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Abstract

We study a unique dataset with comprehensive coverage of daily prices in large
multi-product retailers in Israel. Retail stores synchronize price changes around oc-
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which multi-product firms face economies of scope in price adjustment, and synchro-
nization is endogenous. Synchronization of price changes attenuates the average price
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strengthen monetary non-neutrality. Our calibrated model generates as little monetary
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1 Introduction

The literature on the effects of monetary policy on the economy has relied extensively on the

role of sticky prices in the transmission mechanism. In standard models, firms sell only one

product, which means that they face an inter-temporal pricing decision. For example, a firm

that faces an unexpectedly high demand can raise the price right away and incur the cost of

price adjustment, or it can delay raising the price and face the rising cost of accommodating

extra demand. Most retail firms, however, sell hundreds or thousands of products and,

therefore, have an additional intra-temporal option to change those prices that are worth

adjusting. In this paper, we study joint inter- and intra-temporal pricing decisions using a

model in which each firm sells a continuum of products. From a macroeconomic perspective,

the main question is whether multi-product pricing materially changes the aggregate price

response to economic disturbances.

We propose a theory of multi-product monopolistic firms that use a price-adjustment

technology with economies of scope in price setting (Sheshinski and Weiss, 1992). In the

model, a firm incurs a common cost K for any number of concurrent price changes, and a

fixed cost c for each of those price changes. This technology nests two polar cases studied in

the literature. In the case with no economies of scope (K = 0), the firm sets the price of each

product independently, paying a menu cost c for each price change. This case is equivalent

to a continuum of single-product firms, each one subject to a menu cost, as in Golosov and

Lucas (2007). In the case with maximal economies of scope in price adjustment (c = 0), the

firm pays the fixed cost K, which allows it to adjust the price of any number of products

at no additional cost. This case is similar to models with maximal economies of scope in

Midrigan (2011) and Alvarez and Lippi (2014). In both cases, the degree to which the firm

synchronizes price changes across products is fixed by construction—it is either zero (with

no economies of scope) or full (with maximal economies of scope). Our general framework

gives rise to an endogenous degree of synchronization of price changes that depends on the

combination of technology parameters c and K.

To guide this new theory, we examine price data from large multi-product food retailers

in Israel. Unlike most available data on micro prices, the dataset provides comprehensive

detail along both dimensions of a firm’s price adjustment: time and products. A disclosure

law enacted in 2014 requires large retailers in Israel—those with annual sales exceeding NIS

250 million (about $70 million)—to post on their internet sites daily price information for

all products sold in their stores. The data used in this paper contain information for stores

representing all large retail chains, 25 in total, from May 20, 2015, until October 4, 2019.

To manage computational constraints, we only analyze top 5% of stores for each retailer (by
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the number of observations), 71 brick-and-mortar stores in total. For four retailers, we also

have information about their online prices, which we treat as four additional online stores.

We observe the “base,” or regular, prices for almost all products sold in each store, averaging

7,217 per store on a given day.1 In addition to regular prices, we have constructed the final

(discounted) prices for the stores owned by Shufersal, the largest food retailer in Israel. In

all, the dataset contains 506.1 million daily observations.

We exploit comprehensive product and time coverage in our data to study the synchro-

nization of price adjustments across products in a store. Figure 1 depicts the average daily

fraction of price adjustments for four selected stores from different chains. It is apparent

that stores do a majority of their regular price changes during occasional “peak” days. For

example, when we define peaks as the subset of the most active days that jointly account for

one-half of all price changes in a store over the entire sample, we find that they occur once

every three weeks, on average. On a peak day, a store reprices about 9.9% of its products,

20 times the number of price adjustments on an average off-peak day. This behavior is not

driven by weekly or monthly seasonal effects, Jewish holidays, differences between online and

offline prices, or retail discounting, suggesting that price synchronization is driven by store-

specific fundamentals. In all, the pattern of partial synchronization of price changes that

we document is unlike the staggered pattern of price changes for independently produced

products, as in Golosov and Lucas (2007), or the perfect synchronization pattern in Alvarez

and Lippi (2014).2

To account for partial synchronization of price changes in the data, we develop a continuous-

time model of multi-product firms facing economies of scope in price adjustment. In the

model, each firm sells a continuum of differentiated goods and faces two types of fixed costs

when changing price: a fixed cost K is incurred when at least one price adjustment is made,

and an additional cost c is paid for each individual price change. The profit-maximizing price

of each product follows a Brownian motion with no drift, independent across goods. Due

to the presence of the common cost K, there are intervals of time with no price changes.

Additionally, the individual menu cost c implies that only prices far enough from their opti-

1Since the disclosure law applies to only large retailers, the dataset does not include small food retailers,
pharmacy retailers, and mom-and-pop stores. We also exclude store-specific products that do not have a
general 13-digit barcode (e.g., fruits, vegetables, bakery goods).

2Extensive empirical literature has studied within-store synchronization of price changes. It typically finds
that synchronization of price changes within stores is higher than across stores: Lach and Tsiddon (1996),
Midrigan (2011), Bhattarai and Schoenle (2014), Dedola, Kristoffersenz, and Züllig (2019). Levy et al. (1997),
Dutta et al. (1999) found that retail prices for similar products tend to be more synchronized. Goldberg and
Hellerstein (2009), Bhattarai and Schoenle (2014) use producer price data to document that firms selling more
products adjust prices more frequently. Cavallo (2017), Gorodnichenko and Talavera (2017), Gorodnichenko,
Sheremirov, and Talavera (2018) find little difference in synchronization of price changes in online and offline
stores. DellaVigna and Gentzkow (2019), Hitsch, Hortaçsu, and Lin (2019) provide evidence of uniform
pricing by U.S. retail chains.
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mal levels will be adjusted simultaneously. So, the multi-product firm in our model adjusts

prices only infrequently, and when it does, it adjusts the prices of a substantial number of

products at the same time, but never all of them. It thus generates the key features of partial

synchronization pattern observed in the data.
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Figure 1: Daily fraction of prices changes, selected stores.
Note: Each plot provides the daily fraction of price changes for one of the four selected (brick-and-mortar)
stores in our dataset.

The relevant state variable in the model is the distribution of gaps between the actual and

optimal prices across products. Since each firm sells a continuum of products, in steady state

this distribution evolves deterministically and we can derive it analytically, even though

each individual price gap is stochastic. The firm follows a price-setting policy given by

deterministic adjustment dates {Tk}∞k=1 and thresholds {x̄k}∞k=1. At each time Tk, the firm

adjusts the prices of all products for which the current price differs from its optimal price by

a magnitude greater than x̄k in absolute value. The price-setting policy is characterized by

two constants: the time interval between consecutive adjustment dates, τ ∗ = Tk+1 − Tk, and

threshold, x̄∗.

We then study the responses of the price level and real output to a one-time unanticipated

impulse to money supply. These responses are determined by the the selection effect charac-

teristic in price-setting models (Golosov and Lucas, 2007). In a model where single-product

firms change prices independently from each other, the shock initially triggers adjustment of
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prices that are farther away from the optimal, amplifying the response of the aggregate price.3

In our model, the selection effect is influenced by synchronization of price adjustments. If

there is a large degree of synchronization (i.e., many prices are adjusted at the same time)

firms may bunch adjustments of prices with smaller price discrepancies, weakening the selec-

tion effect. We derive analytically the relationship between the selection effect and monetary

non-neutrality, extending Caballero and Engel (2007)’s result to a multi-product setting with

endogenous price synchronization. Our model encompasses two existing models as limiting

cases. The Alvarez-Lippi-Midrigan model corresponds to the extreme case with no selection

effect, and the Golosov-Lucas model is the limiting case in which selection is extremely high

and the real effect of the monetary shock is significantly smaller than in the Alvarez-Lippi-

Midrigan model.

What is the degree of monetary non-neutrality implied by the synchronization of price

changes we document in the data? We address this question numerically by calibrating

our model to match three price-setting statistics generated from the Israeli database: the

daily fraction and average absolute size of regular price changes, and synchronization of price

changes using the Fisher and Konieczny (2000) index. Our numerical results indicate that

even small deviations from full synchronization can significantly reduce the persistence of

real effects of demand shocks. For the degree of synchronization observed in the data, our

model generates responses very close to the Golosov and Lucas (2007) model. Although firms

in the partial synchronization model do not change all prices at the same time, they change

those prices that are farther from the optimal, triggering larger adjustments shortly after

the shock. Hence, the selection effect plays a key role in the partial synchronization model,

engineering a faster response of the aggregate price level and thus attenuating the monetary

policy effect.

Our numerical simulations imply that monetary non-neutrality is proportional to the kur-

tosis of price changes for a given frequency of price changes, indicating that the sufficient

statistic result of Alvarez, Le Bihan, and Lippi (2016) also holds in a the partial synchroniza-

tion setting.4 In our benchmark setting, the kurtosis of price changes increases monotonically

3Golosov and Lucas (2007) study the selection effect in the recent generation of applied general equilibrium
menu-cost models. Earlier theoretical contributions include Caplin and Spulber (1987), Danziger (1999),
Caballero and Engel (2007), among others. Carvalho and Kryvtsov (2018) propose a simple, model-free way
to measure price selection and its impact on inflation.

4The class of models studied in Alvarez, Le Bihan, and Lippi (2016) and Alvarez, Lippi, and Oskolkov
(2020) includes the case with a continuum of products but only full price synchronization. Karadi and Reiff
(2019), Dotsey and Wolman (2020) provide examples of empirically plausible models in which the conditions
for the Alvarez, Le Bihan, and Lippi (2016) result are not satisfied and the sufficient statistic does not hold.
In Karadi and Reiff (2019) idiosyncratic shocks are drawn from a mixture of two normal distributions. In
Dotsey and Wolman (2020) firms face a multi-state persistent idiosyncratic productivity process and i.i.d.
random menu costs.
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with the degree of synchronization. Lower synchronization implies a stronger selection effect

that, in turn, reduces the kurtosis of price changes relative to the kurtosis of fully flexible

price changes. Thus, the degree of synchronization is an independent mechanism that affects

monetary non-neutrality in a multi-product setting, which is a generalization of the results

in Midrigan (2011) and Alvarez and Lippi (2014).

Our calibrated benchmark model with Gaussian shocks and relatively small synchroniza-

tion predicts that the kurtosis of price changes is around 1.1, which is smaller than 3.5 in the

data. The model also does not generate small price adjustments. Those are empirical hur-

dles generally pertinent to menu-cost models with Gaussian idiosyncratic shocks (Midrigan,

2011). To address the discrepancies with the data, we extend the model along two dimen-

sions frequently employed in the literature. First, we replace Gaussian shocks to the firm’s

desired price with fat-tailed Poisson shocks as in Midrigan (2011). In this case, the degree

to which kurtosis of price changes translates into monetary non-neutrality depends on the

degree of price-change synchronization (for the same frequency of price changes). For kurto-

sis around 3, models with high synchronization generate larger non-neutrality than models

with lower synchronization; and the order flips as kurtosis becomes larger. These results

imply that with fat-tailed shocks the kurtosis of price changes is no longer a sufficient statis-

tic for monetary non-neutrality, because non-neutrality depends also on synchronization of

price changes. When we re-calibrate the Golosov-Lucas, Alvarez-Lippi-Midrigan, and partial

synchronization models to match the observed kurtosis of price changes (around 3.5), they

predict quantitatively similar cumulative effects of monetary policy, although the shapes of

impulse responses are different. Hence, when shocks are non-Gaussian, the determinants of

monetary non-neutrality become more complex, but the main takeaway remains intact, i.e.,

a realistic degree of synchronization implies considerable aggregate price flexibility.

In another extension we introduce a fraction of free adjustments à la Calvo, as in Alvarez,

Le Bihan, and Lippi (2016) and Nakamura and Steinsson (2010), to match the fraction of

small price adjustments, in addition to other targeted moments. The aggregate results,

however, are only slightly changed, because the fraction of small adjustments in our daily

data is relatively small. We show that time aggregation in weekly and monthly price data

can substantially inflate the share of small price changes, making it a more consequential

calibration target.

Contribution to the literature

This paper contributes to recent literature, spurred by Midrigan (2011) and Alvarez and

Lippi (2014), which asks whether the “multi-product hypothesis” is material for the effects of

monetary shocks. Under this hypothesis, a firm’s ability to adjust prices for its many products

may influence how quickly it responds to economic disturbances. The main takeaway from
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Midrigan (2011) and Alvarez and Lippi (2014) is that the degree of economies of scope faced

by multi-product firms and the resulting synchronization of within-firm price synchronization

are fundamental for real effects of monetary policy shocks.

The empirical literature has emphasized that firms, especially retailers, synchronize price

changes in their stores as a matter of course. Lach and Tsiddon (1996) use a sub-sample

of multi-product stores selling wine and meat during the high inflation period in Israel.

They find that price adjustments across stores tend to be predominantly staggered, but

those within stores tend to be highly synchronized. Bhattarai and Schoenle (2014) document

substantial within-firm price synchronization using micro data on U.S. producer prices. Other

studies documented that synchronization tends to increase with the number of products,

price flexibility, and within categories of similar products.5 While our evidence is in line with

these findings, we provide a more detailed and systematic breakdown of multi-product pricing

along both time and product dimensions. This paper’s empirical contribution is to establish

a significant degree of partial price synchronization in a typical retail store which stems from

occasional but regular peaks in store’s repricing activity. Since holidays and calendar fixed

effects are weak, this synchronization pattern is likely due to store-specific factors, such as

fixed cost of changing prices. We show that time-averaging can significantly lower measured

degree of synchronization, which underscores the importance of using high-frequency price

data.

Theoretical literature has emphasized the fundamental link between within-firm price

synchronization and macroeconomic effects of monetary shocks. Midrigan (2011) develops a

model with two-product firms facing maximal economies of scope in price adjustment and fat-

tailed cost shocks. Midrigan (2011) shows that when the model is calibrated to key moments

in micro data, it generates real effects of monetary policy that are five times greater than

those effects in the single-firm model in Golosov and Lucas (2007). Bhattarai and Schoenle

(2014) demonstrate that models with economies of scope in price adjustment can account

for within-firm price synchronization observed for U.S. producers. Alvarez and Lippi (2014)

expand Midrigan (2011)’s maximal economies of scope to an arbitrary number of products

for the case with Gaussian shocks. They establish analytically that both the size of the

output response and its duration increase with the number of products, converging to the

response of Taylor (1980) staggered price model when the number of products gets large.

Hence, both Midrigan (2011) and Alvarez and Lippi (2014) find that multi-product pricing

greatly amplifies the real effect of monetary shocks. This paper’s theoretical contribution is

5Studies of within- and across-firm price synchronization include Levy et al. (1997); Levy et al. (1998);
Dutta et al. (1999); Fisher and Konieczny (2000); Midrigan (2011); Stella (2014); Letterie and Øivind
Anti Nilsen (2016); Cavallo (2017); Gorodnichenko, Sheremirov, and Talavera (2018); Dedola, Kristoffersenz,
and Züllig (2019).
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to demonstrate that full synchronization of price changes in their models is crucial for this

conclusion.

Our framework endogenizes the degree of synchronization by allowing firms to balance the

costs of changing their prices across products and over time. Hence, the degree of synchro-

nization in the model is an independent mechanism that affects monetary non-neutrality, with

Golosov and Lucas (2007) and Alvarez and Lippi (2014) mechanisms nested as special cases.

When we match the general model to the data, we find that the degree of synchronization ob-

served in the data is consistent with weak monetary non-neutrality, similar to non-neutrality

in the single-product setup in Golosov and Lucas (2007). Hence, economies of scope in price

adjustments that lead to a realistic degree of partial synchronization of price changes do not

materially deter multi-product firms from responding to monetary disturbances.

The remaining sections of the paper are organized as follows. Section 2 provides new

evidence from price data for large food retailers in Israel. In Section 3, we present a multi-

product pricing model with endogenous synchronization of price changes, characterize the

firm’s decision functions, and calibrate the model’s parameters. The succeeding section

studies analytically and numerically impulse responses to a monetary shock in the model with

partial synchronization of price changes and its special cases. The last section concludes.

2 Evidence from the retail stores in Israel

In this section, we describe the novel dataset from large retail stores in Israel. Building on the

dataset’s detailed coverage of daily price changes for thousands of products in each store, we

analyze the degree to which each store synchronizes price changes across different products

in a given day. We document a significant degree of partial price synchronization in a typical

retail store which stems from recurrent spikes of the fraction of price adjustments. We show

that this synchronization pattern is not due to price discounts, holidays or calendar fixed

effects. Finally, we demonstrate that our findings are not exclusive to Israel. We show that

synchronization of price changes across stores and across products in a store are in line with

previous findings that relied on weekly or monthly price data. We then use weekly scanner

data from retail stores in the United States to show that time averaging can significantly

wash out high-frequency variation in the daily fraction of price changes.
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2.1 The Israeli retail data

Following the “Social Protest” in Israel6 and the recommendations of the public committee

that was formed in response to this social movement, a “Promotion of Competition in the

Food Industry Law” was passed by the Israeli Parliament in 2014. In accordance with

this law, large food retailers7 operating in Israel are required to publish online daily price

information for all products sold in their stores. The law requires retailers to keep data only

for the previous three months.

The Bank of Israel scrapes, cleans, and consolidates this information on a daily basis. The

historical data include information for all products sold by large retailers—a total of 25 retail

chains and around 1,700 stores, which account for most of the volume of food retail sales in the

local market from May 20, 2015, until October 4, 2019. To manage computational constraints,

for each retailer, we only analyze stores in the top 5%, by the number of observations. Since

the disclosure law applies to only large retailers—with annual sales exceeding NIS 250 million

(about $70 million)—the dataset does not include small food retailers, pharmacy retailers,

and mom-and-pop stores. We also excluded store-specific products that do not have a general

13-digit barcode (e.g., fruits, vegetables, bakery goods). The remaining dataset contains 506.1

million daily observations for 71 brick-and-mortar stores from 25 retail chains.

For each store, we have information about the “base,” or regular, prices for individual

products on a daily basis. For four retailers we also have information about their online prices,

which we will treat as four additional online stores. Final prices are based on price discounts

(“sales”), which are defined independently and differently by each retailer. Information about

price discounts is entered by retailers as a code indicating, for example, a buy-one-get-one-

free discount, a third-product-free discount, or two products for 10 NIS (Israeli New Shekel).

Based on the available regular price and the discount code, we constructed the final price for

the stores owned by Shufersal, the largest food retailer in Israel.8

We report most empirical results for regular prices, and in Section 2.3 we review the

results for discounted prices.

A combination of two features of this dataset makes it particularly useful for documenting

pricing behavior of large retailers: extensive coverage of products in each store and high

frequency of product-specific price observations over time. The number of products sold in

a given store is large: on average 7,217 products are sold on a given day, with 1,311 (31,847)

6See also Chapter 1 in Bank of Israel (2012).
7A retailer with annual sales exceeding NIS 250 million (about USD 70 million). According to 2017

Household Income and Expenditure Survey (Table 38 in Israeli Central Bureau of Statistics, 2019), about
60% of food are purchased in chain stores, 15% in groceries, 4% in open market, and the rest in specialty
stores.

8Shufersal owns 350 stores nationwide, servicing about 35 percent of the food retail-chain market. Eighteen
of these stores are in our sample.
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products in the smallest (largest) store in the dataset. Due to the relatively short time span

of the data and stable near-zero inflation during the sample period, a large proportion of

products, around 38%, do not register a regular price change in our sample. Table 1 provides

statistics for the fraction and size of price adjustments across retailers.

(1) (2) (3) (4)

A.  By store daily 7,217 0.87% 20.8% 0.259

weekly 8,170 4.28% 20.2% 0.241

monthly 9,605 11.41% 20.0% 0.201

Price increases daily 7,217 0.45% 19.9% 0.218

Price decreases daily 7,217 0.42% 21.4% 0.201

Offline stores** daily 7897 1.01% 20.7% 0.280

Online stores** daily 10,003 0.99% 19.4% 0.343

B.  By chain daily 23,664 0.89% 20.8% 0.235

C.  All observations daily 301,496 0.99% 20.6% 0.206

Sample
Frequency of 

observations

Num. of products 

per period

Mean fraction of 

price changes

Mean absolute size 

of price changes

Synchronization 

of price changes

Table 1: Summary statistics for price adjustments.
Note: The table provides weighted means for statistic in columns (1)–(4) across stores (Panels A, D), chains
(Panel B), or unweighted means (Panel C). Weights are the average number of products in a store per day.
Synchronization of price changes in column (4) is measured by Fisher and Konieczny (2000) index defined in
Section 2.2. ** We select only brick-and-mortar stores belonging to the same chains as the four online stores
in our dataset.

In addition to daily price changes, we construct statistics for weekly and monthly price

changes defined on the basis of the last available price quotes within each week or month.

At a monthly frequency, price behavior of Israeli retailers resembles the behavior previously

documented in other surveys (Klenow and Malin, 2010). During the sample period, inflation

in Israel fluctuated roughly around zero. In a given month, around one-tenth of prices would

change across stores, with about an even split between price increases and decreases. Each

change is quite large, around 20% in absolute magnitude.

2.2 Synchronization of price changes

The most striking pattern of daily price changes is evident in Figure 1, which plots daily

fraction of price changes in the dataset for four selected brick-and-mortar stores from different

chains. It shows that occasionally stores reprice a bulk of their products. To be concrete,

we define the peaks in price-adjustment activity for a given store as the set of days with

the highest number of price changes that together account for half of price changes in all

days for that store. Table 2 shows the breakdown of frequencies of price changes for peaks
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and the remaining days (off-peaks). Only 5.3% of all days are peaks, i.e., one peak every 19

days on average. On a peak day a store reprices about 9.9% of all products, 20 times the

number of price adjustments on an average off-peak day. To emphasize unequal distribution

of re-pricing activity, the table also shows the results for the subset of peaks that together

account for 25% of all price changes in a store. Only 1.9% of all days are such peaks (one

peak every two months), but on such a day a store reprices about 15.1% of all products, 22

times the average number of price adjustments on other days.

weighted unweighted

Peak days (50%) 79 9.89% 9.49%

Off‐peak days (50%) 1419 0.48% 0.44%

Peak days (25%) 28 15.09% 14.50%

Off‐peak days (75%) 1470 0.67% 0.62%

All days 1498 0.87% 0.81%

Sample
Number of 

days

Frequency of price changes

Table 2: Frequency of price changes for peak and off-peak days.
Note: Table 2 shows the frequency of price changes for peaks and off-peaks by store. For each store, compute
the number of price changes in each day. Order days by this number in ascending order. Divide days into two
groups, where “peaks” are the days with the highest number of price changes that together account for 50%
(or 25%) of all price changes in the store, and “off-peaks” are the remaining days. For each group, compute
the weighted and unweighted mean fraction of price changes across stores. Weights are the average number
of products in a store per day.

To quantify the degree of synchronization of price changes in the data, we use the index

constructed in the spirit of Fisher and Konieczny (2000) as follows:

FKs ≡

√√√√ 1
Ns

∑
t

(
Frs,t − Frs

)2

Frs ·
(
1− Frs

) ,

where FKs is the index for store s, Frs,t is the fraction of price changes in store s period t,

Frs is its mean over t, and Ns is the number of price changes in store s. By construction,

FKs = 0 when price changes are perfectly staggered, and FKs = 1 when when they are

perfectly synchronized.9 Figure 2 provides the distribution of FK index values for daily

frequency across stores. The weighted mean of the index is 0.259 on average, and it varies

considerably across stores, with interquartile range of 0.098. Intuitively, the increase in

synchronization of price changes between stores in the 25th and 75th percentiles of the FK

index (0.218 versus 0.295) corresponds to an increase in the average distance between the

9See also Dias et al. (2005) for the properties of this index and a statistical test for staggering of price-
setting based on it.
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repricing peaks of 19 days, i.e., roughly doubling that distance.10
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Figure 2: Distribution of the Fisher-Konieczny synchronization index across stores.

To measure price synchronization, the literature also relied on statistics derived from pro-

bit or logit regressions (Midrigan, 2011; Bhattarai and Schoenle, 2014; Dedola, Kristoffersenz,

and Züllig, 2019). However, these statistics are no longer reliable when the distribution of

the fraction of price changes places a lot of weight on extremes, as is the case in our analysis.

We demonstrate this result in Appendix A.3, where we also provide the estimated probit

regression coefficients.11

Peaks are present in all stores in the sample, although there is substantial variation in

the timing of peaks across stores. There are apparent chain effects in price adjustment:

peak days are highly synchronized across stores belonging to the same chain, rather than

across chains. Table 1 reports that once we pool observations across stores in the same

chain, synchronization of price changes reduces only marginally. We do not find significant

differences between synchronization of regular price increases and decreases.

Finally, re-pricing peaks do not appear to reflect price adjustments for a specific subset

of products. When we compared product-level frequencies of price changes, separately, for

10Using the model in Section 3 we show analytically that the FK index is proportional to
√
τ∗, where

τ∗ is the distance between repricing peaks (assuming fixed frequency of price changes and no off-peak price
adjustments). This mapping fits the empirical data well; for example, it predicts that the distance between
peaks for stores in the 25th and 75th percentiles of the FK index differs by 83%, in line with what we observe
directly.

11For robustness, we analyze yet another synchronization measure that is well-behaved when the fraction
of adjustments has peaks. This measure is akin to the Gini inequality index. It is based on the Lorenz
curve that maps cumulative fraction of price changes against the percentile of days according to the number
of price changes in a day, ranked in ascending order. We demonstrate in Appendix A.3 that FK and Gini
synchronization measures are qualitatively in line with each other across different cuts of the data.
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peak and off-peak days, we found that for most products prices tend to adjust both on peak

and off-peak days (Appendix A.2).

2.3 Price discounts

Do these patterns in adjustment of regular prices also apply to final prices, which incorporate

various types of price discounts? Although our main dataset contains only regular prices,

we collected information on price discounts for 10 stores of the largest retail chain in Israel,

Shufersal, from January 2016 until mid-2019. We constructed the final price based on the

available regular price and the discount code, indicating, for example, a buy-one-get-one-free

discount, a third-product-free discount, or two products for 10 NIS (Israeli New Shekel).

Corresponding tables and figures are in Appendix A.4.

Price discounts, or “sales,” are common in the data, accounting for 26% of all price

observations. A typical price discount is a large and temporary reduction in price (Klenow

and Kryvtsov, 2008; Nakamura and Steinsson, 2008). A sale is associated with a discounted

price that is on average 24% lower than the corresponding regular price, and it lasts around

49 days. Since final prices incorporate discounts, they change more frequently and by a larger

magnitude than regular prices. The mean fraction of final price changes is 25.7% per month

(10.0% for regular price changes), and the mean absolute size of those changes is 23.2%

(19.2% for regular price changes).

We find that our measures of synchronization yield similar results for final and regular

prices. Only 4.8% (1.9%) of days in the Shufersal sample account for 50% (25%) of all final

price changes, which is close to 3.3% and 1.1% of days for regular price changes. The mean

Fisher-Konieczny index values for final prices, 0.355, are only a bit higher than 0.262 for

regular prices, possibly reflecting higher average fraction of adjusting final prices. These

results suggest that retailer’s decisions to post price discounts are largely independent of

decisions to change regular prices. In particular, there are no clear peak days for changing

price discounts in the store like we observe for regular prices.

2.4 Calendar fixed effects

Calendar events—holidays and week/month fixed effects—are not important factors for peaks

in price adjustments.

Holidays. We study the overlap of repricing peaks with holidays or holiday eves in

Israel. Out of 1598 days in the sample, 138 are national holidays. On some of the holidays

(e.g., religious holidays) stores are closed. The overlap between the peaks in store and the

holidays is small: on average, only 6.5% of peak days are holidays and, in turn, only 4.1% of
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holidays are peaks. These frequencies are similar if we aggregate store observations by chain

or the entire sample (see Appendix A.5).

During the week before a holiday, the likelihood of a peak day falls by about one-quarter.

Using the subset of the Israeli data for the largest food retailer, Shufersal, we find that

during weeks before the holidays, retailers increase the frequency and size of price discounts,

especially before two major holidays—Rosh Hashana (New Year) and Pessach (similar to

Easter). The effect of weeks prior to holidays on the final price (the sum of the regular price

and the discount) is not significantly different from zero. This evidence suggests that prior

to holidays, retailers shift their pricing activity toward price discounts. This is consistent

with evidence in Warner and Barsky (1995) that retailers time their markdowns to periods

of high demand and fierce competition between chains.

Week/month fixed effects. We also looked at the prevalence of peaks by day of the

week and by day of the month. Appendix A.6 provides distributions of the daily price changes

and their frequency by day of the week (month). Peaks tend to fall more frequently early in

the week (Mondays and Tuesdays) and are the least frequent during the weekend (Fridays

and Saturdays). This pattern is somewhat offset by the higher fraction of price adjustments

during peaks that fall on Fridays (11%) and Saturdays (14%) relative to working days (around

8%). Peaks are twice as likely to occur during the first week of the month than on any other

week. The number of adjustments during a peak day does not depend on the day of the

month.

This evidence is in line with earlier work by Levy et al. (1997), Levy et al. (1998), Dutta

et al. (1999) who found some evidence of time-dependent pricing using weekly price data for

U.S. supermarket and drugstore chains. For example, Levy et al. (1997) reports that most

prices in a store are changed on Sundays and Mondays. Since our data is daily, we can provide

a more accurate account of how much calendar events overlap with re-pricing peaks. We find

that re-pricing peaks are specific to each store, and price changes show little synchronization

across retailers. In all, only some of the partial synchronization of price changes by stores

can be associated with holidays and week/month fixed effects.

2.5 How representative are these findings?

We argue that overall these findings are not specific to Israel. We first find that synchroniza-

tion of price changes across stores and across products in a store is in line with what was

documented in the previous literature. Second, we point out that comparisons with other

micro data are obscured by time aggregation of daily price observations. Using weekly trans-

actions level data for the U.S. as the case study, we show that time aggregation can double

the share of small price changes, but does not change their dispersion or kurtosis. Finally,
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we demonstrate that spectral densities of the fraction of regular price changes display a high

mass at high frequencies for both Israeli and U.S. data. In this section, we summarize the

results, relegating details to Appendices A.2 and A.7.

Synchronization of price changes across stores and across products in a store

We observe, first, that synchronization within stores is higher than across stores. This finding

is in line with findings from previous studies of various datasets: Lach and Tsiddon (1996)

using selected food prices in Israel, Midrigan (2011) using U.S. Dominick’s scanner data,

Bhattarai and Schoenle (2014) using U.S. PPI data, and Dedola, Kristoffersenz, and Züllig

(2019) using Danish PPI data.

Next, we show that price changes are more synchronized within, rather than across,

categories. Previous empirical studies of retail micro data found that prices for similar

products tend to be more synchronized (Levy et al., 1997; Dutta et al., 1999). Furthermore,

we find that price changes for products with more flexible prices are more synchronized.

Third, price changes in larger stores tend to be more synchronized than in smaller stores.

This finding is consistent with Goldberg and Hellerstein (2009) and Bhattarai and Schoenle

(2014), who use producer price data from the Bureau of Labor Statistics to document that

firms selling more products adjust prices more frequently. Using Danish PPI micro data,

Dedola, Kristoffersenz, and Züllig (2019) find that synchronization of price changes is stronger

within firms than across firms in the same industry, and that within-firm synchronization

increases with the number of goods per firm.

Next, the frequency and size of price changes are very similar for online and offline prices,

but online prices are more synchronized. These findings are consistent with Cavallo (2017),

who studies price adjustments of large retailers that sell both online and offline. He finds

that the frequency and size of online and offline price changes are similar, and that there is

little synchronization between online and offline price changes. Gorodnichenko and Talavera

(2017) and Gorodnichenko, Sheremirov, and Talavera (2018) use online price data from price-

comparison websites and an online shopping platform. They find that relative to prices in

brick-and-mortar stores, online prices change more frequently, but otherwise they exhibit

similar behavior; in particular, prices posted by the same seller are similarly synchronized.

Online stores in our dataset have a much larger scale, offering 10,003 products per day, which

may explain the higher synchronization of price changes relative to prices in conventional

stores. We also compare only stores of the same chain, which helps us control for chain

effects.

Finally, we show that synchronization of price changes across products of the entire chain

is only slightly lower than at a store level. This suggests that retailers actively synchronize
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price changes across their stores. This is consistent with recent findings of uniform pricing

by DellaVigna and Gentzkow (2019) and Hitsch, Hortaçsu, and Lin (2019) for U.S. retail

chains.

Moments of the distribution of price changes

We compare our results for Israel with those from the Information Resources, Inc (IRI)

data for the United States. The IRI marketing and market research dataset contains weekly

transactions (“scanner”) data for 31 grocery products, such as milk, beer, coffee, razors,

laundry detergent, and frozen pizza, across 50 U.S. metropolitan areas.12

Measured synchronization of weekly regular price changes in IRI data is much lower than

synchronization of weekly regular price changes in the Israeli data, 0.098 versus 0.241. In

addition to differences between datasets,13 some of the difference could be due to time aggre-

gation of daily price changes to a weekly frequency. To better account for time aggregation in

dataset comparisons, we produce two additional sets of statistics: the spectrum of store-level

price changes and the fraction of small price changes.

Cavallo (2018) who shows that time aggregation can materially affect the distribution of

price changes. Furthermore, the mass of small price changes (Klenow and Kryvtsov, 2008)

and the thickness of the tails of the distribution (Midrigan, 2011; Alvarez, Le Bihan, and

Lippi, 2016) have been related to menu-cost models’ predictions for the degree of monetary

non-neutrality.

Following the literature, we filter out heterogeneity across stores by constructing “stan-

dardized” log price changes for each product. Our results show important influence of time

averaging on the distribution of price changes. Time aggregation from daily to weekly fre-

quency roughly doubles the mass of small price changes in Israel (Table 3). At weekly or

monthly frequency, kurtosis and the mass of small price changes is more in line with the scan-

ner data, although slightly lower in Israeli data. The results are not driven by heterogeneity

across products.

12More details are provided in Bronnenberg, Kruger, and Mela (2008).
13Higher frequency of weekly regular price changes in IRI data, 16.0%, than in the Israeli data, 4.3%, can be

attributed to mandatory item price tags in Israel. Levy et al. (1997) examine the process for changing prices
in five U.S. supermarket chains. They show that supermarkets situated in states that require a separate price
tag on each item face two-and-a-half times higher menu cost and adjust their prices twice less frequently than
supermarkets not facing such requirements. At the same time, lower synchronization of price changes in the
U.S. data suggests that store-specific cost of price adjustments—costs of collecting information, making and
implementing pricing decisions—are also lower in the U.S. relative to Israel.
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Bhattarai and 

Schoenle

Midrigan 

AC Nielsen

Midrigan 

Dominick's

Daily Weekly Monthly Monthly Weekly Weekly

A.  Israel

std(|zist|) / mean(|zist|) 0.68 0.67 0.69
kurtosis(zist) 3.5 3.3 3.4
fraction |zist| < 0.5*mean(|zist|) 0.14 0.27 0.28
fraction |zist| < 0.25*mean(|zist|) 0.06 0.10 0.11

B.  United States

std(|zist|) / mean(|zist|) 0.85 0.91 1.55 0.72 0.81
kurtosis(zist) 3.4 4.7 17 3.6 4.5
fraction |zist| < 0.5*mean(|zist|) 0.37 0.38 0.50 0.25 0.31
fraction |zist| < 0.25*mean(|zist|) 0.17 0.20 0.38 0.10 0.14

Regular prices, by store

Table 3: Standardized regular price changes, Israel and the United States.
Note: Standardized log price changes zist for product i, store s and time t are defined by subtracting from log
price pist the mean µs of non-zero log price and dividing by their standard deviation σs changes at a store

level: zist ≡ pist−µs

µs

∣∣∣
pist 6=0

. We also report these statistics at weekly and monthly observation frequencies.

Entries for Bhattarai and Schoenle (2014) (10 goods) and Midrigan (2011) (regular prices) are taken from
Table II in Alvarez and Lippi (2014).

Spectral densities of the fraction of price changes in a store

A useful way of circumventing the time aggregation problem is to examine the spectral

densities of store-level time series of the frequency of price changes.14 We apply spectral

analysis of three store samples: regular price changes in all retail stores in the Israeli data,

regular and discounted price changes in Shufersal stores in the Israeli data, and regular price

changes in IRI data. For each store in the sample, we compute spectral density of its daily

and weekly fraction of price changes. We then compute the weighted mean of the store-level

spectra, where weights are the average number of products in a store per day.

For the Israeli stores, spectral density is high for short frequencies of less than 30 days

(Figure 3). This remains the case as we aggregate daily price changes to weekly frequency

and construct corresponding weekly spectra. Heavy short-frequency spectra are consistent

with the time series patterns we document for daily price changes—a bulk of them occur

during peak days, which occur more frequently than once a month. For the most part,

peaks do not occur at regular time intervals, which elevates the whole short-frequency part

of the spectrum. Including price discounts does not alter the shape of the spectra, which is

consistent with our conclusion that peaks are not driven by sales. The weekly IRI spectrum is

also heavier on the short end, suggesting high-frequency movements in price changes similar

14We thank Fernando Alvarez for this insight.
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to those we find in the Israeli data.
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Figure 3: Spectral density of regular prices changes.
Note: Figures provide average spectral density of store-level regular price changes for all retail stores in the
Israeli data (“BoI”); regular and discounted price changes in Shufersal stores in daily Israeli data (“BoI,
Shufersal”); and regular price changes in weekly IRI data. For each store in the sample, we compute
spectral density of its daily and weekly fraction of price changes. We then compute the weighted mean of the
store-level spectra, where weights are the average number of products in a store per day. Spectrum
frequencies are daily (left) and weekly (right).

3 A model with multi-product firms and partial syn-

chronization

3.1 Overview

We develop a continuous time model of price setting in which each firm sells a continuum

of differentiated goods, with total mass normalized to one. We also refer to these goods as

varieties or products. Given the large number of products that stores in our data sample

sell, the assumption that firms in our model sell a continuum of products is suitable for

our purposes. Each variety is indexed by i ∈ [0, 1] and has a frictionless optimal price p∗i,t,

where t indexes time. All prices are in log units. The frictionless optimal price p∗i,t is the

profit-maximizing price for good i. Absent frictions of any nature, a firm always charges the

frictionless optimal price. In the presence of adjustment costs, good i’s price at instant t, pi,t,

may differ from the frictionless price, leading to a profit loss.15 For a firm with a continuum

of products, we can write the profit loss at time t, using a second-order approximation, as

15Appendix B.1 provides the microeconomic foundations for our general equilibrium model, and is based
on Alvarez and Lippi (2014) and Bonomo et al. (2019).
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follows:

Lt =

� 1

0

(pi,t − p∗i,t)2 di . (1)

Intuitively, this expression is the sum of profit losses associated with sub-optimal prices

across all products. Firms discount future costs at a rate ρ. We assume that each product

i’s frictionless optimal price follows a Brownian motion:

dp∗i,t = −σdWi,t ,

where Wi,t is a variety-specific standard Brownian motion assumed to be independent across

goods, and σ is a parameter that captures the volatility of this process that is common across

varieties. In order to retain tractability, we assume that there are no strategic complementar-

ities, i.e. the optimal price of a given product does not depend on the prices of other varieties.

This greatly simplifies solving for the aggregate price level following a common shock to all

price gaps, as we do in Section 4, because it eliminates feedback effects from firms’ pricing de-

cisions to desired prices. Although feasible, the introduction of such complementarities would

make the relationship between synchronization and monetary non-neutrality less transparent.

We therefore leave it to future work.

It is simpler to express the firm’s problem in terms of price discrepancies, or price gaps,

which are defined as xi,t = pi,t − p∗i,t. The law of motion above for p∗i,t implies that price

discrepancies, in the absence of price adjustments, are also Brownian motions of the form

dxi,t = σdWi,t .

It is convenient to state the loss function in terms of the distribution of these price discrep-

ancies. Let gt(x) be the probability density function (p.d.f) that describes the distribution

of price gaps.16 We can express the loss term (1) as

Lt =

+∞�

−∞

x2gt(x) dx . (2)

This is essentially a change of variables in equation (1). Instead of summing the losses

associated with each product, we now sum the loss x2 associated with each price gap x =

p−p∗, multiplied by the number of times (or density, more specifically) that such a gap occurs

gt(x). The evolution of gt(x), given an initial distribution g0(x), is given by a Kolmogorov

16The distribution of price discrepancies may have atoms following adjustment dates, and would thus not
be expressible as a probability density function. We omit this for simplicity.
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forward equation (KFE):

∂gt
∂t

(x) =
σ2

2

∂2gt
∂x2

(x) . (3)

The last component of the firms’ problem is the specification of the pricing constraints.

We assume that firms face menu costs of two different kinds. First, there is a fixed cost K

that firms are required to pay to make any number of price adjustments. Second, there is

a unit cost c that must be paid for each price adjustment. More precisely, since firms sell

a continuum of varieties, c is a cost per measure of adjusted prices. Therefore, a firm that

adjusts the prices of a measure m of its products in a single date must pay K + cm.

These pricing constraints give rise to optimal policies that have two important features.

First, a positive common cost K generates common inaction: there will be time intervals

in which the firm does not adjust any price. Second, individual menu cost c implies that

when a firm adjusts its prices, it does not adjust all of them. Intuitively, there will always

be products with arbitrarily small price discrepancies (in absolute value) for which it is not

optimal to pay the unit menu cost c and set the discrepancy to zero.

The relevant state variable in the model is the distribution of price gaps. Since each

firm sells a continuum of products, in steady state this distribution evolves deterministically,

according to (3). Given an initial distribution g0(x), the optimal policy consists of sequences

of deterministic adjustment dates {Tk}∞k=1 and thresholds {x̄k}∞k=1 such that at instant t = Tk

firms adjusts all prices that have price gaps x larger, in absolute terms, than x̄k, that is

|x| ≥ x̄k. Since there is no drift in the discrepancies’ Brownian motions, all reset prices

have discrepancies optimally set to zero.17 Consequently, the distribution of discrepancies

will feature a Dirac mass at x = 0 at adjustment dates. These Dirac masses are, however,

instantly dissolved by the diffusive nature of the Brownian motion.

To see the intuition about why the optimal policy takes the form of thresholds {x̄k}∞k=1

just described, notice that given that the common cost K is paid, adjusting the price of a

given good does not affect other goods’ price gaps and the expected flow of future costs that

arise from them. Therefore, after paying the common cost, the firm will decide independently

to adjust the price of a product whenever its price gap is high enough to make the benefit

of adjustment higher than c. Since the benefit of adjusting a product’s price is increasing

in its price gap, there is a minimum price gap level, x̄k, such that it is optimal to adjust all

17In the presence of a non-zero drift, the optimal sequence of thresholds has to be split into sequences of
upper thresholds {xk}∞k=1, lower thresholds {xk}∞k=1, and targets {x∗k}∞k=1 such that a price is adjusted at
date Tk only if the corresponding discrepancy x satisfies either x ≥ xk or x ≤ xk. The discrepancy is set to
x∗k, which is not necessarily zero. In other words, a positive (negative) inflation rate causes the expectations
that price gaps will fall (rise). In this case, adjusting firms will optimally reset prices to a level above (below)
their frictionless optima, even though costs are not being instantaneously minimized by this decision.
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products with price gaps larger than it.

3.2 Recursive formulation

The main difficulty in solving the partial synchronization model is that the relevant state

variable in the dynamic optimization problem is the entire distribution of price discrepancies.

Alvarez and Lippi (2014) show that, in the perfect synchronization case (c = 0), there is no

need to keep track of the whole distribution. In their model, all relevant information for the

firm can be summarized by a one-dimensional object, namely the loss term (1). This does not

apply in our framework, and we must state the Bellman equation for a value function that

takes as input an infinite dimensional object. Before proceeding to the recursive formulation,

however, it is convenient to go through two simple mathematical results.

Lemma 1. Let φ(·) denote the p.d.f. of a standard normal distribution. Given an initial

condition g0(x), the solution of the KFE (3) is

gt(x) =

+∞�

−∞

1√
σ2t

φ

(
x− y√
σ2t

)
g0(y) dy . (4)

Proof. See Appendix B.2.

Lemma 2. In the absence of price adjustments, the loss term (2) evolves linearly according

to

Lt = L0 + σ2t . (5)

Proof. See Appendix B.2.

Lemma 1 expresses the distribution of price gaps at time t as the convolution of the initial

distribution g0 and a normal p.d.f. This is intuitive: the distribution at time t corresponds

to the “sum” of the initial distribution and an independent Gaussian shock, which reflects

the fact that price gaps follow independent stochastic processes with normally distributed

increments. Lemma 2 simply reflects the fact that the variance of a Brownian motion increases

linearly with time, as it is the sum of independent, equally distributed components.

Now let V (g) denote the value function of a firm, which takes as input the distribution

g of price gaps. We shall state the problem recursively for the case in which g is the distri-

bution of price discrepancies immediately after the payment of the fixed cost K, but before

any price adjustments take place. Such a choice for the state variable is convenient for the

numerical procedure we adopt, which involves using a simple, yet precise, approximation for
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this distribution, as explained in Appendix B.3. The function V then satisfies

V (g) = min
x̄,τ

cm(x̄, g) +

τ�

0

e−ρt(L0 + σ2t) dt+ e−ρτ [K + V (gτ )] , (6)

where the choice variable x̄ is the threshold such that prices with gaps larger than x̄ are reset,

and τ is the amount of time the firm decides to wait until the next price-adjustment date.

The function m(x̄, g) is the mass of reset prices, defined as

m(x̄, g) =

�

|x|≥x̄

g(x) dx .

L0 is the instantaneous loss associated with the intermediate distribution g0(x), which is the

distribution of price discrepancies after adjustments are made, given by

g0(x) = g(x)1(|x| < x̄) +m(x̄, g)δ0(x) ,

where 1(·) is an indicator function and δ0(x) is the Dirac function centered at the point

x = 0. Since prices with discrepancies larger than x̄ are reset, the distribution g0(x) is simply

g(x) with the tails removed and their mass sent to the origin, as adjusted prices have zero

discrepancies. Finally, gτ (x) is the solution of the KFE (3) at the next adjustment date τ ,

given the initial condition g0(x) and computed using (4).

The meaning of (6) is the following. After paying the fixed cost K, the firm adjusts prices

that correspond to the tails of the distribution of price gaps (|x| > x̄) that amount to a mass

m(x̄, g) of products, and consequently, the firm pays cm(x̄, g) in unit costs. After resetting

prices, the firm is left with a new distribution of price discrepancies g0(x) that generates

instantaneous loss L0. Since the evolution of g0(x) is deterministic, given by (3), the firm

then chooses how long to wait (τ units of time) until the next price-adjustment date, when

it pays the fixed cost K and obtains continuation value V (gτ ). In the meantime, the firm

incurs losses that grow linearly over time, as given by (5).

Finally, solving the Bellman equation above gives us optimal policies x̄(g) and τ(g). We

then define a steady-state distribution g∗ as a p.d.f., with corresponding optimal policies

τ ∗ = τ(g∗) and x̄∗ = x̄(g∗), which remains unchanged after the process of resetting prices

according to the discrepancy threshold x̄∗ and waiting time periods τ ∗ until the next adjust-

ment date. Therefore, when the system starts from the distribution g∗, the trajectory of the

state distribution repeats itself every τ ∗ periods. Formally, we have:

Definition 1. A steady-state distribution is a p.d.f. g∗ and optimal policies τ ∗ = τ(g∗) and
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x̄∗ = x̄(g∗), which satisfies the fixed-point problem:

g∗(x) =

+∞�

−∞

1√
σ2τ ∗

φ

(
x− y√
σ2τ ∗

)
[g∗(y)1(|y| < x̄∗) +m(x̄, g∗)δ0(y)] dy . (7)

The system is easily solvable by creating a discrete grid for possible values of x, since (7)

writes g∗ as a linear transformation of the term in square brackets. This term, which is itself

a linear function of g∗, is the distribution of price gaps immediately after prices are adjusted.

If we represent g∗ (.) by a vector of the values it attains in the x grid, the problem boils down

to finding an eigenvector of a large matrix. Figure 4 shows the steady-state distribution of

price gaps g∗ and g∗0, before and after price adjustments respectively, and price changes for

illustrative parameter values. The spike at x = 0 is the finite grid analog of a Dirac mass,

and the price-change distribution corresponds to the tails of the stationary distribution g∗.
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Figure 4: Steady-state and price-change distributions for parameter values ρ = 0.04, σ =
0.25, K = 0.0001, c = 0.001.

Finally, Figure 5 shows the share of reset prices on a daily basis for two different param-

eterizations. We can see that, similar to the data, our model generates a spiky pattern for

this statistic over time. It is also interesting to notice how the combination of common and

individual costs alters this pattern. A high common cost K, combined with a low individual

cost c is associated with higher but infrequent spikes, as expected. On the other extreme, a

low K, high c parameterization generates frequent but small peaks.
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Figure 5: Daily fraction of prices changes for different combinations of menu costs. Other
parameter values: ρ = 0.04, σ = 0.25.

3.3 Interpretation of price-adjustment costs

Our theory incorporates two-dimensional cost of price adjustment, in which one component

is product-specific (cost c) and the other is common for products in the store (cost K), as

in the early study by Sheshinski and Weiss (1992). Empirical literature documents multi-

faceted nature of price adjustments by retailers, including the labor costs of printing and

changing item price tags, the cost of gathering relevant information, and the cost of making

and implementing managerial decisions (Levy et al., 1997, Zbaracki et al., 2004). Our model

can be interpreted as a multi-product extension of models with both information frictions

and menu costs (Alvarez, Lippi, and Paciello, 2011, Bonomo et al., 2019), in the limiting

case in which the number of products goes to infinity. In such a case, profit-maximizing

prices are not observed, and the common cost K is interpreted as a fixed cost of obtaining

information about all frictionless optimal prices simultaneously, rather than a common menu

cost, while c remains a unitary menu cost. Although in such a model the impulse responses

to an aggregate shock are in general different from responses in our benchmark model, we

show in Appendix B.4 that they are equal up to a first order. Hence, the nature of the

common component of price-adjustment cost—physical menu cost or the cost of acquiring

and processing information—is not material to the responses of aggregate price and output

of an industry dominated by large multi-product retailers, as long as the monetary shock is

small. This result is also related to Alvarez, Lippi, and Passadore (2017) who show that for

a small monetary shock the responses in state- and time-dependent single-product models

are the same up to a first order. Like us, they conclude that for small shocks the underlying

nature of the nominal rigidity is irrelevant.
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Our model nests two other cases previously studied in the literature on price-setting.

Midrigan (2011) and Alvarez and Lippi (2014) study models in which firms sell a finite

number of products and are required to pay a single menu cost to reset all prices at once. In

those cases, the economies of scope of adjusting prices are maximal and, at any given instant,

the share of prices that a certain firm resets is either zero or one. In our model, setting c = 0

yields the infinite-product limit of the Alvarez-Lippi-Midrigan framework.

The other extreme case is K = 0. In this case, there are no economies of scope of

adjusting prices and we can imagine each firm in our model as a continuum of independent

firms subject to idiosyncratic shocks, each responsible for adjusting the price of a single good,

as in Golosov and Lucas (2007). In this extreme, firms continuously reset prices that reach

certain adjustment thresholds and the law of large numbers thus guarantees that in any given

time interval, e.g., a day, the share of products of a given firm that had their prices adjusted

is constant. Our model therefore flexibly captures pricing behaviors ranging from perfect

within-firm synchronization in price adjustments to variety-specific price adjustments.

3.4 Calibration

To compare predictions of different models, we calibrate not only the partial synchronization

model, but also the Golosov-Lucas (GL) and Alvarez-Lippi-Midrigan (ALM) cases. Since

we fix the time discount rate at ρ = 0.04, there are three parameters left to be calibrated

in the partial synchronization model: the volatility σ, the fixed cost K and the unit cost c.

We need therefore three moments from the data. As usual in the literature on price setting,

we use the frequency of price adjustments and the average absolute size of price changes.

Our measure of the frequency of adjustments is the average daily share of prices that a firms

adjusts. To capture the degree of synchronization of price adjustments by a multi-product

firm, we use the FK synchronization index as our third moment.

The GL and ALM models have two parameters each, since each of these settings has only

one menu-cost parameter. We therefore drop the FK index when calibrating these models.

This is a natural choice since FK statistics are fixed in those models: zero in the GL and one

in the ALM.

Table 4 shows moments for models and data, and Table 5 shows calibrated parameter

values. All models are able to match the average frequency and magnitude of price changes.

However, as discussed, only the partial synchronization model can match the FK index. As

for the untargeted moments, all models generate reasonable values for the standard deviation

of the distribution of price changes. None of the models employed here succeed in matching

the fraction of small adjustments, defined as those smaller (in absolute value) than one-

quarter of the average adjustment size. The GL and partial synchronization models are not
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able to generate any small adjustment, an issue well known in menu-cost models (Midrigan,

2011), while the ALM model significantly overshoots it. As for the kurtosis of the price-

change distribution, only the ALM model is able to generate a value close to the data, as the

price-change distribution in this model is always normal, thus implying a kurtosis of 3. In

Section 4, we discuss extensions that match these two additional moments.

Moment Data GL ALM Partial sync.
Targeted moments

Daily fraction of price changes 0.0087 0.0087 0.0087 0.0087

Average |∆p| 0.208 0.208 0.208 0.208

Fisher-Konieczny index 0.259 0.000 1.000 0.259

Additional moments

Standard deviation of ∆p 0.248 0.208 0.260 0.210

Fraction of small adjustments 0.06 0 0.16 0

Kurtosis of ∆p 3.53 1 3 1.09

Table 4: Moments from data and calibrated models.
Note: Values in the data are weighted means across stores in the data, provided in Table 1, first row, column
(2)–(4). Small adjustments refers to standardized price adjustments that are smaller (in absolute magnitude)
than one-quarter of the average standardized adjustment. Details for the moments of the distribution of
standardized price changes in the data are contained in Appendix A.7.

Parameter GL ALM Partial sync.
σ 0.370 0.464 0.374

K - 0.011 3.70e-05

c 0.0023 - 0.0020

Table 5: Calibrated parameter values.

Importantly, two features of our calibration may generate an artificially lower value of

the FK statistic. First, our model lacks aggregate and sectoral shocks. Shocks that affects

more than one product simultaneously may cause the fraction of price changes in adjustment

dates to vary, increasing our synchronization measure. Second, we work in the limit case as

the number of products go to infinity. Statistical variation in price adjustments that comes

from a finite sample of products would have similar consequences. In order to understand

the effects of these assumptions, we simulate a panel of 7200 prices, in line with the average

store in our sample, and introduce Brownian aggregate shocks, common to all products, with
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a 5% yearly standard deviation. We then compute the implied FK statistic for a firm that

follows the same steady state policy as in our baseline model.18 In this setting, we have a

modest increase in synchronization, from 0.236 to 0.237, which suggests that results are not

driven by these assumptions.

Figure 6 compares price-change distributions for all three models and data. Since in the

GL setting firms continuously adjust prices that reach certain thresholds, the price-change

distribution consists simply of two mass points placed on these limits. On the other hand,

in the ALM model, firms only pay the fixed cost K to adjust all prices, even those prices

that are close to their profit-maximizing levels. Thus, the price-change distribution features

many small price adjustments. The partial synchronization model features more variability

in the size of price changes than the GL case and, contrary to the ALM setting, no small

price adjustments. Only the partial synchronization model can match the two modes placed

approximately in a symmetrical manner around the origin in the empirical price-change

distribution.
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Figure 6: Price-change distributions for all models and data.

Figure 7 shows the daily fraction of adjustments for all models over time. As expected,

it is constant for the GL case and assumes only the values zero and one for the ALM case.

The partial synchronization model is therefore the one that comes closest to replicating the

frequent and short peaks seen in the data (Figure 1). The optimal policy for the partial

synchronization model in our calibration consists of adjusting the prices with corresponding

gaps larger than 17.4% every 8.6 days.

18This must be interpreted as an approximation. The optimal policy for a model with a finite number
of products and aggregate shocks is state-dependent and cannot be represented as deterministic adjustment
dates and thresholds.
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Figure 7: Daily share of adjusted prices for the three models. Spikes in the ALM model have
a height of one.

4 Real effects of demand shocks

4.1 Analytical results for the partial synchronization model

In our model, a frictionless optimal price is the sum of a product-specific shock that follows

Brownian motion and an aggregate demand component Mt that has so far been held constant.

Now we consider the responses of the price level and real output to a one-time, unpredictable

shock to Mt. Let Pt denote the aggregate price level, in logs, which is simply the average

price across all firms and products in the model economy. Real output Yt, also in logs, is

then given by

Yt = Mt − Pt .

We study an economy with a continuum of identical firms, which is hit by an unanticipated

aggregate shock of size ε at t = 0. This shock shifts aggregate demand Mt to Mt + ε and, as

a consequence, the price gap distribution of all firms is also shifted: gt(x) becomes gt(x+ ε).

Prior to the occurrence of the aggregate shock, we naturally consider the situation in which

all firms are in steady state, adjusting prices every τ ∗ periods. Moreover, we start with a

situation in which firms are uniformly distributed according to the time elapsed since the

last adjustment date, that is, a constant flow of firms adjusts prices over time before time

t = 0. In the absence of aggregate shocks, this distribution will be invariant over time. To

understand how aggregates respond to such a shock, we must first understand what optimal

policy following the shock looks like.19

19Since we employ the second-order approximation to the objective function, there are no general equilib-
rium feedback effects of an aggregate shock to a firm’s optimal policy (Alvarez and Lippi, 2014).
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Consider a firm that had its last adjustment date at instant t = −s, for a given 0 < s < τ ∗.

Recall that the firm’s problem is deterministic, since the evolution of the relevant state

variable, namely the distribution of price gaps, is perfectly predictable and can be computed

using the KFE (3). Therefore, after the unanticipated shock of size ε is realized at t = 0,

the optimal policy can be represented by a new deterministic sequence of adjustment dates

{Tk(ε)}∞k=1 and thresholds {x̄k(ε)}∞k=1 that depend only on ε and (implicitly) on s. Also,

define ∆k as the change in the firm’s average price in the k-th adjustment episode following

the shock, which is a function of the shock size ε and the optimal policy, although we omit

this dependence for simplicity. In the absence of any changes to aggregate demand (ε = 0),

the firm would follow its steady-state policy characterized by zero changes in its average price

(∆k = 0), and

T1(0) = τ ∗ − s ,

Tk+1(0) = Tk(0) + τ ∗ ,

x̄k(0) = x̄∗ .

To obtain analytical results for the responses of aggregate price level and output to

demand shocks, we focus on the limit as ε→ 0. As ε decreases, the adjustment dates converge

to the ones that would arise in steady state, as long as these dates vary continuously with ε.

Consequently, the firm’s average price will take discrete steps at dates of the form kτ ∗ − s,
as illustrated in Figure 8.
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Figure 8: Approximate response of the average price of a single firm following a small aggre-
gate shock of size ε.

Since we assume that firms’ adjusting times are uniformly distributed, and that adjusting

intervals are τ ∗, it follows that at each instant there is a density flow 1/τ ∗of adjusting firms.
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Moreover, for t ∈ (kτ ∗, (k+ 1)τ ∗), the average prices of adjusting firms change by an amount

∆k, so the aggregate price level changes at a constant rate ∆k/τ
∗. More precisely, define

Pε(t) to be the aggregate price level at instant t following a shock of size ε and let

δk = lim
ε→0

∆k

ε
.

We have the following result.

Proposition 1. The normalized aggregate price response Pε(t)/ε converges to a piece-wise

linear function with kinks at positive multiples of τ ∗ as ε → 0. Moreover, the slope of the

k-th line segment is δk/τ
∗.

Proof. See Appendix B.2.
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Figure 9: Price-level response to a small aggregate shock.

Figure 9 shows the limiting response of the aggregate price level to a small positive

aggregate shock, as established in Proposition 1. The slope of the first line segment of the

impulse response function is quantitatively important since, as we show below, it accounts

for almost 40% of the rise of the price level following an aggregate shock. To characterize

the slope analytically, we first establish another important property of the impulse response.

Let F be the steady-state instantaneous frequency of price adjustments, defined as

F = lim
∆t→0

Fraction of prices that change in (t, t+ ∆t)

∆t
.

Note that since F is a time density, it can take any positive value, including values greater

than one. Also, define f(x) as the density of the distribution of absolute size of price changes,
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which is simply the part of the curves shown in Figure 6 associated with x ≥ 0, and scaled

to integrate to 1. To characterize the slope of the first line segment, we make use of the

following lemma, whose proof and necessary definitions are presented in Appendix B.2.

Lemma 3. Changes in policies in response to an aggregate shock do not have first-order

effects on ∆k around steady state. More precisely, for any positive integers j and k we have

∂∆k

∂Tj
=
∂∆k

∂x̄j
= 0 . (8)

Proof. See Appendix B.2.

Lemma 3 is reminiscent of Proposition 1 in Alvarez and Lippi (2014), and earlier insights

from Caballero and Engel (1993, 2007). Alvarez and Lippi show that a firm’s optimal policy

after a monetary shock differs from the steady-state policy only up to second-order terms,

because aggregate variables do not interact with price gaps up to second order. In turn,

Lemma 3 establishes that in partial equilibrium, the effect of the shock on the optimal policy

is second order.

As a consequence of Lemma 3, we have the following result.

Proposition 2. The slope of the first line segment in the impulse response function is

δ1

τ ∗
= F × [1 + x̄∗f(x̄∗)] . (9)

Proof. See Appendix B.2.

The intuition for this result is the following. The immediate response of the price level

is the product of an extensive margin component F and an intensive margin, or selection

component, 1 + x̄∗f(x̄∗), which depends on the size of the marginal adjustment x̄∗ multiplied

by its density f(x̄∗). Caballero and Engel (2007) prove a similar result for a single-product

model.

4.2 Synchronization and real effects of demand shocks

We now turn to the analysis of the relationship between synchronization of price changes

and the magnitude of output response to demand shocks. Figure 10 shows impulse response

functions of several models calibrated to match the same frequency of price adjustments and

average size of price changes, but different values of the FK synchronization measure. Output

decays faster as synchronization fades. We can gain some intuition for this result by looking
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at expression (9). Since all models are calibrated to match the same frequency of adjustment,

the differences in responses must come from the selection component.20
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Figure 10: Real output response and synchronization.

We can see the ALM model as the limit when x̄∗ → 0. For a fixed frequency, the ALM

model delivers the slowest initial response. In fact, since the effect of the monetary shock

is fully reverted in the ALM model after the first round of adjustments, the first segment

corresponds to the whole positive part of the impulse response function. Since x̄∗ is the

smallest possible adjustment size, we have x̄∗ ≤ E|∆p|. We can thus see the GL model as

the limiting case in which x̄∗ → E|∆p| and f(x) approaches a Dirac mass at x̄∗. Therefore,

for a fixed frequency and mean adjustment size, the GL model can be seen as the limit

in which the speed of the initial price-level response blows up. The relationship between

synchronization and persistence of real effects of nominal shocks is thus directly associated

with selection effects explored by Golosov and Lucas (2007). If a firm adjusts a large fraction

of its prices on an adjustment date, there is not much room for selecting those prices, and

monetary shocks have more persistent real effects as a consequence.21

Looking only at the selection term 1 + x̄∗f(x̄∗), however, may not be sufficient to un-

derstand the relationship between synchronization and non-neutrality because the selection

term is related only to the initial, rather than total, degree of aggregate price flexibility. For

this reason, Figure 11 shows both the selection term and the cumulative output response,

measured as the area under the impulse response function, for varying FK values. We can

20Even though the instantaneous frequency F is not the same as the daily adjustment frequency we use in
our calibration, there is a one-to-one mapping between both, given by F = 365 × daily frequency in steady
state, as long as the interval between adjustment dates is longer than one day.

21Since we study the limiting case in which the shock size goes to zero, the aggregate response does not
come from anticipation of adjustment episodes.
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see that the marginal effect of synchronization on aggregate price stickiness is such that

small departures from the ALM framework can considerably reduce the degree of monetary

non-neutrality.

These results bear important implications for the degree of monetary non-neutrality asso-

ciated with the synchronization of price changes we document in the data. Figure 12 shows

the impulse response functions for the calibrated parameter values shown in Table 5. The

most salient feature of this figure is that the partial synchronization model, when calibrated

to match our data, is very close to GL, generating much less monetary non-neutrality than

ALM. Why is the calibrated partial synchronization model associated with so little non-

neutrality? First, note that almost 40% of the decay of output following the shock happens

in the first round of adjustments, underlying the first line segment of the impulse response

function. Less synchronization is associated with less persistent real effects, but as shown in

Figure 11, no synchronization or moderate levels of synchronization produce close results in

terms of non-neutrality. It turns out the degree of synchronization found in the data is mod-

erate, resulting in a partial synchronization model with enough selection to be quantitatively

very close to GL.

0 0.2 0.4 0.6 0.8 1

FK synchronization

1

2

3

4

5

6

7

8

9

10

1

1.5

2

2.5

3

Figure 11: Selection component 1 + x̄∗f(x̄∗) and cumulative response for various values of
the FK synchronization measure. Cumulative response of the GL model is normalized to 1.

4.3 The relationship between synchronization, the kurtosis of price

changes, and monetary non-neutrality

How do our conclusions relate to the sufficient statistic result derived by Alvarez, Le Bihan,

and Lippi (2016) (henceforth, ALL)? ALL show that, in a large class of pricing models, under
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Figure 12: Output response to a small aggregate shock.

the assumption that frictionless optimal prices follow Brownian motions, the area under the

impulse response function generated by a small aggregate shock should be proportional to

the kurtosis of the price-change distribution (for a given frequency of price changes).22 Our

partial synchronization model is not included in that class of models. Nevertheless, the

ALL result holds numerically for our partial synchronization model as well. Figure 13 shows

that as kurtosis of price changes varies across models with the same frequency but different

synchronization of price changes (solid blue line), the ratio of kurtosis to the area under the

impulse response function is roughly constant (red dotted line).23 For a given number of

products, varying the degree of synchronization endogenously changes the degree of kurtosis

produced by the model. Less synchronization leads to lower kurtosis because the selection

effect embedded in the price-adjustment mechanism of the model reduces the kurtosis with

respect to that of the frictionless price process.

Since in our baseline setup synchronization and kurtosis of price changes are directly re-

lated, we conjecture that synchronization is an alternative sufficient statistic for monetary

non-neutrality. This is no longer the case in a setup where ALL theorem does not apply. In

Section 4.4, we introduce fat-tailed shocks, which allows us to disconnect variation in synchro-

nization of price changes from their kurtosis. In that case, variation in price synchronization

22Alvarez, Lippi, and Oskolkov (2020) extend the sufficient statistic result to menu cost models with
a generalized hazard function. Karadi and Reiff (2019), Dotsey and Wolman (2020) provide examples of
empirically plausible models in which the conditions for the ALL result are not satisfied and the ALL
sufficient statistic does not hold. In Karadi and Reiff (2019) idiosyncratic shocks are drawn from a mixture
of two normal distributions. In Dotsey and Wolman (2020) firms face a multi-state persistent idiosyncratic
productivity process and i.i.d. random menu costs.

23We verify numerically that the variation in the standard deviation of price changes does not alter the
monotone relationship between kurtosis of price changes and monetary non-neutrality. This is consistent
with ALL’s theorem for small monetary shocks.
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Figure 13: Kurtosis of price-change distribution for various values of the FK synchronization
measure.
Note: For all values of FK, we calibrate the models to generate the same frequency and average absolute size
of price changes.

has an independent impact on real effects of monetary policy.

Large kurtosis of the price-change distribution documented in the Israeli data poses a

challenge to our model. As can be seen in Table 4, with Gaussian shocks it is not possible

to simultaneously match the kurtosis of price changes and the degree of synchronization of

adjustments. The degree of synchronization in the data is relatively small, which, as Figure

13 shows, is associated with low kurtosis. There are two possible modifications to our model

that have been frequently employed in the literature and that could help reconcile kurtosis

and synchronization, as we see in the data.

The first is the introduction of free adjustments à la Calvo, as in ALL and Nakamura

and Steinsson (2010). In this framework, each price is subject to random free adjustment

opportunities that arrive at a constant rate and independently across products. It turns out

that this modification of the model is not very helpful. As shown both in Table 4 and Figure

6, the share of small price changes is small in our sample, and therefore introducing free

adjustments to match this statistic does not make a substantial difference for the kurtosis of

the price-change distribution. Not surprisingly, the impulse response function of a monetary

shock remains almost unchanged in this case. We therefore leave this extension to Appendix

B.5.24 The other alternative, which we explore next, is the introduction of fat-tailed shocks

24As we discussed in Section 2.5 and Appendix A.7, time aggregation in weekly and monthly price data
can substantially inflate the share of small price changes, making it a more consequential calibration target.
For example, in our daily data, only 6% of adjustments are smaller in absolute magnitude than one-quarter
of the mean absolute size of price changes. When we time-aggregate observations to a weekly (monthly)
frequency, this share goes up to 10% (11%). In two weekly scanner data sets for the U.S. prices reported in
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to frictionless optimal prices.

4.4 Model with fat-tailed shocks

We consider a modification of our model in which frictionless optimal prices no longer follow

Brownian motions. We suppose instead that each p∗i,t follows a Poisson process, receiving

shocks with Laplace distribution (with zero mean and scale parameter β) and arrival rate

η,25 which is the average number of shocks that arrive in a year for a given product. The

simple introduction of infrequent shocks would by itself increase the kurtosis of the price-

change distribution even with Gaussian shocks, as in Midrigan (2011). However, to generate

the degree of excess kurtosis observed in the data, we add fat-tailed shocks based on the

Laplace distribution, which has a kurtosis of 6. Figure 14 illustrates this new stochastic

process for p∗i,t. Importantly, the Brownian motion can still be obtained as a limit case of

this Poisson process. If we take the limit as η →∞ and β → 0 (at a certain joint velocity),

we converge to a Brownian motion. Intuitively, this is the limit in which an infinite number

of infinitesimally small shocks arrive in each time interval.
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Figure 14: Sample paths of Brownian motion and Poisson process with Laplace shocks.

In this case, to simplify the numerical procedure, we do not solve for the optimal policy

of the firm.26 Instead, we calibrate the model by choosing policies x̄ and τ and parameters of

Midrigan (2011), this share is 10% and 14%; and this share is 10% in the weekly IRI data.
25The probability density function of the Laplace distribution we employ is therefore given by f(x) =

(2β)−1exp (−|x|/β), and has mean zero and variance 2β2. Time intervals between two consecutive shocks
have exponentially distributed lengths with mean 1/η.

26When shocks are Gaussian, the distribution just before the lump-sum cost is paid is approximately Gaus-
sian. Then the fact that the Gaussian distribution depends only on two parameters reduces the dimensionality
of the state space from infinity to two.
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the stochastic process η and β.27 We can do so without loss of generality as long as, for each

quadruple (x̄, τ, η, β), there exist parameters (K, c, η, β) that generate x̄ and τ as optimal

policies (note that η and β are the same in both quadruples). In other words, we can directly

choose the optimal policy to calibrate our model if, given any policy x̄ and τ , there exist

parameters under which it is indeed the optimal policy. We choose this approach because it

greatly simplifies the calibration exercise. The drawback, however, is that it does not allow

us to recover the values of the underlying menu costs K and c. Nevertheless, given that we

match the same moments, we expect these values to be very close to the ones we obtain in

Table 5.

As previously, we calibrate GL, ALM, and partial synchronization models with this new

stochastic process.28 Since we now have four instead of three model parameters, we need an

additional calibration target. Naturally, we choose the kurtosis of the price-change distribu-

tion. Calibration results are shown in Tables 6 and 7. The partial synchronization model is

able to match the targeted moments and generate reasonable values for the standard devi-

ation of the price changes. As for the fraction of small adjustments, results do not change

much, with ALM model still generating too many small price adjustments.

One key feature of the calibration of the ALM case, which is going to play an important

role in understanding monetary non-neutrality, is that it needs a smaller departure from the

Brownian motion case to generate the same kurtosis of price changes as in the data. This

can be seen from the high arrival rate of shocks η (around 36 per year, or three per month)

with a small standard deviation (Table 7). With Brownian shocks, the ALM model generates

normally distributed price changes with a kurtosis of 3, which is close to the value of 3.53

we measure empirically. On the other extreme, the GL model always generates a kurtosis

of 1 when shocks are Brownian, and consequently, it needs a substantial departure from the

Gaussian case. The partial synchronization case needs slightly less lepkurtic shocks than GL

to match the kurtosis of price changes found in the data.

Turning to monetary non-neutrality, Figure 15 shows impulse response functions of real

output to monetary shocks for all models. Interestingly, differences in the degree of non-

neutrality are substantially smaller than with the Gaussian shocks discussed earlier, because

the underlying process for p∗i,t is significantly more fat-tailed for the GL and partial synchro-

27We solve the model in the following way. Given parameters η and β and a policy x̄ and τ , we use equation
(7) to obtain the stationary distribution of price discrepancies (the latter equation must be slightly modified
for non-Brownian shocks). Having the stationary distribution, it is easy to compute any moments. Then we
optimize over the parameter space to find values that generate moments as close as possible to the data.

28In the knife-edge case in which there is no inflation, even in the ALM not all prices would be adjusted
when the fixed cost is paid. The reason is that, with infrequent shocks, some products will not have received
any shocks between two consecutive adjustment dates and will therefore have a zero price gap. We therefore
consider the limiting case µ→ 0 for the ALM model, so that all prices are adjusted after the firm pays K.
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nization cases, compensating for the selection effect embedded in those models.

Moment Data GL ALM Partial sync.
Targeted moments

Daily fraction of price changes 0.0087 0.0087 0.0087 0.0087

Average |∆p| 0.208 0.208 0.208 0.208

Fisher-Konieczny index 0.259 0.000 1.000 0.259

Kurtosis of ∆p 3.53 3.52 3.53 3.55

Additional moments

Standard deviation of ∆p 0.248 0.253 0.266 0.247

Fraction of small adjustments 0.06 0 0.17 0

Table 6: Moments from data and models calibrated with fat-tailed shocks.
Note: Values in the data are weighted means across stores in the data, provided in Table 1, first row, columns
(2)–(4). Small adjustments are defined as those smaller than one-quarter of the average size.

Parameter GL ALM Partial sync.
x̄ 0.059 0 0.074

τ - 0.315 0.024

η 4.70 35.95 5.78

β 0.150 0.056 0.129

Table 7: Calibrated parameter values for models with fat-tailed shocks.

To better understand how synchronization and kurtosis are related to monetary non-

neutrality, we calibrate each model to match the same frequency and average absolute size

of price changes, while varying the kurtosis of price changes. Figure 16 displays the relation

between the area under IRFs and the kurtosis of the price-change distribution for different

levels of synchronization. Results show that kurtosis of the price-change distribution is no

longer a sufficient statistic for the area under the impulse response function, as the curves

have different slopes according to FK levels. In addition, the effect of synchronization ceases

to be monotonic. The ALM model generates the strongest non-neutrality when kurtosis is

3, and the degree of non-neutrality across models is reversed for higher values of kurtosis.

37



0 0.1 0.2 0.3 0.4 0.5

Years

0

0.2

0.4

0.6

0.8

1

R
e

a
l 
o

u
tp

u
t,

 %

Golosov-Lucas

Alvarez-Lippi-Midrigan

Partial sync.

Figure 15: Impulse response functions for all models with fat-tailed shocks.
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Figure 16: Area under impulse response functions as a function of the kurtosis of price-change
distribution.
Note: For all values of FK and kurtosis, we calibrate the models to generate the same frequency and average
absolute size of price changes.

Figure 17 displays two graphs, relating the kurtosis of the price-change distribution, in

the first graph, and monetary non-neutrality, in the second, to the rate of arrival of shocks

η. The latter is inversely related to the kurtosis generated by the shock processes, with

higher values corresponding to lower kurtosis processes, closer to Brownian motion. Not

surprisingly, higher exogenous kurtosis of shocks (lower η) generates higher kurtosis of price

changes, when we keep the degree of synchronization fixed. A higher synchronization (higher

FK) shifts the curve upwards. Hence, when shocks are non-Gaussian, the determinants of

monetary non-neutrality become more complex. One the one hand, monetary non-neutrality
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is determined jointly by the kurtosis of the idiosyncratic shock process and price selection,

which is a function of synchronization. On the other hand, kurtosis of price changes is no

longer a sufficient statistic for non-neutrality, because it depends on a particular combination

of the kurtosis of shocks and the degree of synchronization of price changes.
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Figure 17: Area under impulse response functions as a function of the kurtosis of price-change
distribution.
Note: For all values of FK and rate of arrival of shocks, we calibrate the models to generate the same frequency
and average absolute size of price changes. The rate of arrival of shocks η is inversely related to the kurtosis
of the shock process, with higher values corresponding to processes more similar to Brownian motions.

5 Conclusions

The literature on multi-product pricing is still scarce and relatively new; there is still dearth

of evidence and theory to help us understand behavior of large retailers and their impact on

the economy. This paper contributes on both fronts. On the empirical end, we exploit unique

detail on day-to-day price changes across thousands of products sold in large food retailers

in Israel. A typical retailer synchronizes its regular price changes around occasional peak

days when a large share of store prices are simultaneously adjusted. This behavior suggests

that retailers actively exploit substantial economies of scope in their day-to-day price adjust-

ment. Based on available evidence, we conclude that this finding is robust to incorporating

price discounts, online prices, chain effects, and calendar effects. Future research can ad-

vance empirical evidence along several dimensions. First, data on quantities of sold products

complement price data and help gauge the substitution of consumption spending across prod-

ucts within the same store or certain category in the store (Chevalier and Kashyap, 2019), or

products supplied by the same vendor. Second, improved datasets can balance representation

of the economy by incorporating small- and medium-size stores, and by including durables,
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services, and other goods. Third, advancements in identification of monetary policy shocks

and longer data can provide corroborating evidence on the role of price synchronization in

monetary transmission (Hong et al., 2020). Finally, adding information about retailers’ pro-

duction costs (Dedola, Kristoffersenz, and Züllig, 2019), inventories and stockouts (Kryvtsov

and Midrigan, 2013), relationships with suppliers (Anderson et al., 2017), and the costs of

price adjustments (Levy et al., 1997) is crucial for further understanding the elements of the

price-decision problem faced by retailers.

On the theory side, we provide a generalization of existing models to a more flexible set-

ting with economies of scope in price adjustment. Depending on the parameter configuration,

our model can match an arbitrary degree of partial synchronization. We rely on a few key

simplifying assumptions to make the model tractable. We assume that shocks to each prod-

uct’s desired price are independent across products in the same store and across stores. Based

on our analysis, we posit that relaxing these assumptions will not qualitatively change the

main insight in the paper: the selection effect in partial synchronization models brings their

aggregate behavior closer to models with perfect staggering and substantial price flexibility.

Future models can refine quantitative implications of incorporating store- or chain-specific

disturbances and add strategic complementarities in price decisions for products within and

across stores.

References

Bank of Israel. “The Bank of Israel Annual Report for 2012.” URL http://www.boi.org.

il/en/NewsAndPublications/PressReleases/Pages/02042013.aspx.

Israeli Central Bureau of Statistics. “Data From the 2017 Household Expenditure Survey:

General Summary.” URL https://www.cbs.gov.il/he/publications/DocLib/2019/

households17_1755/e_print.pdf.
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