involved in the link to benefit from each
other’s effort level. This specification allows us to use Nash equilibrium as a solution concept.
Moreover, one can show that the payoff function admits a potential. We can therefore rely
on Monderer and Shapley (1996) to ensure convergence of best response dynamics. Note that
Nash equilibrium allows for deviations in which agents create multiple links unilaterally and may
simultaneously delete any subset of their existing links. However, only the deviating agent is
assumed to adjust effort levels.

Let N = {1, 2, ..., n} be the set of players with n ≥ 3. As before, each player i chooses
a personal effort level xi ∈ X and a set of links, which are represented as a row vector gi =

(gi,1,..., gii−1, gii+1,..., gin), where gij ∈ {0, 1} for each j ∈ N\{i}. Assume X = [0,+∞) and
gi ∈ Gi = {0, 1}n−1. The set of strategies of i is denoted by Si = X×Gi and the set of strategies
of all players by S = S1 × S2 × ...× Sn. A strategy profile s = (x,g) ∈ S specifies the individual
effort level of each player, x = (x1,x2,..., xn), and a set of links g = (g1,g2, ...,gn). Agent i is said
to sustain or extend a link to j, if gi,j = 1 and to receive a link from j, if gj,i = 1. The network of
relations g is a directed graph, i.e. it is possible that gi,j 6= gj,i. Let Ni(g) = {j ∈ N : gi,j = 1}
be the set of agents i has extended a link to and define ηi(g) = |Ni(g)|. Call the closure of g

an undirected network, denoted by ḡ =cl(g), where ḡi,j = max{gi,j, gj,i} for each i and j in N.
Denote with Ni(ḡ) ={j ∈ N : ḡi,j = 1} the set of players that are directly connected to i. As
before, we write yi =

∑
j∈Ni(ḡ) xj for the effort level of i’s direct neighbors. The aggregate effort

level of all agents other than i is written as zi(ḡ) =
∑

j∈N\{i} xj. We will drop the subscript of
yi when it is clear from the context.

Payoffs of player i under strategy profile s = (x,g) are given by

Πi(s) = πi(x,g)− ηi(g)k,

where k denotes the cost of extending a link. Gross payoffs, i.e. payoffs excluding linking cost,
πi(x,ḡ), are again given by the linear-quadratic payoff function with local complementarities and
global substitutes (Ballester et al., 2006). That is,

πi(x,ḡ) = αxi − 1
2
(β + γ)x2

i + λxi
∑

j∈Ni(ḡ) xj − γxi
∑

j∈N\{i} xj ∀i ∈ N .

A Nash equilibrium is a strategy profile s=(x,g) such that

Πi(si, s−i) ≥ Πi(s
′
i, s−i), ∀s′i ∈ Si,∀i ∈ N .

We again assume that β > (n− 1)λ to guarantee existence on a fixed network and, in order
to guarantee convergence, make the additional assumption that 2λ/(β − γ) < 1/(n − 1), as
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explained in more detailed below. The best response and value functions are as in the main part
of the manuscript. One can show that in any Nash equilibrium the undirected is a nested split
graph. Since zi is fixed in any deviation considered, we can use the same arguments as the ones
presented in the online appendix to Hiller (2017). Formal proofs are available from the author.

Proposition OA1: In any NE the undirected network ḡ is a nested split graph.

As in the main part of the paper we assume that the planner aims to minimize the discounted
stream of aggregate effort levels and assume that the initial configuration is an equilibrium.
Different from the main part of the paper, we now assume the following best response dynamic.
At each time period an agent is chosen at random and updates her strategy to a best response to
the current configuration xt,gt.We next argue that such a process converges (to an ε equilibrium
in finite time). Note first that the function Φ(x,g), given by

Φ(x,g) = α
∑

i∈N xi−
1
2
(β+ γ)

∑
i x

2
i +λ

∑
i∈N
∑

j∈Ni(ḡ) xixj − γ
∑

i∈N
∑

j 6=i xixj −
∑

i∈N ηi(g)κ

is a potential function for our payoff function. For a vector of parameters θ = (α, β, λ, γ),
we further assume that 2λ/(β − γ) < 1/(n − 1). This implies that the potential function is
bounded. To see this, define θ̃(θ) = (α̃(θ), β̃(θ), λ̃(θ), γ̃(θ)) with α̃(θ) = α, β̃(θ) = β − γ, λ̃(θ) =

2λ, γ̃(θ) = 2γ. From the first order conditions is then follows that the efficient effort levels,
denoted by x̂(ḡ, θ), for parameter vector θ are equal to the vector of Nash equilibrium effort
levels, x(ḡ, θ̃), for parameter vector θ̃. Since then α̃/β̃ < 1/(n−1) holds, we know from Ballester
et al. (2006) that x(ḡ, θ̃) exists and is unique. Therefore, for each network ḡ there exists a
corresponding maximal and finite value Φ(x̂,g) and, since the number of networks g is finite,
Φ(x,g) is bounded. Note that at each time period t an agent best responds and the potential
therefore weakly increases. That is, we obtain an infinite sequence of weakly increasing real
numbers that is bounded and therefore converges.

Next we present an example that mirrors the results obtained in Proposition 4 in the main
part of the paper. The star network in which peripheral players extend a link to the center is
a Nash equilibrium. As before, assume that e = 2 and γ = λ. We compare a policy of not
intervening with eliminating the center of the star and eliminating the center of the star and
a periphery player. Denote the center with n and the periphery player to be eliminated with
n−1. We assume the same sequence of updating agents, given by 1, 2, ..., n−1 and 1, 2, ..., n−2,
respectively. Assume this sequence is repeated forever. The initial configuration is depicted on
the upper left in the figure below. Note that after eliminating only the central agent, no agent
has an incentive to update her strategy, depicted in the lower left of the figure below. Finally,
if the center and a peripheral agent is eliminated, then we obtain the sequence on the right.
Agents add links until the complete network is reached and the network converges to a Nash
equilibrium in t = 5. Note that the sum of effort levels in the complete network with 4 agents
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is strictly larger than in the initial configuration. That is, again eliminating the center and a
peripheral player is not only worse than just eliminating the central agent, it is also worse than
not intervening at all.

Example OA1: Assume n = 6, α = 1, β = 1, λ = 1, γ = 1, κ = 9/512, e = 2 and δ is
sufficiently large. Effort levels are depicted for each agent and the sum of effort levels below each
graph. For the sequence of best responses on the right, each agent chosen to best response is
colored white. The initial configuration yields a sum of effort levels of 0.75̇. After the elimination
of the central agent, the sum of effort levels is 0.5̇ and agents have no incentives to change their
current strategy (this follows from λ = γ). That is, the configuration stays the same in all future
periods, as shown in the bottom left of the figure. If, however, the central and a peripheral agent
is eliminated, then agents create links, until the process converges to the complete network in
t = 5. The sum of effort levels is 0.8 from t = 5. Therefore, for δ sufficiently large, eliminating
the central and a periphery agent is worse than eliminating the central agent or not intervening
at all.
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