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ABSTRACT

We characterize jump dynamics in stock market returns using a novel series of intraday

prices covering over 80 years. Jump dynamics vary substantially over time. Trends in jump

activity relate to secular shifts in the nature of news. Unscheduled news often involving

major wars drives jump activity in early decades, whereas scheduled news and especially

news pertaining to monetary policy drives jump activity in recent decades. Jump variation

measures forecast excess stock market returns, consistent with theory. Results support

models featuring a separate jump factor such that risk premium dynamics are not fully

captured by volatility state variables.
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Asset prices exhibit occasional discontinuities or ‘jumps’ with important economic impli-

cations. There is evidence of a premium associated with bearing non-diversifiable jump risk

in equities (Pan (2002)), for example, and jumps appear to be important in explaining the

cross section of expected stock returns (Bollerslev, Li, and Todorov (2016), Cremers, Halling,

and Weinbaum (2015)). Jump risk has implications for portfolio choice (Liu, Longstaff, and

Pan (2003)) and offers a potential resolution of the credit risk puzzle (Zhou (2001)).

Benchmark models permitting jumps, e.g., Merton (1976), assume that jump dynamics

are time-invariant. Although analytically convenient, this assumption is unlikely to re-

flect reality and several studies document variation in jump activity (Andersen, Bollerslev,

and Diebold (2007a), Christoffersen, Jacobs, and Ornthanalai (2012), Santa-Clara and Yan

(2010), and Tauchen and Zhou (2011)). Time-varying jump risk theoretically generates as-

sociated variation in equity and variance risk premia, and recent research emphasizes the

importance of the dynamics of left-tail risk in financial markets.1 Given the significance of

dynamic jump risk, it is important to understand the historical pattern of variation in stock

market jump activity and the ultimate sources of such variation. Unfortunately, however,

the vast majority of existing evidence is culled from options or high-frequency financial data

spanning a relatively modest history.

This paper characterizes the dynamics of jump activity in the US stock market over a

long horizon spanning nearly 90 years. To do so, we analyze a novel dataset consisting of

intraday stock valuation data beginning in the 1930s. These data involve hourly observations

for Dow Jones Averages published in the Wall Street Journal (WSJ) beginning in 1933. Data

are hand-collected until the mid 1990s, when it becomes possible to construct the Dow Jones

Averages from the New York Stock Exchange (NYSE) Trade and Quote (TAQ) database. We

apply nonparametric methods that decompose total return variation into jump and diffusive

1See, e.g., Andersen, Fusari, and Todorov (2015), Andersen, Fusari, and Todorov (2017), Bollerslev and
Todorov (2011), Bollerslev, Todorov, and Xu (2015), and Kelly and Jiang (2014). A related literature
explores the implications of rare large fundamental shocks or ‘disasters’ on asset prices, e.g., Gabaix (2012)
and Wachter (2013).
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components and identify intraday return intervals exhibiting jumps.2

Beginning with Schwert (1989), a large literature assesses the extent to which secular

variation in stock and bond return volatility can be explained by corresponding variation in

leverage, macroeconomic volatility, or other determinants (see also, e.g., Engle, Ghysels, and

Sohn (2013), Engle and Rangel (2008), and Paye (2012)). These studies do not distinguish

between the diffusive and jump components of return variation and therefore it is unclear

whether the two components exhibits similar dynamics, especially over long horizons. To

shed light on this question, we construct time series measures that separate total return

variation into jump and diffusive components, as well as a relative jump measure captur-

ing the proportion of return variation attributable to jumps. Jump and diffusive volatility

co-move positively and both series tend to be countercyclical. The two components of re-

turn variation are far from perfectly correlated; however, leading to economically significant

cyclical variation in the relative jump measure. Moreover, the long-run dynamics of diffu-

sive and jump volatility are quite distinct. Although both series exhibit roughly ‘U-shaped’

long-run dynamics, jump volatility reaches historical lows approximately 10–15 years later

than diffusive volatility and recovers more rapidly. The dynamics of the two return variation

components differ markedly during a roughly 25-year period from the 1960s through the

mid 1980s, but are more similar in recent years. The starkly differing dynamics of jump

and diffusive variation during the 1960s causes a stark downward shift in the relative jump

measure. This shift is economically large: jump variation accounts for around 30% (14%) of

total variation on average before (after) the break.3

2Our intraday data cover a substantially longer history relative to other common intradaily price series.
However, sampling is (for the most part) limited to hourly. The econometric test we apply defines an interval
as containing a ‘jump’ when the corresponding return magnitude is very large relative to an estimate of
prevailing volatility. The sampling limitation inhibits our ability to distinguish a truly discontinuous price
movement from an evanescent burst of volatility that occurs within an hour. We view these two events as
similar from the perspective of many investors. Indeed, it can be challenging to identify truly discontinuous
price movements even with modern ultra-high-frequency data (Christensen, Oomen, and Podolskij (2014)).
Our paper therefore focuses on characterizing the dynamics of ‘jump-like’ returns over a long history.

3The post-break average relative jump magnitude we estimate is broadly consistent with evidence in
several existing studies based on shorter, more recent sample periods, including, e.g., Andersen et al. (2007a)
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Time-variation in jump volatility could be driven by variation in jump intensity or by

time-variation in the average magnitude of jumps. We test for jumps on an interval-by-

interval basis and characterize time-variation in both aspects of jump activity. Empirically,

variation in jump volatility appears to be driven primarily by variation in jump intensity,

which reached historical highs in the 1940s and early 1950s before gradually falling to his-

torically low levels during the late 1970s and early 1980s. Jump intensity then rebounds

following these lows and fluctuates over recent decades.

We next address the question of what drives jumps and variation in jump dynamics. Our

particular goal is to examine whether there have been notable shifts in the types of news that

generate jumps in equity markets. To this end, we analyze historical media coverage following

large detected jumps over a long horizon. We categorize each jump as driven by either

scheduled or unscheduled news and classify the cause of the jump based on the corresponding

media discussion. There are three notable findings. First, nearly all of the jump activity in

the first half of our long sample is driven by unscheduled news. In contrast, news associated

with scheduled macroeconomic and monetary announcements drives a significant fraction of

jumps in recent decades. Second, among the specific sources of jumps, news pertains to World

War II and the Korean War drives a large proportion of detected jumps during the 1940s and

50s, a period when jump activity is historically high.4 In contrast, economic news, including

both scheduled announcements and unscheduled economic news, drives the majority of jumps

in recent decades. Finally, the proportion of jumps attributable to monetary announcements

has increased markedly in recent decades and dominates announcement-related jump activity.

This clustering and evolution of announcement-specific jump activity is important given the

documented relevance of scheduled announcement days for the time series and cross-section

and Tauchen and Zhou (2011). The finding of a much higher relative jump variation prior to the mid 1960s
is, to our knowledge, new to this paper.

4The Second World War was the deadliest conflict in human history, and major participants focused
their entire economic and industrial capabilities to the war effort. In addition to over 33,000 US casualties,
the Korean War had important macroeconomic effects, including higher taxes and GDP growth, lower
consumption and investment, and price and wage controls to curb inflation.
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of asset returns (Savor and Wilson (2013, 2014); Lucca and Moench (2015)).

The historical perspective afforded by our data provides new insights concerning the

evolution of jump risk. Low-frequency dynamics of equity market jumps appear to be driven

by two main factors: time-variation in the international peace and security climate, and

the evolution of policies and technology associated with the production and dissemination

of information to market participants.5 Importantly, the stylized facts we document are

inconsistent with most benchmark jump-diffusion specifications in the literature. One class

of such models tightly links jump intensity with the level of diffusive volatility (Bates (2000),

Pan (2002)). Less restrictive models, such as Santa-Clara and Yan (2010), decouple the

stochastic evolution of jump activity from diffusive volatility, but do not incorporate trends

or structural shifts that appear to explain a significant portion of variation in stock market

jump intensity over the past nine decades.

The canonical principle of a ‘risk-return trade-off’ suggests a linkage between risk pre-

mium dynamics and variation in underlying risks. Recent theoretical literature hypothesizes

distinct roles for the jump and diffusive components of stock price risk in determining the

equity premium (Santa-Clara and Yan (2010), Andersen et al. (2015), etc.). We therefore

separately analyze the forecasting power of the jump and diffusive components of return

variation. We show that the jump component of return variation contains differential pre-

dictive information for returns relative to the diffusive component. In particular, we conduct

standard in- and out-of-sample predictive regressions for excess stock return on a broad US

equity index. When the predictor variable is the diffusive component of return variation, we

find little evidence of predictability, consistent with a number of previous studies that test

the intertemporal risk-return relation using measures of realized stock return variation. In

stark contrast, we find strong evidence of predictive power for the jump component of return

5The evolution of Federal Open Market Committee (FOMC) communications provides a prominent ex-
ample of the second factor. The FOMC did not typically issue statements accompanying changes in the
stance of monetary policy until 1994, and we find a stark shift in jump activity associated with FOMC
statements following this change.
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variation, as well as for the relative jump measure. The slope coefficients on both predictors

are positive as expected by theory and the predictive power is economically significant, es-

pecially at longer horizons. At a horizon of 5 years, for example, both in- and out-of-sample

research designs indicate R2-improvements relative to the historical average benchmark on

the order of 10–15%. Our evidence concerning the differential predictive content of jump

variance measures supports models featuring a separate jump or tail factor such that risk

premium dynamics are not fully captured by volatility state variables driving underlying

asset price dynamics.

Previous studies that apply high-frequency data to characterize stock market jump activ-

ity include Andersen et al. (2007a), Barndorff-Nielsen and Shephard (2006), and Huang and

Tauchen (2005), among others. We also contribute to a stream of literature that explores

price discovery associated with macroeconomic news (e.g., Andersen, Bollerslev, Diebold,

and Vega (2003), Andersen, Bollerslev, Diebold, and Vega (2007b)) and the causes of jumps

including scheduled news (Andersen et al. (2007a), Evans (2011), etc.) as well as unscheduled

news (e.g., Lee and Mykland (2008)). Our evidence concerning the stock return forecast-

ing power of jump variation relates to papers emphasizing connections between measures of

jump or tail risk extracted from options data and the equity premium (e.g., Andersen et al.

(2015), Bollerslev et al. (2015), and Santa-Clara and Yan (2010)), as well as measures of

aggregate tail risk constructed from the cross section (Kelly and Jiang (2014)). Relative to

this body of work concerning jumps, tail risk, and the equity premium, our paper provides

a new long-horizon perspective. Whereas many of the aforementioned studies analyze rel-

atively short periods, we analyze a period spanning over eight decades, including the end

of the Great Depression era, the second World War, oil prices shocks and stagflation in the

1970s, as well as the recent financial crisis.6 This long-horizon perspective delivers fresh

6Manela and Moreira (2017) provide an analogous long-horizon perspective regarding implied volatility
by constructing a ‘news implied volatility’ (NVIX) measure spanning over a century. Conceptually, our paper
differs by focusing specifically on the jump component of return variation. The jump variation measures we
construct are not highly correlated with the NVIX measure and possess significant incremental predictive
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insights concerning time-variation in jump activity and the associated implications.

1. Data

The most novel data analyzed in our study are intraday data for Dow Jones price indices

covering the period 1933–2019. The data consist of open, close, and hourly observations

on the Dow Jones Industrial Average and the Dow Jones Composite Average. We analyze

two separate sources of intradaily Dow Jones data to establish robustness of key results.

The first of these sources consists of hand-collected data from the Wall Street Journal and

Barron’s over the period 1933–1993, and analogous data constructed from the New York

Stock Exchange (NYSE) Trade and Quote (TAQ) database for the period 1994–2019. The

hand collection process for the Dow Jones data involves recording the open, close, and hourly

index levels published by the Wall Street Journal and/or Barron’s. Data for the period 1933-

1989 were initially hand-collected by Mason Gerety and Harold Mulherin and analyzed in

several empirical studies published in the 1990s, including Gerety and Mulherin (1991),

Gerety and Mulherin (1992), and Gerety and Mulherin (1994). Data for 1933–1940 are for

the DJIA, with the remaining data pertaining to the broader DJCA. We hand-collected

additional DJCA data for 1990-1993 from historical records of the Wall Street Journal to

extend the original data until the time when the New York Stock Exchange (NYSE)’s Trade

and Quote (TAQ) database becomes available (see discussion below). The Supplementary

Appendix provides a figure illustrating the hand-collection process for Dow Jones data.

We construct data analogous to the hand-collected Dow Jones Composite Average data

for the period 1994–2019 using the NYSE TAQ database. Basing intraday prices on TAQ

data avoids potential data entry errors associated with the hand-collection process. To do

so, we track constituent firms for the DJCA and the actual DJCA close price over the

1994–2019 period. Hourly component prices are based on TAQ transaction prices (following

power for stock returns. The measures are therefore complementary rather than competing.
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standard cleaning procedures discussed in Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2009)) with the closest time-stamp to the hour. We compute the cumulative price of all

index components at the open, close, and on each hour for each trading day, and record an

imputed index divisor for the day based on this total price and the actual DJCA value at

close. Hourly prices are then calculated from the intraday price levels and the daily divisor.

The year 1993 provides an important check on our TAQ-based data construction process.

We verify that the TAQ-based data are very similar to the corresponding hand-collected

data from the Wall Street Journal for this year.

As a robustness check and alternative data source, we also analyze a long history of

intraday Dow Jones observations obtained from Global Financial Data (GFD). These data

consist of open, close, and hourly data for the DJIA from January 1933 through December

2019. From May 1933 through December 1940, both our main dataset and the alternative

dataset from GFD provide intraday observations on the DJIA at the same points in time.

Consequently, a comparison of the data is informative concerning the accuracy of data ini-

tially hand-collected by Gerety and Mulherin. From 1941 onward, our main data are based

on DJCA observations, whereas the GFD data continue to be based on the narrower DJIA.

Institutional features occasionally change during the long history covered by the data.

These changes impact the precise nature of recorded data. For example, from 1933 through

early 1952, NYSE trading hours were Monday–Friday 10am-3pm, as well as Saturdays 10am-

12pm. During this era, index data for a typical weekday consist of the open, close, and

4 hourly price observations, permitting the construction of 5 intraday returns. Saturday

trading was discontinued in mid-1952, and the weekday NYSE close moved from 3pm to

3:30pm until 1974. Trading hours extended to 4pm beginning in 1974 and the open moved

to 9:30am in 1985.

Table 1 describes various regimes characterized by institutional shifts or variations in

the pattern of collected intraday data. Most regime shift points correspond to (persistent)

changes in NYSE trading hours. In one case, however, we classify a regime change due to an
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alteration in available data. Specifically, from late September 1952 through October 1963,

3PM prices were not published in the Wall Street Journal, so that the final intraday return

corresponds to a 90 minute return from 2PM to market close at 3:30PM. The table also

documents a number of relatively short periods during 1967–1969 with early closings due to

the ongoing ‘paperwork crisis’ at the NYSE.

High-quality intradaily trade and quotation data for stocks in the Dow Jones indices are

available in recent decades and many prior studies rely on such data. To complement our

more novel long history of hourly prices, we collected 5-minute intradaily price data for the

Dow Jones Index over the period 1994–2019. We use these data as a point of comparison

in order to contrast the behavior of certain empirical measures of ‘realized’ components of

return variation using hourly data with analogs constructed using the 5-minute data. The

5-minute Dow Jones price data were obtained from TradeNavigator.

2. Econometric Methods

This section describes the econometric methods we apply in order to decompose return

variation into different components. We first describe a setting in which the fundamental

(log) index price evolves in continuous time according to a relatively general stochastic

process. Price are observed at a specified sampling frequency, e.g., 5-minutes or hourly. We

then describe key econometric results pertaining to nonparametric estimation of the diffusive

and jump components of return variation, as well as the detection of intervals containing

price jumps.
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2.1. The Price Process and Observed Intraday Returns

As is standard in the econometric analysis of high-frequency financial data, we assume

the (efficient) log price p (Dow Jones average in our context) follows a jump-diffusion process:

pt = p0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt, (1)

where bs and σs represent the instantaneous drift and volatility, respectively, W denotes a

standard Brownian motion, and Jt represents a pure jump process of finite activity.7 Our

paper focuses on the role of the jump component Jt of prices. The price jump at time t

is given by Jt = pt − pt−, where pt− ≡ lims↑t ps. The price process specified by Eq. (1) is

relatively general and permits many realistic features associated with stock price evolution.

In addition to jumps, the specification permits general forms of stochastic volatility via the

process σs, time-variation in the drift term bs, and the so-called leverage effect induced by

negative spot correlation between the process Ws and the volatility process.

We assume that the log price process in Eq. (1) is observed at times tn for n = 0, ..., Ñ ,

where ti < tj for i < j and the times need not be regularly spaced. Returns based on

price observations are computed as rn ≡ p(tn) − p(tn−1), n = 1, . . . , Ñ . The notation tOm

and tCm indicates market open and close times for trading day m for m = 1, . . . ,M . These

times naturally partition the price data into M trading days. We designate the returns

rON
m ≡ p(tOm) − p(tCm−1) as overnight returns for trading days m = 2, . . . ,M . Removing these

returns leaves the set of intraday returns rn, n = 1, . . . , N . It will often be convenient to

reference the intraday returns corresponding to a particular trading day. The notation rm,i

denotes the i-th intraday return on trading day m, and Nm indicates the number of intraday

returns on trading day m.

7A more technically precise specification of the price process appears in the Supplementary Appendix,
along with certain regularity conditions required for jump tests described below.
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2.2. Measuring Jump Variation

We aim to separate total return variation into two components, one attributable to con-

tinuous price variation and the other to occasional jumps. To achieve these goals we apply

nonparametric, high-frequency econometric methods that have become relatively standard

in the empirical literature concerning asset prices jumps. Although we focus on jump activ-

ity, the underlying econometric methods for identifying jumps and jump variation depend

critically on the ability to accurately measure the diffusive component of return variation

either over a particular time interval or at a particular moment in time (‘spot’ volatility).

We construct lower frequency (monthly and quarterly) time series measures of the extent

and proportion of jump variation in prices. These measures are based on underlying daily

measures of total and diffusive return variation computed using intradaily data. We first

introduce the realized variance for each trading day, computed as

RVm ≡
Nm∑
i=1

r2
m,i, (2)

By the theory of quadratic variation, realized variance converges uniformly in probability

to the increment of the quadratic variation process over the trading day as the sampling

frequency increases, i.e.,:8

RVm
p−→
∫ tCm

tOm

σ2(s)ds+
∑

tOm≤s<tCm

|∆ps|2 as Nm →∞. (3)

The realized variance captures both diffusive variation (the first term on the right-hand

side of Eq. (3)) and jump variation (the second term). In contrast, alternative high-frequency

estimators provide measures of diffusive volatility that are robust to jumps. We consider two

8See Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys (2001), and Barndorff-
Nielsen and Shephard (2002).
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such measures: realized bipower variation and the MedRV estimator proposed by Andersen,

Dobrev, and Schaumburg (2012). These measures are defined as:

RBVm =
π

2

(
Nm

Nm − 1

) Nm∑
i=2

|rm,i−1||rm,i|, (4)

MedRVm =
π

6− 4
√

3 + π

(
Nm

Nm − 2

)Nm−1∑
i=2

med(|rm,i−1||rm,i||rm,i+1|)2. (5)

Both RBVm and MedRVm consistently estimates the diffusive component of return variation

as the sampling frequency increases, i.e., RBVm
p−→
∫ tCm
tOm
σ2(s)ds, (Barndorff-Nielsen and

Shephard (2004), Barndorff-Nielsen and Shephard (2006), Andersen et al. (2012)). However,

Andersen et al. (2012) show that MedRVm has better theoretical efficiency properties and

improved finite-sample robustness to jumps and ‘zero’ returns. As these features are quite

desirable in our contest, we focus on MedRVm as the primary diffusive volatility measure,

but explore robustness to the use of the more tradition BPVm measure.

Given the realized variance measure of total return variation and a (consistent) measure

of diffusive return variation, a consistent measure of jump variation obtains as the difference.

For example, the quantity RJVm ≡ RVm −MedRVm (realized jump variation) provides a

natural consistent estimate of the jump variance on trading day m.

Undoubtedly, realized variation measures computed using a relatively small number of

hourly returns will be a relatively noisy proxies for true daily variation. Consequently, we do

not focus on analyzing the properties of noisy daily jump return variation measures. Instead,

we aggregate daily jump variation and related return variation measures to construct less

noisy measures at monthly, quarterly, and annual frequencies. The series MRJV , QRJV ,

and ARJV denotes the monthly, quarterly, and annual time series, respectively, constructed

by summing the daily jump variation measure RJVm over the corresponding periods. Real-

ized variance and integrated (diffusive) variance are aggregated similarly. Finally, we define

a relative jump (RJ) measure capturing the proportional contribution of jumps to total re-
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turn variation. For example, the quarterly relative jump measure is defined as the ratio of

quarterly jump variance to quarterly realized variance:

QRJ ≡ QJV

QRV
. (6)

2.3. Testing for Specific Jumps

Our second empirical goal is to identify specific intradaily time intervals in which price

jumps occur and corresponding estimates of the associated jump magnitudes. In order to

test for specific jumps, we apply nonparametric ‘threshold’ methods using high-frequency

data (Mancini (2001)). The intuition behind the approach involves the fact that diffusive

return moments are of order
√

∆, where ∆ designates the return interval duration. When

a jump occurs, the return over a small interval including the jump is dominated by the

jump component, and this motivates a test that designates intervals as containing a jump

whenever:

|rn| > k∆ω
n (7)

where ω ∈ (0, 0.49) and k > 0. Under relatively mild assumptions on the price process,

it can be shown that such a test consistently identifies the intervals containing jumps as

the sampling frequency increases, i.e., as ∆n → 0. (See the Supplementary Appendix for

technical details.) However, the asymptotic result leaves important practical choices (ω and

k) to the discretion of the researcher. In applications, it is common to refine the general

approach by designating intervals as containing a jump whenever

|rn| > ασ̂n∆0.49
n , (8)

where σ̂n denotes an estimate of the local or ‘spot’ volatility and α > 0. Noting that

∆0.49 ≈
√

∆ and rearranging Eq. (8) gives an interpretation of α as the number of standard
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deviations, based on the spot volatility estimate, required for jump designation.

Two key implementation details are the method for estimating the spot variance σ̂n and

the choice of α. Estimates of spot volatility are typically based on jump-robust diffusive

variation measures computed using returns ‘local’ to the interval in question. We adopt a

spot volatility estimator of the form:

σ̂n(B) = max(τnMedRV (n,B), σMIN), (9)

where τn represents a time-of-day adjustment factor, MedRV (n,B) denotes the average daily

MedRV measure of Eq. (5) computed over a window of B trading days centered around the

day containing return interval n, and σMIN is a minimum volatility threshold.

Eq. (9) involves three key components. First, the ‘local’ volatility componentMedRV (n,B)

averages MedRV over a window of trading days centered around the day corresponding to

return interval in question. When B = 0, this simply equals the bipower variation for the

corresponding trading day. Because we observe returns at a relatively low hourly frequency,

B = 0 results in a very noisy estimate of local volatility. For this reason, we set B > 0,

which has the effect of including the bipower variation from nearby trading days to reduce

estimation noise. The empirical section further discusses the choice of B for our main test

results, as well as robustness considerations.

The second component is the time of day adjustment factor τn, which follows numerous

studies that account for diurnal effects in volatility in jump tests similar to ours. It is well-

known that volatility tends to be ‘U-shaped’ over the trading day: higher near the open

and close and lower during the middle of the trading day (Andersen and Bollerslev (1997)).

Our implementation of the adjustment factor, described in detail in the Supplementary

Appendix, is relatively simple: we adjust the general spot volatility estimate up or down

depending on the ratio of the average volatility for a particular trading hour relative to the

sum or the average volatilities across all trading hours. The time of day adjustment factors
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are computed separately across the different trading regimes in our data.

The final component that appears in Eq. (9) is a minimum volatility threshold σMIN.

The motivation for incorporating a minimum threshold relates to the noise associated with

local volatility estimates. In a repeated testing context, estimation noise will cause some

local volatility estimates to be very low. This can lead to spurious and/or economically

insignificant jumps during such intervals. We calibrate σMIN such that hourly jump returns

must equal at least 50 basis points in magnitude.9

The second crucial implementation detail for the jump test is the choice of α. Increasing

the threshold reduces the likelihood of spuriously designating a diffusive price movement as

a jump, but also reduces the power to detect true jumps. Lee and Mykland (2008) pose a

jump test closely related to Eq. (8) and specify a formula for selecting the threshold value

α based on Gaussian extreme value theory, given a specified significance level for the test.

To provide some intuition, in the absence of jumps the return over a short interval will be

approximately Gaussian. It might therefore seem natural to choose α = 3 for a test with

significance level around 1%. However, the test is applied to many intraday intervals (over

1,000 per year in our setting). It is thus necessary to select a higher threshold to maintain the

desired significance level in this repeated testing context. In the Supplementary Appendix,

we show that the recommended threshold derived by Lee and Mykland (2008) implies an

α value just over 4 in our empirical setting. Baseline results therefore set α = 4, but we

explore robustness to alternative choices.

9We are grateful to George Tauchen for suggesting this modification, which follows a similar modification
in Li, Todorov, and Tauchen (2018). Our main findings concerning time-varying jump activity are robust to
modest perturbations in the minimum volatility level, or even to omitting this aspect. In the latter case, we
identify even higher rates of jump activity in the 1940s and 1950s, both absolutely and relative to subsequent
decades. From this perspective, our imposition of the minimum volatility level is conservative.
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2.4. Finite Sample Performance and Microstructure Effects

Although daily return variation measure based on hourly data are quite noisy, aggregat-

ing to monthly or longer horizon measures mitigates the associated effects. However, the

hourly sampling limitation is likely to have a greater impact on our interval-by-interval jump

tests. Various studies examine the finite sample properties of jump tests similar to ours in

simulation environments (see, e.g., Lee and Mykland (2008), Huang and Tauchen (2005) and

Davies and Tauchen (2018)). Results in Lee and Mykland (2008) are particularly notable,

as they explicitly include the case of hourly sampling, contrasting this case with both higher

frequency (15-minute) and lower frequency (daily) sampling. Simulation results in Lee and

Mykland (2008) highlight both the pros and cons of basing a jumps analysis on hourly data.

Hourly returns provide much greater power to detect jumps relative to daily returns, with

substantially lower rates of spurious jump detection.10 Indeed, this fact that motivates much

of our analysis, as our novel long history of intraday Dow Jones prices affords an opportunity

to conduct a meaningful analysis of jump activity over a very long history. On the other

hand, as predicted by theory, tests based on hourly returns have reduced power and generate

more spurious jumps than tests using returns sampled at higher frequencies.

The reduced power associated with using lower frequency returns is concentrated toward

cases where the underlying jump is relatively small in magnitude (Lee and Mykland (2008)).

Consequently, our tests using hourly returns will have limited power to detect small jumps.

Power will concentrate in the direction of detecting economically large jumps that dominate

return variation over a 60-minute interval. In addition, the test may spuriously designate

short-lived ‘spikes’ in diffusive volatility as jumps. Although the distinction between truly

discontinuous price jumps and short-lived volatility spikes can be important in certain con-

texts involving, e.g., technical issues of market completeness, both types of price movements

can plausibly be viewed as ‘jump-like’ from the perspective of many typical investors. As

10Our discussion refers specifically to Tables 1 and 2 in Lee and Mykland (2008).
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subsequent results reveal, the the ‘jumps’ detected by our test reflect economically large price

movements that often receive attention in contemporaneous news media. We provide novel

evidence regarding the secular dynamics of these important price movements, recognizing

the aforementioned limitations associated with hourly sampling.

A final concern involves the effects of microstructure effects, which can create bias in

high-frequency return variation measures. These effects are typically strongest when returns

are sampled at very high frequencies. The fact that our returns are hourly and involve

only Dow Jones stocks with relatively high trading volume and liquidity should reduce the

impact of microstructure biases in our analysis. Still, our analysis spans nearly a century

and includes periods when trading volume was relatively limited. Therefore, we explore this

issue in the empirical work that follows.

3. Jump Dynamics Over a Long History

This section presents our main empirical results regarding time-variation in jump dy-

namics.

3.1. Properties of intraday returns and daily return variation measures

Table 2 shows descriptive statistics summarizing properties of intraday returns and key

daily return variation measures. To conserve space, we report illustrative results from three

8-year periods, one near the beginning of our sample (Panel A), one near the middle (Panel

B), and one toward the end of the sample that includes the financial crisis period (Panel

C). The first two columns of Table 2 show, for selected years, the total number of intraday

returns during the year and the mean number of returns per trading day. The mean number

of returns per day does not always equal an integer (the median) due to occasionally abnormal

trading days. This effect is most pronounced during the ‘paperwork’ crisis the late 1960s,
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reflected in Panel B results. The next three columns show the mean and median of the

intradaily returns for the year, as well as the proportion of these returns that are ‘zeros.’

The latter quantity is partially indicative of the severity of microstructure effects and is

discussed in further detail later.

The right-hand portion of Table 2 shows within-year averages of key daily return variation

measures RV, MedRV, and BPV for the corresponding year, as well as the within-year average

of daily return sample autocorrelation. Theoretically, total return variation must exceed

diffusive return variation, with the difference equaling jump variation. Consistent with this

pattern, the average annual realized variance is typically greater than average MedRV or

BPV. BPV usually exceeds MedRV, with more material differences in high volatility years.

Note that, in several years during the 2000s (Panel C), the BPV exceeds even RV, implying

a negative estimate of jump variation for the corresponding year. This illustrates why we

prefer to use MedRV, which does not exhibit this behavior, as the primary measure of daily

diffusive volatility. The average annual autocorrelation is typically negative. This statistic

fluctuates from year to year but appears roughly stable over our long sample.

3.2. Jump Return Variation Over Time

We first compare the properties of lower frequency return variation measures computed

using the hourly intradaily returns with measures based on 5-minute returns for the period

of overlap between the measures (1994–2019). Panel A of Figure 1 contrasts quarterly real-

ized volatility using the hourly and 5-minute returns. Panel B contrasts quarterly diffusive

volatility based on the MedRV measure. In both cases, the series are extremely similar. This

shows that, following aggregation of noisy daily measures to the quarterly frequency, hourly

returns produce realized volatility and diffusive volatility measures that are very similar to

more ideal measures computed using 5-minute returns.

Panel C of Figure 1 compares quarterly jump return volatility, computed as the square
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root of the quarterly difference between realized volatility and MedRV, for the hourly returns

and 5-minute returns. This panel indicates that, despite aggregating noisy daily estimates

at the quarterly level, the jump volatility series based on hourly returns exhibits material

differences relative to the corresponding series based on 5-minute returns. Specifically, the

series based on hourly returns is more erratic and prone to occasional ‘outlier’ quarters.

Smoothing in the form of a two-year (8 quarter) backward moving average (shown in Panel

D) reveals that, despite noise, jump volatility measures based on hourly data reveal quite

similar dynamics at the ‘business cycle’ level to those exhibited by measures computed using

5-minute returns. We conclude that, although quarterly jump volatility measures using

hourly data are somewhat erratic, this time series is informative regarding jump dynamics,

particularly at the business cycle and lower frequency. Motivated by the contrast of Panels C

and D in Figure 1, we will often consider smoothed versions of the jump volatility measures

in subsequent analysis.

Having verified the informativeness of jump volatility measures based on hourly returns,

we now examine return variation measures over a long history. A first question concerns

whether jump and diffusive volatility exhibit similar secular variation. Schwert (1989) and

several recent contributions explore the macroeconomic determinants of low frequency vari-

ation in stock return volatility (see, e.g., Engle and Rangel (2008), Engle et al. (2013), and

Paye (2012)). Total stock return volatility largely reflects the diffusive component. There-

fore, it is unclear whether the jump component of return variation exhibits similar dynamics.

Figure 2 addresses this question by plotting time series of jump and diffusive variation

measures over the period 1933–2019. Panel A contrasts jump volatility with diffusive volatil-

ity. The displayed series are two-year backward moving averages of the underlying quarterly

measures in order to reduce the impact of noise and focus on business cycle variation.The

plot indicates a nuanced relation between jump volatility (plotted against the left-hand axis)

and diffusive volatility (plotted against the right-hand axis). On the one hand, there appears

to be a reasonably tight connection between the cyclical dynamics of both series, especially
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toward the beginning and end of the long sample period. Both jump and diffusive volatility

increase around the financial crisis period, for example. However, the relation between jump

and diffusive volatility appears much less tight during a period from the mid 1960s through

the early 1980s. For example, diffusive volatility rises substantially during the oil price shocks

of the mid 1970s and associated economic contractions, but jump volatility exhibits little

response. Finally, there is a noticeable difference in long-run jump and diffusive volatility

dynamics during the first half of the sample. Diffusive volatility peaks around 1939, at the

end of the Great Depression era and the onset of World War II, and then falls gradually

during the 1940s 50s, and early 1960s. In contrast, the level of jump volatility remains fairly

steady during this period, until decreasing more abruptly in the mid 1960s.

Panel B of Figure depicts the relative jump measure (RJ). Similar to the volatility

series in Panel A, the series plotted is a two-year backward moving average of the underlying

quarterly RJ series. The dynamics of the relative jump measure are economically interesting

because they shed direct light on the validity of models of time-varying return dynamics

that tie together variation in jump dynamics with variation in diffusive volatility. There

are several key insights from Panel B. First, the relative jump measure exhibits cyclical

fluctuation, indicating time-variation in the relative dynamics of the jump and diffusive

components of return variation. In contrast to the levels of jump and diffusive volatility

depicted in Panel A; however, the relative jump measure does not appear to exhibit a strong

relation to macroeconomic conditions. For example, the relative jump measure does not

increase substantially during the financial crisis period owing to the fact that diffusive and

jump volatility increase by roughly the same proportion at this time (Panel A). A second

insight is that there appears to be a significant structural break or shift in the mid 1960s

such that jumps account for a relatively lower fraction of return variation. The level shift

is economically significant: jump variation comprises approximately 16–17% of total return

variation on average prior to the early 1960s, and approximately 6–8% of return variation

thereafter. The shift appears to be primarily driven by a reduction in jump volatility at this
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time. Although jump volatility recovers in subsequent decades, diffusive volatility increases

in tandem, making the reduction in the level of RJ appear to be permanent. Finally, the

volatility of RJ has decreased in recent decades. This reduction in volatility is consistent

with the tight relation between jump and diffusive volatility dynamics over the past two

decades depicted in Panel A.11

Table 3 characterizes the properties of quarterly jump volatility, diffusive volatility, and

the relative jump measure, and compares these series with other financial risk measures such

as bond spreads and option-based risk measures. Jump volatility is persistent, positively

skewed and fat-tailed, similar to diffusive volatility and option-implied volatility measures

(VIX and NVIX).12 Panel B shows correlations of jump volatility, RJ , and diffusive volatility

with other variables. The correlation between jump and diffusive volatility is approximately

0.69 – strongly positive but also indicating a far from perfect relation between the series. The

correlations of jump and diffusive volatility with bond spreads, the tail-risk measure, and

option-based risk measures tend to be similar. The relative jump measure is (mechanically)

positively correlated with jump volatility and negatively correlated with diffusive volatility,

but does not exhibit strong correlation with the other comparison variables. Panel C illus-

trates business cycle properties of variables by report the slope coefficient, t-statistic, and R2

from a regression of the corresponding series on the quarterly NBER recession indicator time

series. All of the return variation and option-based volatility measures exhibit significant

countercyclical relations. The relative jump measure does not exhibit a significant relation

with the business cycle as captured by the recession indicator (nor does the term spread or

variance risk premium in our samples).

11The Supplementary Appendix provides a four-panel version of Figure 2 that also includes plots of the
raw (unsmoothed) quarterly jump and diffusive volatility series and a plot that emphasizes the very low
frequency component of jump and diffusive volatility by applying a 16-year moving average filter. The
low-frequency comparison shows that, although low-frequency components for both series are roughly ‘U-
shaped,’ the long-run component of diffusive volatility reaches historical lows in the 1960s whereas long-run
jump volatility reaches lows in the early 1980s.

12The sample autocorrelation for jump volatility is significant and positive but relatively low (0.14). How-
ever, this value is likely biased downward due to measurement noise associated with quarterly jump variance.
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3.3. Jump test results

This section discusses results for interval-by-interval tests for jumps. We focus primarily

on results for the DJCA hand-collected prices, setting α = 4 and and B = 2, implying

that spot volatility is computed as the average over five days (the current trading day +/- 2

trading days). This choice is motivated by a comparison of the properties of the spot volatility

computed using our procedure with an alternative ‘ideal’ spot volatility computed using 5-

minute returns for the current trading day (only). Figure 3 illustrates how spot volatility

estimates computed using hourly data compare with the high-frequency benchmark. Panel

A compares spot volatility estimates computed only using returns within the trading day in

question (B = 0). The spot volatility estimates using hourly data roughly track those based

on 5-minute returns, but are clearly somewhat noisy. Panel B shows the much better fit for

spot volatility estimates using hourly data with B = 2. These estimates closely track the

more ideal spot volatility based 5-minute returns.13

Panel A of Figure 4 shows the detected jumps over our long sample period. There is

clearly time-variation in the intensity of jumps, as the density of jumps appears during

certain periods, such as in the late 1930s and 1940s, relative to others. The distribution of

jump returns appears to be fat-tailed: most jumps are on the order of 50–100 basis points,

but there are a number of very large jumps associated with hourly absolute returns in excess

than 3%. Panel B plots the thresholds required for jump designation, i.e., the time series of

absolute hourly return threshold required for designation as a jump. During certain periods,

such as at the peak of the financial crisis the latter portion of 2008 and early 2009, the level

of spot volatility is so high that few jumps are detected. However, other periods with low

jump activity, such as during the mid 1970s, are not associated with spot volatility spikes.

Panel B illustrates that the minimum volatility threshold σmin binds for significant portions

13The choice B = 2 provides the best approximation to the high-frequency spot volatility estimates over
the period where 5-minute returns are available in the sense of achieving the highest R2-value in a regression
of daily high-frequency spot volatility estimates on hourly analogs for different choices of B.
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of the sample, particularly in the 1940s through the early 1960s, when the level of diffusive

volatility is low by historical standards.

Figure 5 plots rolling estimates of key jump activity parameters, including the jump in-

tensity rate, measured as the percentage of jumps per intraday interval, the mean absolute

jump return, and the mean jump return. Estimates are based on a rolling window of approx-

imately three years (the window length is 3 × 250 × 7 = 5, 292 intraday intervals). Dotted

lines show a 95% confidence interval for the corresponding rolling estimates. Dashed, vertical

lines indicate regime change points for the underlying Dow Jones intraday returns data (see

Table 1). The time-variation in jump intensity rates is statistically as well as economically

significant. Peak jump intensity occurs near the beginning of our sample and during US

involvement in World War II. The jump rate falls in the aftermath of the war, and then

increases again in the late 1940s and early 1950s. Jump intensity then falls gradually over

the next 20 years before reaching historical lows in the late 1960s. Jump intensity then cycles

over more recent decades, with another peak occurring in the late 1980s. Fluctuations in

jump intensity appear to be more modest following the turn of the century.

Rolling jump magnitude estimates (Panel B) are relatively steady over the long period we

examine.14 Comparing Panels A and B reveals that most time-variation in jump volatility

is driven by corresponding time-variation in jump intensity rates, and not by time-variation

in the volatility of jump returns conditional on jumps occurring. Average jump returns

(Panel C) are relatively stable in the early and late portions of our sample, but there is some

evidence of dynamics in average jump returns during the 1960s through the 1980s.

14The upward blip in average jump magnitude in the mid 1960s is in part driven by a jump in May of
1962 of over 6%, which corresponds to the single largest intraday jump in our data. The jump is associated
with the ‘flash crash of 1962’ in which market prices plunged on May 28 of that year, only to largely recover
the following day. Interestingly, our data illustrate that the recovery was largely concentrated in a single
hour toward the end of the day on May 29. Although we filter for ‘bounce backs’ (see discussion below), this
jump remains due to the time delay between the price decreases on May 29 and the sudden large increase
late in the day on May 29.
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3.4. Microstructure Effects and Other Robustness Checks

Apparent time-variation in jump intensity could derive from variation in different types

of market frictions. One potential manifestation of microstructure effects involves the pos-

sibility of incomplete overnight price discovery. Specifically, jump activity might appear

higher in earlier decades because price discovery related to overnight news bleeds into the

following trading day. Reductions in the severity of market frictions over time could explain

an apparent drop-off in jump rates, as overnight news is more efficiently incorporated at

market open. This conjecture would imply that a disproportionate share of jumps occur

during the initial trading interval during early decades. This is not the case in the data,

however. A second possibility is that market frictions drive spurious variation in jump ac-

tivity by imparting time-varying bias on spot volatility estimates and corresponding jump

thresholds. Figure 6 shows how two measures of frictions evolve over time. First, we plot for

each year the average daily return autocorrelation statistic. Intraday returns exhibit modest

negative serial correlation. This correlation is quite stable over time; however, and therefore

time-varying bias in spot volatility estimates is unlikely to explain our main results.15 There

is significant time-variation in the proportion of zero returns. Not surprisingly, this exhibits

a downward trend with the exception of the first few years of the sample. In general, the sec-

ular dynamics of zero return frequencies do not closely track the dynamics of jump intensity

that we document.

Recent literature on measuring return variation using high-frequency data emphasizes the

role of certain price path anomalies known as ‘drift bursts’, defined as brief, locally explosive

trends in asset price paths (Christensen, Oomen, and Renò (2020)) and ‘slow jumps’ in which

significant, short-term price movements appear as gradual, trend-like adjustments in very

high-frequency data (Barndorff-Nielsen et al. (2009)). Concerning these phenomena, our

15Another potential concern is that variation in jump activity could be attributable to discrete changes in
NYSE trading hours, but Figure 5 illustrates that the most significant shifts in jump activity do not rapidly
follow NYSE regime shift times.
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lower hourly sampling frequency likely insulates our analysis relative to a setting with ultra

high-frequency data. For example, a ‘slow jump’ that occurs over fifteen minutes of trading

is likely to be simply deemed a jump in our analysis using hourly data. Similarly, evanescent

flash crashes that occur within an hour of trading are unlikely to be deemed jumps. As a

specific example, the May 6, 2010 flash crash (see, e.g., Easley, De Prado, and OHara (2011)),

in which the DJIA plunged around 9% around 2:30 PM only to recover shortly thereafter,

is not detected as a jump in our analysis because the corresponding hourly absolute return

does not exceed the spot volatility threshold.16

We conduct a number of additional robustness checks related to aspects of the jump

tests. The Supplementary Appendix shows plots of rolling jump activity for alternative

jump test thresholds. Mechanically, a higher threshold yields fewer jumps and a lower jump

intensity in each decade, with opposite effects for a lower threshold. However, altering the

threshold does not change our key insights concerning time-variation in jump intensity. The

Supplementary Appendix also shows that we obtain similar results for modest variations in

the bandwidth B used to construct the spot volatility estimate.

3.5. Economic Implications

We document economically significant low-frequency variation in jump activity and jump

characteristics over a period of more than eight decades. What are the economic implications

of this evidence? A first implication is that asset pricing models assuming static jump

risks, such as the classic Merton jump-diffusion model (Merton (1976)), are inconsistent

16Misrecorded prices can also generate spurious ‘jumps’ and time-variation in data quality could therefore
create the false appearance of time-variation in jump activity. This is unlikely to drive our results for several
reasons. First, we audited underlying index levels around jumps followed by significant price movements in
the opposite direction using Wall Street Journal records from ProQuest. This uncovered several spurious
jumps due to initially misrecorded prices and reported results are based on corrected data. Second, we filter
out ‘bounce backs,’ defined as jumps immediately followed by a subsequent jump in the opposite direction.
Finally, we obtain similar results concerning variation in jump intensity using two different datasets: the
hand-collected DJCA data and the GFD DJIA data.
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with the data. We show that the particular aspect of constant jump risk most strongly

violated in the data is the assumption of a time-invariant jump arrival or intensity rate. Our

evidence on this point complements and extends earlier evidence of time-variation in jump

activity (e.g., Huang and Tauchen (2005)). Our results also speak to more subtle aspects

of models permitting both jumps and stochastic volatility. Many such models closely tie

variation variation in jump activity with variation in the diffusive component of volatility

(e.g., Bates (2000), Pan (2002)). Such an assumption increases tractability by reducing the

dimensionality of risks faced by investors. But is it empirically plausible? We show that,

from a low-frequency perspective, the assumption is not supported by the data and there

have been time periods such as the 1960s and 1970s during which the dynamics of jump and

diffusive variation behave very differently. In particular, an empirically realistic description

of asset return dynamics should allow for long-lived deviations in jump intensity and/or

jump variation relative to fluctuations in volatility. However, we also show that, within

some sub-periods, and in particular over the past two decades, there is strong co-movement

between jump and diffusive volatility. This tighter relation in recent years suggests that, in

certain contexts, tying the dynamics of jump intensity with volatility might be reasonable.

Of course, an important question is whether jump and volatility dynamics will uncouple once

again in the future. We briefly return to this question in the concluding section.

4. What Drives Variation in Jump Activity?

Although there is general consensus regarding the presence of jumps in asset prices (rein-

forced by our evidence), the causes of jumps are less well-understood. Theory suggests that

jumps should be associated with the release of price-relevant news. A number of papers link

detected jumps with scheduled macroeconomic and monetary policy news events. For ex-

ample, Andersen et al. (2007a) and Evans (2011) link detected jumps for equity, bonds, and

exchange rates with scheduled macroeconomic news. There is also evidence that unsched-
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uled news drives asset price jumps (Lee and Mykland (2008), Prokopczuk and Wese Simen

(2015)). But it is unclear whether the causes of jumps appear to be stable over time, or

whether there have been important shifts over time in the relation between jumps and the

associated the flow of financial and macroeconomic information.

In order to analyze potential shifts in the causes driving jumps over a long history, we

hand-collect information from the Wall Street Journal for publication days following detected

jumps. We do this for the largest 100 jumps (measured by absolute jump return) for the

subset of intraday jumps identified using a higher threshold of α = 5. These screens yield a

set of events that are both statistically most likely to be jumps based on our test and also

sufficiently large in magnitude such that the corresponding price movements are most likely

to receive media attention that will be informative regarding the cause of the jump.17

For each detected jump, we assess whether contemporaneous media coverage discusses

price movements plausibly corresponding to the jump. This turns out to be the case for all

investigated jumps, which likely reflects the fact that we focus on a subset of the econom-

ically and statistically most significant jumps detected by the test. We classify the jump

as attributable to ‘scheduled news,’ if the media coverage refers to a scheduled announce-

ment, and otherwise classify the jump as attributable to unscheduled news. We also break

out a subset of jumps attributed to scheduled news associated with Federal Reserve an-

nouncements, and any unscheduled jumps attributed to monetary policy news. We split our

long sample period into two roughly equal sub-samples: 1933–1975 and 1976–2019 in order

to compare with the sources of jumps have changed over the nearly 90-year period of our

sample. Panel A of Table 4 shows results.

Our earlier results establish that jump intensity was historically highest during the 1930s-

17We focus on Wall Street Journal coverage in order to provide a consistent method of assessing potential
sources of jumps over our long sample period. Numerous media sources provide coverage over the last few
decades. However, including these sources, which are not available for earlier periods, might bias our findings
regarding time-variation in the source of jumps. That said, in certain cases in which a next-day edition of
the Wall Street Journal is unavailable, we instead examine coverage in the financial section of the New York
Times.
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1950s, a time period that predates the modern monetary policy era and largely predates the

modern practice of regular releases of standardized macroeconomic data. This fact implicitly

suggests that jump activity prior to the 1960s is primarily driven by unscheduled news. The

Table 4 results confirm this. Over the full sample, media coverage associates approximately

17% of jumps as driven by scheduled news. However, virtually none of these jumps occur

during the first sub-period, whereas the nearly a third of the researched jumps during the

second half of our sample are associated with scheduled announcements. Moreover, monetary

policy announcements appear to be particularly important drivers of jumps in recent decades:

over half of the researched jumps associated with scheduled announcements involve Fed

announcements.

Panel B classifies the media discussion associated with each jump into one of six cate-

gories: 1) Fed/monetary policy; 2) economic news; 3) industry/commodities news; 4) politi-

cal news; 5) war or conflict news; or 6) other.18 Economic news includes scheduled announce-

ments and data releases outside of Fed announcements, as well as other information focused

on macroeconomic conditions other than monetary policy news. Industry/Commodities news

reflects cases in which the media attributes a market price movement to news concerning

commodities or a particular industry. Political news includes election news and other politi-

cal developments. War news is self-explanatory. The ‘other’ category captures all remaining

jumps not assigned to one of the aforementioned categories.19

War news drives a significant fraction of jumps during the early portion of our sample,

but no jumps thereafter. Given that World War II, the Korean War, and the Vietnam

War occur during this period, this is perhaps not surprising, but demonstrates that war

and conflict events generate significant jump activity. The results therefore suggest that the

18Jumps in equity prices driven by other types of news, e.g., war news, are presumably ultimately driven
by the economic ramifications of such news. Designation of jumps as attributable to ‘economic news’ implies
that the underlying media coverage focuses on news regarding a particular measure of economic conditions.

19The Supplementary Appendix provides an expanded discussion of the criteria for assigning jumps. De-
tailed notes associated with each jump are available from the authors upon request.
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transition to the cold war period following the Korean War and a more peaceful, if tenuous,

international atmosphere contributed to a reduction in stock market jump activity.

Monetary policy and economic news drives a much higher proportion of jumps in recent

decades. This is likely related to shifts in policies and technology associated with the pro-

duction and dissemination of economic data. An example of such a shift involves the Federal

Reserve’s decisions to follow FOMC meetings with public statements and a related trend

towards greater forward guidance concerning the conduct of monetary policy. This shift ap-

pears to be particularly important for stock market jumps. Panel B shows that over 25% of

researched jumps in the second portion of the sample period are attributed to Fed/monetary

policy news.20

A final takeaway pertains to jumps classified in the ‘other’ category in Table 4. Media

coverage following such jumps either does not point to a specific piece of news as causing

the jump, or explains the price movement as a sudden response to past price pressure rather

than new information. In a few cases, media coverage explicitly states that there is no clear

cause for the price movement. Almost 30% of researched jumps fall in this category, which

is notable given the restrictive criteria for researched jumps (highly significant and large

jumps). The fact that a significant fraction of large, sudden price movements occur without

apparent associated news echos similar conclusions in earlier studies that focus on much

shorter periods (e.g., Cutler, Poterba, and Summers (1989)).

5. Jump Variation and the Equity Premium

This section analyzes time series measures of the jump and diffusive components of return

variation and their relation with the equity premium. Benchmark asset pricing models

20In additional unreported results, we find that, since 1990, over 10% of all detected jumps using our
baseline test coincide with FOMC statement or minutes release days (detailed tabulation available upon
request). This likely understates the actual proportion of jumps driven by monetary news, as it excludes
other potential Fed-related jumps associated with speeches and monetary policy news outside of statement
or minutes release days.
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often imply a linear relation between the conditional market risk premium and conditional

market variance, e.g., the intertemporal capital asset pricing model (ICAPM) of Merton

(1973). When equity prices are subject to both diffusive and jump variation; however,

equity premium dynamics can be more complicated, particularly under models in which

jump dynamics are driven by a source of risk distinct from diffusive volatility. Under such

a jump-diffusion model, Santa-Clara and Yan (2010) show that equity premium dynamics

depend upon the stochastic evolution of both jump intensity and diffusive volatility (and

their interaction). Andersen et al. (2015) specify a rich parametric model that incorporates

jumps in both prices and volatility, separate dynamics for left and right jump intensities,

and cross-excitation in volatility and jump processes. Their model also delivers a spot equity

premium that reflects both diffusive and jump risks, where the evolution of the latter is not

tied tightly to the former.

Motivated by this theoretical literature, we test whether jump variation measures explain

time-variation in the equity premium, conditional on measures of the diffusive component of

return variation and other prominent stock return forecasting variables. Our long time series

of jump and return measures afford particular advantages in a return-forecasting setting,

because they permit us to examine predictability over a range of horizons. This is important

because recent literature establishes stronger evidence of the theoretically expected positive

relation by focusing on longer-run components of returns and (total) return variance (Bandi

and Perron (2008), Bandi, Bretscher, and Tamoni (2018)).

Table 5 contrasts the stock return forecasting power of diffusive volatility with that of

jump volatility and the relative jump measure of over a long history. The table shows results

for predictive regressions of annual log excess returns on the value-weighted CRSP portfolio

on lagged annual return variation measures. We consider forecasting horizons of one to eight

years. Following, e.g., Bandi and Perron (2008), the diffusive and jump variation measures

used in the regression are log transformed.

Panel A of Table 5 shows results for diffusive return variation (IV ), measured using
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daily MedRV aggregated over the calendar year. There is little evidence that the diffusive

component of volatility forecasts returns. Slope coefficients for IV are generally insignificant

and economically small. These results are consistent with a number of prior studies that

examine the stock return forecasting power of rolling measures of volatility (e.g., French,

Schwert, and Stambaugh (1987)). Panel B shows that, in start contrast to diffusive return

variation, there is much stronger evidence of forecasting power for the jump component

of return variation. The slope coefficients in these regressions are always positive and are

statistically significant at most horizons based on the Newey-West approach with lags equal

to twice the forecasting horizon to account for serial correlation associated with overlapping

data. The predictive power of jump variation is economically significant, particularly at

longer horizons. For example, the R2-value at a horizon of 5 years equals almost 10%,

and increases further to around 16% at an 8-year horizon. Panel C shows similar strong

evidence of predictive power for the relative jump measure RJ . Again, slope estimates are

positive at all horizons and generally statistically significant. The R2-values for the relative

jump measure, e.g., just over 10% at a horizon of 5 years, indicate economically significant

forecasting power.

Before proceeding to an out-of-sample research design, we note that the Supplementary

Appendix includes additional results as robustness checks. For example, we find similar re-

sults using quarterly data (forecasting at the same horizons) in which we employ smoothed

jump variation measures using two years of backward aggregation, as depicted in Figure 2.

We also obtain qualitatively similar results using return variation measures based on the

alternative GFD DJIA intradaily returns. Finally, we show results for a set of bivariate pre-

dictive regressions that include various alternative popular stock return forecasting measures

from prior literature in order to show that our jump return variation measures do not simply

reflect information in, e.g., the default or term spread or other conventional predictors.

Table 6 presents stock return forecasting results based on an alternative out-of-sample

(OOS) design. The forecast horizonH ranges from 1 year (4 quarters) to 8 years (32 quarters)
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based on underlying overlapping quarterly data. Each return variation measure is smoothed

using a backward moving average of two years (8 quarters) using underlying quarterly data.

A log-transform is applied to the smoothed diffusive and jump variance measures. The

benchmark forecast is the historical average return forecast. Forecasts are computed using a

recursive estimation scheme with an initial estimation window of 80 quarters (20 years) for

results in Panel A, and an initial estimation window of 120 quarters (30 years) for results in

Panel B. The OOS sample for results in Panel A therefore begins in 1953Q2 and ends with

the last H-period OOS return that may be computed ending in 2019Q4, whereas for results

in Panel B the sample begins in 1963Q2 and ends similarly. The table reports ∆R2
OOS defined

as the increase in OOS R2 relative to the benchmark forecast, expressed as a percentage. The

statistic denoted CW p-val gives the p-value associated with the test for superior predictive

ability, proposed by Clark and West (2006). The null hypothesis in the Clark-West test is

that the benchmark historical average forecast has a mean squared prediction error that is

less than or equal to that of the competing model that includes the indicated return variation

measure.

Similar to in-sample regression designs, the out-of-sample (OOS) tests indicate little

evidence that diffusive volatility predicts stock returns. In contrast, forecasts based on the

jump variation measure (JV ) typically outperform the benchmark, consistent with earlier

in-sample inference results. OOS forecasting gains produced by the jump variation measure

relative to the benchmark are economically significant, particularly at longer horizons. For

example, ∆R2 values for jump variation at the 6 year horizon are approximately 10%. The

relative jump measure also yields statistically and economically significant OOS forecast

improvements relative to the historical average benchmark. The corresponding improvements

in forecast accuracy are particularly impressive at longer horizons, with ∆R2 statistics in

the 15–20% range at horizons of 5–8 years.

In order to shed further light on relative OOS forecast performance, Figure 7 plots the

cumulative difference in the sum of OOS squared forecast errors for diffusive variance, jump
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variance, and the relative jump measure, in the spirit of Goyal and Welch (2008). We show

results for forecast horizons of 2 and 6 years. The red dashed line represents the threshold for

(cumulatively) outperforming of the benchmark historical average return forecast. The plots

for diffusive variation (IV) in both panels are generally flat or downward sloping, indicating

no benefit relative to the benchmark. The relative jump measure, in contrast, delivers large

gains relative to the historical average during a period from the mid 1960s through the mid

1970s. Although the performance of this predictor is mixed in the remaining part of the

OOS period, it again performs well in the early 2000s and delivers significant forecast gains

over the full OOS period. The jump variance measure also performs well from the mid

1960s through the early 1970s, and in recent years following the financial crisis. However,

it does not perform well in the early part of the OOS period (1950s). This is in part due

to the fact that predictive regression slope estimates during this period, based on relatively

short estimation samples, are sometimes negative rather than positive as expected. This also

explains why the OOS results for the JV are stronger in Panel B using the 30-year initial

estimation window.

Broadly, we our tests provide evidence that measures of jump variation capture pre-

dictable variation in the equity premium. The predictive power of the jump measures ap-

pears particularly strong in the 1960s and early 1970s, a period in which the dynamics of

jump variation do not closely match those of diffusive variation (see Panel A of Figure 2).

6. Conclusion

This paper analyzes the long-horizon dynamics of jump activity in stock returns using

a novel long history of intradaily price data. Jump volatility and jump incidence rates

vary considerably over time. Jump intensity is greatest during the 1940s and 50s, falls to

historical lows in the 1970s and 1980s, and partially recovers thereafter. Unscheduled news

drives most equity jump activity historically, although the proportion of jumps attributable
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to scheduled announcements – especially monetary announcements – increases markedly in

recent decades. Finally, we connect variation in jump dynamics with time-variation in the

equity premium. Jump variation measures positively forecast aggregate excess stock returns,

consistent with theoretical models featuring time-varying jump risk. Importantly, jump and

diffusive variation contain different predictive signals for stock returns. The predictive signal

of jump variation is strongest at short horizons, in contrast to the long-run predictive signal of

the diffusive component of return variation. These results support recently proposed jump-

diffusion models that decouple the dynamics of jump risk from those of diffusive return

variation.
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Fig. 1: Quarterly Return Variation Measures: Hourly Versus 5-Minute Data

The figure compares a variety of realized return volatility measures computed using hourly DJCA
returns with analogs computed using 5-minute DJIA returns. Panel A contrasts quarterly realized
volatility using the hourly and 5-minute returns. Panel B contrasts quarterly diffusive volatility
based on the MedRV measure. Panel C compares quarterly jump return volatility, computed as
the square root of the quarterly difference between realized volatility and MedRV. Finally, Panel
D compares jump volatility that is smoothed by applying a two-year (8 quarter) backward moving
average. All series are plotted for the overlapping sample period of 1994–2019.
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Fig. 2: Return Variation Dynamics Over a Long History

The figure plots measures of jump and diffusive return variation. Panel A plots contrasts jump and
diffusive volatility dynamics. The plotted series are computed by applying a two-year (backward)
moving average filter to the raw quarterly diffusive volatility (MedRV) series and jump volatility
series, respectively. Panel B plots the quarterly relative jump measure RJ , expressed as a per-
centage. The raw series is smoothed via a two-year backward moving average filter prior to plotting.
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Fig. 3: Bandwidth Choice: Hourly Data Versus 5-Minute Benchmark

This figure compares daily spot volatility estimates computing using hourly Dow Jones data
with benchmark spot volatility estimates based on 5-minute DJIA returns. All estimates apply
the MedRV measure of diffusive volatility. Panel A plots the daily spot volatility estimate using
5-minute returns (black line) against the daily spot volatility estiamte using hourly returns (dashed
blue line). Panel B provides a similar plot, except the dashed blue line corresponds to the spot
volatility estimate computed using B = 2, which averages daily MedRV using hourly data over
five trading days (current day +/− 2 trading days). In order to facilitate detailed comparison, the
plot time period is the 4-year period of 2002–2005.
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Fig. 4: Jump Activity: Dow Jones Hourly Returns

The figure summarizes jump activity from 1933–2019 based on hourly Dow Jones returns. Jumps
are identified based on the jump test described in Section 3 of the paper, with a threshold choice
of α = 4. Panel A plots the time series of jump returns for each jump identified. Panel B plots
the absolute jump returns (left-hand axis) and compares with the time series of truncation levels
(right-hand axis). The truncation level is equal to vn = ασ̂n and is equal to four times the spot
volatility estimate for these results.
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Fig. 5: Rolling Jump Test Attributes: Dow Jones Hourly Data (1935–2019)

The figure plots rolling measures summarizing jump activity for intraday Dow Jones returns over
the period 1935–2019. All rolling estimates are computed over a window of 5, 292 = 3 × 252 × 7
intraday returns (approximately three years in calendar time). Panel A plots rolling estimates
of jump intensity, defined as the percentage of intraday intervals within the estimation window
containing detected jumps. Panel B plots rolling estimates of the mean of the absolute value jump
return as a percentage based on those jumps detected within the window. Panel C plots the mean
percentage jump return based on based on those jumps detected within the window. Gray dotted
lines depict 95% confidence intervals associated with these rolling estimates. Vertical, dashed, red
lines illustrate change points in operating hours for the NYSE (see Table 1).

1940 1950 1960 1970 1980 1990 2000 2010
0

1

2

Ju
m

p 
In

te
ns

ity
 (

%
) Panel A: Jump Intensity

1940 1950 1960 1970 1980 1990 2000 2010
0

1

2

Ju
m

p 
M

ag
ni

tu
de

 (
%

) Panel B: Mean Absolute Jump Return

1940 1950 1960 1970 1980 1990 2000 2010
-2

0

2

R
et

ur
n 

(%
)

Panel C: Mean Jump Return

44



Fig. 6: Market Frictions Over Time

The figure plots two annual measures of the extent of market frictions associated with the Dow
Jones Composite Average series. The first series is the annual average of daily sample return
autocorrelation statistics. The second is the annual fraction of total returns that are “zeros”,
i.e., a static index value and a corresponding return of exactly zero. The sample period is 1933–2019.
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Fig. 7: Out-of-Sample Return Forecasting Performance

The figure illustrates the out-of-sample (OOS) stock return forecasting performance of alternative
return variation measures. For each return variation measure, the figure displays the cumulative
difference in the sum of squared errors (CDSSE) at each point in time during the OOS evaluation
period. The three alternative return forecasting measures are diffusive variance (IV ), jump variance
(JV ) and the relative jump measure (RJ). The return variation measures are smoothed using a
two-year backward moving average of the raw quarterly measures. A log transformation is applied
to the diffusive and jump variance measures. All forecasts are computed using underlying quarterly
data with forecasting regression parameters estimated using an expanding window with an initial
estimation sample of 80 quarters (20 years).
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Table 1: Dow Jones Intraday Data: Regime Classification

This table shows the hours over which the New York Stock Exchange operated during our sample period,
5/18/1933–12/29/2017. There are four main “regimes” during which the NYSE changed its open and/or
closing times; within each regime, there are occasional subperiods in which other changes took place. The
number of observations shown alongside each schedule shows the total number of intraday prices obtained
from the Wall Street Journal. This table describes only significant, persistent institutional shifts, omitting
holidays and unscheduled emergency closings.

Regime Dates Schedule Observations

1 5/18/1933 - 9/26/1952 10am - 3pm M-F, 10am-12pm Sat 6 (3 on Saturdays)
Exceptions: ∗

7/2/1945 - 9/7/1945 10am - 3pm M-F 6
5/20/1946 - 9/27/1946 10am - 3pm M-F 6
5/26/1947 - 9/26/1947 10am - 3pm M-F 6
5/24/1948 - 9/24/1948 10am - 3pm M-F 6
5/23/1949 - 9/23/1949 10am - 3pm M-F 6
5/29/1950 - 9/29/1950 10am - 3pm M-F 6
5/28/1951 - 9/28/1951 10am - 3pm M-F 6
5/26/1952 - 9/26/1952 10am - 3pm M-F 6

2a 9/29/1952 - 11/1/1963 10am - 3:30pm, M-F 6†

2b 11/2/1963 - 9/30/1974 10am - 3:30pm, M-F 7
Exceptions:
8/8/1967 - 8/18/1967 10am - 2pm, M-F ‡ 5
1/22/1968 -3/1/1968 10am - 2pm, M-F 5
1/2/1969 - 7/3/1969 10am - 2pm, M-F 5
7/7/1969 - 9/26/1969 10am - 2:30pm, M-F 6
9/29/1969 - 5/1/1970 10am - 3pm, M-F 6

3 10/1/1974 - 9/26/1985 10am - 4pm, M-F 7

4 9/30/1985 - 12/29/2017 9:30am - 4pm, M-F 8§

∗ The summer NYSE calendar did not include Saturday hours from 1945 through 1952.
† In the first subsection of regime 2, observations are given hourly from 10am to 2pm, then the close at 3:30pm, omitting any
3pm observations.
‡ The ”paperwork crisis” forced scheduled closings intermittently throughout 1967–1970.
§ Through the end of 1993, the data are still collected manually from the Wall Street Journal ; afterward, hourly index values
are reconstructed from TAQ data.
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Table 2: Descriptive statistics for selected years

This table shows descriptive statistics for intraday returns and daily return variation and correlation
measures. Count equals the number of intraday intervals during the year. #/Day shows the mean
number of returns per day. The following two statistics are the mean and median of annual intraday
returns. The statistic ‘% Zero’ indicates the percentage of return intervals with zero returns. The
final four columns report the daily averages of realized variance (RV ), bipower variation (BPV ),
the alternative MedRV estimator, and the daily sample autocorrelation (AC). Panel A covers the
first 8 years of our sample (excluding a partial year in 1933). Panel B covers the the 8 year period
1963–1970 and Panel C covers the 8 year period 2003–2010. See the Supplementary Appendix for
a longer table reporting statistics for all years from 1933–2019.

Intraday Return Statistics Daily Averages

Year Count #/Day Mean Median % Zero RV BPV MedRV AC

Panel A: 1934–1941

1934 1244 5.00 -0.010 -0.010 1.287 1.000 0.832 0.750 -0.110
1935 1250 5.00 0.006 0.019 1.760 0.477 0.340 0.318 -0.155
1936 1264 5.00 -0.008 0.007 1.108 0.368 0.299 0.267 -0.141
1937 1250 5.00 -0.029 -0.005 0.960 1.354 1.212 1.157 -0.103
1938 1250 5.00 -0.006 0.000 1.280 1.185 0.955 0.868 -0.109
1939 1245 5.00 -0.012 -0.007 2.008 0.702 0.530 0.487 -0.097
1940 1255 5.00 -0.022 0.000 21.514 0.573 0.485 0.439 -0.118
1941 1250 5.00 -0.015 -0.023 7.760 0.261 0.229 0.198 -0.100

Panel B: 1963–1970

1963 1292 5.17 0.004 0.004 2.185 0.127 0.094 0.081 -0.087
1964 1516 5.99 0.002 0.003 1.188 0.066 0.060 0.066 -0.063
1965 1511 6.00 -0.001 0.006 0.927 0.100 0.095 0.101 -0.053
1966 1498 5.96 -0.016 -0.014 0.873 0.248 0.220 0.233 -0.006
1967 1486 5.95 0.005 -0.003 1.290 0.154 0.118 0.113 -0.038
1968 1300 5.83 -0.001 0.003 1.373 0.114 0.105 0.105 -0.089
1969 1116 4.56 -0.019 -0.022 1.416 0.150 0.143 0.133 -0.108
1970 1440 5.71 0.005 -0.004 2.178 0.384 0.329 0.299 -0.010

Panel C: 2003–2010

2003 1757 7.00 0.008 0.011 0.455 0.648 0.681 0.587 -0.136
2004 1757 7.00 0.005 0.007 0.000 0.335 0.328 0.302 -0.159
2005 1750 7.00 -0.004 0.002 0.171 0.395 0.381 0.336 -0.126
2006 1757 7.00 0.003 0.007 0.000 0.379 0.389 0.347 -0.110
2007 1757 7.00 -0.001 0.014 0.000 0.606 0.591 0.514 -0.133
2008 1771 7.00 -0.008 -0.012 0.000 4.193 3.701 3.390 -0.159
2009 1764 7.00 0.006 0.020 0.000 1.685 1.711 1.495 -0.152
2010 1764 7.00 0.004 0.017 1.644 0.728 0.729 0.661 -0.113
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Table 3: Characteristics of Return Variation Components and Comparison Fi-
nancial Variables

This table presents summary statistics for quarterly return variation measures and selected financial
variables. Panel A presents the sample mean, standard deviation, skewness and kurtosis for each
variable as well as the sample autocorrelation. Panel B shows pairwise sample correlation estimates
for jump volatility (

√
JV ), diffusive volatility (

√
IV ) and the relative jump measure (RJ).

√
IV is

based on quarterly diffusive variance measured as the average daily MedRV statistic across trading
days with the corresponding quarter.

√
JV is computed as the square root of the difference between

the average daily realized variance and diffusive variance. Panel C shows the slope estimate, t-
statistic based on Newey-West error with 2 lags, and R2-value for a univariate regression of the
corresponding variable on the contemporaneous value of the quarterly NBER recession indicator
series. DEF is the default spread (%). TS is the term spread (%). KJ is the tail risk measure
of Kelly and Jiang (2014). NV IX is the news implied volatility measure of Manela and Moreira
(2017). V RP is the variance risk premium. V IX is the CBOE volatility index. The sample size,
and sample start and end points are displayed at the bottom of the table. The units of measurement
are quarterly percentages for

√
JV ,

√
IV , DEF, TERM, NVIX, and VIX.

√
JV

√
IV RJ DEF TERM KJ NVIX VRP VIX

Panel A: Descriptive Statistics

Mean 1.97 4.28 21.11 1.04 1.72 0.43 24.27 15.51 35.15
Std. Deviation 1.40 2.66 13.62 0.52 1.28 0.04 4.25 14.73 30.33
Skeness. 2.47 2.52 0.39 1.54 -0.27 -1.09 1.04 -0.74 3.30
Kurtosis 16.81 15.36 2.40 5.61 3.51 3.81 7.45 15.34 18.50
AC(1) 0.14 0.39 0.41 0.92 0.85 0.92 0.81 0.27 0.64

Panel B: Correlations
√
JV 1.00 0.69 0.38 0.33 0.17 0.08 0.26 0.13 0.40√
IV 0.69 1.00 -0.29 0.35 0.25 0.07 0.30 0.12 0.57

RJ 0.38 -0.29 1.00 -0.04 -0.08 0.09 0.05 0.07 -0.06

Panel C: Regression on Quarterly NBER Recession Variable

β 0.74 1.93 0.70 0.47 0.06 -0.01 2.37 2.96 52.65
t-stat 2.07 2.17 0.28 2.69 0.23 -0.82 1.79 0.33 2.49
R2-value 3.00 5.69 0.03 8.88 0.02 0.59 3.49 0.33 24.87
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Table 4: Jump Attribution by Time Period

We investigate media reactions to large market movements identified as jumps in every year of our
sample, and then break the sample into ‘Early’ (1935–1975) and ‘Late’ (1976–2019) periods. Jumps
are the top 100 jumps, as measured by jump magnitude, identified under the baseline method with
an increased threshold of α = 5. This table summarizes the media attribution of those jumps.
In Panel A, news events that happen according to a predetermined schedule are categorized as
Scheduled news. Examples of scheduled news include scheduled economic announcements such as
those by the Federal Reserve or the Bureau of Labor Statistics, as well as political events such as
elections. Jump attributions of all other news events are categorized as Unscheduled. In Panel B,
news is categorized according to one of five broad classes. Economic news includes both scheduled
economic announcements, such as those regarding the Fed funds rate or inflation, as well as media
stories regarding economic factors. Industry/Commodity news stories are those in which large
market swings are attributed to a group of firms, an industry, or commodity prices, and can even
be regarding single firms in instances where a bellwether firm changes dramatically enough to
impact the industry and, in turn, the market as a whole. Political news includes elections as well
as other political developments. War/Conflict news involves any event regarding US military
conflicts or similar news – World War II, the Korean war, the Vietnam war, the Gulf war, and the
attacks on September 11, 2001.

Panel A: Scheduled vs. Unscheduled News

Period All Scheduled Scheduled Fed All Unscheduled Unscheduled Fed Total

Early 0 (0.0%) 0 (0.0%) 48 (100.0%) 1 (2.1%) 48
Late 17 (32.7%) 9 (17.3%) 35 (67.3%) 5 (9.6%) 52

Total 17 (17.0%) 9 (9.0%) 83 (83.0%) 6 (6.0%) 100

Panel B: News Categories

Year Economic Fed Indus./Comm. Political War/Conflict Other Total
Early 8 (16.7%) 1 (2.1%) 8 (16.7%) 6 (12.5%) 7 (14.6%) 18 (37.5%) 48
Late 16 (30.8%) 14 (26.9%) 10 (19.2%) 2 (3.8%) 0 (0.0%) 10 (19.2%) 52

Total 24 (24.0%) 15 (15.0%) 18 (18.0%) 8 (8.0%) 7 (7.0%) 28 (28.0%) 100
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Table 5: Stock Return Forecasting Power

The table presents results for predictive regressions for stock returns. The model is

RETt+1:t+H = α+ βVARt + εt+H ,

in which the dependent variable RETt+1:t+H ≡
∑H

h=1Rt+h −RFt+h consists of the cumulative log
excess return on the market portfolio over H periods, where Rt+h and RFt+f denote the quarterly
log return on the CRSP value-weighted portfolio and the log risk-free rate, respectively. VARt

denotes a particular (univariate) return variation measure which is specified in the ‘Variable’
column of the table. The three alternative predictors considered are diffusive variance (IV ),
jump variance (JV ), and the relative jump measure (RJ). Each return variation measure is
smoothed using a backward moving average of two years (8 quarters) using underlying quar-
terly data. A log-transform is applied to the smoothed diffusive and jump variance measures.
The forecast horizon H ranges from 1 year (H = 4 quarters) to 8 years (H = 32 quarters)
based on underlying overlapping quarterly data. The sample period begins in 1933Q2 with
the final observation occurring as the final H-period return culminating in 2019Q4. For each
predictor, the table shows slope estimates with corresponding t-statistics and the forecast-
ing regression R2-value. Reported t-statistics are based on Newey-West standard errors with
2×H−1 lags. The total sample observations N for each horizon appears at the bottom of the table.

Horizon (years) 1 2 3 4 5 6 7 8

Panel A: Diffusive Variance (IV )

β̂ 0.00 -0.01 -0.02 0.00 0.03 0.02 0.03 0.06
t-stat 0.14 -0.31 -0.50 0.03 0.31 0.25 0.33 0.57
R2 0.02 0.14 0.53 0.00 0.36 0.29 0.50 1.46

Panel B: Jump Variance (JV )

β̂ 0.03 0.03 0.03 0.09 0.16 0.17 0.20 0.26
t-stat 1.81 1.11 0.75 1.68 2.54 2.78 3.46 4.34
R2 1.92 1.06 0.84 5.14 11.64 12.26 14.40 21.56

Panel C: Relative Jump Measure (RJ)

β̂ 0.04 0.07 0.09 0.12 0.16 0.19 0.21 0.25
t-stat 1.70 1.90 1.94 2.26 2.51 2.55 2.67 3.30
R2 2.38 4.50 6.15 9.06 12.72 15.04 16.75 20.74

N 336 332 328 324 320 316 312 308
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Table 6: Out-of-Sample Predictive Regressions for Stock Returns

The table shows out-of-sample (OOS) results for predictive regressions. The model is

RETt+1:t+H = α+ βVARt + +εt+H ,

in which the dependent variable RETt+1:t+H ≡
∑H

h=1Rt+h − RFt+h is the H-period cumulative log excess
return on the market portfolio, where Rt+h and RFt+f denote the log return on the CRSP value-weighted
portfolio and the log risk-free rate, respectively. VARt denotes a particular (univariate) return variation
measure which is specified in the ‘Variable’ column of the table. The three alternative predictors considered
are diffusive variance (IV ), jump variance (JV ), and the relative jump measure (RJ). Each return variation
measure is smoothed using a backward moving average of two years (8 quarters) using underlying quarterly
data. A log-transform is applied to the smoothed diffusive and jump variance measures. The forecast horizon
H ranges from 1 year (4 quarters) to 8 years (32 quarters) based on underlying overlapping quarterly data.
The benchmark forecast is the historical average return forecast. Forecasts are computed using a recursive
estimation scheme with an initial estimation window of 80 quarters (20 years) for results in Panel A, and
an initial estimation window of 120 quarters (30 years) for results in Panel B. The OOS sample for results
in Panel A begins in 1953Q2 and ends with the last H-period OOS return that may be computed ending
in 2019Q4, whereas the sample for results in Panel B begins in 1963Q2 and ends at the same point. The
table reports ∆R2

OOS defined as the increase in OOS R2 relative to the benchmark forecast, expressed as a
percentage. The statistic denoted CW p-val gives the p-value associated with the test for superior predictive
ability, proposed by Clark and West (2006). The null hypothesis in the Clark-West test is that the model
without VARt, i.e., the historical average benchmark forecast has a mean squared prediction error that is
less than or equal to that of the model that includes VARt.

Horizon (Years)

Variable (Xt) Statistic 1 2 3 4 5 6 7 8

Panel A: Initial 20-year estimation window

IV ∆R2
OOS -0.74 -0.67 -1.70 -3.36 -2.14 -4.19 -5.97 -5.30

CW p-val 0.58 0.56 0.65 0.89 0.75 0.93 0.98 0.93

JV ∆R2
OOS 0.90 2.82 2.43 3.27 9.53 7.33 5.13 8.91

CW p-val 0.10 0.03 0.07 0.07 0.01 0.03 0.05 0.02

RJ ∆R2
OOS 0.88 5.53 7.09 10.97 15.44 17.43 18.33 22.20

CW p-val 0.08 0.01 0.01 0.02 0.03 0.03 0.03 0.03

Panel B: Initial 30-year estimation window

IV ∆R2
OOS -1.01 -0.72 -1.05 -1.79 -0.67 -1.37 -1.54 -0.16

CW p-val 0.90 0.80 0.68 0.86 0.68 0.84 0.88 0.45

JV ∆R2
OOS 1.52 3.39 3.17 5.00 11.93 11.01 10.25 15.75

CW p-val 0.06 0.02 0.04 0.04 0.00 0.01 0.01 0.00

RJ ∆R2
OOS 2.24 5.29 7.52 11.39 16.12 18.68 20.28 25.11

CW p-val 0.06 0.02 0.02 0.02 0.01 0.03 0.03 0.02
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