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Abstract

The measurement of treatment (intervention) effects on a single (or just a few) treated
unit(s) based on counterfactuals constructed from artificial controls has become a popu-
lar practice in applied statistics and economics since the proposal of the synthetic control
method. In high-dimensional setting, we often use principal component or (weakly) sparse
regression to estimate counterfactuals. Do we use enough data information? To better
estimate the effects of price changes on the sales in our case study, we propose a general
framework on counterfactual analysis for high dimensional dependent data. The frame-
work includes both principal component regression and sparse linear regression as specific
cases. It uses both factor and idiosyncratic components as predictors for improved coun-
terfactual analysis, resulting a method called Factor-Adjusted Regularized Method for
Treatment (FarmTreat) evaluation. We demonstrate convincingly that using either fac-
tors or sparse regression is inadequate for counterfactual analysis in many applications
and the case for information gain can be made through the use of idiosyncratic compo-
nents. We also develop theory and methods to formally answer the question if common
factors are adequate for estimating counterfactuals. Furthermore, we consider a simple
resampling approach to conduct inference on the treatment effect as well as bootstrap test
to access the relevance of the idiosyncratic components. We apply the proposed method
to evaluate the effects of price changes on the sales of a set of products based on a novel
large panel of sale data from a major retail chain in Brazil and demonstrate the benefits
of using additional idiosyncratic components in the treatment effect evaluations.
Keywords: counterfactual estimation, synthetic controls, ArCo, treatment effects, factor
models, high-dimensional testing, LASSO, FarmTreat.
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1 Introduction

The evaluation of treatment (intervention) effects on a single (or just a few) treated unit(s)

based on counterfactuals constructed from artificial controls has become a popular practice

in applied statistics since the proposal of the synthetic control (SC) method by Abadie and

Gardeazabal (2003) and Abadie et al. (2010). Usually, these artificial (synthetic) controls are

built from a panel of untreated peers observed over time, before and after the intervention; see

Doudchenko and Imbens (2016) and Athey and Imbens (2017) for recent discussions.

The great majority of methods based on artificial counterfactuals relies on the estimation of a

statistical model between the treated unit(s) and a potentially large set of explanatory variables

coming from the peers and measured before the intervention. Therefore, the dimension of the

model to be estimated is frequently large compared to the available number of observations and

some sort of restrictions must be imposed. In the original method put forward by Abadie and

Gardeazabal (2003), the counterfactual model is linear with coefficients restricted to be positive

and must add up to one. Li and Bell (2017) and Carvalho et al. (2018) relaxed the original

restrictions by considering penalized estimation of the linear model by Tibishirani’s (1996)

Least Absolute and Shrinkage Operator (LASSO). Carvalho et al. (2018) derived a number of

theoretical results, including consistency and asymptotic normality of the average intervention

effect.1 Their results rely on some sort of model sparsity and the analysis is done under the

assumption that the number of observations, both before and after the intervention, diverges.

Sparsity is relaxed by some authors as in Chernozhukov, Wuthrich and, Zhu (2018a,b,c) or

Masini and Medeiros (2019). In their papers, the authors assume only approximate sparsity.

Some others also relaxed the original restrictions but they only considered a low-dimensional

setup. See, for example, Ferman and Pinto (2016), Li (2017), or Masini and Medeiros (2020).

Nevertheless, low-dimensional settings do not seem to be realistic for most applications. On the

other hand, Gobillon and Magnac (2016) estimate counterfactuals based on pure factor models

without exploring potential cross-correlations among the idiosyncratic components.

The aim of this paper is to propose a methodology that includes both principal component

regression and sparse linear regression for estimating counterfactals as specific examples for

better evaluation of the effects on the sales of a set of products after price changes in our case

1The average is taken over the post-intervention period and not over the treated units as in most cases there
is only one unit suffering the intervention.
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study. It does not impose neither sparsity or approximate sparsity in the mapping between the

peers and the treated by using the information from hidden but estimable idiosyncratic com-

ponents. Furthermore, we show that inferential models where the number of post-intervention

observations is fixed can be used in the framework considered in the paper. Finally, we also

consider a high-dimensional test to answer the question whether the use of idiosyncratic compo-

nent actually leads to better estimation of the treatment effect. Our framework can be applied

to much broader context in prediction and estimation and hence we leave more abstract and

general theoretical developments to a different paper Fan et al. (2020).

The proposed method consists of four steps. In the first step, the effects of exogenous (to

the intervention of interest) variables are removed, for example, deterministic trends, season-

ality and other calendar effects, and/or known outliers. In the second step, a factor model is

estimated based on the residuals of the first-step model. The idea is to uncover a common

component driving the dynamics of the treated unit and the peers. This second step is crucial

when relaxing the sparsity assumption. To explore potential remaining relation among units,

a LASSO regression model is established among the residuals of the factor model, which are

called the idiosyncratic components in the factor model. Sparsity is only imposed in this last

step and it is less restrictive than the sparsity assumption in the second step. Note that all

these three steps are carried out in the pre-intervention period. Finally, the model is projected

for the post-intervention period under the assumption that the peers do not suffer the inter-

vention. Inspired by Fan et al. (2020), we call the methodology developed here FarmTreat, the

factor-adjusted regularized method for treatment evaluation.

In terms of theoretical results we show that the estimator of the instantaneous treatment

(intervention) is consistent which enable the use of straightforward residual resampling proce-

dures to test general hypotheses about the treatment effect without relying on any asymptotic

result for the post-intervention period. All our results are uniquely based on pre-intervention

asymptotics. We also show that a bootstrap-based inference for cross-section dependence among

idiosyncratic components is valid.

We believe our results are of general importance for the following reasons. First and most

importantly, the sparsity or approximate sparsity assumptions do not seem reasonable in ap-

plications where the cross-dependence among all units in the panel are high. In addition,
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due to the cross-dependence, the conditions needed for the consistency of LASSO or other

high-dimensional regularization methods are violated (Fan et al., 2020). Second, first filtering

for trends, seasonal effects and/or outliers seems reasonable in order to highlight the poten-

tial intervention effects by removing uninformative terms. Finally, modeling remaining cross-

dependence among the treated unit and a sparse set of peers are also important to gather all

relevant information about the correlation structure about the units.

We conduct a simulation study to evaluate the finite-sample properties of the estimators

and inferential procedures discussed in the paper. We show that the proposed method works

reasonably well even in very small samples. Furthermore, as a case study, we estimate the

impact of price changes on product sales by using a novel dataset from a major retail chain in

Brazil with more than 1,400 stores in the country. We show how the methods discussed in the

paper can be used to estimate heterogeneous demand price elasticities, which can be further

used to determine optimal prices for a wide class of products. In addition, we demonstrate that

the idiosyncratic components do provide useful information for better estimation of elasticities.

The rest of the paper is organized as follows. We give an overview of the proposed method

and the application in Section 2. We present the setup and assumptions in Section 3 and state

the key theoretical result in Section 3.1. Inferential procedures are presented in Section 3.2. We

present the results of a simulation experiment in Section 4 and discuss the empirical application

in detail in Section 5. Section 6 concludes the paper. Finally, the proof of our theoretical result

is relegated to the Appendix.

2 Overview of Case Study and the Methodology

This section first briefly describes the problem for our case study and then summarizes the

methods that we develop for evaluating the treatment effects. The proposed methods have

broader applications than what we applied here.

2.1 Case study

The overarching goal is to optimalize price setting in the retail industry in Brazil via coun-

terfactual analysis. Price changes affect the quantities of sales and the counterfactor analysis

is to determine the amounts of changes in sales. Our dataset consists of the daily prices and
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quantities sold of five different products commercialized by one of the major retail chains in

Brazil, aggregated at the municipal level. The company has more than 1,400 stores distributed

in more than 400 municipalities over the country.2 The chosen products differ in terms of

magnitude of sales and in importance as a share of the company’s total revenue.

Our sample consists of about 50% of the municipalities where there are stores. As the

number and size of stores differ across municipalities, we will present the results in terms of

total sales per store. To determine the optimal price of each of the products (in terms of profit

or revenue maximization), a randomized controlled experiment has been carried out. More

specifically, for each product, the price was changed in a group of municipalities (treatment

group), while in another group, the prices were kept fixed at the original level (control group).

The selection of the treatment and control groups was carried out according to the socioe-

conomic and demographic characteristics of each municipality as well as to the distribution of

stores in each city. Nevertheless, it is important to emphasize three facts. First, we used no

information about the quantities sold of the product in each municipality, which is our output

variable, in the randomization process. This way, we avoid any selection bias and can maintain

valid the assumption that the intervention of interest is independent of the outcomes. Second,

although according to municipality characteristics, we keep a homogeneous balance between

groups, the parallel trend hypothesis is violated, and there is strong heterogeneity with respect

to the quantities sold and consumer behavior in each city, even after controlling for observables.

This implies that price elasticities are quite heterogeneous and optimal prices can be remark-

ably different among municipalities. Finally, there are a clear seasonal pattern in the data as

well as common factors affecting the dynamics of sales across different cities.

2.2 FarmTreat

The dataset is a realization of tZit,W it : 1 ď i ď n, 1 ď t ď T u, in which Zit is the quantity of

sale in the municipality i at time t and W it describes heterogeneity of municipality i at that

time, including seasonal pattern (days of the weeks). Suppose we are interested in estimating

the effects on the variable in Z1t of the first unit after an intervention that occurred at T0 ` 1.

We estimate a counterfactual based on a number peers Z´1t :“ pZ2t, . . . , Zntq
1 that are assumed

2Due to a confidentiality agreement, we are not allowed to disclosure either the name of the products or the
name of the retail chain.
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to be unaffected by the intervention. We allow the dimension of Z´1t to grow with the sample

size T , i.e. n :“ nT . We also assume that there are a number of covariates W it which are not

affected by the intervention. Our key idea is to use both information in the latent factors and

idiosyncratic components, called FarmTreat.

The procedure is thus summarized by the following steps:

1. For each unit i “ 1, . . . , n, run the regression:

Zit “ γ
1
iW it `Rit, t “ 1, . . . , T0,

and compute the residuals pRit :“ Zit ´ pγ 1iW it. This step removes heterogeneity due to

W it.

2. Write Rt :“ pR1t, . . . , Rntq
1, which is the cross-sectional data Zt :“ pZ1t, ¨ ¨ ¨ ,Z

1
ntq

1 after

the heterogeneity adjustments. Fit the factor model

Rt “ ΛF t `U t,

where F t is a r-dimensional vector of unobserved factors, and Λ is an unknown n ˆ r

loading matrix and U t is an n-dimensional idiosyncratic component. The second step

consists of using the panel data tR̂tu
T
t“1 to learn the common factors F t and factor

loading matrix Λ and compute the estimated idiosyncratic components by

pU t “ pRt ´ pΛpF t,

where pU t “

´

pU1t, . . . , pUnt

¯1

. There is a large literature on high-dimensional factor anal-

ysis; see the book by Fan et al. (2020) for detail.

3. The third estimation step is to use the idiosyncratic component to further augment the

prediction on the treatment unit. It consists of first testing for the null of no remaining

cross-sectional dependence. If the null is rejected, fit the model in the pre-intervention

period

pU1t “ θ
1
1
pU´1t ` Vt, t “ 1, . . . , T0,
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by using LASSO, where pU´1t “

´

pU2t, . . . , pUnt

¯1

. Namely, compute

pθ1 “ argmin

«

T0
ÿ

t“1

´

pU1t ´ θ
1
1
pU´1t

¯2

` ξ}θ1}1

ff

. (2.1)

This step uses cross-sectional regression of the idiosyncratic components to estimate that

in the treated unit. The model includes sparse linear model on Rt as a specific example

(see (2.3) below) and the required model selection conditions are more easily met due to

the factor adjustments. It also encompass the principal component regression in which

pθ1 “ 0, namely, using no cross-sectional prediction.

4. Finally, the intervention effect is estimated for t ą T0 as

pδt “ Z1t ´

´

pγ 11W 1t `
pλ
1

1
pF t `

pθ
1

1
pU´1t

¯

. (2.2)

where pλ1 is the estimated loading of unit 1, the first row of pΛ. During the post treatment

period, the realized factors pF are learned without using R1,t.

5. Use the estimator to test for null hypothesis of no intervention effect in the form3

H0 : δt “ 0, t P tT0 ` 1, . . . , T u,

where δt is the (possibly random) intervention effect for periods t P tT0 ` 1, . . . , T u.

The innovations of our approach in estimating counterfactuals are multi-folds. For simplic-

ity, let us suppose that we have no W t component, so that Rt “ Zt. First of all, the proposed

procedure explores both the common factors and the dependence among idiosyncratic compo-

nents. This not only makes use of more information, but also makes the newly transformed

predictors less correlated. The latter makes the variable selection much easier and prediction

more accurate. Note that factor regression (principal component regression) to estimate coun-

terfactuals is a special case when θ1 “ 0. Clearly, the method explores the sparsity of θ1 to

improve the performance and also includes the case of sparse regression on Z´1t to estimate

3Clearly, we can also accommodate heterogeneous null hypothesis of the form δt “ ct for given constants ct.
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counterfactuals as in Masini and Medeiros (2019), where counterfactuals are estimated as

Z1t “ θ
1
1Z´1t ` εt, t “ 1, ¨ ¨ ¨ , T0.

However, the variables Z´1t are highly correlated in high dimensions as they are driven by

common factors, which makes variable selection procedures inconsistent and prediction ineffec-

tive. Instead, Fan et al. (2020) introduces the idea of lifting, called factor adjustments. Using

the factor model in step 2, we can write the linear regression model as

Z1t “ θ
1
1Λ´1F t ` θ

1
1U´1t ` εt, (2.3)

where Λ´1 and U´1t are defined as Λ and U t without the first row. When we take λ1 “ θ
1
1Λ´1,

this reduces to use sparse regression to estimate the counterfactuals, but now use more powerful

FarmSelect of Fan et al. (2020) to fit the sparse regression. Again, FarmSelect imposes

the condition θ11Λ´1 as the regression coefficients of F t. Our method does not require this

constraint. This flexibility allows us to apply our new approach even when the sparse linear

model does not hold.

Finally, we also propose a test for the contribution of the idiosyncratic components by

testing the null hypothesis that θ1 “ 0. Note that this is a high-dimensional hypothesis test,

which is equivalent to testing the uncorrelatedness between the idiosyncratic component U1t

for the treated unit and those from the untreated units U´1t in the pre-intervention period.

2.3 Guide to Practice

In this section we provide practical guidance to the implementation of the FarmTreat method.

The first step involves the definition of the variables in W it. This is, of course, application

dependent. Nevertheless, typical candidates are bounded deterministic functions of time, i.e,

fpt{T q, in order to capture trends, an intercept to remove the mean, seasonal dummies or

other calendar effects, or any other dummy to remove potential outliers. The second step is

the estimation of Λ and the sequence of factors tF t, t P Zu for the full sample, before and

after the intervention. Therefore, we cannot just rely on pre-intervention period to estimate

the factors. On the other hand, if we use all the observations from the treated unit, we will
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bias our estimation under the alternative of nonzero treatment effects. Therefore, there are two

possible ways to estimate the factors and the factor loadings:

1. Note that EpRtq “ 0 by definition. Hence, we can replace the post-intervention observa-

tions of R1t by 0 in order to carry the factor analysis. As the number of post-intervention

observations is expected to be quite small, this replacement will have negligible effects.

It is important to notice, however, that we do this just to estimate the factors.

2. The other alternative is to estimate the factors and factor loadings without the treated

unit. In order to estimate the loadings pλ1of the first unit, we then regress R1t on the

estimated factors. This is the approach adopted in both simulations and in the empirical

application.

To determine the number of factors we advocate the use of the eigenvalue ratio test (Ahn

and Horenstein, 2013). Other possibility is the use of one of the information criteria discussed

in Bai and Ng (2002).

After the estimation of the common factor structure, we can test for remaining cross-

dependence using the test described in Section 3.2. In the case of rejection of the null of

no remaining dependence, the last step consists of a LASSO regression. This step of testing

is optional for evaluating the treatment effect, as the sparsity of Lasso includes no effect as a

specific example. Nevertheless, it is an interesting statistical problem whether the idiosyncratic

component contributes to the prediciton power. For selecting the penalty parameter in Lasso,

we recommend the use of an information criterion, such as the BIC as in Masini and Medeiros

(2019).

3 Assumptions and Theoretical Result

Suppose we have n units (municipalities, firms, etc.) indexed by i “ 1, . . . , n. For every

time period t “ 1, . . . , T , we observe a realization of a real valued random vector Zt :“

pZ1t, . . . , Zntq
1.4 We assume that an intervention took place at T0 ` 1, where 1 ă T0 ă T .

Let Dt P t0, 1u be a binary variable flagging the periods where the intervention was in place.

4We consider a scalar variable for each unit for the sake of simplicity, and the results in the paper can be
easily extended to the multivariate case.
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Therefore, following Rubin’s potential outcome framework, we can express Zit as

Zit “ DtZ
p1q
it ` p1´DtqZ

p0q
it ,

where Z
p1q
it denotes the potential outcome when the unit i is exposed to the intervention and

Z
p0q
it is the potential outcome of unit i when it is not exposed to the intervention.

We are ultimately concerned with testing the hypothesis on the potential effects of the

intervention in the unit of interest. Without loss of generality, we set unit 1 to be the one of

interest. The null hypothesis to be tested is:

H0 : δt :“ Z
p1q
1t ´ Z

p0q
1t “ 0, @t ą T0. (3.1)

It is evident that for each unit i “ 1, . . . , n and at each period t “ 1, . . . , T , we observe either

Z
p0q
it or Z

p1q
it . In particular, Z

p0q
1t is not observed from t “ T0 ` 1 onwards. For this reason, we

henceforth call it the counterfactual – i.e., what would Z1t have been like had there been no

intervention (potential outcome).

The counterfactual is constructed by considering a model in the absence of an intervention:

Z
p0q
1t “M

´

Z
p0q
´1t;θ

¯

` Vt, t “ 1, . . . , T, (3.2)

where Z
p0q
´1t :“ pZ

p0q
2t , . . . , Z

p0q
nt q

1 be the collection of all control variables (all variables in the

untreated units).5, M : ZˆΘ Ñ R, Z Ď Rn´1, is a known measurable mapping up to a vector

of parameters indexed by θ P Θ and Θ is a parameter space. A linear specification (including

a constant) for the model MpZ0t;θq is the most common choice among counterfactual models

for the pre-intervention period. FarmTreat uses a more sophisticated model.

Roughly speaking, in order to recover the effects of the intervention, we need to impose that

the peers are unaffected by the intervention in the unit of interest. Otherwise our counterfactual

model would be invalid. Specifically we consider the following key assumption

Assumption 1 (Intervention Independence). Z
p0q
t is independent of Ds for all 1 ď s, t ď T .

5We could also have included lags of the variables and/or exogenous regressors into Z0t, but again, to keep
the argument simple, we have considered only contemporaneous variables; see Carvalho et al. (2018) for more
general specifications.
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The main idea is to estimate (3.2) using just the pre-intervention sample, t “ 1, . . . , T0,

since under Assumption 1, Z
p0q
´1t “ Z´1t :“ pZ2t, . . . , Zntq

1 in the pre-intervention period.

Consequently, the estimated counterfactual for the post-intervention period, t “ T0 ` 1, . . . , T ,

becomes pZ
p0q
1t :“MpZ0t; pθT0q. Under some sort of stationary assumption on Zt, in the context

of a linear model, Hsiao et al. (2012) and Carvalho et al. (2018), show that pδt :“ Z1t ´ pZ
p0q
1t is

an unbiased estimator for δt as the pre-intervention sample size grows to infinity in the low and

high dimensional sparse case respectively.

We model the units in the absence of the intervention as follows.

Assumption 2 (DGP). The process tZ
p0q
it : 1 ď i ď n, t ě 1u is generated by

Z
p0q
it “ γ

1
iW it ` λ

1
iF t ` Uit (3.3)

where γi P Rk is the vector of coefficients of the k-dimensional observable random vector W it

of attributes of unit i, F t is a r-dimensional vector of common factors and λi its respective

vector of loads for unit i; and Uit is a zero mean idiosyncratic shock. Finally, we assume that

W it, F t and Uit are mutually uncorrelated.

The reason to include W it is to accommodate an intercept, deterministic trends, seasonal

dummies or any other exogenous (possibly random) characteristic of unit i that the practitioner

judge to be helpful in the construction of the counterfactual. Our counterfactual model is

nothing more than the sample version of the projection of Z
p0q
1t onto the space spanned by

pW 1t,F t,U´1,tq
1. Under Assumption 2 the counterfactual can be taken as

Z
p0q
1t “ γ

1
1W 1t ` λ

1
1F t ` θ

1
1U´1t ` Vt, (3.4)

where θ1 is the coefficient of the linear regression of U 1t onto U´1t and Vt the respective

regression error.

3.1 Theoretical Result

In order to state our result in a precise manner we consider the following technical assumption

Assumption 3 (Regularity Conditions). There is a constant 0 ă C ă 8 such that:

11



(a) The covariance matrix of W 1t is non-singular;

(b) E|Wit`|
p ď C and E|Uit|p`ε ď C for some p ě 4 and ε ą 0 for i P rns, t P rT s and ` P rks;

(c) The process tpF 1t,U
1
tq
1, t P Zu is weakly stationary with strong mixing coefficient α satis-

fying αpmq ď expp´2cmq for some c ą 0 and for all m P Z;

(d) }θ1}8 ď C;

(e) κ0 :“ κ pEU tU
1
t,S0, 3q ě C´1 where κpq is the compatibility condition defined in (A.1) in

the Appendix and S0 :“ ti : θ1,i ‰ 0u.

A few words on the assumptions above are in order. Condition (a) is necessary for the linear

projection parameter γ1 to be well defined. Conditions (b) and (c) taken together are sufficient

for a law of large number for strong mixing processes that can be applied to appropriately scaled

sums. In particular, pbq bounds the p-th plus moment uniformly, however, if Uit has exponential

tails as contemplated in Assumption 3 in Fan et al. (2020), we could state a stronger result in

terms of the allowed number of non-zero coefficients as a fraction of the same size. The mixing

rate in condition (c) can be weaken to polynomial rate at the expense of an interplay between

(c) and the conditions appearing Proposition 1.

Finally, conditions pdq and peq in Assumption 3 are regularity condition on the high-

dimensional linear model to be estimated by LASSO in step 3. Condition (e) ensures the

(restricted) strong convexity of the objective function which is necessary for consistently esti-

mate θ1 when n ą T . In effect, it lower bounds the minimum restricted `1-eigenvalue of the

covariance matrix of U t uniformly. For simplicity, the bounds appearing in (d) and (e) were

assumed to hold uniformly. However, both conditions could also be somewhat relaxed to allow

}θ1}8 to grow slowly and/or κ0 decreases slowly to 0 as n diverges. Once again, at the expense

of having both terms included in the condition of Proposition 1.

Proposition 1. Under Assumptions 1–3, assume further that:

(a) There is a bounded sequence η :“ ηn,T such that } pU ´U}max “ OP pηq; and

(b) |S0| “ O

ˆ

!

η
“

pnT q1{p ` η
‰

` n4{p
?
T

)´1
˙

.
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If the penalty parameter ξ in (2.1) is set to be at the order of n2{p
?
T
` ηT 1{p then, as T0 Ñ 8,

}pθ1 ´ θ1}1 “ OP pξ|S0|q, and for every t ą T0:

pδt ´ δt “ Vt `OP

"

|S0|

„

ηpnT q1{p `
n3{p

?
T

*

,

where Vt is the stochastic component not explainable by untreated units defined by (3.4)

Remark 1. Condition (a) and (b) are high level assumptions that translate into a restriction

on the estimation rate in steps 1 and 2 of the proposed methodology, which in turn puts an upper

bound the number of non-zero coefficients in θ1 (sparsity) in order for the estimation error to be

negligible. The rate η can be explicitly obtained in terms of n and T by imposing conditions on

projection matrix of W i and the factor model. For the former, we need uniform consistencies

of both the factor and the loadings estimators that take into account the projection error in the

previous step. In a more general setup, Corollary 1 in Fan et al. (2020) state conditions under

which η “ n6{p

T 1{2´3{p `
T 1{p
?
n

.

Proposition 1 is key for our inference procedure discussed in Section 3.2. For instance, it

can be used to argue that pδt ´ δt “ Vt ` opp1q provided that |S0|

”

ηpnT q1{p ` n3{p
?
T

ı

“ op1q.

Since Vt is zero mean by construction, as T0 Ñ 8, pδt is an unbiased estimator for δt for every

post-intervention period. Furthermore, as described below, we can estimate the quantiles of Vt

using the pre-intervention residuals to conduct a valid inference on δt.

3.2 Testing for Intervention Effect

The inference procedure presented in this section is based on the sequence of estimators tpδtutąT0

and is grounded on the results of Masini and Medeiros (2019a,b). Let T2 :“ T´T0 be the number

of observations after the intervention and define a generic continuous mapping φ : RT2 Ñ Rb

whose argument is the T2-dimensional vector ppδT0`1 ´ δT0`1, . . . , pδT ´ δT q
1.

We are interested in the distribution of pφ :“ φppδT0`1´δT0`1, . . . , pδT´δT q under the null (3.1),

where φ is a given vector of function such as the average treatment effect, median treatment

effect, or maximum treatment effect, among others. The statistic pφ is used to test the presence

of the treatment effect. The typical situation is the one where the pre-intervention period is

much longer than the post intervention period, T0 " T2. In several cases, it could be well the
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case that T2 “ 1. However, Vt does not vanish as in most cases there is a single treated unit.

Nevertheless, under strict stationarity and consistency of the treatment effect estimator, it is

possible to resample the pre-intervention residuals following the procedure described in Masini

and Medeiros (2019a,b) to compute the sample quantile of the statistic of interest.

Under the asymptotic limit taken on the pre-invention period pT0 Ñ 8q, by Proposition 1,

we have that pφ ´ φ0 “ oP p1q, where φ0 :“ φpVT0`1, . . . , VT q. Thus, the distribution of pφ can

be estimated by that of φ0. Under the strict stationary assumption of tVtu, we can use the pre-

intervention period information to estimate the distribution of pφ. Consider the construction

of pφ using only blocks of size T2 of consecutive observations from the pre-intervention sample.

There are T0 ´ T2 ´ 1 such blocks denoted by

pφj :“ φppVj, . . . , pVj`T2´1q j “ 1, . . . , T0 ´ T2 ` 1,

where pVt :“ Z1t ´

´

pγ 11W 1t `
pλ
1

1
pF t `

pθ
1

1
pU´1t

¯

for the pre-intervention period, the same as in

(2.2).

For each j, we have that pφj ´φj “ oP p1q where φj :“ φpVj, . . . , Vj`T2´1q and φj is equal in

distribution to φ0 for all j. Hence, we propose to estimate the distribution QT pxq :“ Pp pφ ď xq

by its empirical distribution

pQT pxq :“
1

T0 ´ T2 ` 1

T0´T2`1
ÿ

j“1

1p pφj ď xq,

where, for a pair of vectors a, b P Rd, we say that a ď b ðñ ai ď bi, @i. Finally, Theorem 2

in Masini and Medeiros (2019) establish condition under which

sup
x
| pQT pxq ´QT pxq| “ opp1q as T0 Ñ 8.

3.3 Testing for Idiosyncratic Contributions

The question of statistical and practical interest is if the idiosyncratic component contributes

the estimation of the treatment effect. To answer this question, let us write the DGP as

Zt “ ΓW t `ΛF t `U t, t P t1, . . . , T u,
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where Zt :“ pZ1t, . . . , Zntq
1, U t :“ pU1t, . . . , Untq

1, and W t :“ pW 1
1t, . . . ,W

1
ntq

1. The pn ˆ

nkq block diagonal matrix Γ is such that each block is given by pγ 11, . . .γ
1
nq. Finally, Λ :“

pλ1, . . . ,λnq
1.

Let Π :“ pπijq1ďi,jďn denote the pn ˆ nq covariance matrix of U t. Our proposed method

exploits the sparsity of the off-diagonal elements of Π. In particular, we are interested in

testing whether U´1t has linear prediction power on the treated unit U1t. This amounts to the

following high-dimensional hypothesis test: H0,2 : π1j “ 0, @ 2 ď j ď n.

In order to conduct the test we propose the following test statistic

S :“ }Q}8,

whereQ :“ 1?
T

řT
t“1Dt, Dt :“ pU1t

pU´1t, and pUit :“ R̂it´
pλi
1
pF t. Also let c˚pτq be the τ -quantile

of the Gaussian bootstrap

S˚ :“ }Q˚}8,

where Q˚|Z,W „ N p0, pΥq. For a given symmetric kernel kp¨q with kp0q “ 1 and bandwidth

h ą 0 (determining the number of lags), we have that

pΥ :“
ÿ

|`|ăT

kp`{hqxM ` with xM ` :“ 1
T

T
ÿ

t“``1

DtD
1
t´`

is the estimator of the long-run covariance matrix Υ :“ VrQ, where rQ :“ 1?
T

řT
t“1 U1tU´1t.

Notice that pΥ is just the Newey-West estimator if kp¨q is chosen to be the triangular kernel.

More generally, the choice of kernels can be made in class of kernels described in Andrews

(1991). The validity of such a method has been proved in Fan et al. (2020) under a more

general setting. In particular, the authors show under some regularity conditions

sup
τPp0,1q

|PpS ď c˚pτqq ´ τ | “ op1q under H0.
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4 Simulations

In this section we report simulations results to study the finite sample behavior of the method

proposed in this paper. We consider the following data generating process:

Zit “ δit ` γ
1
iW t `Rit

Rit “ λ
1
iF t ` Uit

F t “ p0.8IqF t´1 ` V t

Uit “

$

’

’

&

’

’

%

β1U´1t ` εit, if i “ 1,

εit, otherwise,

(4.1)

where tεitu is a sequence of independent and normally distributed zero-mean random variables

with variance equal to 0.25, V t is a sequence of independent and normally distributed zero-

mean random vectors taking values on R2 such that EpV tV
1
tq “ I, and EpεitV sq “ 0, for all

i, t, and s. The parameters are set as follows: γi is p-dimensional vector of ones and, for each

replication, the elements of λi, i ą 1, are drawn independently from a normal distribution

with mean two and unit variance and, for i “ 1, the elements of ‘λi are drawn from a normal

distribution with mean -6 and variance 0.04. The first two elements of β are set to one and the

rest is set to zero. We consider the following sample sizes: T0 “ 50, 100, and 500; and T2 “ 5.

For each sample size, n is set as n “ tT, 2T, 3T u. p is kept fixed and equal to five. The number

of factors is set to two. For size simulations, δit “ 0 for all i and t. For power simulations,

δit “ 2 for i “ 1 and t ą T0.

Tables 1 and 2 show descriptive statistics for the counterfactual estimation. The table

depicts the mean, the median and the mean squared error (MSE) for p∆ “ 1
T´T0

řT
t“T0

pδt under

the null and alternative hypotheses, respectively. Three cases are considered. In the first

one, the factor structure is neglected and a sparse LASSO regression of the first unit against

the remaining ones is estimated. This is the ArCo methodology put forward by Carvalho

et al. (2018). The second one is equivalent to the approach of Gobillon and Magnac (2016),

where a pure factor model is considered. Finally, the FarmTreat approach is considered, which

encompasses the previous two methods as a specific example.

From the inspection of the results in the tables, it is clear that the biases for estimating
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of the treatment effect are negligible and MSEs are predominately the variance. Furthermore,

the ArCo delivers very robust estimates, but the MSE can be substantially reduced by the

FarmTreat methodology when T ą 50. Therefore, there is strong evidence supporting method-

ology derived in this paper, which is consistency with our theoretical results. Furthermore, as

expected, the MSE decreases as the sample size increases. Second, as already shown in the

simulations in Carvalho et al. (2018), the performance of the pure factor model is poor. This

is particularly the case when n or T is small, since the factors are not well estimated. When

this happens, the prediction power of the idiosyncratic components comes to rescue (compar-

ing the performance with FarmSelect). This demonstrates convincingly the need of using the

idiosyncratic component to augment the prediction.

Table 3 presents the empirical size of the resampling test when T2 “ 5 and the counterfactual

is estimated according to the three methods described above. By inspection of the results it

is clear that all methods have negligible size distortions. This demonstrates the validity of our

bootstrap methods.

Table 4 presents equivalent statistics to the ones in Table 1 but the DGP has no idiosyncratic

contribution, i.e., β “ 0. This case favors to PCR, which is indeed when n and T are sufficiently

large. As we can see, FarmTreat achieves the best results in terms of MSE reduction. This

shows that when n and T are large, the factors are well estimated and FarmSelect performs

as we as the PCR method which is the best by design. This shows that FarmSelect adapts

well to this specific case. When n or T are not sufficiently large, latent factors are not well

estimated and PCR does not perform as well as expected. In this case, FarmSelect augments

further the prediction power by using the idiosyncratic components when the latent factors are

not well estimated.

5 Application: Price Elasticity of Demand

In this section we report the results of the experiment described in Section 2. Table 5 describes

each one of the experiments carried out for each product. The table shows the sample date,

the period of the experiment (usually two weeks), the type of the experiment (if the price was

increased or decreased) and the number of municipalities in the treatment (n1) and control

groups (n0). n is the total number of municipalities considered. n, n0, and n1 vary according
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to the product, but we omit the product identification to simplify notation.

Figures 1–5 show the data considered in the application. For each product, Panel (a) in

each figure reports the sales per store aggregated in the treatment and control groups. The plot

also indicates the date of the intervention. Panels (b) and (c) display the distribution of the

average sales per store over time in the treatment and control groups, respectively. Panels (d)

and (e) present fan plots for the evolution of sales per store for each municipality. The black

curves there represent the cross-sectional medians over time. Several interesting facts emerge

from the plots. First, the dynamics of sales change depending of the product and the sample.

Nevertheless, there is a clear weekly seasonal pattern in the data. The big spikes in Panel (a) of

Figures 2 and 4 are related to major promotions. We selected this particular product/sample to

illustrate that our methodology is robust to outlying observations. One important point that

deserves attention is that promotions took place in both control and treatment groups and,

therefore, do not have any harmful implication to our methodology. The experiment involving

Product I was a price decrease and we expect, as a consequence, a positive impact on sales.

However, eyeballing the graph displayed in Panel (a) of Figure 1, we see a major drop in sales

around the date of the experiment. The histograms in Panels (b) and (c) corroborate this fact.

However, the fall in sales happened before the beginning of the experiment and happened in

both control in treatment groups. We like this experiment as it clearly shows the benefits of

our method in comparison, for instance, with the before-and-after estimator. The latter will

for sure indicate a negative impact of the price reductions. Finally, observing Panels (d) and

(e) in the figures, it is easy to notice a significant heterogeneity across municipalities.

We continue by estimating the models discussed in this paper. For each day t, q
pjq
it represents

the total quantities sold per store of product j in municipality i, where i “ 1, . . . , n, t “ 1, . . . , T ,

and j “ 1, . . . , 5. For each product and each municipality, we run a first-stage regression of

quantities on seven dummies for the days of the week, a linear deterministic trend and the

number of stores that are open at municipality i on day t. For the municipalities in the control

group the above regression is estimated with the full sample. For the municipalities in the

treatment group we use data only up to time T0. The second step consists of estimating factors

for the first-stage residuals. We select the number of factors, k, by the eigenvalue ratio test

described in Ahn and Horenstein (2013). In the third step we run a LASSO regression of
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each idiosyncratic component of treated units on the idiosyncratic terms of the control group.

As described in Section 2.3, the penalty parameter is determined by the BIC. Finally, we

compute the counterfactual for each municipality i “ 1, . . . , n1 for t “ T0 ` 1, . . . , T : pq
pjq
it .

We also compute the instantaneous and average intervention impact as pδ
pjq
it “ q

pjq
it ´ pq

pjq
it and

p∆
pjq
i “ 1

T´T0

řT
t“T0`1

pδ
pjq
it , respectively.

We consider the null hypothesis of no intervention effect as in (3.1). The results are displayed

in Figures 6–10 and in Table 6. For each product, Panel (a) in the figures displays a fan plot

of the p-values of the re-sampling test for the null hypothesis H0,1 : δt “ 0 for each t after the

treatment, using the test statistics φ1p
pδtq “ |pδt|, which is the same as using the test statistic pδ2

t .

The black curve represents the cross-sectional median across time t. Panels (b) and (c) display

the distribution of the p-values of the re-sampling tests for the null

H0 : δt “ 0, @t P tT0 ` 1, . . . , T u

using the test statistics φ2p
pδT0`1, . . . , pδT q “

řT
t“T0`1

pδ2
t and φ3p

pδT0`1, . . . , pδT q “
řT
t“T0`1 |

pδt|,

respectively. Panel (d) shows an example for one municipality. The panel shows the actual and

counterfactual sales per store for the post-treatment period. 95% confidence intervals for the

counterfactual path are also displayed.

Table 6 reports, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and 95%-

quantiles, maximum, average, and standard deviation for several statistics. We consider the

distribution over the treated municipalities. In Panel (a) in the table we report the results for

the R-squared of the pre-intervention model. Panel (b) displays the p-value results for testing

the average intervention effect H0,1 : δt “ 0 over the experiment period across different treated

municipalities. It summarizes the results presented in Panel (a) of Figures 6–10. In particular,

the average and the median of the average treatment effects across treated municipalities are

also presented there. Panels (c) and (d) depict the results for the p-values of the re-sampling test

described in Section 3.2 for the null hypothesis H0 : δt “ 0, t “ T0`1, . . . , T , using, respectively,

the test statistics φ1p
pδT0`1, . . . , pδT q “

řT
t“T0`1

pδ2
t and φ2p

pδT0`1, . . . , pδT q “
řT
t“T0`1 |

pδt|. Panel (e)

presents the results for the p-values of the null hypothesis of no idiosyncratic contribution.

A number of conclusions emerge from the figures and the table. First, apart from Product

I, the pre-intervention model in general fits the data quite well as can be attested by the large
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values of the R-squared. Nevertheless, there is some variation in terms of the goodness-of-fit

across municipalities. The low quality of the fit is, in most cases, associated with cities with

a very small number of stores and few sales. Second, there is a huge heterogeneity in terms

of intervention effects across different municipalities as can be seen from Panels (a)-(c) in the

Figures and Panel (b) in the table. For Product I, the price intervention has effects only on

a small number of municipalities. More specifically, according to the re-sampling test for H0,

the impacts are statistically relevant (at a 1% level) only on three out of 110 municipalities.

As expected, the average effect is positive in all cases. This is not surprising as Product I has

very low sales. The maximum value for ∆ over the municipalities is less than 2 units per store.

This is not surprising as the median sale for this product is zero.

The same pattern of heterogeneity can be found in Product II. However, there are more

cases where the price changes had significant effects: 12 out of 100 with 1% significance. This

result doubles if we consider 10% significance level. The values for ∆ are also much higher.

For Product III the impacts are much more significant: at a 1% significance level there are

15 cities with relevant impacts when the squares statistic is used to test for H0 and 23 when

the absolute value is used. If we set the significance level to 10% the numbers move to 31 and

41, respectively. Products IV and V have a similar behavior as Product III.

Under the hypothesis of linear demand function, price elasticities εij for each municipality

i and product j can be recovered as

pεij “
pβijpij,T0´1

Qij

,

where pβij “
p∆ij

Ni∆pj
, p∆ij is the estimated average effect for municipality i and product j, Ni is

the number of stores, ∆pj is the price change, pij,T0´1 is the price before the intervention and

Qij is the average counterfactual quantity sold. Finally, optimal prices for profit maximization

can be determined by:

p˚ij “
p1´ TaxesijqpQij ´

pβijpij,T0´1q ´
pβij ˆ Costsij

´2pβijp1´ Taxesijq
,

where Taxesij and Costsij are the municipality-product-specific tax and costs,respectively.
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6 Conclusions

In this paper we considered a new methodology to estimate the effects of interventions when

there is potentially only one (or just a very small number) of treated units. The outputs of

interest are observed over time for both the treated and untreated units, forming a panel of

time series data. The untreated units are called peers and a counterfactual to the output of

interest in the absence of intervention is constructed by writing a model relation the unit of

interest to the peers. The novelty of this paper concerns how this model is constructed. In our

case we combine factor models with sparse regression on the idiosyncratic components. This

model includes both the principal component regression and sparse regression on the original

measurements as a specific case. The main advantage of our proposal is that we avoid the usual

assumption of (approximate) sparsity and make model selection consistency conditions easier

to be satisfied. The inadequacy of using only the principal component regression has also been

evidenced in our case studies. The formal test is also proposed to prove the case for using the

idiosyncratic components.
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A Proof of the Main Result

Before proving our main result, we define below the compatibility constant for convenience.

Definition 1. For a pn ˆ nq matrix M , a set S Ď rns and a scalar ζ ě 0, the compatibility

constant is given by

κpM ,S, ζq :“ inf

#

}xTMx}
a

|S|
}xS}1 : x P Rn : }xSc}1 ď ξ}xS}1

+

. (A.1)

Moreover, we say that pM ,S, ζq satisfies the compatibility condition if κpM ,S, ζq ą 0.

Note that the compatibility constant is closely related to `1-eigenvalue of M restricted to

a cone in Rn.
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A.1 Proof of Proposition 1

The fact that }pθ1 ´ θ1}1 “ OP pξ|S0|q follows from Theorem 4 in Fan et al. (2020). We are left

to show the second part. By the triangle inequality, for t ą T0:

|pδt ´ δt ´ Vt| “ |ppγ1 ´ γ1q
1W 1t `

pλ
1

1
pF t ´ λ

1
1F t `

pθ
1

1
pU´1t ´ θ

1
1U´1t|

ď |ppγ1 ´ γ1q
1W 1t| ` |pU1t ´ U1t| ` |

pθ
1

1
pU´1t ´ θ

1
1U´1t|.

Using Hölder’s inequality, the third term can be further bounded as

|pθ
1

1
pU´1t ´ θ

1
1U´1t| ď |

pθ
1

1p
pU´1t ´U´1tq| ` |p

pθ1 ´ θ1q
1U´1t|

ď }pθ1}1} pU´1t ´U´1t}8 ` }
pθ1 ´ θ1}1}U´1t}8

ď p}θ1}1 ` }
pθ1 ´ θ1}1q} pU´1t ´U´1t}8 ` }

pθ1 ´ θ1}1}U´1t}8

“ OP rp}θ1}1 ` υ|S0|ψ
´1
pT qqυ ` υ|S0|ψ

´1
pT qψ´1

pnqs.

Combining the last two expressions we are left with

|pδt ´ δt ´ Vt| ď |ppγ1 ´ γ1q
1W 1t| ` p1` }θ1}1 ` }

pθ1 ´ θ1}1q} pU t ´U t}8 ` }
pθ1 ´ θ1}1}U t}8.

The first term is OP p1{
?
T q by Assumption 3(a). The second is OP p|S0|ηq because by As-

sumption 3(d) we have that }θ1}1 ď |S0|}θ1}8 ď C|S0| and }pθ1´θ1}1 “ OP p1q by Assumption

3(f). Finally, the third term is OP pξ|S0|n
1{pq by Assumption 3(b) and the maximum inequality.

Therefore we conclude that

pδt ´ δt ´ Vt “ OP

`

T´1{2
` |S0|η ` ξ|S0|n

1{p
˘

“ OP

“

|S0|pη ` ξn
1{p
q
‰

.
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Table 1: Average Treatment (∆) Estimation under the Null.

The table reports descriptive statistics for the average treatment estimation under the null of no effect. The

table reports the mean, median, and mean squared error (MSE) of the estimator p∆ for five post-intervention

observations. Panel (a) considers the case where the counterfactual is estimated by a LASSO regression of the

treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed by Carvalho et al.

(2018). Panel (b) presents the results when the counterfactual is estimated by principal component regression

(PCR), i.e., an ordinary least squares (OLS) regression of the treated unit on factors computed from the pool of

peers. This is equivalent to the method of Gobillon and Magnac (2016). The number of factors is determined by

the eigenvalue ratio test of Abadie and L’Hour (2019). Finally, Panel (c) displays the results of the FarmTreat

methodology.
Panel(a): LASSO (ArCo)

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 -0.049 -0.076 0.043 -0.061 -0.150 -0.006 1.988 1.552 1.459
100 -0.057 -0.044 0.057 -0.038 -0.051 0.058 0.862 0.646 0.655
500 -0.001 -0.027 -0.001 0.026 -0.037 -0.003 0.212 0.202 0.186

Panel(b): PCR

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 0.103 -0.136 0.203 0.214 -0.128 0.112 10.137 5.657 6.913
100 -0.065 -0.031 0.070 -0.026 -0.016 0.033 2.376 1.573 1.402
500 -0.012 -0.047 0.065 -0.023 -0.038 0.046 0.983 0.488 0.459

Panel(c): FarmTreat

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 0.037 -0.055 0.126 0.019 -0.053 0.083 6.114 2.007 2.785
100 -0.041 -0.019 0.051 -0.030 -0.031 0.035 1.152 0.366 0.340
500 0.018 -0.002 0.011 -0.015 -0.001 0.008 0.516 0.067 0.065
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Table 2: Average Treatment (∆) Estimation under the Alternative.

The table reports descriptive statistics for the average treatment estimation under the alternative of an average

effect of 2. The table reports the mean, median, and mean squared error (MSE) of the estimator p∆ for five

post-intervention observations. Panel (a) considers the case where the counterfactual is estimated by a LASSO

regression of the treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed

by Carvalho et al. (2018). Panel (b) presents the results when the counterfactual is estimated by principal

component regression (PCR), i.e., an ordinary least squares (OLS) regression of the treated unit on factors

computed from the pool of peers. This is equivalent to the method of Gobillon and Magnac (2016). The

number of factors is determined by the eigenvalue ratio test of Abadie and L’Hour (2019). Finally, Panel (c)

displays the results of the FarmTreat methodology.
Panel(a): LASSO (ArCo)

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 1.951 1.924 2.043 1.939 1.850 1.994 1.988 1.552 1.459
100 1.943 1.956 2.057 1.962 1.949 2.058 0.862 0.646 0.655
500 1.999 1.973 1.999 2.026 1.963 1.997 0.212 0.202 0.186

Panel(b): PCR

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 2.103 1.864 2.203 2.214 1.872 2.112 10.137 5.657 6.913
100 1.935 1.969 2.070 1.974 1.984 2.033 2.376 1.573 1.402
500 1.988 1.953 2.065 1.977 1.962 2.046 0.983 0.488 0.459

Panel(c): FarmTreat

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 2.037 1.945 2.126 2.019 1.947 2.083 6.114 2.007 2.785
100 1.959 1.981 2.051 1.970 1.969 2.035 1.152 0.366 0.340
500 2.018 1.998 2.011 1.985 1.999 2.008 0.516 0.067 0.065

Table 3: Rejection Rates under the Null (empirical size)

The table reports the rejection rates of the partial ressampling test with five observation after the intervention.
Panel(a): LASSO (ArCo)

α “ 0.01 α “ 0.05 α “ 0.10
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 0.2670 0.2490 0.2810 0.3650 0.3560 0.3750 0.4230 0.4060 0.4340
100 0.0550 0.0630 0.0690 0.1510 0.1380 0.1450 0.2150 0.2040 0.2130
500 0.0140 0.0190 0.0190 0.0780 0.0790 0.0680 0.1350 0.1420 0.1330

Panel(b): PCR

α “ 0.01 α “ 0.05 α “ 0.10
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 0.3140 0.3000 0.3320 0.3940 0.3860 0.4240 0.4420 0.4460 0.4750
100 0.0220 0.0250 0.0130 0.1000 0.0790 0.0670 0.1690 0.1440 0.1180
500 0.0100 0.0150 0.0090 0.0640 0.0620 0.0560 0.1160 0.1130 0.1030

Panel(c): FarmTreat

α “ 0.01 α “ 0.05 α “ 0.10
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 0.3180 0.3450 0.3960 0.4000 0.4350 0.4740 0.4560 0.4820 0.5240
100 0.0170 0.0280 0.0170 0.0870 0.0880 0.0740 0.1580 0.1430 0.1230
500 0.0090 0.0150 0.0090 0.0670 0.0570 0.0550 0.1160 0.1170 0.1080
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Table 4: Average Treatment (∆) Estimation under the Null and No Idiosyncratic
Contribution.

The table reports descriptive statistics for the average treatment estimation under the null of no effect and

β “ 0. The table reports the mean, median, and mean squared error (MSE) of the estimator p∆ for five

post-intervention observations. Panel (a) considers the case where the counterfactual is estimated by a LASSO

regression of the treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed

by Carvalho et al. (2018). Panel (b) presents the results when the counterfactual is estimated by principal

component regression (PCR), i.e., an ordinary least squares (OLS) regression of the treated unit on factors

computed from the pool of peers. This is equivalent to the method of Gobillon and Magnac (2016). The

number of factors is determined by the eigenvalue ratio test of Abadie and L’Hour (2019). Finally, Panel (c)

displays the results of the FarmTreat methodology.
Panel (a): LASSO (ArCo)

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 -0.108 -0.087 0.121 -0.133 -0.068 0.181 2.155 1.501 1.172
100 -0.037 -0.041 0.028 -0.028 -0.020 -0.009 0.994 0.796 0.808
500 -0.053 -0.002 -0.002 -0.042 -0.023 0.003 0.466 0.407 0.452

Panel (b): PCR

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 0.104 -0.122 0.204 0.103 -0.154 0.046 10.854 5.440 6.816
100 -0.017 -0.016 0.027 -0.055 -0.064 0.021 4.458 1.322 1.189
500 -0.067 -0.011 0.001 -0.037 0.016 0.023 0.987 0.238 0.248

Panel (c): FarmTreat

Mean Median MSE
n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T n “ T n “ 2ˆ T n “ 3ˆ T

T “ 50 0.020 -0.071 0.161 -0.018 -0.088 0.090 7.167 1.937 2.688
100 0.001 -0.017 0.033 -0.014 -0.010 0.049 3.680 0.491 0.469
500 -0.059 -0.006 0.007 -0.035 -0.003 0.025 0.951 0.209 0.222

Table 5: Experiments.

The table shows, for each product considered in the paper, the sample, the period when the experiment was

carried out, the type of the experiment (price increase or decrease) and the number of cities in the control and

treatment groups.
Product Sample Experiment Period Experiment Type Control Group Treatment Group

I Aug-14-2016 – May-02-2017 Apr-19-2017 – May-02-2017 Price reduction 328 110
II May-14-2016 – Jan-23-2017 Jan-17-2017 – Jan-23-2017 Price reduction 321 100
III Feb-13-2016 – Oct-31-2016 Oct-16-2016 – Oct-31-2016 Price increase 318 97
IV May-14-2016 – Jan-23-2017 Jan-17-2017 – Jan-23-2017 Price increase 321 102
V Feb-13-2016 – Oct-31-2016 Oct-16-2016 – Oct-31-2016 Price increase 309 106
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Table 6: Results.

The table reports estimation results. In each panel we report, for each product, the minimum, the 5%-,

25%-, 50%-, 75%-, and 95%-quantiles, maximum, average, and standard deviation for a given statistic. We

consider the distribution over the treated municipalities. In Panel (a) we report the results for the R-squared

of the pre-intervention model. Panel (b) displays the p-value results for the average intervention effect over

the experiment period H0 : δt “ 0 for a given t. Panels (c) and (d) depict the results for the p-values of the

re-sampling test for the null hypothesis H0 : δt “ 0,@t P tT0 ` 1, . . . , T u using respectively the test statistics

φ2ppδT0`1, . . . , pδT q “
řT

t“T0`1
pδ2t and φ3ppδT0`1, . . . , pδT q “

řT
t“T0`1 |

pδt|. Finally, Panel (e) reports the results for

the p-values for the test for idiosyncratic contribution.
Panel (a): R-squared

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I 0.0337 0.0514 0.1040 0.1672 0.2705 0.4436 0.6642 0.2002 0.1282
II 0.4028 0.6745 0.8825 0.9323 0.9652 0.9894 0.9988 0.8981 0.1073
III 0.1134 0.1951 0.3610 0.4916 0.6215 0.7566 0.9065 0.4878 0.1764
IV 0.4669 0.7236 0.8744 0.9252 0.9551 0.9848 0.9961 0.8978 0.0916
V 0.1190 0.3092 0.5221 0.6969 0.8254 0.9281 0.9535 0.6691 0.1970

Panel (b): Average Treatment Effect (over time): ∆

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I -1.2630 -0.9181 -0.4980 -0.1862 0.1420 0.6933 1.5493 -0.1672 0.4856
II -3.0126 -1.8272 -0.4593 0.2748 1.3074 3.7670 6.6975 0.5515 1.6794
III -19.1670 -16.8416 -7.8397 -3.4310 -1.2491 1.3600 3.5261 -5.1397 5.4411
IV -45.4717 -28.3762 -14.6982 -7.4852 -3.4748 2.1461 36.6423 -9.4225 11.0010
V -54.5934 -17.3325 -6.5691 -2.6661 -0.6040 0.8332 7.1110 -5.0361 8.0906

Panel (c): p-value of the test on squared values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I 0 0.0638 0.3106 0.6298 0.9319 1.0000 1.0000 0.5970 0.3286
II 0 0 0.1219 0.3657 0.7045 0.9669 1.0000 0.4125 0.3284
III 0 0 0.0638 0.2298 0.5670 0.8438 0.9532 0.3203 0.2954
IV 0 0.0107 0.0826 0.3182 0.6157 0.9306 0.9959 0.3785 0.3068
V 0 0 0.0809 0.2702 0.5830 0.9200 0.9702 0.3525 0.2927

Panel (d): p-value of the test on absolute values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I 0 0.0596 0.2511 0.6489 0.9191 1.0000 1.0000 0.5967 0.3374
II 0 0 0.1012 0.4029 0.6612 0.9256 1.0000 0.4095 0.3280
III 0 0 0.0426 0.1447 0.5500 0.8787 0.9915 0.2968 0.3091
IV 0 0 0.0537 0.2645 0.6281 0.9091 0.9917 0.3565 0.3149
V 0 0 0.0426 0.2468 0.5957 0.9123 0.9745 0.3320 0.3103

Panel (e): p-value of the test for idiosyncratic contribution

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I 0.0110 0.0180 0.2110 0.3445 0.5140 0.7750 0.8810 0.3616 0.2200
II 0.0240 0.0450 0.1030 0.1800 0.3075 0.4420 0.7340 0.2080 0.1375
III 0 0.0010 0.0187 0.0780 0.2240 0.6969 0.7770 0.1617 0.2000
IV 0.0060 0.0242 0.0600 0.1280 0.2600 0.4436 0.6690 0.1810 0.1482
V 0 0 0.0080 0.0705 0.1600 0.3252 0.5330 0.1064 0.1171
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Figure 1: Product I data.

Panel (a) reports the sales per store aggregated in the treatment and control groups. The plot also
indicates the date of the intervention. Panels (b) and (c) display the distribution of the average sales
per store over time across municipalities in the treatment and control groups, respectively. Panels (d)
and (e) present fan plots of sales across municipalities in the treatment and control groups for each
given time point. The black curves represent the cross-sectional medians over time and the vertical
green line indicates the date of intervention.
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Figure 2: Product II data.

The same caption as Figure 1 is used.
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Figure 3: Product III data.

The same caption as Figure 1 is used.

03/2016 04/2016 05/2016 06/2016 07/2016 08/2016 09/2016 10/2016
Month/Year

0

5000

10000

15000
S

al
es

/#
 o

f S
to

re
s

(a): Sales/Number of Stores

All municipalities
Treatment Group
Control Group
Treatment Date

Before treatment After treatment
0

20

40

60
(b): Average Sales - Treatment Group

Before treatment After treatment
0

50

100
(c): Average Sales - Control Group

Month/Year
0

50

100

S
al

es
/#

 o
f S

to
re

s (d): Sales - Treatment Group

Month/Year
0

50

100
S

al
es

/#
 o

f S
to

re
s (e): Sales - Control Group

Figure 4: Product IV data.

The same caption as Figure 1 is used.
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Figure 5: Product V data.

The same caption as Figure 1 is used.
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Figure 6: Results for Product I.

Panel (a) displays a fan plot, across n1 municipalities in the treatment group, of the p-values of the
re-sampling test for the null H0,1 : δt “ 0 at each time t after the treatment. The black curve
represents the median p-value across municipalities over t. Panels (b) and (c) display the distribution
of the p-values of the re-sampling tests for the null hypothesis H0 : δt “ 0,@t P tT0 ` 1, . . . , T u using
respectively the test statistics φ2ppδT0`1, . . . , pδT q “

řT
t“T0`1

pδ2
t and φ3ppδT0`1, . . . , pδT q “

řT
t“T0`1 |

pδt|.
Panel (e) shows an example for one municipality. The panel depicts the actual and counterfactual
sales per store for the post-treatment period. 95% confidence intervals for the counterfactual path is
also displayed.
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Figure 7: Results for Product II.

The same caption as in Figure 6 is used.
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Figure 8: Results for Product III.

The same caption as in Figure 6 is used.
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Figure 9: Results for Product IV.

The same caption as in Figure 6 is used.
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Figure 10: Results for Product V.

The same caption as in Figure 6 is used.
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