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Abstract

We propose a model that reconciles microeconomic evidence of frequent and large price

changes with sizable monetary non-neutrality. Firms incur separate lump-sum costs to

change prices and to gather and process some information about marginal costs. Ad-

ditional relevant information is continuously available, and can be factored into pricing

decisions at no cost. We estimate the model by Simulated Method of Moments, using

price-setting statistics for the U.S. economy. The model with free idiosyncratic and costly

aggregate information fits well both targeted and untargeted microeconomic moments and

generates almost three times as much monetary non-neutrality as the Calvo model.
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1 Introduction

Aggregate inflation and output respond slowly to monetary shocks. In contrast, individual

prices change somewhat frequently and by large amounts. Reconciling these two pieces of

evidence is one of the key challenges for the literature that studies the microfoundations of

monetary non-neutrality. Since the seminal work of Bils and Klenow (2004), who provided

comprehensive empirical evidence on price setting based on the data underlying the Consumer

Price Index in the U.S., this field has experienced renewed interest and noteworthy develop-

ments. Many papers have expanded the frontier of so-called menu-cost models. Other work has

analyzed the implications of explicit information frictions for price-setting behavior.1 Menu-

cost models fit microdata reasonably well, but, as Golosov and Lucas (2007) point out, tend to

generate little monetary non-neutrality.2 On the other hand, information costs generate more

realistic non-neutrality, but usually fail to produce nominal price rigidity.3

In this paper we propose a price-setting model that reconciles microeconomic evidence of

relatively frequent price adjustments with persistent real effects of nominal shocks. In our

model, both price adjustments and the gathering and processing of some types of information

about marginal costs are costly, requiring the payment of lump-sum costs.4 Additionally,

another relevant part of the information about firms’ marginal costs flows continuously, and

can be factored into pricing decisions at no cost.5 Notice that the nature of information costs in

our model goes beyond the costs of information acquisition. As in Reis (2006), information costs

in our model encompass the process of deriving the implications of the acquired information

for a firm’s profit-maximizing price. Hence, to emphasize this important aspect of information

costs, we will often refer to them as “information gathering and processing costs”.

We employ a novel approach to solve our partial information model, which is not amenable

to the solution approach employed by Alvarez, Lippi, and Paciello (2011). We then resort to

1For instance, Bonomo and Carvalho (2004), Reis (2006), and Alvarez, Lippi, and Paciello (2011) study
models with lump-sum information costs, as first analyzed by Caballero (1989). Woodford (2009), Mackowiak
and Wiederholt (2009), Matejka (2015a), (2015b), and Stevens (2019) study price setting in the presence of
rational inattention, following Sims (2003).

2An early contribution is Almeida and Bonomo (2002), who show that disinflation entails only small output
losses in an optimal state-dependent pricing model. There are exceptions, however, such as Gertler and Leahy
(2008) and Nakamura and Steinsson (2010). These papers show that menu-cost models can produce sizable non-
neutrality, but this requires additional ingredients. Gertler and Leahy (2008) explore real rigidities generated
by segmented input markets, and fat-tailed shocks. Nakamura and Steinsson (2010) explore heterogeneity in
price rigidity and real rigidities produced by input-output linkages.

3Most of these models tend to imply continuous price changes whenever the frictionless optimal price
features a known drift. There are exceptions, however (see Section 2).

4The literature on price setting with information frictions usually assumes that all information is costly
or observed with noise (e.g. Caballero 1989, Reis 2006, Moscarini 2004, Bonomo and Carvalho 2004, 2010,
Woodford 2009, Alvarez, Lippi, and Paciello 2011, 2016, and Baley and Blanco 2019).

5Gorodnichenko (2008), Knotek (2010) and Klenow and Willis (2016) propose menu-cost models in which
firms continuously incorporate partial information into pricing decisions.
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the Simulated Method of Moments (SMM) to estimate the model, using price-setting statistics

computed from micro price data from the U.S. Bureau of Labor Statistics. Finally, we study

how the estimated model reacts to monetary shocks.

The data favors a model with free idiosyncratic and costly aggregate information. It matches

price-setting statistics that we target in the estimation, and also performs well when assessed

against a set of untargeted statistics. At the same time, the estimated model produces a degree

of monetary non-neutrality that exceeds that of the Calvo (1983) model by a factor close to

three. The reason is that most price changes reflect idiosyncratic information only, whereas

aggregate information gathering and processing, which is key to the extent of monetary non-

neutrality, happens only infrequently.

The optimal price-setting model we propose is not trivial to solve. It differs from pure state-

dependent pricing problems, which can be cast in terms of controlling the discrepancy between

a firm’s current price and its frictionless optimal level. This price discrepancy determines

foregone profits due to price rigidity, and is thus the relevant state variable based on which

firms optimize. When the price discrepancy becomes large enough, firms incur the menu cost

to adjust their prices.6

In our model, the difficulty comes from the fact that part of the relevant information

about the frictionless optimal price is observed infrequently, owing to the lump-sum nature

of the information cost. At the same time, since part of the relevant information is freely

and continuously available, it may be optimal for firms to change their prices based on partial

information. Hence, firms need to estimate foregone profits given available information.

To solve this problem, we develop a tractable unified framework for solving optimal time-

and state-dependent price-setting problems. The key to making our approach tractable is to

decompose the estimate of firms’ foregone profits into two terms: a first component based

on the firm’s best estimate of its price discrepancy, and a second component due to the un-

certainty about this estimate. Under commonly used assumptions, this uncertainty increases

with the time elapsed since the last time the firm acquired full information (henceforth an

information date). This decomposition allows us to define two state variables, based on which

firms make decisions: the estimated price discrepancy given the firm’s information set, and the

time elapsed since its last information date. Hence, the optimal price-setting problem becomes

a two-dimensional optimal stopping problem, which can be solved using methods commonly

employed to price American options.7 Our framework can be used to study several models with

adjustment costs and infrequent information, including most price-setting problems analyzed

6Throughout, we follow most of the literature in working with a quadratic profit-loss function, which can
be obtained as a second-order approximation around the frictionless optimal price. For textbook treatments,
see Dixit (1993) and Stokey (2008).

7See, e.g., Wilmott, Dewine, and Howison (1994).
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Figure 1: Optimal pricing policy under partially costly information (illustrative parameters).
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previously in the literature. Thus, our contribution is also methodological.8

In our partial information model, a firm always has the option to incur the menu cost (K)

and make a price adjustment based on the current estimate of its price discrepancy (z). It can

also incur the lump-sum information cost (F ) to become fully informed. Figure 1 depicts the

optimal policy for illustrative parameter values. It is characterized by an inaction region in the

space defined by the two aforementioned state variables: the firm’s estimated price discrepancy

(z) and the time elapsed since the last information date (τ). Inside the inaction region, firms

neither change prices nor gather information. The subset of the boundary of the inaction

region depicted as solid blue lines triggers price changes. When its estimated price discrepancy

hits the lower (upper) boundary l(τ) (u(τ)), the firm increases (decreases) its price and sets its

estimated price discrepancy to c(τ) (solid black line). We refer to these as partially informed

price changes. The subset of the boundary of the inaction region depicted as a dashed red line

(τ ∗ (z)) triggers information gathering and processing. Whenever that boundary is reached,

the firm’s estimated price discrepancy jumps, as the firm pays the cost to learn the cumulative

unobserved shocks to the frictionless optimal price that took place since its last information

date. It then decides whether or not to incur the menu cost to adjust its price. It does so

whenever the price discrepancy falls outside the (l(0), u(0)) interval, in which case the firms

sets its price discrepancy to c(0). Hence, the optimal policy is both time- and state-dependent.

Figure 1 also depicts a sample path realization for the expected price discrepancy (jagged solid

black line).

We estimate the partial information model under two alternative assumptions for the costly

and free components of firms’ frictionless optimal prices. In one model, price-setters can

incorporate idiosyncratic information into their pricing decisions at no cost, while observ-

8We first developed and employed this methodology in a retired working paper (Bonomo, Carvalho, and
Garcia, 2011).
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ing/processing information about aggregate shocks is costly. The other model reverses these

assumptions. Finally, we estimate the Alvarez, Lippi, and Paciello (2011) model, in which all

information is costly.

For each model, we estimate four parameters: information and menu costs, and the size

of aggregate and idiosyncratic shocks. The models are estimated by SMM, minimizing the

distance to five price-setting moments computed from micro price data from the U.S. Bureau

of Labor Statistics.9

The model with costly aggregate and free idiosyncratic information yields an almost-perfect

fit and is the only one that is not rejected by a test of overidentifying restrictions. In addition,

only that model fits well three untargeted moments that the literature has focused on: the

kurtosis of the distribution of price changes, the shape of the distribution of the duration of

price spells, and the coefficient of a Coibion and Gorodnichenko (2015) regression of forecast

errors on forecast revisions, which identifies the degree of information stickiness. In addition

to fitting the data well, the story underlying the model with costly gathering and processing of

aggregate information is plausible. While collecting aggregate information may seem to involve

little cost, processing that information and deriving its implications to a firm’s optimal price

is arguably quite complex.

We then study the extent of monetary non-neutrality in the estimated economies.10 The

model favored by the data, with costly aggregate information, produces large and long-lasting

real effects of monetary shocks, thus reconciling the aforementioned micro and macro evidence.

The reason is that most price changes in that model reflect idiosyncratic information only.

Such partially informed price changes do not contribute to offseting monetary shocks. Price

changes that reflect aggregate information happen infrequently, leading to large and persistent

monetary non-neutrality. In contrast, in the other two versions of the model, price changes that

incorporate aggregate information happen frequently, and hence the real effects of monetary

shocks are short lived.

Finally, we compare the degree of monetary non-neutrality in the partial information model

with costly aggregate information with three benchmark models: Calvo (1983), Golosov and

Lucas (2007), and a version of the latter model with fat-tailed idiosyncratic shocks. The

three benchmark models are calibrated to match the frequency and mean size of price changes

targeted in our estimation. In addition, the version of the Golosov and Lucas (2007) model

with fat-tailed shocks is calibrated to generate kurtosis near the top of the range of empirical

9The time series of the price-setting statistics used in estimation are frequency of price increases, frequency
of price decreases, mean size of price changes, median size of price changes, and the frequency of price increases
squared. In Section 4.3 we show how these moments identify the estimated parameters. We thank Oleksiy
Kryvtsov for sharing the data with us.

10We follow the literature and measure non-neutrality through the area under the impulse response function
of real output to a one percent increase in nominal aggregate demand.
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estimates. When compared to the Calvo (1983) model, the partial information model produces

almost three times as much non-neutrality, whereas the Golosov and Lucas (2007) model with

fat-tailed shocks generates only 75% as much.

The estimated model with costly aggregate information yields too large an estimate for

the size of aggregate shocks when compared with the volatility of nominal US GDP. To assess

whether our conclusions depend on such counterfactual feature, we also develop and estimate

a multisector extension of the model that allows for sectoral productivity shocks, in which

we discipline the scale of aggregate shocks using data on nominal US GDP. The estimated

multisector model fits the data as well as the baseline model, and produces monetary non-

neutrality that exceeds that of the Calvo model.

The rest of the paper is as follows. In Section 2 we discuss the related literature. Section

3 presents our general framework for solving price-setting problems with adjustment and/or

information frictions. We then apply the framework to solve the partial information model.

Section 4 presents the data, estimation method, and estimation results. In that Section we

also discuss parameter identification, and assess the performance of the models based on a set

of untargeted moments. In Section 5, we analyze the aggregate effects of monetary shocks in

the estimated economies, and compare the partial information model with costly aggregate

information to benchmark models from the literature. The last section concludes.

2 Related literature

Several papers contribute to bridging the gap between microeconomic pricing facts and macroe-

conomic evidence on the real effects of monetary shocks (Gertler and Leahy 2008, Woodford

2009, Nakamura and Steinsson 2010, and Midrigan 2011 are a few prominent examples). Other

papers also analyze the interaction between menu costs and information frictions, and their

macroeconomic implications. Klenow and Willis (2007) introduce infrequent information col-

lection at exogenous intervals in a menu-cost model. They use the model as a laboratory to

analyze regressions of individual price changes on information that pre-dates the previous price

adjustment. Comparing regressions based on model-generated data with regressions based on

BLS micro price data, they conclude that individual prices react to news prior to the last

adjustment date, suggesting the presence of information frictions. Knotek (2010) uses indirect

inference methods to estimate a menu-cost model in which information about macroeconomic

shocks is updated at random times, as in Mankiw and Reis (2002). He uses both macroeco-

nomic data and price-setting statistics to estimate the model, and concludes that both menu

costs and infrequent information are needed to fit the data. Our model differs from his in a few

dimensions. Firms face both adjustment and information costs, and design the optimal pricing
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policy taking both frictions into account. In addition, since our model is estimated with price-

setting statistics only, its aggregate implications do not arise from the use of macroeconomic

data in the estimation. An earlier paper by Bonomo and Garcia (2001) also studies a model

with menu costs and exogenous information arrival at regular intervals. They solve for the

optimal pricing policy and then study its macroeconomic implications.

Alvarez, Lippi, and Paciello (2011) and Alvarez, Lippi, and Paciello (2018) are closer to

our paper in that they also study models of optimal price setting in the presence of menu costs

and lump-sum information costs. In their model, there is no partial information and firms

only entertain adjustment after incurring the information cost to observe their price gap.11

This allows the authors to characterize the firm’s problem and provide approximate analytical

solutions, by focusing on the value function at times of observation. Under zero inflation drift,

which they assume in their baseline model, the optimal policy entails two sequential decisions

by the firm: whether or not to incur the menu cost today to change its price, and how long

to wait until it is time to incur the observation cost again. The optimal duration of the spell

until the next observation is decreasing in the (absolute value of the) chosen price gap —

i.e., firms optimally choose to wait longer until the next observation when today’s price gap

is smaller. Alvarez, Lippi, and Paciello (2018) study the implications of these two pricing

frictions for monetary non-neutrality. They solve for the equilibrium of an economy populated

by many firms following that optimal pricing policy, and study how calibrated economies react

to monetary shocks. For models calibrated to match the frequency and mean size of price

changes observed in the data, they find that information costs lead to larger monetary non-

neutrality.

Our paper differs from theirs in several dimensions. First, our model features free partial

information, and so firms can decide to adjust based on that information only — i.e., without

incurring the information cost to learn about the costly component of marginal cost. Because

of the presence of partial information, our model is not amenable to the solution approach

developed by Alvarez, Lippi, and Paciello (2011). The reason is firms may adjust without

incurring the information cost, and cannot plan the time of the next observation only as a

function of the chosen price gap on information dates. Instead, firms need to decide at each

point in time whether or not to incur the menu cost to change prices, and whether or not to

incur the information cost to learn about the costly component of marginal costs. In order

to solve our model, we develop a tractable unified framework for solving optimal time- and

state-dependent price-setting problems, which is a methodological contribution in itself.

Second, in contrast to the common practice of calibrating models to a couple of price-

setting statistics, we estimate different versions of our model — including one without partial

11Alvarez, Lippi, and Paciello (2011) show that this is optimal as long as average inflation is small enough.
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information, as in Alvarez, Lippi, and Paciello (2011) and Alvarez, Lippi, and Paciello (2018)

— using Simulated Method of Moments and a richer set of moments computed from micro

price data. This allows us to conduct formal inference about model parameters, and to test

alternative models using overidentifying restrictions. Such restrictions reject the model without

partial information, while failing to reject the partial information model with costly aggregate

information. The latter model also fits better an important set of untargeted moments.12

Finally, in terms of substantive macroeconomic lessons, we find that the estimated par-

tial information model with costly aggregate information produces more than five times as

much monetary non-neutrality as the estimated model without partial information. Although

both models feature the same frequency of price changes, in the partial information model

with costly aggregate information only a small share of price changes incorporate aggregate

information. Hence, firms react to monetary shocks slowly. In contrast, in the model without

partial information, all price changes embody a response to monetary shocks.

Our paper is also related to Mackowiak and Wiederholt (2009). They study optimal price

setting under rational inattention, in the presence of both idiosyncratic and monetary shocks.

Because idiosyncratic shocks are much more volatile than monetary shocks, firms optimally

choose to allocate attention to tracking the former, at the expense of aggregate shocks. As a

consequence, firms face a filtering problem with relatively more precise signals about idiosyn-

cratic shocks. In this context, monetary shocks, which are filtered based on noisier signals,

have persistent aggregate effects.

Our estimated model that best fits the data has a similar flavor to Mackowiak and Wieder-

holt (2009), in that firms have more information about idiosyncratic shocks than about aggre-

gate shocks.13 Hence, most price changes reflect news about idiosyncratic cost components,

and the aggregate price level displays a sluggish response to monetary shocks. But similari-

ties end here. In their model, the information structure is endogenous, and their calibration

implies that firms choose to have more information about idiosyncratic shocks. In contrast,

we entertain nested models with partial information, with different assumptions about which

piece of information is free and which piece is costly, and let the estimation select the model

that best fits a rich set of price-setting statistics. This is done by formal estimation of the

different models. Crucially, the moments we target in estimation include the frequency of price

changes, which our model can fit because it features nominal price rigidities. This contrasts

with the Mackowiak and Wiederholt (2009) model, in which prices change continuously.

Baley and Blanco (2019) study a model of price setting with menu costs in which firms

12Namely, the kurtosis of the distribution of price changes, the distribution of the duration of price spells,
and Coibion and Gorodnichenko (2015) regressions of forecast errors on forecast revisions.

13The nature of information frictions in our model is different from that in Mackowiak and Wiederholt
(2009), however. While their model features rational inattention as in Sims (2003), ours assumes lump-sum
information costs, as in Caballero (1989) and Reis (2006).
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have imperfect information about their idiosyncratic productivity. The latter is subject to both

continuous shocks and infrequent jumps. Firms receive noisy signals about their productivity,

and need to filter this information in order to decide whether or not to incur the menu cost to

change prices. Infrequent jumps induce time variation in the degree of uncertainty that firms

face, which the authors refer to as “uncertainty cycles”. Baley and Blanco (2019) calibrate

their model to a set of price-setting statistics and show that it leads to around 2.7 times as

much monetary non-neutrality as the Golosov and Lucas (2007) model.

As in Baley and Blanco (2019), firms in our model also need to keep track of the uncertainty

regarding their frictionless optimal prices in order to decide on price adjustments. In their

model, in the absence of exogenous shocks to uncertainty, learning on the part of firms would

lead to convergence over time to a constant amount of uncertainty. In contrast, firms in our

model face increasing uncertainty over time, unless they incur the information cost to reduce

it. Hence, our model also features uncertainty cycles at the firm level. In addition, our model

features aggregate shocks.

Our papers are otherwise quite different. Information costs in our model are lump-sum, as

in Caballero (1989), Reis (2006), and Alvarez, Lippi, and Paciello (2011), whereas Baley and

Blanco (2019) assume noisy information that leads to a signal-extraction problem. We formally

estimate and test different models, and assess them against a set of important untargeted

moments to which the literatures on price setting and on information frictions have devoted

considerable attention. Finally, regarding aggregate implications, we find our model generates

more than 15 times as much monetary non-neutrality as the Golosov and Lucas (2007) model.

3 A menu-cost model with partially costly information

3.1 Informal description

We develop a model of price setting with costly price adjustments and partially costly informa-

tion. In the absence of these frictions, each firm would set its price equal to its instantaneous

profit-maximizing price — the so-called frictionless optimal price. The loss in profits per unit

of time from charging a given price is increasing in its distance to the (logarithm of the) fric-

tionless optimal price (p∗t ). Price changes entail a lump-sum menu cost (K). In Appendix

A, we present a simple general equilibrium model that yields an expression for a firm’s p∗t as

the sum of two components — a common (nominal aggregate demand) and an idiosyncratic

(productivity) component.14 Information about one of these components is continuously and

freely available, and can be factored into price-setting decisions at no cost. Gathering and

processing information about the other component entails a lump-sum information cost (F ).

14To simplify notation, we omit firm indices from firm-level variables.
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At this point we remain agnostic about the nature of the two marginal cost components,

and refer to them as the “free” and “costly” pieces of the information. Later, when we estimate

the model, we entertain three alternatives — namely, costly aggregate information and free

idiosyncratic information, a model which reverses these assumptions, and a model in which all

information is costly, as in Alvarez, Lippi, and Paciello (2011). We then let the data select the

model that yields the best fit.

Intuitively, because of the lump-sum nature of the information cost, a firm chooses to gather

and process information about the costly component of p∗t only at certain dates, which we refer

to as information dates. In between information dates, decisions about whether to incur the

menu cost to change its price have to be conditioned on the firm’s best estimate of p∗t , given its

(partial) information. These two possible choices — changing prices or gathering information

— imply an optimal inaction region, which we describe heuristically before spelling out the

model in detail and explaining how we solve this pricing problem.

Let zt denote the difference between the firm’s price and its best estimate of p∗t , given the

firm’s information.15 We refer to zt as the expected price discrepancy. Upon incurring the

menu cost K, the firm can choose a new price, and will do so in order to set the expected

price discrepancy zt to an optimal level, which we denote by ct. For a given information set,

adjustment is only worthwhile if the expected price discrepancy is “large enough” to justify

incurring the menu cost. This implies that at each point in time there are bounds lt and ut

on the expected price discrepancy such that the firm will increase its price whenever zt falls

below lt, and decrease its price whenever zt exceeds ut. The assumptions about the process

for the frictionless optimal price that we specify subsequently imply that the policy functions

lt, ct, ut do not depend on calendar time per se, but only on the time elapsed since the last

information date, denoted τ (i.e., the last time the firm incurred the information cost F to

gather full information about its frictionless optimal price). We thus write l(τ), c(τ), u(τ), and

refer to l(τ), u(τ) as the adjustment boundaries of the inaction region.

Turning to the information decision, upon incurring the information cost F the firm learns

the history of innovations to the costly component of p∗t . This amounts to a shock to the

estimate of the price discrepancy that the firm held just prior to gathering information. At any

given time t, gathering information is only worthwhile if the benefit of learning the innovations

that have occurred since the last information date exceeds the information cost F . As long as

the uncertainty associated with the best guess of p∗t increases with the time elapsed since the

last information date, the cost of not observing the underlying innovations will increase over

time. Hence, for each expected price discrepancy z, the optimal policy specifies a time elapsed

since the last information date τ ∗(z) that triggers information gathering. We refer to τ ∗(z) as

15Under full information, this difference gives the standard state variable used to solve menu-cost models
(e.g., Dixit 1991).
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the information boundary of the inaction region. In practice, because firms have the options to

adjust and to become informed, they will always find themselves within the inaction region.16

Figure 1 in the Introduction shows the optimal policy for illustrative parameter values.17 In

the sample path realization for the expected price discrepancy (zt) that we depict, there is one

partially informed adjustment before the firm decides to incur the cost to entertain information

about the costly component of p∗t . When the costly information is revealed, the time-elapsed

variable τ is reset to zero, and the firm learns the cumulative innovation to p∗t that occurred

since the previous information date. Then, the firm decides whether or not to incur the menu

cost and change its price, depending on whether the price discrepancy is inside or outside the

inaction region defined by (l(0), u(0)).

For small τ , the limits of the inaction region are dictated by the adjustment boundaries,

whereas for large τ they are defined by the information boundary. When information about

the costly component of p∗t is not yet too outdated, some new partial information might lead to

a large enough expected price discrepancy, inducing the firm to make a partially informed price

adjustment. After some point (corresponding to τ ≈ 0.5 in Figure 1), making partially informed

adjustments is no longer optimal. The reason is that by that time the firm’s information set

has “depreciated” enough (due to the accumulation of unobserved innovations to p∗t ). Thus,

a given expected discrepancy that might have triggered a partially informed adjustment early

on, will now trigger information gathering instead.

An interesting implication of optimal pricing behavior under adjustment and information

costs, which can be glimpsed from the previous description, is that it is never optimal to make

a partially informed adjustment just prior to an information date. Rather than incurring the

menu cost to make such an adjustment and then immediately incurring the information cost,

it is always better to reverse the order of these actions and keep the option to adjust, to be

exercised or not depending on the new information.18

We now turn to the specifics of the model and the solution method.

16This is true as long as the underlying process for p∗t is continuous (which we assume below). The only
exceptions are information dates, on which the firm may learn that its price discrepancy is outside the adjust-
ment bounds for τ = 0. But in those cases the firm will choose to incur the menu cost and adjust to c(0)
immediately.

17Parameter values are reported in Section 3.3, where we present the model formally.
18In Bonomo, Carvalho, and Garcia (2011) we show that the principle that it is never optimal to make an

adjustment just prior to the arrival of relevant information is rather general. In particular, we illustrate this
point in a setting in which information dates are exogenous and known to firms. In that case, the width of the
inaction region increases to infinity just before an information date.
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3.2 The model

We first solve the optimal price-setting problem of a single firm, and later estimate a model

of an economy populated by a large number of such firms.19 To avoid cluttering notation, we

omit individual firms’ subscripts from all variables. We assume the (log of the) frictionless

optimal price p∗t evolves according to:

dp∗t = µdt− σfreedWfree,t − σcostdWcost,t, (1)

where Wfree,t and Wcost,t are independent standard Brownian motions. Information about

Wfree,t is continuously and freely available, and costless to process. In contrast, gathering and

processing information about Wcost,t is costly. Any discrepancy between a firm’s actual price

pt, and its frictionless optimal price p∗t entails an instantaneous flow “cost” in the form of

foregone profits. As we show in Appendix B, after a normalization, these discrepancy costs

can be taken as being approximately equal to the square of the price discrepancy: (pt − p∗t )
2.

The objective of firms is to minimize the present discounted value of expected total costs,

which comprise flow discrepancy costs, and lump-sum adjustment and information costs.20

Under partial information about p∗t , in order to evaluate the expected flow cost due to price

discrepancies the firm must form a probabilistic assessment of p∗t given its information. We

can decompose the expected discrepancy cost at time t as:

Et(pt − p∗t )
2 = (pt − Etp

∗
t )

2 + V art(p
∗
t ), (2)

where Et and V art denote, respectively, the conditional expectation and conditional variance

given time t information. Most of the time, firms’ information sets are (partially) outdated,

reflecting information about the costly component of p∗t obtained at the previous information

date. Hence, Etp
∗
t ̸= p∗t , except on information dates. Notice also that, since firms have

continuous access to partial information about p∗t , the conditional variance V art(p
∗
t ) refers to

the component of marginal cost that is only observed at a cost — that is, to the σcostdWcost,t

component in equation (1). The first term in the right-hand side of (2) represents the flow cost

of deviating from the expected p∗t . The second term represents the expected flow cost from

not continuously entertaining full information about p∗t . In the absence of adjustment costs,

19In general, individual firms’ problems and aggregation have to be handled jointly, because of general-
equilibrium effects. We follow most of the literature and avoid this fixed-point problem by focusing on a
parameterization of the model that implies strategic neutrality in price setting (specifically, log consumption
utility and linear labor disutility). Under this parameterization, firms’ profit losses due to a sub-optimal price
are independent of aggregate conditions to a second-order approximation (see Gertler and Leahy 2008 and
Alvarez and Lippi 2014, and also Appendix B).

20For a formalization of the firm’s infinite horizon problem, see Bonomo, Carvalho, and Garcia (2011). Here
we focus on its recursive formulation.
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pt would be set equal to Etp
∗
t , reducing the first part of the expected discrepancy cost to zero.

With adjustment costs, the firm must optimally solve the trade-off between letting pt drift away

from Etp
∗
t , and paying the cost to adjust based on partial information. As for the second term

in (2), it is zero when information can be fully and continuously incorporated into the pricing

decision at no cost, as in standard menu-cost models. If information gathering and processing

is costly, the firm can reduce that second term at the expense of incurring the information cost.

For any given time t for which the last information date was at time t0 < t, τ ≡ t− t0 denotes

the time elapsed since the last information date, and zt ≡ pt−Etp
∗
t denotes the expected price

discrepancy given the firm’s information set. With these definitions, we can rewrite the firm’s

expected discrepancy cost (2) as a function of τ and z:

Et(pt − p∗t )
2 = f(zt, τ) ≡ zt

2 + σcost
2τ. (3)

We can then write the value function at a time t— the optimized value of the firm’s dynamic

cost-minimization problem described above — in terms of the two state variables zt and τ . In

the inaction region, the value function, V (zt, τ), obeys the following Bellman equation:

V (zt, τ) = (zt
2 + σcost

2τ)dt+ e−ρdtEtV (zt+dt, τ + dt). (4)

In the inaction region, zt changes continuously because of both the drift µ and the free

component of p∗t , Wfree,t. So, zt evolves according the following stochastic differential equation:

dzt = −µdt+ σfreedWfree,t. (5)

Taking into account the process for the expected price discrepancy zt (equation 5) and

applying Ito’s lemma, the evolution of the value function in the inaction region can be described

by the following partial differential equation — the Hamilton-Jacobi-Bellman equation:

1

2
σfree

2Vzz(z, τ)− Vz(z, τ)µ+ Vτ (z, τ)− ρV (z, τ) + z2 + σcost
2τ = 0. (6)

Solving for the value function requires the specification of boundary conditions, which are

dictated by the price adjustment and information gathering decisions. We analyze each of

these decisions in turn.

3.2.1 The adjustment decision

Because adjustment costs are lump-sum, price adjustments at any point in time minimize the

value function at a given τ . Hence, the target point c(τ) when the time elapsed is τ satisfies:

12



c(τ) = argmin
z

V (z, τ). (7)

Since firms always have the option to incur the adjustment cost K and reset the expected

discrepancy to c(τ), optimality implies the value function must always satisfy

V (z, τ) ≤ K + V (c(τ), τ). (8)

The boundaries that define the adjustment inaction region, (l(τ), u(τ)), are functions of τ

that imply indifference between adjusting and not adjusting. Hence, they satisfy the value-

matching conditions that obtain when (8) holds with equality:21

V (l(τ), τ) = K + V (c(τ), τ),

V (u(τ), τ) = K + V (c(τ), τ). (9)

3.2.2 The information decision

Firms always have the option to incur the information cost F to gather and process information

about the costly component of p∗t , Wcost,t. Upon doing so, they learn the realization of Wcost,t

— or, equivalently, their frictionless optimal price p∗t — and the time elapsed since the last

information date, τ , is reset to zero. The decision of whether or not to get informed at any given

point in time involves comparing the value function at the prevailing state with the expected

value of a “lottery” that will yield the value at a new state after the realization of Wcost,t is

learned. Taking the lottery requires paying the information cost F . Optimality requires that

the current value function does not exceed the sum of the information cost and the expected

value of the lottery:

V (z, τ) ≤ F + E
[
V (z + σcost

√
τε, 0)

]
, (10)

where ε is a standard normal random variable. The information boundary, τ ∗(z), is defined

by points in the state space in which the firm is indifferent between getting informed and

continuing with outdated information, at which (10) holds with equality. Thus, on information

dates the expected price discrepancy receives a shock with distribution N(0, σcost
2τ ∗(z)), and

the time elapsed variable τ is reset to zero, yielding the following “informational value-matching

condition”:

21Readers familiar with impulse control problems may notice the absence of the usual smooth-pasting con-
ditions. As shown in Appendix D, equation (8) implies smooth pasting at the optimal boundaries, for each
τ .
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V (z, τ ∗(z)) = F + E
[
V (z + σcost

√
τ ∗(z)ε, 0)

]
. (11)

3.3 The optimal rule

We solve this pricing problem using a finite-difference method, which we describe in Appendix

C. Figure 1 depicts the optimal policy for the following illustrative parameter values: µ = 0.05,

σcost = σfree = 0.05, K = 0.001, F = 0.001, and ρ = 0.025. Under the optimal policy, the firm

uses Wfree,t-information between information dates and adjusts the expected price discrepancy

to c(τ) whenever it hits the l(τ) or u(τ) boundaries of the inaction region. Whenever the

expected price discrepancy hits the τ ∗(z) boundary of the inaction region, the firm incurs the

lump-sum cost F to gather and process information.

Partially informed price increases have size c(τ) − l(τ), while partially informed price de-

creases have size u(τ)− c(τ). In principle, those adjustment sizes depend on the time elapsed

since the last information date. Fully informed adjustments are potentially much more variable

in size, with lower bounds given by c(0) − l(0) for price increases, and u(0) − c(0) for price

decreases.

3.4 A particular case without partial information

In this subsection, we use our framework to tackle a particular case of the problem just de-

scribed, in which all information is costly. This case is analyzed in Alvarez, Lippi, and Paciello

(2011). We solve this problem by setting σfree = 0 and relabeling σ = σcost in our partial in-

formation model. Thus, the differential equation that characterizes the evolution of the value

function inside the inaction region becomes:

−µVz(z, τ) + Vτ (z, τ)− ρV (z, τ) + z2 + σ2τ = 0.

The conditions related to the adjustment decision (7, 8 and 9) and information decision (10

and 11) remain the same.

Figure 2 illustrates the optimal pricing policy under adjustment and information costs

when all information is costly. Panel a) is based on the following illustrative parameter values:

µ = 0.05, σcost = 0.05
√
2, K = 0.001, F = 0.001, and ρ = 0.025. The parameter σcost is

set to make the volatility of innovations to the firm’s frictionless optimal price equal to the

total volatility in the illustrative parameterization of the partial information model underlying

Figure 1. The solid (blue) lines l(τ), u(τ) are the adjustment boundaries of the inaction region

that may trigger uninformed adjustments, while the dashed (red) line τ ∗(z) is the information

boundary that triggers information gathering and processing. The thin black lines illustrate
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Figure 2: Optimal pricing policy in the model with no partial information
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sample path realizations for the expected price discrepancy.

From the comparison of Figure 1 and panel a) in Figure 2, it is apparent that the information

boundary is further to the right in the model with partial information (Figure 1). The reason

for less frequent information gathering and processing in the partial information model is

that in this case the firm has continuous information about one component of its frictionless

optimal price. This diminishes its uncertainty and thus reduces the benefits of incurring the

information cost to gather and process information as early as in the model without partial

information. For this set of illustrative parameter values, this effect is quantitatively important:

the maximum spell between two information dates is about twice as long in the model with

partial information.

Panel b) illustrates the possibility of uninformed price adjustments. Alvarez, Lippi, and

Paciello (2011) show that, when inflation is low enough, it is never optimal for firms to adjust

prices without information. They fully characterize and solve the model under this assumption.

Our solution method allows us to solve for the optimal pricing problem also when uninformed

adjustments are optimal. This is the case if trend inflation (deflation) is high enough or,

for a given level of trend inflation (µ ̸= 0), if the menu cost is small enough relative to the

information cost. In panel b), we illustrate the latter case by keeping the same parameter

values as in panel a) and reducing the menu cost by about two thirds (K = 0.0003). This

opens up the possibility of uninformed price changes, which do not occur under the optimal

pricing policy depicted in panel a).

4 Estimating the model

We use time series of price-setting statistics computed from micro data from the U.S. Bureau

of Labor Statistics to estimate the main parameters of the model by Simulated Method of
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Moments (SMM). Simulation-based methods are required, since the relationship between the

model parameters and observed statistics is highly non-linear and complex. As detailed in

the model in Appendix A, firms’ frictionless optimal prices are subject to nominal aggregate

demand shocks and idiosyncratic productivity shocks, both of which follow Brownian Motions

with volatility parameters σagg and σid, respectively. We estimate our model under three

different hypotheses regarding the nature of costly and free information.

In the first model we estimate, price-setters can incorporate all the information about

idiosyncratic shocks into their pricing decisions at no cost, while observing and processing

aggregate information is costly. This amounts to setting σcost = σid and σfree = σagg. We

then estimate another specification that reverses these assumptions, i.e. sets σfree = σid and

σcost = σagg. The last model is one in which all information is costly, as in Alvarez, Lippi,

and Paciello (2011) — σfree = 0 and σcost =
√
σid

2 + σagg
2. In Section 4.5, we estimate a

multisector extension of our model in order to understand how missing sectoral shocks may

affect our results.

4.1 Estimation method

Estimation by SMM involves minimizing the distance between data moments and moments

obtained through simulation of the model. Moments are obtained as sample averages of the

time series of price-setting statistics used in the estimation, which we describe in the next

section.

Let Φ ∈ Rp be a vector of model parameters to be estimated, Ψdata ∈ Rq, q ≥ p, a vector of

data moments and Ψsim (Φ) ∈ Rq a vector of the corresponding moments calculated from the

model’s simulated data. Ψsim (Φ) is obtained by simulating time series of the relevant price-

setting statistics, taking time averages to obtain the desired moments, and, finally, taking

averages of moments across many simulations. The estimator Φ̂ is obtained by solving the

following minimization problem:

min
Φ

(Ψdata −Ψsim(Φ))
′W (Ψdata −Ψsim(Φ)), (12)

where W is the optimal q× q weighting matrix, given by the inverse of the variance-covariance

matrix of sample moments adjusted for simulation error (see, e.g., DeJong and Dave 2011).

4.2 Data

We estimate the model with monthly time series of price-setting statistics from February 1988

to January 2005 (204 months), constructed by Klenow and Kryvtsov (2008). Those statistics

were computed from individual price changes (excluding sales) in the micro data underlying
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Figure 3: Time series used in estimation
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the Bureau of Labor Statistics’ Consumer Price Index (CPI) for the top urban areas of the

United States. In each month, the price-setting statistics are computed using the cross-section

dimension.

The five time series we use are: i) frequency of price increases; ii) frequency of price

decreases; iii) mean size of price changes; iv) median size of price changes; and v) frequency

of price increases squared. Figure 3 shows the time series of these five price-setting statistics.

As a first step for estimation, we remove possible seasonality in these series by regressing each

against a set of seasonal monthly dummy variables, and proceed with the residuals added to

the sample mean.

For the simulated data, we generate artificial time series of 204 months for 100 economies

with 13,500 firms each, and average simulated moments across the 100 artificial economies. The

number of firms in each economy (13,500) is similar to the number of quote lines (13,000-14,000)

underlying the price-setting statistics that we use in estimation (see Klenow and Kryvtsov

2008). In each economy, the initial distribution of firms’ state variables is drawn from the

stationary distribution to which the economy converges in the absence of aggregate shocks.22

22To obtain the stationary distribution, we solve its associated Kolmogorov Forward Equation, following the
numerical algorithm in Achdou et al. (2021).

17



To reduce the number of parameters to be estimated, we set the inflation drift µ equal to

the average CPI inflation over the period during which the micro data used to compute the

empirical price-setting statistics were sampled (3.3% per year). In addition, we set the time-

discount rate to ρ = 2.5% per year. Hence, for each of the three models described previously,

this leaves us with four parameters to be estimated: σagg, σid, K, F .23

4.3 Parameter identification

In this section we provide some intuition for how the five moments used in the estimation of

the model identify the parameters of interest (σagg,σid, K, F ). We do so by simulating, in

the partial information model, the effect of changing one parameter at a time on the moments

used in the estimation.24 Although in principle changing one parameter should affect several

moments, we focus on a subset of moments that are substantially affected by the parameter

at hand. For this analysis, we focus on the partial information model with costly aggregate

information. We vary parameter values around those used in the illustrative calibration of the

partial information model that underlies Figure 1, given by (σagg, σid, K, F , µ, ρ)=(0.05, 0.05,

0.001, 0.001, 0.05, 0.025).

We start by illustrating how time series variation in price-setting statistics is informative of

the scale of aggregate shocks. In the absence of aggregate shocks (i.e. σagg = 0) the distribution

of firms in the space (τ, z) would settle at a stationary distribution. Once this distribution is

reached, all price-setting statistics would remain constant over time.25 Therefore, the volatility

of aggregate shocks determines the time series variation of price-setting statistics. This effect

is illustrated clearly in Figure 4, which depicts simulated time series of the frequency of price

increases for two values of σagg. Higher aggregate volatility generates more variable frequency

of price increases.26 This provides intuition for how the uncentered second moment of the

frequency of price increases (which is obtained as the time-series average of the frequency of

price increases squared) identifies σagg.

We now use comparative statics to illustrate how the moments used in estimation change

as we vary parameter values one at a time, in Figure 5. Figure 5a shows that more volatile

aggregate shocks σagg increase the uncentered second moment (and the variance) of the fre-

quency of price increases. This is the comparative statics suggested by the simulated paths in

23Monte Carlo simulations confirm that our SMM estimation with artificial time series of these price-setting
statistics recovers the true parameter values used to generate the artificial samples.

24The intuition for parameter identification in the model without partial information is similar, unless noted.
25This is only strictly true in the limit with an infinite number of firms. In simulations with a finite number

of firms, idiosyncratic shocks do produce (sampling) variation in aggregate price-setting statistics. Hence the
importance of simulating the model with a number of firms that is comparable to the number of quote lines in
the micro data based on which the target moments are computed.

26This is also true of other price-setting statistics.
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Figure 4: Simulated time series of the frequency of price increases for two values of σagg
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Figure 4. To construct Figure 5a, for each value of σagg, we simulate 100 realizations of the

economy with 13,500 firms over 204 months, and average the value of the moment of interest

across simulations.

Figure 5b shows the effect of varying the scale of idiosyncratic shocks on the frequencies of

price increases and decreases, and on their difference. Owing to the positive inflation drift µ,

when idiosyncratic shocks are small (i.e. for small σid), price increases are much more common

than price decreases. As we increase σid, the asymmetry generated by the inflation drift is

attenuated by larger symmetric shocks, and hence the difference between the frequency of

price increases and decreases falls. We use the same procedure to generate the comparative

statics for the other parameters.

Identification of the menu cost K is straightforward, as the effects of varying the size of

menu costs are well known. As K increases, the inaction region widens. As a consequence,

price increases (and decreases) become less frequent and the mean adjustment size increases,

as shown in Figure 6c. Thus, both the frequency of price increases (and decreases) and the

mean adjustment size contribute to identification of K.

Finally, Figure 6d shows how the mean and median size of price adjustments change as

we vary the information cost F . To understand this comparative statics, it is useful to recall

that the distribution of price changes is a mixture of two underlying distributions: of fully

informed and of partially informed price changes. Fully informed price increases (decreases)

have minimum size given by c(0) − l(0) (u(0) − c(0)), and no upper bound. Hence, these

price changes dominate the right tail of the distribution of absolute price changes. In turn,

the distribution of partially informed price changes is less dispersed.27 This composition of

distributions is illustrated in Figure 6, for the illustrative calibration at hand.

27The size of partially informed adjustments is pinned down by the distances between the adjustment
boundaries l(τ), u(τ) and the target point c(τ). These distances do not vary much with τ .
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Figure 5: Parameter identification
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Under this calibration, when the information cost F increases, the mean size of adjustments

increases, whereas the median size decreases (Figure 6d).28 The reason why the mean size in-

creases is simple. When the information cost increases, the distribution of the size of partially

informed price adjustments does not change much (see Figure 6a).29 In turn, informed price

changes become less frequent, but larger on average (see Figure 6b), because unobserved inno-

vations accumulate over longer spells. In the relevant range of parameters — which includes

the ones used in the illustrative calibration, as well as the estimates of the model, presented

below — the effect of larger informed price changes dominates, and thus the unconditional

mean size of price changes goes up.

The median size of price changes decreases as a higher information cost is associated with

28In the model without partial information, both the mean and median size of price changes increase with
the information cost, but the difference between them still increases with F .

29This is so because the adjustment boundaries of the inaction region (l(τ), u(τ)), as well as the target
expected discrepancy (c(τ)), do not change much when the information cost varies.
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Figure 6: Distributions of price changes for different information costs
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a larger share of partially informed price changes (Figure 7c). The sizes of those partially

informed adjustments fall below the median of the overall distribution (see panels in Figure

6). Since the share of partially informed price changes increases with the information cost,

and their distribution is relatively invariant to F (see Figure 6a), the median of the overall

distribution of the size of price changes shifts to the left (Figure 7d).

4.4 Estimation results

Table 1 compares targeted data moments with those produced by the different estimated

models. Informal inspection of the moments produced by the models suggests that the partial

information model with costly aggregate information fits the data better than the two other

versions of the model — in fact, its fit is almost perfect (last row of Table 1). Indeed, a

formal test of overidentifying restrictions shows this is the only model that is not rejected by

the data (last two columns of Table 1). One may wonder whether the differences between

moments produced by the three estimated models are economically meaningful. As we show

below, in addition to fitting targeted moments better, the partial information model with costly

aggregate information also performs better when assessed against a set of important untargeted
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Table 1: Targeted and simulated statistics

Statistics f.pos. f.neg. avg. |∆p| med. |∆p| (f.pos.)2 J − stat. p− val.
Data 0.150 0.115 0.090 0.071 0.023 - -

No Partial info 0.148 0.119 0.088 0.076 0.022 75.5 0.000
Partial (σcost = σid) 0.162 0.108 0.089 0.072 0.031 37.8 0.000
Partial (σcost = σagg) 0.150 0.116 0.090 0.071 0.023 0.195 0.659

moments, namely: the kurtosis of the distribution of price changes, the distribution of the

duration of price spells, and the sensitivity of forecast errors to forecast revisions estimated

through Coibion and Gorodnichenko (2015) regressions.

Table 2 reports parameter estimates for the three models. In comparison with the two

other specifications, the model with costly aggregate information produces a larger estimate

for the variance of aggregate shocks, coupled with a larger information cost. In our model,

aggregate shocks are due to fluctuations in nominal GDP (see Appendix A). Hence, such a

high estimate for the volatility of aggregate shocks is at odds with aggregate data, which we do

not use when estimating the models. The high estimate for the volatility of aggregate shocks

may proxy for omitted sectoral shocks. In Section 4.5, we present a multisector extension of

the model with sectoral shocks in which we use aggregate data to discipline the volatility of

aggregate shocks. The multisector model also fits the micro moments well and is consistent

with nominal GDP volatility. Most importantly, that model corroborates the conclusions that

we draw below, based on the simpler one-sector model.

Figure 7 shows the optimal price-setting policies implied by the three estimated models.

Notice that the model with partial information in which aggregate information is free and

the model without partial information produce quite similar pricing policies. In contrast, the

model with costly aggregate information leads to a very different optimal policy, with a bigger

inaction region that encloses the other two. Its adjustment boundaries are wider, and costly

information gathering and processing happens less frequently.

Table 2: Parameter Estimates

σagg σid K F
No Partial Info 0.030 0.188 0.00003 0.0015

t-statistic 8.39 80.21 1.56 10.36

Partial σagg = σfree 0.011 0.197 0.00003 0.0021
t-statistic 7.60 88.24 14.40 20.69

Partial σagg = σcost 0.154 0.128 0.00030 0.0279
t-statistic 17.90 85.20 49.97 5.15

obs: t-statistics based on standard errors obtained with the delta method
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Figure 7: Optimal policies implied by the estimated models
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These differences in optimal policies imply different price-setting statistics (Table 3). Infor-

mation gathering/processing occurs more often in the model with no partial information and

in the model with free aggregate information: more than three times per year in both models,

versus once every 1.5 years in the model with costly aggregate information. In addition, those

two models feature more frequent information gathering than price adjustments, in contrast

with the model with costly aggregate information.30 Another difference is that in those first

two models almost all price adjustments are fully informed. In sharp contrast, 85% of price ad-

justments in the model with costly aggregate information are based only on information about

idiosyncratic shocks. Conditional on full information gathering/processing, price adjustments

happen less often in the costly aggregate information model than in the other two models: 75%

of the time versus 92%.

The intuition underlying these results is straightforward. The estimated model with costly

idiosyncratic information features small observed aggregate shocks. As a result, they rarely lead

to partially informed adjustments. Hence, this partial information model produces results that

are relatively similar to those in the model with no partial information. Results are different in

the model with costly aggregate information. Since the flow profit loss is a convex function of

the price discrepancy, the fact that the firm can react to news about the volatile idiosyncratic

marginal cost component reduces the incentives to gather costly information frequently. Hence,

for a given information gathering cost F , the firm chooses to sample less frequently. In addition,

the estimated information cost in the model with costly aggregate information is larger than

30In interpreting results for the models with partial information, one should bear in mind that the frequency
of information gathering and the frequency of observation do not coincide. Firms observe some information
all the time, but only incur the cost to gather and process full information infrequently. Thus, the results of
the estimated model with costly aggregate information do not contradict the survey evidence that suggests
observation happens more often than price adjustments (for a summary of the available survey evidence, see
Table 1 in Alvarez, Lippi, and Paciello 2018).
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Table 3: Additional price-setting statistics implied by estimated models

Baseline No Partial σcost = σid σcost = σagg

Price adj. per year 3.20 2.87 3.23
fully informed 100% 96% 15%

partially informed 0% 4% 85%
Info. gatherings per year 3.47 3.01 0.65
resulting in price adj. 92 % 92% 75%

Kurtosis of price change distribution 2.76 3.28 5.87

in the other two models, further contributing to less frequent information gathering.

In terms of economic magnitudes, the estimated parameters for the model with costly

aggregate information imply plausible adjustment and information costs when compared to

available evidence. Zbaracki et al. (2004), in their case study of a large industrial manufacturer,

identify three components associated with the costs of pricing decisions and price changes:

“physical costs” (menu costs), managerial costs (information gathering, decision-making, and

communication costs), and customer costs (communication and negotiation costs). These

costs amount to, respectively, 0.7%, 4.6%, and 14.7% of the firm’s net margin, adding up

to 20%. In the model with costly aggregate information, assuming elasticity of substitution

between goods equal to three (an upper bound obtained by Hobijn and Nechio 2018 with a

low level of aggregation), the estimated parameters imply that firms spend, on average, 5.7%

of annual steady-state profits on information and adjustment costs.31 Menu costs account for

0.3% of annual profits, whereas information costs account for 5.4% of profits — close to the

aforementioned estimates. The ratio of information expenses to resources spent for posting

new prices is around 19:1. This compares with a ratio of managerial costs to physical costs

of 6.5:1 in Zbaracki et al. (2004). If one uses the ratio of managerial plus customer costs to

physical costs, this ratio increases to 27:1.

A key feature of the model with costly aggregate information is that it endogenously gener-

ates a distribution of price adjustments with high kurtosis, as displayed is Table 3.32 The model

with costly idiosyncratic information, and the model with no partial information, as in Alvarez,

Lippi, and Paciello (2011), generate kurtosis similar to that of a normal distribution. Alvarez,

Le Bihan, and Lippi (2016) summarize available estimates of this moment for the U.S., which

31As shown in Appendix B, in order to obtain those costs as a fraction of steady-state profits, cost parameters
must be multiplied by θ(θ−1)/2, where θ is the elasticity of substitution between goods, and by the number of
price adjustments or information gatherings per year.

32The price-setting literature has devoted considerable attention to this statistic since Alvarez, Le Bihan,
and Lippi (2016). The authors showed that in a large class of models calibrated to match the frequency of price-
adjustments, the kurtosis of the price change distribution is a sufficient statistic for monetary non-neutrality,
measured as the area below the impulse response function of output with respect to a monetary shock. Our
model does not fall into the class models for which kurtosis is a sufficient statistic, as we further explore in
Section 5.
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range from 4 to 5.1. Models of optimal price adjustment with Gaussian shocks to marginal

costs tend to generate lower kurtosis. In the Golosov-Lucas model, kurtosis equals unit, while

a multiproduct pricing model generates kurtosis of at most 3 — i.e., the kurtosis of the dis-

tribution of shocks to marginal costs. In order to produce realistic kurtosis of price changes,

or to increase monetary non-neutrality, part of the literature resorts to leptokurtic shocks to

marginal costs (Gertler and Leahy 2008, Midrigan 2011), multiproduct pricing (Midrigan 2011,

Alvarez, Le Bihan, and Lippi 2016), or occasional free adjustments (Nakamura and Steinsson

2010, Alvarez, Le Bihan, and Lippi 2016).33 In our model, there is no need for those features,

since the mix of partially informed and fully informed adjustments engenders kurtosis in price

changes that even slightly exceeds empirical estimates.

The three models have also quite different implications for another untargeted statistic —

namely, the distribution of the duration of price spells.34 As shown in Figure 8, the model with

no partial information and the model with free aggregate information produce counterfactual

distributions, with about 90% of the weight on 3- and 4-month price spells, respectively. In

contrast, the model with costly aggregate information leads to a smooth distribution that

resembles the empirical distribution reported by Klenow and Kryvtsov (2008).35

It is easy to make sense of the differences in the distributions of price spells produced by

the three estimated models. In the model with free aggregate information and in the model

with no partial information, essentially all price changes are fully informed (see Table 3). This

happens because, in these two estimated models, information gathering/processing happens

roughly once every three or four months (see Table 3 and Figure 7), trend inflation is low, and

shocks to the freely observed component are small. In addition, conditional on information

gathering/processing, price changes are quite likely (92%). Hence, a large proportion of price

changes take place after spells of roughly three or four months. In contrast, the model with

costly aggregate information produces a proportion of partially informed adjustments of 85%

(see Table 3). These price spells have quite variable lengths, as partially informed price changes

are driven by volatile idiosyncratic shocks. Hence, this model produces a smooth histogram,

which more closely resembles the data.

Finally, in order to understand whether our model implies reasonable degrees of information

33Bonomo et al. (2020) analyze kurtosis of the price change distribution in a flexible class of multiproduct
price-setting models that allows for partial synchronization of price changes within a firm.

34Carvalho and Schwartzman (2015) show that the first two moments of the distribution of the duration
of price spells are sufficient statistics for monetary non-neutrality, measured as the area below the impulse
response function of output with respect to a monetary shock, in the class of time-dependent price-setting
models.

35One may worry that the spread of this empirical distribution results from the pooling of heterogeneous
distributions of price spells with little within-product variation. Klenow and Kryvtsov (2008), however, report
substantial variation in the duration of price spells both within narrow product categories and even over time
for a given quote line (see their Table V).
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Figure 8: Distributions of price spells for models and data

(a) Empirical distribution
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(b) Model without partial information
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(c) Model with costly idiosyncratic in-
formation
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(d) Model with costly aggregate informa-
tion

rigidity, we follow Baley and Blanco (2019) and use simulated data to estimate the same

regressions as in Coibion and Gorodnichenko (2015) (henceforth “CG”). Let xt denote a given

aggregate variable and Ftxt+h be the average forecast at time t of this variable at t + h. In

models in which firms do not have full information about aggregate conditions, the average

forecast at a given point differs from the full-information expectation (denoted here E∗
t ) — i.e.

Ftxt+h ̸= E∗
t xt+h. Instead, it is a combination of lagged expectations of the form E∗

t−τxt+h.

We work with firms’ forecasts of nominal aggregate demand. We aggregate its path to

produce a quarterly series, and estimate the following regression using simulated data:

xt+h − Ftxt+h = α + β(Ftxt+h − Ft−1xt+h) + error term. (13)

We follow CG in using a one-year horizon (h = 4) and quarterly forecast revisions as the

explanatory variable.

It is straightforward to see that, absent any information frictions — i.e. when Ft = E∗
t

— it should be the case that β = 0. In words, when expectations are rational and agents
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Table 4: Coibion-Gorodnichenko regressions

CG Free agg. info. No partial info. Costly agg. info. Multisector
Constant 0.002 0.000 −0.001 −0.004 0.000

(0.144) (0.001) (0.002) (0.013) (0.002)

Slope 1.193 −0.019 0.267 2.102 1.007
(0.497) (0.151) (0.199) (0.411) (0.299)

Obs. 173 173 173 173 173
R2 0.195 0.006 0.016 0.140 0.069

are fully informed/attentive, forecast revisions should not explain forecast errors. CG show

that models with staggered information or other frictions such as rational inattention generate

β > 0. The authors then estimate (13) using data from the Survey of Professional Forecasters

for different aggregate variables, and find a strong relationship between forecast errors and

forecast revisions.

In order to make our results as comparable as possible to CG, we perform the following

Monte Carlo simulation. For each model, we simulate n = 100 samples, each consisting of 173

quarters and 35 firms, thus mimicking the sample features in CG. We report the average and

standard deviation (in parenthesis) of the estimated regression coefficients across samples.36

Results are displayed in Table 4.

The model in which aggregate information is free yields essentially no relationship between

forecast errors and forecast revisions. This is expected, as in that model firms always have

full-information about the variable they are forecasting. The model with no partial information

also fails to generate statistically significant regression slopes. The reason is that, as Figure 7

and Table 3 show, information gathering/processing happens quite frequently in that model.

Consequently, firms’ information sets are not too outdated, and the resulting regression slope

becomes small enough for the null hypothesis of β = 0 not to be rejected. In contrast, the model

with costly aggregate information generates a statistically positive regression slope, which falls

within the 95% confidence interval around CG estimates.37

In Coibion and Gorodnichenko (2012), the authors assess the extent of forecasters’ informa-

tion rigidity by looking at how the average inflation forecast error responds to different types

of shocks. Under the null hypothesis of full-information rational expectations, forecasts should

adjust immediately. They find, however, that the average forecast adjusts sluggishly, consistent

36We do not divide standard errors by
√
n. Reported standard errors are, therefore, estimates of what one

would obtain in a typical sample of 173 quarters (with 35 forecasters).
37CG estimates are based on expectations of professional forecasters, while in our model expectations should

be interpreted as coming from firms. One can argue that professional forecasters are more up-to-date about
macroeconomic developments than firms’ management. If so, CG estimates should be viewed as a lower bound
for results based on firms’ expectations.
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with economic agents updating their information sets every 6 or 7 quarters. Our estimated

model with costly aggregate information implies firms collect information approximately every

6 quarters, matching the aforementioned estimates. This is yet another untargeted moment

for which the model generates plausible results.

As a summary of our main results, we find that the partial information model with costly

aggregate information outperforms the other two — fits target moments better, and is the only

model that is not rejected by the test of overidentifying restrictions. Moreover, that model fares

better also when confronted with a set of three untargeted moments: the kurtosis of the price

change distribution, the distribution of the duration of price spells, and the sensitivity of

forecast errors to forecast revisions, obtained from Coibion-Gorodnichenko regressions.

One issue with the partial information model with costly aggregate information is that it

produces a counterfactually large estimate for the volatility of aggregate shocks. As argued

previously, this may proxy for large sectoral shocks that are also costly to observe, which are

absent from the model. In the next section, we develop a multisector extension of the partial

information model with costly aggregate and sectoral information, and use aggregate data to

discipline the size of aggregate shocks. We find that the main results and conclusions just

presented — as well as the aggregate implications of the partial information model with costly

aggregate information — carry over to the multisector model.

4.5 A multisector model with partial information

The model is an extension of the partial information model with costly aggregate information.

It features three sectors that are subject to sectoral productivity shocks (Wsec,t), in addition

to the shocks featured in the baseline model. Consequently, firms’ frictionless optimal prices

now evolve as

dp∗t = µdt− σiddWid,t − σsecdWsec,t − σaggdWagg,t,

where σsec gives the scale of sectoral shocks. Gathering and processing information aboutWsec,t

and Wagg,t is costly, whereas about Wid,t is costless.
38

We discipline the size of aggregate shocks by setting σagg = 0.02. This value is in line with

the annualized volatility of U.S. nominal GDP growth. We then estimate remaining model

parameters using the same set of moments used to estimate the one-sector models presented

above.39 In order to level the playing field and to keep the number of parameters to be estimated

to a minimum, we assume K, F, σid, and σsec to be invariant across sectors. Hence, as before,

38In the notation of the baseline model, this amounts to setting σfree = σid and σcost =
√
σ2
agg + σ2

sec.
39The inflation drift and time-discount parameters are set to the same values used previously. In the

simulations, we also use the same total number of firms as in the baseline model, and distribute them equally
across sectors.
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Table 5: Target and simulated statistics

Statistics f.pos. f.neg. avg |∆p| med. |∆p| (f.pos.)2 J − stat p− val
Data 0.150 0.115 0.090 0.071 0.023 - -

Partial (σagg = σcost) 0.150 0.116 0.090 0.071 0.023 0.195 0.65
Multisector 0.148 0.117 0.090 0.071 0.022 1.765 0.184

we are left with four parameters to be estimated.

Table 5 compares targeted data moments with those produced by the partial information

model with costly aggregate information and by its multisector extension. The multisector

model also fits the data well and is not rejected by the test of overidentifying restrictions.

Estimated parameter values are displayed in Table 6. The volatility of sectoral shocks is

estimated at 13.5% per year — 6.7 times the volatility of aggregate shocks. This ratio is similar

in magnitude to the findings in McGrattan (2020), who estimates a multisector real business

cycle model with aggregate and sectoral shocks to total factor productivity. Based on the

estimates she provides, we obtain an average ratio of 5.3 across sectors.40 When comparing

parameter estimates with those of the single-sector model, the only noticeable difference is the

smaller information cost in the multisector model. This leads to more frequent information

gathering and processing, as can be inferred from panel a) in Figure 9, which shows inaction

regions for both estimated models (see also Table 7).

When it comes to untargeted moments, the multisector model generates similar qualitative

results as its one-sector counterpart. As seen in panel b) of Figure 9, the distribution of the

duration of price spells generated by the multisector also resembles the empirical distribution

reproduced in panel a) of Figure 8. The model also succeeds in producing realistic Coibion

and Gorodnichenko (2015) regression coefficients (Table 4). In fact, it is the model that

comes closest to their empirical estimates. Finally, the multisector model also generates higher

kurtosis of the price change distribution than the partial information model with free aggregate

information and the model without partial information (Table 7).

Table 6: Estimated parameters

σagg σid K F σsec

Partial σagg = σcost 0.154 0.128 0.00030 0.0279 -
t-statistic 17.90 85.20 49.97 5.15 -

Multisector 0.02 0.127 0.00030 0.0061 0.135
t-statistic - 77.00 53.49 4.70 26.65

obs: t-statistics based on standard errors obtained with the delta method

40To obtain this figure, we use estimates provided in Table 2 of McGrattan (2020). We compute the
unconditional standard deviations of the sectoral and aggregate components of total factor productivity for
each sector, take the ratio between the two, and average across sectors.
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Figure 9: Optimal policy and distribution of price spells for multisector model

(a) Optimal policy
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(b) Distribution of price spells
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5 Real effects of nominal shocks

In this section, we study the real effects of nominal shocks in the estimated models. A firm’s

(log) frictionless optimal price equals the sum of (log) nominal aggregate demand and (log)

idiosyncratic productivity. Log nominal aggregate demand mt follows a Brownian motion with

drift µ. For each estimated model, we simulate two million firms, starting from the ergodic

steady state to which the economy converges after a sufficiently long spell without aggregate

shocks. The (log) average price level pt results from the aggregation of individual prices.

We follow the usual practice of analyzing the effects of a one-time monetary shock, which

makes (log) nominal aggregate demand jump from m0 to m0+ ζ at time zero. After the shock,

nominal aggregate demand resumes its trend, given by µ. Real (log) output, yt, is given by

yt = mt − pt.

5.1 Estimated models

Results for real output for the four models we estimate are shown in Figure 10. We simulate

the effects of a one percent shock to nominal aggregate demand, and display impulse response

Table 7: Additional price-setting statistics implied by estimated models

Baseline σcost = σagg σcost =
√

σsec²+ σagg²

Price adj. per year 3.23 3.19
fully informed 15% 24%

partially informed 85% 76%
Info. gatherings per year 0.65 1.24
resulting in price adj. 75% 61%

Kurtosis of price change distribution 5.87 3.41
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Figure 10: Real effects of nominal shocks in estimated models
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functions (IRFs) for output, scaled by the size of the shock. Despite the fact that all models

match the empirical frequency of price adjustments, they produce very different monetary non-

neutrality. In the partial information model with free aggregate information and in the model

with no partial information, output is back near its original level after approximately three

months. In contrast, in the one-sector model with costly aggregate information, it takes more

than a year for real effects to dissipate. The intuition behind this result is clear: while in the

first two models firms react to aggregate information very frequently, in the model with costly

aggregate information, most of the time firms react only to idiosyncratic information, and take

account of aggregate shocks much less frequently. The same intuition holds for the multisector

model with costly sectoral and aggregate information, although real effects fade faster in this

case, given the higher frequency of information gathering and processing.

To explore the roles of menu costs and information costs in producing the results reported

in Figure 10, Figure 11 shows how changing K and F affects the extent of monetary non-

neutrality in the model with costly aggregate information. Varying the menu cost — halving

or doubling — around the estimated values has hardly any effect on aggregate dynamics (panel

a)). In contrast, varying the information cost leads to meaningful differences in monetary non-

neutrality (panel b)) — a result in line with the findings of Alvarez, Lippi, and Paciello (2018).

In principle, the model with no partial information and the model in which aggregate

information is free are also capable of generating sizable monetary non-neutrality — this only

requires larger price-setting frictions. When disciplined by the microdata, however, these two

models imply a small degree of non-neutrality. The main difference between the estimated

frictions in these two models and in the model in which aggregate information is costly is the

size of the information cost, which is significantly larger in the latter model. Hence, our findings

are in accordance with the price-setting literature, which shows that information frictions are

a powerful source of monetary non-neutrality (e.g. Mankiw and Reis 2002).
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Figure 11: Monetary non-neutrality with costly aggregate information: varying K and F

(a) Varying menu cost K
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(b) Varying information cost F
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5.2 Comparison to benchmark models

To further highlight the ability of our partial information model to generate persistent monetary

non-neutrality, we compare it with three sticky price models commonly used in the literature:

the Golosov-Lucas (GL) menu-cost model, the GL model with fat-tailed idiosyncratic shocks,

and the Calvo model. The GL model is known to produce strong “selection effects” in price

adjustment that lead to little monetary non-neutrality. Fat-tailed shocks were first introduced

in the price-setting literature by Midrigan (2011), and are known to decrease selection and

thus to generate stronger non-neutrality. The Calvo model has no price selection and is known

to produce the maximum amount of monetary non-neutrality in a large class of sticky-price

models (Carvalho and Schwartzman 2015, Alvarez, Le Bihan, and Lippi 2016). Following

standard practice in the literature, we measure monetary non-neutrality by the area under the

IRF of output in response to a 1% monetary shock, and normalize it so non-neutrality in the

GL model equals unit.

The three models are calibrated to generate the same frequency and average size of price

adjustment as in our data. The GL model with fat-tailed shocks is calibrated to generate a

kurtosis of price adjustments of 5,41 near the top of the range of empirical estimates.

Results are reported in Figure 12 and Table 8. As expected, the Golosov-Lucas model

generates very little monetary non-neutrality, with output almost back to pre-shock levels

after only two months. The GL model with fat-tailed shocks calibrated to generate kurtosis

of 5 yields larger monetary non-neutrality, but not nearly as much as the partial information

model. Even the Calvo model produces only 36% as much monetary non-neutrality as the

41To generate fat tails, we assume idiosyncratic shocks follow a Poisson process with a fixed arrival rate.
Conditional on arriving, shocks follow a Laplace distribution.
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Figure 12: Real effects of monetary policy shocks in estimated models
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partial information model.42 In conclusion, the partial information model with costly aggregate

information not only fits the microdata well, but also generates large and persistent monetary

non-neutrality.

5.3 Kurtosis and monetary non-neutrality

In addition to monetary non-neutrality, Table 8 reports the kurtosis of the distribution of

price changes for the four models analyzed in the previous section. Relative to the GL model,

the Calvo model displays 5.5 times as much monetary non-neutrality and 6 times the kurtosis.

Alvarez, Le Bihan, and Lippi (2016) show, in the context of a infinitesimal monetary shock, that

the ratio of the kurtosis of the price change distribution to the frequency of price adjustments

is a sufficient statistic for monetary non-neutrality in a large class of models that nests Calvo

and GL.43 The near-proportionality we find is due to small departures from the assumptions

underlying Alvarez, Le Bihan, and Lippi (2016)’s proposition: a 1% monetary shock is small

but not infinitesimal, and our calibration features small but non-zero trend inflation.44

While Calvo and GL are included in the class of models for which Alvarez, Le Bihan,

and Lippi (2016) prove the sufficient statistic result, the GL model with fat-tailed shocks and

the partial information model are not. Hence, the mapping between kurtosis and monetary

non-neutrality need not hold when we take these two additional models into account.45

42Another commonly used device to increase monetary non-neutrality in menu cost models is the introduction
of random free adjustments, as in Nakamura and Steinsson (2010). The output response in such a model,
however, would still be bounded above by the response of a Calvo model with the same frequency of price
adjustments.

43Recall that the frequency of price changes is the same in all four models that we analyze in this section.
44Baley and Blanco (2021) propose a generalization of Alvarez, Le Bihan, and Lippi (2016)’s sufficient

statistic to the case with non-zero trend inflation.
45Dotsey and Wolman (2020) study different parameterizations of a menu-cost model and also find that

Alvarez, Le Bihan, and Lippi (2016)’s sufficient statistic result does not hold in their model.
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Table 8: Kurtosis and monetary non-neutrality in selected models

Kurtosis of price changes Monetary non-neutrality
Golosov Lucas 1 1

GL w/ fat-tailed shocks 5 4.1
Calvo 6 5.5

Partial information model 5.87 15.3
Note: Monetary non-neutrality measured as the area under the impulse response function of output with respect

to a monetary shock, normalized so that non-neutrality in the GL model equals unit.

Adding fat-tailed shocks to the GL model so as to increase kurtosis by a factor of 5.0 in-

creases monetary non-neutrality less than proportionately, by a factor of 4.1 (Table 8). More

strikingly, the partial information model with costly aggregate information generates less kur-

tosis than the Calvo model, but almost three times as much monetary non-neutrality. In other

words, when the partial information model is taken into account, the relationship between

kurtosis and monetary non-neutrality ceases to be monotonic.46

6 Conclusions

If each and every price change is effective in offsetting monetary shocks, nominal price rigidity

cannot be the main source of monetary non-neutrality. This arises from the fact that, in the

data, prices change too frequently to account for the sluggish response of aggregate prices and

output to monetary shocks. For that reason, the sticky-price literature devotes substantial

attention to mechanisms that contribute to mute the response of individual prices to monetary

shocks.

Real rigidities, in the sense of Ball and Romer (1990), are one such mechanism. Strong real

rigidities tend to induce strategic complementarities in pricing decisions, which, in the presence

of staggered price setting, lead to partial adjustment of individual prices to monetary shocks.47

Information frictions can also generate persistent real effects of monetary shocks if they

prevent individual price changes from fully reflecting monetary innovations. Matching the

evidence on frequent and large price changes, however, requires that information be available

about other shocks, to which firms can react.

In our model, firms have continuous information about idiosyncratic shocks that they can

factor into pricing decisions at no cost. Information about monetary shocks, on the other hand,

46We conjecture the result of Alvarez, Le Bihan, and Lippi (2016) does not hold in our model because most
price changes reflect idiosyncratic shocks only, whereas price changes that matter for monetary non-neutrality
are those that incorporate information about monetary shocks. Hence the mapping between unconditional
price-setting statistics and monetary non-neutrality breaks down.

47Not all sources of real rigidity, however, are consistent with large individual price changes. For a thorough
discussion of this issue, see Nakamura and Steinsson (2010).
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is costly to gather and process. This allows the model to generate frequent, large individual

price changes, and, at the same time, large and persistent monetary non-neutrality.
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Alvarez, Fernando, Hervé Le Bihan, and Francesco Lippi. 2016. “The Real Effects of Monetary

Shocks in Sticky Price Models: A Sufficient Statistic Approach.” American Economic Review

106 (10):2817–2851.

Alvarez, Fernando and Francesco Lippi. 2014. “Price Setting with Menu Cost for Multiproduct

Firms.” Econometrica 82 (1):89–135.

Alvarez, Fernando, Francesco Lippi, and Luigi Paciello. 2011. “Optimal Price Setting With

Observation and Menu Costs.” Quarterly Journal of Economics 126 (4):1909–1960.

———. 2016. “Monetary shocks in models with inattentive producers.” Review of Economic

Studies 83:421–459.

———. 2018. “Monetary shocks in models with observation and menu costs.” Journal of the

European Economic Association 16 (2):353–382.

Baley, Isaac and Andres Blanco. 2019. “Firm Uncertainty Cycles and the Propagation of

Nominal Shocks.” American Economic Journal: Macroeconomics 11 (1):276–337.

———. 2021. “Aggregate Dynamics in Lumpy Economies.” Econometrica 89 (3):1235–1264.

URL https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA17344.

Ball, Laurence and David Romer. 1990. “Real rigidities and the non-neutrality of money.”

Review of Economic Studies 57 (2):183–203.

Bils, Mark and Peter J. Klenow. 2004. “Some Evidence on the Importance of Sticky Prices.”

Journal of Political Economy 112:947–985.

35

https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA17344


Bonomo, Marco and Carlos Carvalho. 2004. “Endogenous Time-Dependent Rules and Inflation

Inertia.” Journal of Money, Credit and Banking 36 (6):1015–1041.

———. 2010. “Imperfectly-Credible Disinflation under Endogenous Time-Dependent Pricing.”

Journal of Money, Credit and Banking 42 (5):799–831.

Bonomo, Marco, Carlos Carvalho, and Rene Garcia. 2011. “State-dependent Pricing under

Infrequent Information: A Unified Framework.” Federal Reserve Bank of New York Staff

Reports 455.

Bonomo, Marco, Carlos Carvalho, Oleksiy Krtytsov, Sigal Ribon, and Rodolfo Rigato. 2020.

“Multi-Product Pricing: Theory and Evidence from Large Retailers.” Mimeo.

Bonomo, Marco and Rene Garcia. 2001. “The Macroeconomic Effects of Infrequent Information

with Adjustment Costs.” Canadian Journal of Economics 34 (1):18–35.

Caballero, Ricardo. 1989. “Time Dependent Rules, Aggregate Stickiness and Information

Externalities.” Working Paper no. 428, Columbia University.

Calvo, Guillermo A. 1983. “Staggered Prices in a Utility-Maximizing Framework.” Journal of

Monetary Economics 12 (3):383–398.

Carvalho, Carlos and Felipe Schwartzman. 2015. “Selection and Monetary Non-Neutrality in

Time-Dependent Pricing Models.” Journal of Monetary Economics 76:141–156.

Coibion, Olivier and Yuriy Gorodnichenko. 2012. “What can survey forecasts tell us about

information rigidities?” Journal of Political Economy 120 (1):116–159.

———. 2015. “Information Rigidity and the Expectations Formation Process: A Simple Frame-

work and New Facts.” American Economic Review 105 (8):2644–78.

DeJong, David N. and Chetan Dave. 2011. Structural Macroeconometrics. Princeton University

Press.

Dixit, Avinash. 1991. “Analytical Approximations in Models of Hysteresis.” The Review of

Economic Studies 58 (1):141–151.

Dixit, Avinash J. 1993. The Art of Smooth Pasting. Routlege.

Dotsey, Michael and Alexander L. Wolman. 2020. “Investigating Nonneutrality In A State-

Dependent Pricing Model With Firm-Level Productivity Shocks.” International Economic

Review 61 (1):159–188.

36



Gertler, Mark and John Leahy. 2008. “A Phillips Curve with an Ss Foundation.” Journal of

Political 116:533–572.

Golosov, Mikhail and Robert E. Lucas. 2007. “Menu Costs and Phillips Curves.” Journal of

Political Economy 115:171–199.

Gorodnichenko, Yuriy. 2008. “Endogenous information, menu costs and inflation persistence.”

Mimeo .

Hobijn, Bart and Fernanda Nechio. 2018. “Sticker Shocks: Using VAT Changes to Estimate

Upper-Level Elasticities of Substitution.” Journal of the European Economic Association

17 (3):799–833.

King, Robert G. and Alexander L. Wolman. 1999. “What Should the Monetary Authority Do

When Prices are Sticky?” in Taylor, John B., ed. Monetary Policy Rules :349–398Chicago:

University of Chicago Press.

Klenow, Peter J. and Oleksiy Kryvtsov. 2008. “State-Dependent or Time-Dependent Pricing:

Does It Matter for Recent U.S. Inflation?” Quarterly Journal of Econoimcs 123 (3):863–904.

Klenow, Peter J. and Jonathan L. Willis. 2007. “Sticky information and sticky prices.” Journal

of Monetary Economics 54 (S):79 – 99.

———. 2016. “Real Rigidities and Nominal Price Changes.” Economica 83:443–472.

Knotek, Edward. 2010. “A Tale of Two Rigidities: Sticky Prices in a Sticky-Information

Environment.” Journal of Money, Credit and Banking 42:1543–1564.

Kongsamut, Piyabha, Sergio Rebelo, and Danyang Xie. 2001. “Beyond Balanced Growth.”

The Review of Economic Studies 68 (4):869–882.

Mackowiak, Bartosz and Mirko Wiederholt. 2009. “Optimal Sticky Prices under Rational

Inattention.” American Economic Review 99 (3):769–803.

Mankiw, Gregory N. and Ricardo Reis. 2002. “Sticky Information Versus Sticky Prices: A

Proposal to Replace the New Keynesian Phillips Curve.” Quarterly Journal of Economics

117 (4):1295–1328.

Matejka, Filip. 2015a. “Rigid Pricing and Rationally Inattentive Consumer.” Journal of

Economic Theory 158:656–678.

———. 2015b. “Rationally inattentive seller: Sales and discrete pricing.” Review of Economic

Studies 83:1125–1155.

37



McGrattan, Ellen R. 2020. “Intangible capital and measured productivity.” Review of Eco-

nomic Dynamics 37:S147–S166.

Midrigan, Virgiliu. 2011. “Menu Costs, Multi-Product Firms and Aggregate Fluctuations.”

Econometrica 79:1139–1180.

Moscarini, Giuseppe. 2004. “Limited Information Capacity As a Source of Inertia.” Journal

of Economic Dynamics and Control 28:2003–2035.
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Appendix

A General equilibrium model

Here we derive the frictionless optimal price in a simple general equilibrium framework. A

representative consumer maximizes expected discounted utility:

Et0

� ∞

t0

e−ρ(t−t0)[log(Ct)−Ht]dt,

subject to the budget constraints:

Bt = B0 +

� t

0

WrHrdr −
� t

0

� 1

0

PirCirdidr +

� t

0

Trdr +

� t

0

ΛrdQr +

� t

0

ΛrdDr, for t ≥ 0.

Utility is defined over the composite consumption good Ct≡[
�

0¹(Cit/Ait)
((θ−1)/θ)di](θ/(θ−1))

with θ > 1, where Cit is the consumption of variety i, and Ait is a relative-preference shock.

Pit is the price of variety i, Ht is the supply of labor, which commands a wage Wt, Bt is total

financial wealth, Tt are total net transfers, including any lump-sum flow transfer from the

government, and profits received from the firms owned by the representative consumer. Qr is

the vector of prices of traded assets, Dr is the corresponding vector of cumulative dividend

processes, and Λr is the trading strategy, which satisfies conditions that preclude Ponzi schemes.

The associated consumption price index, Pt, is given by:

Pt =

[�
(AitPit)

1−θ di

] 1
1−θ

.

The demand for an individual variety is:

Cit = A1−θ
it

(
Pit

Pt

)−θ

Ct.

Firms hire labor to produce according to the following production function:

Yit = AitHit.

Note that we assume that the productivity shock is perfectly correlated with the relative-

preference shock in the consumption aggregator. This has precedence in the sticky-price lit-

erature (for instance, King and Wolman 1999 and Woodford 2009). Our specific assumption

follows Woodford (2009), and aims to produce a tractable profit-maximization problem that

can be written as a price-setting “tracking problem” in which the firm only cares about the
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ratio of the two stochastic processes driving profits, which will be specified below.48

The static profit-maximizing price for firm i, P ∗
it (also referred to as its frictionless optimal

price), is given by the usual markup rule:

P ∗
it =

θ

θ − 1

Wt

Ait

.

From the representative household’s labor supply:

Wt

Pt

= Ct,

which leads to:

P *

it =
θ

θ − 1

PtCt

Ait

.

In logarithms (lowercase variables denote logarithms throughout), this reads:

p∗it = log

(
θ

θ − 1

)
+ log(PtCt)− log(Ait).

Ignoring the unimportant constant and assuming appropriate exogenous stochastic pro-

cesses for nominal aggregate demand and for idiosyncratic productivity yields the specifications

used throughout the main text.

B Profit function approximation

Here we derive the quadratic approximation to the static profit-maximization problem used in

the main text. We omit time subscripts for conciseness. Write real flow profits as:

Π =
Pi

P
Ci −

W

PAi

Ci

= A1−θ
i

(
Pi

P

)1−θ

C − W

P
A−θ

i

(
Pi

P

)−θ

C,

48More generally, assumptions relating preference and technology processes have been used previously in the
literature on “balanced growth” in multisector models (e.g. Kongsamut, Rebelo, and Xie 2001).
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where the second line uses the demand function derived in the previous section. Write Pi/P

as (Pi/P
∗
i )× (P ∗

i /P ) and use the definition of P ∗
i to obtain

Π = A1−θ
i

(
P ∗
i

P

)1−θ (
Pi

P ∗
i

)1−θ

C − θ − 1

θ
A−θ

i

(
P ∗
i

P

)−θ (
Pi

P ∗
i

)−θ

C

=

(
θ

θ − 1

)1−θ (
W

P

)1−θ

C

[(
Pi

P ∗
i

)1−θ

− θ − 1

θ

(
Pi

P ∗
i

)−θ
]
.

Denote the real wage as w = W/P and price gap as xi = logPi− logP ∗
i . The profit function

then becomes

Π (C,w, xi) =

(
θ

θ − 1

)1−θ

w1−θC

[
e−(θ−1)xi − θ − 1

θ
e−θxi

]
.

We want to take a second-order approximation of Π around a frictionless steady state

(C̄, w̄, 0). Note that aggregate variables enter multiplicatively. Since, by definition, profits are

maximized at xi = 0, it is easy to check that

0 =
∂Π

∂xi

∣∣∣∣
xi=0

=
∂2Π

∂xi∂w

∣∣∣∣
xi=0

=
∂Π

∂xi∂C

∣∣∣∣
xi=0

.

Therefore the second-order expansion, after some simplification, becomes

Π ≈ Π̄− 1

2
Π̄θ(θ − 1)x2

i + terms independent of xi.

The terms independent of xi depend only on the aggregate variables w and C, which the

firm takes as given. Hence they do not affect the optimal pricing policy. After discarding them,

we can express the loss function in terms of profit losses relative to the frictionless steady state

as

L =
Π̄− Π

Π̄
=

θ(θ − 1)

2
x2
i ∝ x2

i .

C Numerical solution

In order to find the optimal rule l(τ), c(τ), u(τ), we need to find the value function. We start

by discretizing the partial differential equation (6) over a grid with time-increments ∆t and

discrepancy-increments ∆z, using an implicit finite-difference method. We make the following

discretizations:

z = n△ z, τ = m1t,
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vn,m = V (n1z,m1t),

Vτ ≈ vn,m+1 − vn,m

1t
,

Vz ≈
vn,m − vn−1,m

1z
,

Vzz ≈
vn+1,m − 2vn,m + vn−1,m

(Δz)2
.

We can then obtain the following discretization for (6):

ρvn,m = (n△ z)2 + σ2
cm△ t+ p0vn,m + p−vn−1,m + p+vn+1,m +

1

1t
vn,m+1, (14)

where

p0 = − µ

1z
−
(

σf

1z

)2

− 1

1t
,

p− =
µ

1z
+

(
σf

21z

)2

,

p+ =

(
σf

21z

)2

.

We apply the following solution algorithm. We guess values for the function vn,m for a large

grid of times and expected discrepancies. It is important to impose conditions (7-11), which

state that at any time and discrepancy the price setter will incur the information and/or the

adjustment cost if it is advantageous for her to do so. We then choose a time T large enough to

exceed the optimal time interval between information dates for any initial discrepancy zt0 . For

such time T , find the z that minimizes V (z, T ), denoted c(T ), and impose conditions (8 and

10) to determine the new value at T . Then, use the difference equation (14) to find the value

function at time elapsed τ = T −△t. Next, impose conditions (8 and 10) to determine the new

value at T −△t and so on, until time τ = 0. At that point, test if the value function at each

time and discrepancy is close enough (according to some convergence criterion set a priori)

to the value function at the previous iteration. Otherwise, begin another iteration. After

convergence, use conditions (7), and (9) for each τ to find c(τ), u(τ), and l(τ) and condition

(11) to determine τ ∗(z) for any given discrepancy.
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D Optimal adjustment and smooth-pasting

Some readers may wonder why smooth pasting conditions did not appear in our optimal price-

setting problem. In fact, we implement optimal conditions as an inequality due to the option

of adjusting or not, which implies that the firm will exercise the option of adjusting when

it is optimal to do so. This generates a HJB variational inequality which can be proven to

imply smooth pasting conditions (see Oksendal 2000). We also provide an heuristic argument

adapted from Dixit (1993).

We implement optimality conditions in adjusment through the following condition:

V (z, τ) ≤ K + V (c(τ), τ), (15)

where

c (τ) = argmin
z

V (z, τ) . (16)

Recall that in the inaction region, the value function satisfies the HJB

ρV (z, τ) = z²+ σc²τ − Vz(z, τ)µ+
1

2
σf²Vzz(z, τ) + Vτ (z, τ). (17)

Thus, equations (15) and (17) imply in the following condition:

ρV (z, τ) = min

{
z²+ σc²τ − Vz(z, τ)µ+

1

2
σf²Vzz(z, τ) + Vτ (z, τ), ρK + ρV (c(τ), τ)

}
,

which can be rewritten as:

max

{
ρV (z, τ)− z²− σc²τ + Vz(z, τ)µ− 1

2
σf²Vzz(z, τ)− Vτ (z, τ), V (z, τ)−min

z
V (z, τ)−K

}
= 0.

(18)

Equation (18) is called an HJB variational inequality. One can prove that (18) implies the

following smooth-pasting conditions (see Oksendal 2000):

Vz (l (τ) , τ) = Vz (u (τ) , τ) = Vz (c (τ) , τ) = 0.

Here we proceed with an heuristic approach adapted from Dixit (1993). The fact that the

target point c (τ) minimizes the value function for a given τ implies:

Vz (c (τ) , τ) = 0.
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Now we show that optimal adjustment at the upper trigger point u (τ) implies

Vz (u (τ)) = Vz (c (τ) , τ) .

Start from the fact that the value matching condition applies:

V (u (τ) , τ) = V (c (τ) , τ) +K. (19)

Suppose Vz (c (τ) , τ) > Vz (u (τ) , τ). Then, together with condition (19), this would make

V (z, τ) < V (c (τ) , τ) + K for all z ∈ (u (τ) , u (τ) + ε) for some small ε > 0, which would

make inaction optimal at u (τ), contradicting optimal adjustment at u (τ).

Now suppose that Vz (c (τ) , τ) < Vz (u (τ) , τ). Consider the discrete binomial process

that approximates the Brownian motion process for z: z moves up by ∆h with probability

p = 1
2

[
1− µ

σ2∆h
]
, where ∆h = σ

√
∆t, and down by −∆h with probability 1−p. Now, instead

of the firm adjusting at u (τ), let it consider waiting for the next small time step ∆t, and then

revisiting the decision. If the increment is +∆h, adjust, and if it is −∆h, continue. We show

next that the strategy of waiting is better if Vz (c (τ) , τ) < Vz (u (τ) , τ), contradicting optimal

adjustment at u (τ). By waiting, the firm gets:

(
z2 + σ2τ

)
∆t+ (1− ρ∆t) (p (V (c (τ) + ∆h, τ +∆t) +K) + (1− p)V (u (τ)−∆h, τ +∆t))

= p (V (c (τ) , τ) + Vz (c (τ) , τ)∆h+ Vτ (c (τ) , τ)∆t+K) + (1− p)V (u (τ)−∆h, τ +∆t)

= (pV (u (τ) , τ) + Vz (c (τ) , τ)∆h) + (1− p)V (u (τ)−∆h, τ +∆t)

= V (u (τ) , τ) + pVz (c (τ) , τ)∆h− (1− p)Vz (u (τ) , τ)∆h

= V (c (τ) , τ) +K +
1

2
[Vz (c (τ) , τ)− Vz (u (τ) , τ)]∆h

< V (c (τ) , τ) +K,

where we used value matching conditions, definition of p, and we have retained the leading

terms of the expansion of order ∆h (notice that ∆t is of order ∆h2). Thus, the policy of waiting

and adjusting in case a positive increment realizes, and continuing otherwise reduces the cost

with respect to the policy of adjusting at u (τ). This rules out Vz (c (τ) , τ) < Vz (u (τ) , τ). Thus

the smooth pasting condition at the upper trigger point must be valid. A similar argument

applies for showing that smooth pasting must be valid at the lower trigger point l (τ).
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