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Abstract

Rules of k names are frequently used methods to appoint individuals to o¢ ce.

They are two-stage procedures where a �rst set of agents, the proposers, select k

individuals from an initial list of candidates, and then another agent, the chooser,

appoints one among those k in the list. In practice, the list of k names is often

arrived at by letting each of the proposers screen the proposed candidates by voting

for v of them and then choose those k with the highest support. We then speak of

v-rules of k names. Our main purpose in this paper is to study how di¤erent choices

of the parametrs v and k a¤ect the balance of power between the proposers and

the choosers. From a positive point of view, we analyze a strategic game where the

proposers interact to determine what list of candidates to submit. From a normative

point of view, we study the performance of di¤erent rules in expected terms, under

the sustained hypothesis that agents�preferences are unknown at the design period,

but realized at the time of voting. The choice of v and k is then analyzed from the

perspectives of e¢ ciency, fairness and compromise.
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1 Introduction

Appointing people to o¢ ce is one of the main ways how the powerful exert their in�uence

in society. But the ability of any authority to appoint o¢ cers is often limited by the

existence of other �de iure�or �de facto�powers.

In many historical circumstances, di¤erent groups have fought and competed for the

ability to appoint people to in�uential positions. The history of the Roman Church is

full of instances where the secular rulers and the clergy have struggled to decide who

had the possibility of appointing new bishops. In many European countries, University

Rectors have been appointed sometimes by the Government, sometimes by the University

community itself, sometimes by combinations of inputs from both. Even the President

of the United States has to submit his proposals for cabinet members, for supreme court

judges and for many other appointments to the approval of the legislators. In other types

of societies, or for other types of appointments, the power to choose one�s candidate for a

post may be almost unlimited temporarily, but is likely to be challenged at same point.

In this paper we study a class of methods that allow several agents to share the power

to appoint. These methods are widely used in the present, and were also used in the

past. We call them rules of k names, and they work as follows. The set of deciders is

divided into two groups: the proposers and the chooser. Proposers consider the set of all

candidates to a position and screen k of them. Then, the chooser picks the appointee out

of these k names. Indeed, rules of k names can vary, depending on the composition of the

sets of proposers, on the value of k, and also on the rules that the di¤erent participants

adopt when deciding how to choose a list of candidates, or one candidate among many.

Here we focus on a speci�c family of procedures used to determine the list with k

names that are, in fact, also adopted in many practical cases. This family of screening

rules has the following form: each proposer submits a list of v candidates (for v � k), and
then the k most voted candidates get into the list. Though one can think of more general

methods to select the k names, the ones we consider are simple and frequently used. We

call these procedures the v-rules of k names.

The main purpose in this paper is to study how di¤erent choices of the parameters v

and k a¤ect the balance of power between the proposers and the chooser. From a positive

point of view, we analyze a strategic game where the proposers interact to determine what

list of candidates to submit. From a normative point of view, we study the performance of
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di¤erent rules in expected terms, under the sustained hypothesis that agents�preferences

are unknown at the design period, but realized at the time of voting. The choice of v and

k is then analyzed from the perspectives of e¢ ciency, fairness and compromise.

Notice that a great variety of methods that are used in practice do di¤er on the values

of both k, the size of the list, and v, the number of candidates that each proposer can vote

for. There are cases where in order to participate in the choice of k candidates, each voter

is allowed to submit k names. The rule used to elect Irish bishops or prosecutor-general in

most of Brazilian states are of this sort, with k = v = 3. Yet, in most cases we know, each

proposer is asked to submit a vote for v candidates, with v less than k. This is the case,

for example, when choosing public university rectors in Brazil (k = 3; v = 1), members of

the Chile�s Courts of Justice (k = 3; v = 2) or Chile�s Supreme Court (k = 5; v = 3). The

case where k = v is very special as it allows a simple majority to impose the whole list. As

we shall see, for a given society the chooser may prefer a large v, or a small v, depending

on the distribution of preferences among the proposers and the extent to which their

own preferences are aligned with those of the majority of proposers. Hence, the actual

normative choice of one pair (k; v) will not only depend on the planner�s objectives, but

also on her expectations regarding the possible preference pro�les.

Our �rst task is to understand the intricacies of the decision making process that

will take place, under any given rule and for every speci�c society. We shall assume,

given k,v and a tie breaking rule, that proposers engage in a normal form game and play

strong Nash equilibrium strategies. The proposers�strategies are the possible lists of v

candidates that they will support, and the outcome function is given by the chooser�s best

alternative among those with higher support (after tie breaking).1

In view of the complexities of the analysis, our positive results will take two comple-

mentary routes. One is to proceed with the study of the generalcase, providing conditions

for the existence and eventual uniqueness of strong equilibria in our games. One of the

things we learn from this analysis is that the impact on the distribution of power among

agents of di¤erent choices of k and v is not one-directional, as the strategic interactions

between agents may a¤ect the �nal outcome of the rule in very rich ways. A second di-

rection we take, regarding positive results, consists in identifying a family of situations (

represented by what we call the polarized proposers�model) under which the existence and

1For precise di�nitions see Section 2.
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uniqueness of equilibria is guaranteed, and for which one can get much more conclusive

comparative static results.

In order to plunge the reader directly into our problem, consider the following example:

There are �ve candidates fa; b; c; d; eg and eleven proposers. Each proposer is allowed
to vote for one candidate (v = 1) and a list will be formed with the names of the three most

voted candidates (k = 3), with ties being broken according to the order b � a � e � d � c.
The type (preferences) and the number of agents are given in the following table.

Preference Pro�le

1 type 1 proposer 7 type 2 proposers 3 type 3 proposers Chooser

b a c b

a c a c

e d e a

d b d e

c e b d

We shall argue, in what follows, c can be the outcome induced from the strong Nash

equilibrium play of the proposers when the chooser always picks his best alternative in

the list.

Consider the following strategy pro�le that sustains c as a strong Nash equilibrium

outcome: the seven type 2 proposers cast four votes for a and three votes for e. The only

one type 1 proposer casts a vote for b; while the three type 3 proposers cast three votes

for c. Thus, the selected list is fa; c; eg and c is the winning candidate.
The argument behind this equilibrium is quite clear. Type 3�s go ahead in support of

c, and then the type 2�s have to prevent b from becoming the outcome by "wasting" their

remaining votes in support of e.

But there is another, maybe more interesting equilibrium. Notice that any coalition

with at least three proposers can impose at least one candidate in the list, and that the

chooser and the three proposers of type 3 prefer c to a. In spite of this, candidate a

can also be sustained as a strong Nash equilibrium outcome! To verify it, consider the

following strategy pro�le: the seven type 2 proposers cast three votes for a, two votes for

e, one vote for b and one vote for d. Type 1 proposer casts a vote for b; while the three

type 3 proposers cast two votes for d and one for e. So, a,d and e will have three votes

each, while b only two. Thus, the selected list is fa; d; eg and a is the winning candidate.
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The reader can check that no coalition of voters can pro�tably deviate.

Now, here is a intuition for this equilibrium, where the two proposers of type 2 cleverly

distribute their votes in order to prevent the type 3�s from being able to select c, even

if they all vote for it. Voters of type 2 ensure that candidate a, their favorite, is among

the proposed ones, by casting three votes in its favor. They also give enough support to

candidate b so that, along with the vote of type 1, b is still not chosen, but would be as

soon as candidates with two votes enter the list. Then, since b has two votes, proposers

of type 3 cannot vote for their favorite, c, because if they all spent their votes on c, which

would make c eligible, then some alternative with two votes would come in, and in this

case it would be b, which they hate but is the chooser�s best. Given that they cannot get

c, they then concentrate, in alliance with type 2 people, in getting e and d into the list,

both above their worse alternative b, in order to at least get their second alternative.

Thus, the presence of the type 1 proposer voting for b leads types 2 and 3 into a sort

of race: if one of them uses the most rewarding strategy in one of the two equilibria, the

other must concede. If both used their most rewarding strategies,then b, that they both

hate, would come out!

In this example, we can observe several types of strategic behavior on the side of agents.

This example becomes complex, in spite of the small number of agents and alternatives,

because there are no restrictions on the distribution of voters�preferences.

In a large part of the paper we shall concentrate on cases where, thanks to some control

on the characteristics of voters, one may characterize, either fully or partially, the set of

strong Nash equilibria. This will allow us to establish a number of comparative static

results for the better determined cases. And we will also provide a number of precise

reasons and examples, in addition to the one we just presented, that help to understand

the intricacies of a fully general analysis.

Our second purpose is normative. We want to evaluate the performance of di¤erent

rules of k names from an ex ante point of view, by computing the utility that di¤erent

participants in the decision process may expect. This would allow us to eventually ar-

bitrate among di¤erent proposals for speci�c v-rules of k names, on the basis of their

�expected�performance and of the �expected�satisfaction they can provide to di¤erent

parts of society. For that purpose, we need to make di¤erent modelling decisions. One

is on how to measure the utility of individuals, and how to calculate the eventual ex-
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pected utility. In the absence of additional information, we consider that agents have

utility functions whose argument is the ranking of alternatives, and treat them as Von

Neumann-Morgenstern utility functions over lotteries.

Under di¤erent distributional assumptions on the preferences of the proposers and

of the chooser, within the polarized proposer�s model, we provide explicit formulas to

compute the expected ranking, for these di¤erent agents, of the strategic outcome of each

v-rule of k names. This allows us to discuss the ex ante e¢ ciency of di¤erent rules, their

ability to distribute the power among proposers and choosers, or the expected outcome

of bargaining processes eliding to the choice of a rule.

Our preceding papers on the subject Barberà and Coelho (2006) and Barberà and

Coelho (2010) provided an initial analysis of rules of k names and of possible ways to screen

candidates. Our main results in Barberà and Coelho (2010) did focus on majoritarian

rules. Here we extend the analysis to the much wider class of v-rules of k name, of which

only the case v = k is majoritarian. In addition, we provide a fresh start toward the

normative evaluation of these rules.

We now comment on some related papers. Unfortunately there does not seem to be a

body of literature speci�cally devoted to study appointment rules with their checks and

balances. Of course there exist many voting rules that can be adapted to this speci�c

purpose, but we feel that it may be useful to focus on those that are especially �t for

appointment. To mention some related work, Holzman and Moulin (2011) and Alon et

al. (2011) concentrate on what they call nomination rules, leading to the choice of a �xed

number of candidates where the candidates are also the voters. Even if di¤erent from our

analysis, these papers show how being speci�c on the nature of the choice to be made can

help in focusing on new axioms and new questions. We would also like to mention some

sequential methods where di¤erent agents play di¤erent roles, as voters or vetoers, like

Mueller�s voting by veto (see Mueller,1978), Moulin�s successive elimination procedures

(Moulin, 1982) or Stevens, Brams and Merril�s �nal-o¤er arbitrage procedures (Brams

and Merrill (1986) and Stevens (1966)). All of them are multi-stage procedures that also

demand a game theoretic and a normative analysis, though in fact they are all di¤erent

from each other and of v-rules of k names. What we can certainly say is that v-rules of

k names are among to the most widely used methods in that general vein.

As for the normative analysis, the papers closest to ours are those that study the
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design of egalitarian and utilitarian voting schemes. See for instance, Rae�s (1969), Curtis

(1972), Badger (1972), Coelho (2004) and Barberà and Jackson (2004). However, this

literature focuses on the case where a society faces dichotomous choices. As for our game

theoretical analysis, the more related literature is the one characterizating the set of strong

Nash equilibrium outcomes of voting games. See Barberà and Coelho (2010), Ertemel,

Kutlu and Sanver (2010), Sertel and Sanver (2004), Polborn and Messner (2007), Moulin

(1982) and Gardner (1977).

The paper is organized as follows. In the next section (Section 2), we formally describe

the v-rule of k names, the game induced by this rule (Constrained Chooser Game) and

the equilibrium concept use (Strong Nash Equilibrium). In Section 3, we study how the

set of Strong Nash equilibrium outcomes responds to changes in the parameters k and

v de�ning the rule. In Section 4, we undertake a normative analysis. We describe the

agents�expected utility as a function of (k; v), in order to characterize the optimal values of

these rules�parameters, according to standard normative criteria and under the sustained

hypothesis that agents�preferences are unknown at the design period, but realized and

known by all agents at the time of voting.

2 The setup

In this section we formally de�ne rules of k names and the games they induce. We observe

that, in addition to other structural features, like the number of proposers, the number

of candidates and the size k of proposed candidates, a full speci�cation of a rule of k

names also requires to de�ne the screening rules by which the proposers decide what

names go into the list. In principle, this method could remain unspeci�ed, or be rather

complicated. But in actual practice simple and well speci�ed screening rules are usually

set. Basically, proposers are allowed to vote for a number v of candidates, and then the

k most voted ones are selected (with a tie break if needed). These votes will typically be

cast as the result of strategic calculations that may involve the cooperative coordination

among players.

Denote by A = f1; :::;ag the �nite set of candidates, and by Ak � fB � Aj#B = kg
the set of all possible subsets of A with cardinality k where #B stands for the cardinality

of B. Denote by N = f1; :::; ng the �nite set of proposers, who will select a set B from Ak
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from which an individual that does not belong to N; the chooser, selects one candidate

for o¢ ce.

Let W be the set of all strict orders (transitive2, asymmetric3, irre�exive4 and com-

plete5) on A. Each member i 2 N [ fchooserg has a strict preference �i2 W: For any
nonempty subset B of A; B � An;, we denote by �(B;�i) � fx 2 Bjx �i y for all
y 2 Bnfxgg the preferred candidate in B according to preference �i :

De�nition 1 Let MN � M1 � :::�Mn with Mi = Mj = M for all i; j 2 N where M is

the space of actions of a proposer in N: Given k 2 f1; 2; :::; ag; a screening rule for k
names is a function Sk :MN �! Ak associating to each action pro�le mN � fmigi2N 2
MN the k-element set Sk(mN):

In words, a screening rule for k names is a voting procedure that selects k alternatives

from a given set, based on the actions of the proposers. In general, these actions may

consist of single votes, sequential votes, the submission of preference of rankings, the

�lling of ballots, etc...For example, if the actions in MN are casting single votes for

some candidates, then M � A: If the actions in MN are submissions of strict preference

relations among candidates, then M � W .
We concentrate on what we call v-screening rules. We have already observed that it is

usual in practice to specify the number of votes that each proposer can cast for di¤erent

candidates, and then use plurality count to determine those that will be selected. Our

next de�nitions refer to this particular and important subclass of screening rules, and to

the rules of k names that use them.

De�nition 2 A v�screening rule for k names can be described as follows: each
proposer votes for v candidates, and the list is formed with the names of the k most

voted candidates, with a tie breaking rule when needed. The parameters v and k satisfy

v � k < a and v:n � k: The tie breaking criterion is a strict ordering of alternatives.

This ordering can either be �xed for all pro�les, or coincide with the preferences of some

2Transitive: For all x; y; z 2 A : (x � y and y � z) implies that x � z:
3Asymmetric: For all x; y 2 A : x � y implies that :(y � x):
4Irre�exive: For all x 2 A;:(x � x):
5Complete: For all x; y 2 A : x 6= y implies that ( y � x or x � y):

8



agent at each given pro�le67

De�nition 3 A v�rule of k names is described as follows: given a set of candidates
for o¢ ce, a committee of size n chooses k members from this set by using a v�votes
screening rule for k names. Then a single individual from outside the committee selects

one of the listed names for o¢ ce.8

Having de�ned our rules, we now want to consider the type of strategic interactions

that may arise among the proposers, as a function of their preferences and those of the

chooser. We model these interactions as a normal form game with complete information,

and concentrate our analysis on the study of its strong Nash equilibria.

De�nition 4 (Barberà and Coelho, 2010) Given k 2 f1; 2; :::; ag, a screening rule for
k names Sk : MN �! Ak and a preference pro�le �� f�igi2N[fchooserg 2 WN+1; the

Constrained Chooser Game can be described as follows: It is a simultaneous game

with complete information where each player i 2 N chooses a strategy mi 2 Mi. Given

mN � fmigi2N 2 MN, Sk(mN) is the chosen list with k names and the winning candidate

is �(Sk(mN);�chooser).

In the Constrained Chooser Game, the chooser�s strategy set is restricted to a single

element. In that sense, we could say that he is not an active player. Speci�cally, we take

it that the chooser will simply select that candidate that is best for him among those that

he will be presented with. Thus, the chooser�s preferences will condition the outcome

function, and therefore will have an impact on the equilibrium play of the proposers. But

we exclude the possibility that he announces a choice rule that is not in accordance to his

preferences, which are known in each game.

We choose to analyze the set of strong Nash equilibria of this game. This is consistent

with the idea that proposers have complete information about their preferences and those

6Notice if the number of candidates with positive votes is lower than k, the tie breaking criterion must

be used to break the ties among candidates with zero votes.
7See other examples of screening rules in Barbera and Coelho (2008), Ratli¤ (2003) and Gehrlein

(1985).
8In a preceding paper (Barberà and Coelho, 2010) we already noticed that there is a substantial

di¤erence between rules of k names, depending on the power that screening rules assign to majorities.

Speci�cally, there are screening rules where the majority can always impose the full list, if it agrees to do

so, and others where its power is more limited.
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of the chooser, and that they must �nd ways to cooperate among themselves, in order to

come up with a favorable list.

De�nition 5 Given k 2 f1; 2; :::; ag, a screening rule for k names Sk : MN �! Ak and

a preference pro�le �� f�igi2N[fchooserg 2 WN+1; a joint strategy mN � fmigi2N 2 MN

is a pure strong Nash equilibrium of the Constrained Chooser Game if and only

if, given any coalition C �N; there is no m0
N � fm

0
igi2N 2 MN with m

0
j = mj for every

j 2 NnC such that �(Sk(m
0
N);�chooser) �i �(Sk(mN);�chooser) for each i 2 C:

3 Cooperation and con�ict under v-rules of k names.

In this section we discuss how di¤erent v-rules for k names will tilt the decision power

to the bene�t of the chooser or (reciprocally) of the proposers. To do so, we study the

equilibria of the games induced by our rules, for di¤erent values of v and k, and the impact

of these two de�ning parameters on the interests of the chooser. Notice that under v-rules

of k names, the messages that agents are required to send consist of subsets of candidates

with cardinality v.

We begin in Subsection 3.1, by studying conditions that any strong Nash equilibria

outcome must satisfy. These conditions are helpful to locate equilibria and provide a �rst

step toward their characterization, when they exist! However, we also show that they

are not su¢ cient for either existence or uniquess, and provide examples indicating the

variety of problems that make it hard to �ll the gap of a full characterization. We also

show that if a candidate is at same time the proposers�s strong Condorcet winner and

the chooser�s best candidate, then it is the unique equilibrium outcome for any v-rule of

k names. This proves that, when there is little con�ict between the proposers and the

chooser�s objectives, then any choice of v and k will do. But it is also highlights the fact

that, otherwise, choosing v and k has consequences on the balance of power between the

interested parties,We �nish this subsection by giving a counterintuitive example where

the chooser is better o¤ under a small k and a large v.

In Subsection 3.2, we study a model of simple societies (the polarized proposers model)

for which we are able to prove the existence and uniqueness of strong Nash equilibrium

outcomes, and to characterize them. A special case covered by this model is the homo-
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geneous proposer�s case9, where all proposers are in agreement. We show that in the

polarized case the chooser always prefer rules with a lower k and a smaller v. We con-

clude that it is possible to sign the impact of our parameters upon the chooser in polarized

societies, but that the general case requires a delicate case by case analysis.

3.1 Necessary conditions for equilibrium outcomes

Clearly, any speci�c screening rule will endow each subgroup of proposers with some power

to determine what candidates to include in the proposal. Understanding how this power

is distributed is a prerequisite to discuss, later on, the strategic interaction among voters,

depending on their diverse interests. The de�nitions we provide now will be useful for

this purpose.10

De�nition 6 Given a v-screening rule for k names Sk : MN �! Ak and X � A

such that #X � k, let qvk(X) be the minimum bq such that for any coalition C �N of

voters with #C � bq implies that there exists mC 2 MC such that for every pro�le of the

complementary coalition mNnC 2MNnC we have X � Sk(mC ;mNnC).

In words qvk(X) is the minimum bq such that any coalition, with size higher or equal tobq; can impose the choice of X; under v-screening rule.
Remark 1 The values of q evolve monotonically with those of k and v. For any A and

v < v�< k < k�< #A, we have that:

1. qvk(X) � qv
0
k (X) for any X 2 Ak;

2. qvk�(X
0) � qvk(X) for any X 2 Ak and X 0 2 fY 2 Ak0jX � Y g;

3. qv
0
k (fxg) � qvk(fxg) for any x 2 A;

4. qvk(fxg) � qvk0(fxg) for any x 2 A:
9The analysis of the homogeneous proposer´s case is similar, though not identical, to that of one

proposer case (see Subsection 5.1)
10Notice that de�nitions 6 an 7 are closely linked to that of e¤ectivity functions studied by, among oth-

ers, Peleg (1984), Abdou and Keiding (1991) and Sertel and Sanver (2004). These concepts of e¤ectivity

refer to the ability of agents to ensure an outcome, under the given rule.
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These q values may di¤er depending on the set or on the candidate, due to the tie

breaking rule. We can �nd common bounds for all of them, and compute explicit formulas

for their values.

De�nition 7 For any v-screening rule for k names, let qv1 � Maxy2Afqvk(fyg)g and
qvk �MaxY 2Akfqvk(Y )g:11

De�nition 8 A candidate is a chooser�s `-top candidate if and only if he is among

the ` best ranked candidates according to the chooser�s preference.

Once endowed with the preceding de�nitions, we can state Proposition 1, that provides

necessary conditions for a candidate to be a strong Nash equilibrium outcome of the

Constrained Chooser Game.

Proposition 1 Consider any v-rule of k names. If candidate x is a strong Nash equi-

librium outcome of the Constrained Chooser Game, then it satis�es the following four

conditions

C1: It is among the chooser�s (a� k + 1)-top candidates.

C2: If y 6= x is among chooser�s (a�k+1)-top candidates then #fi 2 N jy �i xg < qvk(Y )
for any Y 2 Ak such that y is the chooser�s best candidate in Y .

C3: If y is the chooser�s best candidate then #fi 2 N jy �i xg < qvk(fyg).

C4: If y is the chooser�s best candidate and also ranked above than x by the tie breaking

criterion then #fi 2 N jx �i yg � qvk.12

It is not always easy to identify those candidates that may be elected at a strong Nash

equilibrium of the game. But knowing the necessary conditions alone is already of great

help. We illustrate this point though an example.

Example 1 Let A = fa; b; c; d; eg and let N = f1; 2; 3g. Suppose that each proposer votes
for one candidate and the three most voted candidates form the list , with a tie breaking

rule when needed: b � a � e � d � c. The preferences of the chooser and the committee
11In Appendix B, we provides explicit formulas for these two parameters.
12The proofs of the propositions are in the Appendix A.
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members are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

e e e a

d d d b

c c b c

a a a d

b b c e

Notice that, we have that qvk(fxg) = 1 for any x 2 A and qvk(X) = 3 for any X 2 Ak:
The �rst step in describing the equilibrium outcomes is to identify those candidates that

satisfy the three necessary conditions established in Proposition 1.

Inspecting the preference pro�le above, we have that:

1. Condition 1: fa; b; cg.
2. Condition 2: fa; b; c; d; eg:
3. Condition 3:fa; d; eg:
4. Condition 4: fa; b; d; eg:
So, only candidate a that satis�es all four conditions. Now we have to check whether there

is a strategy pro�le that sustains candidate a as a strong Nash equilibrium candidate. The

following strategy pro�le sustains a as a strong Nash equilibrium outcome: Proposer 1

votes for a, Proposer 1 votes for d and Proposer 3 votes for b.

The table below presents the set of strong Nash equilibrium for di¤erent values of v. Notice

that, in this example, the chooser is weakly worse o¤ as v increases.

Set of strong Nash equilibrium outcomes

k=3 v = 1 fag
k=3 v = 2 fag
k=3 v = 3 fcg

In the preceding example, the choice of candidates satisfying the necessary conditions

could be in fact be sustained with an appropriate set of strong equilibrium strategies.

But this need not be the case. In fact, there may be candidates that satisfy the necessary

conditions and yet cannot be the outcome of any equilibrium. Worse of that, equilibria

may not exist even if some candidates meet the necessary conditions, as shown by our

next example.
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Example 2 Let A = fa; b; c; dg and let N = f1; 2; 3g. Suppose k = 2 and v = 1, with the
following tie breaking rule when needed: a � c � b � d. The preferences of the chooser

and the committee members are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

c b b a

b c a c

d d c b

a a d d

We have that qvk(fag) = qvk(fcg) = 1, qvk(fxg) = 2 for any x 2 Anfa; cg and qvk(X) = 2 for
any X 2 Ak such that a 2 X and qvk(Y ) = 3 for any Y 2 Ak such that a =2 Y . Inspecting
the preference pro�le above, we have that:

1. Condition 1: fa; b; cg.
2. Condition 2: fb; cg:
3. Condition 3: fa; bg:
4. Condition 4: fa; bg:
So, only candidate b satis�es all four necessary conditions stated in Proposition 1.

However, b is not an equilibrium outcome, since Proposer 1 always have incentive in pre-

venting the election of b by casting a vote for c.

Notice also that the proposers�preference pro�le satis�es single peakedness. So, this ex-

ample teaches us that even this strong property cannot guarantee the existence of an equi-

librium. If we had considered a 2-votes screening rules for two names, candidate b would

be the unique strong Nash equilibrium outcome of the game.

Before engaging in any other discussion, let us notice that when there is su¢ cient

agreement among agents regarding candidates, then all rules will yield the same outcome.

This result emphasizes the fact that the choice of speci�c rules makes a di¤erence when

there is disagreement.

De�nition 9 A candidate x is the proposers� strong Condorcet winner if and only

if #fi�N jx �i yg > n+1
2
for every y 2 Anfxg:
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Proposition 2 If a candidate is the proposers� strong Condorcet winner and also the

chooser�s best candidate then it is the unique Strong Nash equilibrium outcome for any

v-rule of k names.

Proposition 2 provides a simple su¢ cient condition for the existence and uniqueness

of strong Nash equilibrium in our game for any pair of (v; k): we know other su¢ cient

conditions and they appear in Appendix C, Section C1.

In the spirit of the result above, notice that in case of disagreement, the choice of v

and k will have an impact on the balance between the satisfaction of the chooser and that

of the proposers. In the next subsection we will show that, in many cases, the chooser

will prefer a larger to a smaller k; and a smaller rather than a larger v. But the following

example shows that, without any further restrictions, these preferences can be reversed:

the chooser may be happier as k decreases and as v increases.

Example 3 Let A = fa; b; c; dg, and let N = f1; 2; 3g. Each proposer votes for one can-
didate and the list has the names of the two most voted candidates, with a tie breaking

rule when needed: c � d � b � a.

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

b a a b

d c c a

c d d c

a b b d

We have that qvk(fcg) = qvk(fdg) = 1, qvk(fxg) = 2 for any x 2 Anfc; dg and qvk(fc; dg) = 2
and qvk(Y ) = 3 for any Y 2 Aknffc; dgg: Inspecting the preference pro�le above, we have
that:

1. Condition 1: fa; b; cg.
2. Condition 2: fa; cg:
3. Condition 3:fa; b; c; dg
4. Condition 4:fb; c; dg
Thus, only c satis�es all four conditions. In fact, c is the unique strong Nash equilibrium

outcome under v = 1 and k = 2.
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Here there is a intuition for this result: notice that candidate a cannot be a strong equi-

librium outcome of the Constrained Chooser Game, because as long as proposer 1 votes

for b, proposers 2 and 3 cannot get a to be the outcome, even if they can force a to be

in the list. Short of that, proposers 2 and 3 coordinate their actions so that one of them

votes for c and the other for d. If 1 persists in voting for b, this creates a tie between the

three candidates that is solved in favor of c and d, out of which the chooser selects c. If 1

votes for c instead, the same outcome ensues. And all other actions by any combination

for agents would lead some of them to outcomes that would be worse than c for some of

them. Hence, c is the unique strong Nash equilibrium of the Constrained Chooser Game

under our proposed rule.

The cases (v; k) = (1; 1) and (v; k) = (2; 2) are majoritarian, and lead to the election of

a:

The table below presents the set of strong Nash equilibrium for di¤erent values of v and

k. Notice that, in this example, the chooser is weakly worse o¤ as v increases.

Set of strong Nash equilibrium outcomes

k=1 v = 1 fag
k=2 v = 1 fcg
k=2 v = 2 fag

Notice that, with v �xed at 1, the chooser is better o¤ when k = 1 than when k = 2. This

is quite surprising, since k = 1 means that the chooser has no power at all! On the other

hand, for k = 2, the chooser prefers the higher value v = 2 to that of v = 1. Again,

this not completely intuitive, as one may think that a smaller v takes away power from

the proposers. What the example shows is that simple intuitions on the issues may be

misleading unless we provide a careful strategic analysis.

4 The polarized proposers model

We now present a speci�cation of possible societies for which, as we shall see, the equilibria

outcomes always exist, is unique and can be easily characterize. We call them polarized

societies, and they are described as follows:

1. (Assumption 1). Proposers are partitioned into G1 and G2 = NnG1;with sizes
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#G1 = m > #G2 = n�m:.

2. (Assumption 2). All proposers in G1 share the same preferences over the set of

candidates.

3. (Assumption 3). All proposers in G2 share the same preferences over the set of

candidates and it is the reverse of the preferences of the proposers in G1.

4. (Assumption 4). The tie breaking rule coincides with at least one of the agent�s

preferences over the set of candidates.13

Proposition 3 Consider the Polarized Proposers Model and any v-rule of k names. A

strong Nash equilibrium outcome of the Constrained Chooser Game always exists and it

is unique. In addition:

1) Suppose that the tie breaking criterion coincides with the majoritarian group�s prefer-

ences over the set of candidates.

If m � qvk > n�m then the strong Nash equilibrium outcome is the best candidate of the

majoritarian group out of chooser�s (a� k + 1)-top alternatives;
If qvk > m � qv1 > n �m then the strong Nash equilibrium outcome is the chooser�s best

candidate out of the majoritarian group�s k-top candidates;

If qvk > m > n�m � qv1 then the equilibrium outcome is the chooser�s best candidate.

2) Suppose that the tie breaking criterion coincides with the chooser�s preferences over the

set of candidates or with the minoritarian group�s preferences over the set of candidates.

If m � qvk then the strong Nash equilibrium outcome is the best candidate of the majori-

tarian group out of chooser�s (a� k + 1)-top candidates;
If qvk > m then the strong Nash equilibrium outcome is the chooser�s best candidate.

A simple and interesting case of polarized societies arises when all proposers share the

same preferences, i.e., G1 = N and G2 = ;: We call it homogeneous proposers model.

Corollary 1 Consider the homogeneous proposers model (m = n). The strong Nash

equilibrium outcome is the proposers´ s best candidate out of chooser� s (a � k + 1)-top
candidates.
13Without this assumption, the existence result may not hold. See an example in Appendix C, Section

C2.
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The following three corollaries follow from Proposition 3 and Remark 1.

Corollary 2 Consider the Polarized Proposers Model. The chooser cannot be worse o¤

under v0-rule for k names than under ev� rule for k names whenever ev > v0.
Corollary 3 Consider the Polarized Proposers Model and v�rule of k names. The

chooser cannot be worse o¤ under a more polarized set of proposers (small m) than under

a less polarized set of proposers (big m).

Corollary 4 Consider the Polarized Proposers Model. The chooser cannot be worse o¤

under v- rule for k�names than under v� rule for ek names whenever k�> ek.
5 An ex-ante analysis of di¤erent rules: egalitarian-

ism, e¢ ciency and bargaining.

We now turn to the normative analysis of our rules. We suggest a general framework

within which one can make ex ante calculations of the consequences of adopting any

speci�c collective decision rule. Then we apply our general methods to speci�c instances,

as an indication of how to proceed. These instances are chosen in such a way that we can

provide exact calculations of expected values and perform comparisons among di¤erent

rules of k names, on the basis of our previous analysis. But the interested reader will

be able to adapt the same analytical principles to any situation and any set of rules of

interest.

The main ingredients of the analysis are the following. First, we�ll need a probability

distribution over social preference pro�les.This is a way to specify the uncertainty faced

by a planner who must choose one among di¤erent rules, regarding the possible worlds

on which that rule will need to be used, and with what frequency. Then, we will have

to make some assumption about how much information the agents will be endowed with,

once the uncertainty is resolved and they are about to make a decision. This will allow

us to determine the expected behavior of voters at each realization of the world. On that

basis, we�ll be able to compute the expected utility of the di¤erent voters. Finally, we�ll

need an objective function indicating the normative criterion that the planner wishes to

achieve when choosing among di¤erent rules.
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In order to indicate how to make this general approach operational, we provide an

analysis of some specials cases, based on the following assumptions.

1. Regarding the possible worlds, we concentrate on preference pro�les where all of the

agents�utilities are identi�ed with the inverse of the ranking of the alternatives they get.

That is, we assume all agents to be risk neutral and to measure the performance of any rule

by the ranking of the alternative they will obtain at each realization of the world. Under

this assumption, we study two di¤erent cases. The �rst one arises when there is only one

proposer and one chooser, whose preferences are independently randomly drawn from a

uniform distribution over all possible rankings of candidates. The second case assumes

that all probability is concentrated on polarized worlds, where the preferences of the

majoritarian segment of the proposers and those of the chooser are again independently

drawn from a uniform distribution on the universal domain.

2. Regarding the information of agents at the time of choice, we assume that they are

all fully informed about the preference pro�le that has materialized. Then, we use our

previous analysis and make the expected utility calculations that result from the agents�

playing a strong Nash equilibrium.

3. Regarding the objectives of the planner, in the one-proposer case we show that three

possible criteria would converge into the same one. These are utilitarianism (minimizing

the sum of expected rankings), egalitarianism (minimizing the di¤erence between the ex-

pected ranking of the proposer and that of the chooser) and Nash bargaining (minimizing

the product of the expected rankings for both agents). In general, and given that the

chooser remains as a single agents as the number of proposers grows large, utilitarianism

and Nash bargaining become less attractive, and we concentrate on the type of rules that

tend to equalize the expected ranking of the outcome for the chooser with that of the

average proposer.

Sections 5.1 and 5.2 will develop the two cases we just outlined. Before getting there,

let us just remark that each of our preceding modeling decisions could be altered without

changing the essence of our analysis. Regarding the speci�cation of possible worlds,

it is not hard to extend it to cases where the preferences of agents are still based on

the ranking of the outcomes but exhibit di¤erent degrees of risk aversion. As for the

informational assumptions, one could also study easily the polar case where, once a pro�le

is realized, each agent is only informed about her own preference, but remains ignorant
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about those of the rest. In that case, it becomes natural to assume that agents will

behave sincerely, rather than strategically, and the computations carry over in a similar

manner14 Finally, it is clear that one could resort to alternative evaluation criteria, like

weighted utilitarianism, or any sort of distributional criterion regarding power, other than

egalitarianism. But again, our main message here is that the use of some method over

another may be discussed in expected utility terms and that, in our case, it is even possible

to get of feeling of the trade-o¤s involved in the choice of any pair (v; k) over any other

(v�; k�) through explicit nimerical computations.

5.1 The case of one proposer

In this subsection, we consider the case where there is only one proposer. The next

proposition characterizes the strong Nash equilibrium outcome for this special case of the

Polarized proposer model (m = n = 1).

Proposition 4 Consider any v-rule of k names and only one proposer. The Strong Nash

equilibrium outcome of the rule of k names is the proposer�best candidate out of chooser�

s (a� k + 1)-top candidates.

Here is the intuition for Proposition 4. The proposer knows that once he selects a

list with k names, the winning candidate is the chooser�s best candidate out of this list.

Thus, he knows that, in practice, his set of alternatives is restricted to the chooser� s

(a � k + 1)-top alternatives, since only for candidates in this set it is possible to form
a list with k names where a given candidate is the chooser�s best candidate in the list.

The proposer must select his best candidate out of chooser�s (a � k + 1)-top candidates
and submit a list where this candidate is the chooser�s best candidate in the list, since

Proposition 4 is a direct corollary of Proposition 3, its proof is omitted.

Let us assume that the proposer and the chooser�s preferences are the result of inde-

pendent random draws from a uniform distribution over the domain of strict preferences.

Given that the agents�s preferences are random variables, the ranking of the equilibrium

outcome according to the preferences of one of the agents is also a random variable. De-

note by Rc and Rp the random variables that represent the ranking of the equilibrium

outcome according to the chooser and the proposer�s preference relation and by rc and rp
14The analysis of this case is available from the authors.
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the realized values that Rc and Rp may take. ri = 1 + #fy 2 N jy �i xg if x is the equi-
librium outcome. Notice that if the equilibrium outcome is the agent i�s best candidate

then ri = 1 and if it is the agent i�s worst candidate then ri = a (where a denotes the

number of candidates). Let us assume that the agents�Bernoulli utility functions assign

to each candidate the negative values of its ranking, i.e., uc(rc) = �rc and up(rp) = �rp:
The random variable Rc has the same distribution than a discrete random variable

uniformly distributed over f1; 2; : : : ; a� k + 1g.
Rp has the same distribution as the smallest element of a random sample with size

s = a � k + 1 drawn without replacement from a uniformly distributed population D =

f1; 2; : : : ; ag. Thus, following standard results of order statistics literature, we have:

E(up(Rp)jk; a) = � a+1
a�k+2 (1)

E(uc(Rc)jk; a) = �a�k+2
2

(2)

From equations 1 and 2 above, notice that the proposer´s expected utility is strictly

decreasing with k, while the chooser´s expected utility is strictly increasing with k. Thus,

when k=1 the chooser�s expected utility reaches its minimum and E(uc(Rc)jk = 1; a) =
�a+1

2
, while proposer´s reaches its maximum, E(up(Rp)jk = 1; a) = �1:

De�nition 10 A k 2 f1; :::; ag is an egalitarian solution if jE(up(Rp)jk; a)�E(uc(Rc)jk; a)j �
jE(up(Rp)jk�; a) � E(uc(Rc)jk�; a)j for every k�2 f1; :::; ag: We denote by Se the set of all
values of k that are egalitarian solutions.

De�nition 11 A k 2 f1; :::; ag is a utilitarian solution if E(up(Rp)jk; a)+E(uc(Rc)jk; a) �
E(up(Rp)jk�; a) + E(uc(Rc)jk�; a) for every k�2 f1; :::; ag: We denote by Su the set of all
values of k that are utilitarian solutions.

De�nition 12 A k 2 f1; :::; ag is a Nash bargaining solution with disagreement point
(d; d) where d � �a+1

2
, if (E(up(rp)ja; k) � d)(E(uc(rc)ja; k) � d) � (E(up(Rp)ja; k�) �

d)(E(uc(Rp)ja; k�)� d) for every k�2 f1; :::; ag: We denote by Sn the set of all values of k
that are Nash bargaining solutions.

Proposition 5 The egalitarian, utilitarian and Nash bargaining solutions for k coincide

in the one proposer case. Moreover, if x = a+ 5
2
�
q
2a+ 9

4
is not an integer Su = Sn =

Se = fbxcg: And if x is an integer then Su = Sn = Se = fx� 1; xg:
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The intuition is simple: the combination of expected utilities for the proposer and for

the chooser that we get as k changes constitute a symmetric set. Since the egalitarian and

the utilitarian solution satisfy Nash�s axiom of symmetry, and our bargaining problem is

symmetric, they both coincide with Nash�s solution in this nice case.

Corollary 5 Let y = a�
p
2a+ 2+2: If y is an integer number then Su = Sn = Se = fyg

and E(up(rp)ja; k = y) = (E(uc(rc)ja; k = y):15

Corollary 6 Any k that is an egalitarian, utilitarian or Nash bargaining solution must

be greater or equal than a+1
2
.

Corollary 7 Consider any k that is an egalitarian, utilitarian or Nash bargaining solu-

tion. At any realization of the preference pro�les, the chooser�s payo¤ of the strong Nash

equilibrium cannot be lower than �a+1
2
, i.e., uc(rc) � �a+1

2
: Moreover, there exists some

realizations of the preference pro�les where the proposer�s payo¤ is lower than �a+1
2
, i.e.,

up(rp) < �a+1
2
.

The �rst part of the corollary above follows from Condition 1 of Proposition 1 that

states that any strong Nash equilibrium outcome must be among the chooser�s (a�k+1)-
top candidates, from Corollary 5. To show the second part of the corollary, consider

a = 7. By Proposition 5, we have the egalitarian k solution is f5g. Now consider the
case where the chooser�s preferences are the reverse of those held by the proposer. Then

uc(rc) = �3 � �a+1
2
and up(rp) = �5 < �a+1

2
:

Example 4 Consider a = 5. Applying Proposition 6, we have that Su = Sn = Se = f3; 4g
since a + 5

2
�
q�
2a+ 9

4

�
= 4: Consider now a = 7 then Su = Sn = Se = f5g since

a + 5
2
�
q�
2a+ 9

4

�
= 5:47: Notice also that a �

p
2a+ 2 + 2 = 5 when a = 7: Thus, by

Corollary 4, we have that E(up(rp)ja = 7; k = 5) = (E(uc(rc)ja = 7; k = 5):
15The corollary above follows by Proposition 1 and from the fact that if a�

p
2a+ 2+ 2 is an interger

number then it is equal to
j
a+ 5

2 �
q
2a+ 9

4

k
: To see it, let x = a+ 5

2�
q
2a+ 9

4 and y = a�
p
2a+ 2+2:

Notice that

x� y =
p
2a+ 2 + 1

2 �
q
2a+ 2 + 1

4 : Thus 1 > x� y > 0 for every a > 0. Therefore if a�
p
2a+ 2 + 2

is an interger number then we have that
j
a+ 5

2 �
q
2a+ 9

4

k
= a�

p
2a+ 2 + 2:
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Corollaries 6 and 7 may be a bit disturbing, because in real life we observe the use

of small values of k. But he is due to the speci�city of the one proposer case, where, as

shown by Proposition 7 in the next subsection, the proposer gets a large advantage, that

can only be compensated by a larger k. In the next subsection, we will see that these k

values become smaller as diversity among proposers increases.

5.2 The case of several proposers

In this section we study the impact of v and k the expected value of v and k on the

expected value of the ranking of equilibrium outcomes for the chooser and for the average

proposer in the polarized proposers model.

The preference of the majoritarian group of proposers and that of the chooser are

drawn independently from a uniform distribution, and this generates the distribution over

polarized pro�les. Again, we assume that the utilities of agents assign each candidate the

negative of its rank.

We denote by Rp � m
n
RG1 +

n�m
n
RG2 and up(rp) � m

n
uG1(rG1) +

n�m
n
uG2(rG2) the

average utility of an outcome for the proposers, given rG1 and rG2 .

We now have our two parameters in operation, and �nding egalitarian solutions will

entail the simultaneous choice of values for v and k.

De�nition 13 Consider the Polarized Proposers Model. A pair (k; v), such that k 2
f1; :::; ag and v 2 f1; :::; kg, is an egalitarian solution if jE(up(Rp)ja; k; v)�E(uc(Rc)ja; k; v)j �
jE(up(Rp)ja; k�; v�)�E(uc(Rc)ja; k�; v�)j for every k�2 f1; :::; ag and v�2 f1; :::; k�g:We denote
by Se the set of all values of (k,v) that are egalitarian solutions.

Our next two propositions may be a bit tedious, but we still include them in order

to show that one may compute exact values for expected utilities in our model, and use

them to determine the egalitarian values (v; k).

Proposition 6 Consider the Polarized Proposers Model with the majoritarian group�s

preferences as the tie breaking criterion. Suppose that the (common) preference of majori-

tarian proposers are randomly drawn from a uniform distribution over the set all rankings

of candidates, and so is the preference of the chooser. Remember that the preferences of

the minority of proposers will then be automatically speci�ed to be the opposite of that of
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the majority. Then, for any v-rule of k names, the agents�expected utilities are given by

the following expressions:

1. If m � qvk > n�m :

E(up(rp)ja; k; v) = �m
n

(a+1)
(a�k+2) �

n�m
n

(a+1)(a�k+1)
(a�k+2)

E(uc(rc)ja; k; v) = � (a�k+2)
2

2. If qvk > m � qv1 > n�m :

E(up(rp)ja; k; v) = �m
n
(k+1)
2
� n�m

n
(2a�k+1)

2

E(uc(rc)ja; k; v) = � (a+1)
(k+1)

3. If qvk > m > n�m � qv1 :

E(up(rp)ja; k; v) = � (a+1)
2

E(uc(rc)ja; k; v) = �1

Notice that the di¤erent cases in Proposition 6 arise because, in view of the size of

the majorities, and the power assigned by the choice of v and k to the majority and the

minority, equilibria will be di¤erently characterized as shown by Proposition 6.

The following proposition gives a partial characterization of the egalitarian solution

under the Polarized Proposers Model.

Remark 2 Notice that, ceteris paribus, the egalitarian value of k for polarized societies

is non increasing in m: This is due to Corollary 3.

Proposition 7 Consider the Polarized Proposers Model with the majoritarian group�s

preferences as the tie breaking criterion. Suppose that the (common) preference of majori-

tarian proposers are randomly drawn from a uniform distribution over the set all rankings

of candidates, and so is the preference of the chooser. Remember that the preferences of

the minority of proposers will then be automatically speci�ed to be the opposite of that of

the majority. Then, for any v-rule of k names, we have that :
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Se � S1 [ S2:
where

S1 = f(k; v) 2 fb� 1c; d� 1eg � f1; :::; d� 1egjm � qvkg
S2 = f(k; v) 2 fb� 2c; d� 2eg � f1; :::; d� 2egjqvk > m � qv1 > n�mg
� 1 =

m
n

�
n
m
+ (a+ 1)�

p
n
m
(2� n

m
) + (2a+ 1) + a2( n

m
� 1)2

�
;

� 2 =
m
n

2m
n
�1
�
(a� 1)� a n

m
+
p

n
m
(2� n

m
) + (2a+ 1) + a2( n

m
� 1)2

�
:16

These values arise from minimizing the expressions resulting from comparing the ex-

pected values for the chooser and the average proposer, as expressed in Proposition 6.

For each inequality in Proposition 6, we obtain �rst the values of k that minimize di¤er-

ences between the agents�expected utilities, then for each value of k we �nd the values

of v�s that would be compatible with its corresponding inequality. In fact, we can ignore

inequality 3 since it is dominated by the other inequalities (since if inequality 3 holds, the

chooser would have all the power).

Armed with these explicit calculations, one can proceed to analyze speci�c cases.

Without going into much detail, the following example provides the solution to the egal-

itarian power distribution choice of rules for a speci�c case.17

Example 5 Let a = 10; n = 7, m = 5 and suppose that the agents�s utilities are

u(r) = �r: Applying Proposition 7, we have that � 1 = 4:4633; � 2 = 1:919. Hence,

S1 = f(4; 4); (4; 3); (5; 5); (5; 4)g, S2 = f(5; 3)(1; 1); (2; 1))g and the egalitarian solution is
Se = f(2; 1)g: Now, consider m = 6: Again, applying Proposition 7, we have that Se =

f(6; 6); (6; 5); (6; 4); (6; 3); (6; 2)g: Notice that as the size of the majority increases from 5 to
6, the egalitarian k increases from 2 to 6. In the homogeneous proposers�case (m = n), the

set of egalitarian solutions would be Se = f(7; 7); (7; 6); (7; 5); (7; 4); (7; 3); (7; 2); (7; 1)g:

These examples suggest that, while the choice of k is rather stringent, the values of

v that allow societies to reach an egalitarian distribution of power, given k, are not so

precisely determined. This lack of full uniqueness is not surprising, nor bothersome, we

believe, given that we are working in a setting with integer parameters. However, it

suggests yet a �nal possible exercise, that we brie�y discuss now.

16Notice S2 can be empty. But S1 is never empty since f(b�1c; b�1c); (d�1e; d�1e)g � S1:
17These calculations are elementary and available from the authors.
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Indeed, there are cases whether the constitutional detail provided by a planner stops

short of fully specifying both parameters k and v. In particular, if k is exogenously �xed,

one can still inquire what could be a power equalizing choice for v.

Here is an interesting example where this kind of problem arose in practice.

According to the Brazilian Constitution, one-third of the members of the Superior

Court of Justice shall be chosen in equal parts among lawyers and members of the Public

Prosecution. When there is position vacant assigned to be occupied by a lawyer, the

constitution states the National Lawyer Association must propose six candidates to the

court (so, a = 6). Upon receiving the set of candidates, the court shall organize a list of

three names and send it to the President of the Republic, who selects one of the listed

names.

However, the constitution does not determine what screening rules should be used to

screen the six initial names and then the three out of them. If we consider the list of

six candidates as given, and concentrate on the choice of screening rule to determine the

three to be sent to the President, it turns out that the Superior Court will be facing the

question we just mentioned in the abstract. Given k = 3, what v should be used by the

court to select the three names.?

It turns out that, in fact, a speci�c screening rule was decided upon and is now

established in the bylaws of Superior Court.

On what grounds was this rule chosen? We cannot tell. But, can we rationalize the

proposed rules through our analysis?

Since there are 33 ministers in the Superior Court of Justice, when there is a position

vacant, the number of proposers of the three names is 32. Therefore, we have the following

parameters n = 32, a = 6 and k = 3.

If we suppose that the assumptions of the Polarized Proposers Model hold and that

m = 24, the size of the majority group, what would be the value of v that minimizes

the absolute di¤erence between the president´s expected utility and the average of the

ministers� expected utilities would be equal to three: that is, v = k = 3, which is a

majoritarian method. In fact, v = k = 3 would be a egalitarian solution for any size of the

majority group (m). The rule actually chosen by the ministers was in fact a cumbersome

sequential method, which however boils down, in terms of the implied equilibrium, to

using the majoritarian v rule with v = k = 3, precisely the value that would correspond
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to our calculations. Of course, we are not claiming that this was the reasoning underlying

the choice of the screening rule that appears in the bylaws. But the example at least

shows what kind of reasoning they could have adopted, and the use of our approach in

selecting not only �rst best solutions, but also to perform second best analysis.

6 Concluding Remarks

Rules that contemplate several stages of choice are widely used. Some people are in

charge of screening, then others choose among those candidates that were not screened

out. We have concentrated in the case with only one chooser, because it is actually used

in many cases, and also for simplicity, but hope to keep deepening our understanding of

the advantages of each of the many forms in which societies divide their decision tasks.

In fact, as mentioned at the end of our introduction, the very idea to divide the tasks

may arise from very diverse reasons. The one we have concentrated upon is to divide

the decision power. This is in line with Arrowian tradition, where the interests of agents

are taken as given, and the rules are methods to mitigate con�icts. But there is at least

a second fundamental reason to subdivide decisions, this one based on common values,

more in line of Condorcet Jury Theorem. This reason is to assign each agent to the

partial decision that she is better informed about. When candidates can be judged on

a multidimensional scale, di¤erent decision-makers in a team may contribute to a �nal

choice by screening out candidates based on the dimension that they are better �t to

judge. In this context, rules of k names can be seen as methods to make proper use of

expert advise.

Even within our present framework, we are aware that our normative analysis can be

enriched by endowing agents with more complex preferences, considering a wider range

of distributions over preference pro�les, relaxing the full information assumption and/or

considering alternative equilibrium concepts under maybe di¤erent speci�cations of the

game they interact within.

Finally, let us re-emphasize that, even if widely used, v-rules of k names are only one

class among many others through people are eventually appointed. Given the power that

comes attached with the possibility to appoint people to o¢ ces, we hope that these, along

with other rules, can be systematically scrutinized and compared. We would like to think
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of our work as part of this potential stream of work.
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Appendix A

Proof of Proposition 1. Suppose that candidate x is the outcome of a strong

Nash equilibrium of the Constrained Chooser Game. In any strong Nash equilibrium

where x is the outcome, the screened set is such that x is the best candidate in this set

according to the chooser�s preferences. This implies that x is a chooser�s (a� k + 1)-top
candidate. To prove that Condition 2 is necessary take any candidate y 6= x among those
that are chooser�s (a � k + 1)-top candidates and let Y be any list with k names where

y is the chooser�s best candidate in Y . Notice that y cannot be considered better than x

by any coalition with at least qvk(Y ) candidates. Otherwise, this coalition could impose

Y , preventing x from being elected. So, if y is a chooser�s (a� k+1)-top candidate, then
#fi 2 N jy �i xg < qvk(Y ) for any Y 2 Ak such that y is the chooser�s best candidate in
Y .

Now, to justify Condition 3, suppose, by contradiction, that it is not true that #fi 2
N jy �i xg � qvk(y). Let C1 � fi 2 N jy �i xg; so #C1 � qvk(y): Then, the coalition of

proposers in C1 would be able to impose the inclusion of y in the list (since #C1 � qvk(y));
and the chooser would select it instead of x. Hence, if y the chooser�s best candidate, we

have that #fi 2 N jy �i xg < qvk(y).
Finally, consider Condition 4. Let y be the chooser�s best candidate, and assume that it

is ranked above x by the tie breaking criterion. Suppose, by contradiction, that it is not

true that #fi 2 N jx �i yg � qvk. Hence, at any strategy pro�le that includes x in the

selected list, the coalition C1 � fi 2 N jy �i xg can �nd a pro�table deviation to include
y; becomes the winning candidate. Therefore, x cannot be a strong Nash equilibrium

outcome.

Proof of Proposition 2. Consider any v-rule of k names and suppose that x is

the proposers�strong Condorcet winner, as well as the chooser�s best candidate. First

let us show that there is a strategy pro�le that sustains x as a strong Nash equilibrium

outcome. Consider the strategy pro�le, where all proposers vote for x. Notice that x will

be in the chosen list.

Then, candidate x will be elected since he will be in the list and he is the chooser�s top
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candidate. The only way to change this result is to avoid the inclusion of x in the chosen

list. But any coalitions with size smaller than n+1
2
cannot avoid the inclusion of x in the

chosen list, because the complementary coalition has size higher than n+1
2
and all the

proposers are voting for x. Notice that no coalition with size higher or equal to n+1
2
will

have any incentive to deviate, since there is no y 2 Anfxg that is considered better than x
by all proposers in the coalition (recall that x is the Proposers�strong Condorcet winner).

Therefore, this strategy pro�le is a strong Nash equilibrium of the Constrained Chooser

Game.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose, by

contradiction, that there is a strategy pro�le that sustains y 2 Anfxg as a strong Nash
equilibrium outcome. By Condition 3 of Proposition 1, #fi 2 N jx �i yg < qvk(fxg).
Notice that qvk(fxg) � n+1

2
. Hence, #fi 2 N jx �i yg < n+1

2
:It is a contradiction since x

is the proposers�Condorcet winner.

Proof of Proposition 3.

1) Suppose that the tie breaking criterion coincides with the majoritarian group�s prefer-

ences over the set of candidates.

1.1) Consider m � qvk:
Let x be the best alternative of the majoritarian group out of the chooser�s (a�k+1)-top
candidates. Since m � qvk; and by de�nition of qvk; there is a strategy pro�le that can be
adopted by the majoritarian group that leads to the election of x; and the minoritarian

group is unable to change it. Notice also that the majoritarian group will not have any

incentive in changing this outcome. Therefore, there exists a strategy pro�le that sustains

x as a strong Nash equilibrium outcome.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose, by con-

tradiction that there is another strong Nash equilibrium outcome y 6= x. By Condition
2 of Proposition 1, we have that fi 2 N jx �i yg < qvk(X) where x is the chooser�s best
alternative in X. This is a contradiction since fi 2 N jx �i yg > m > qvk > q

v
k(X):

1.2) Consider qvk > m � qv1 > n�m:
Let x be the chooser�s best alternative out of the majoritarian group�s k-top candidates.

Let X be the set of k-top candidates for the majoritarian group�s. We �rst show that

there exists a strategy pro�le that sustains x as an equilibrium outcome. Notice that

qvk > m � qv1 > n �m implies that m � qvk(X) and n �m � qvk(fxg): Consider the fol-
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lowing strategy pro�le: the majoritarian group adopts a strategy pro�le that can allows

it to impose the list X and the minoritarian group adopts a strategy pro�le that allows

it to impose x in the list. In order to change the outcome, one of the groups could try

to block the inclusion of x, but neither of them alone can do it. Notice also that only

the majoritarian group would be able to include another candidate better than x in the

list sent to the chooser. But this candidate would be worse than x for the majoritarian

group. Therefore, there exists no coalition of proposers that has an incentive to deviate.

Thus, we have proved that there exists a strategy pro�le that sustains x as an equilibrium

outcome.

Now we shall prove that x is the unique strong Nash equilibrium outcome. By contradic-

tion, suppose that there is another strong Nash equilibrium outcome y 6= x. By Condition
1 of Proposition 1, x is among the chooser�s (a � k + 1)-top candidates. By Condition
2 of Proposition 1, we have that fi 2 N jx �i yg < qvk(X). This is a contradiction since
fi 2 N jx �i yg > m � qvk(X):
1.3) Consider qvk > m > n�m � qv1 .
Let x be the chooser�s best candidate. First let us show that there exists a strategy

pro�le that sustains x as an equilibrium outcome. Notice that n �m � qv1 implies that

m > n � m > qvv(fxg). Consider the following strategy pro�le: every proposer casts a
vote for x. Thus, x will be in the selected list and it will be elected. No group can take

x out from the selected list by a unilateral deviation, since both have size larger than

qvv(fxg). Since both group has the reverse preference pro�le of the other, they do not
have incentive to jointly deviate from this strategy pro�le. Therefore, this strategy pro�le

sustains x as an strong Nash equilibrium outcome.

Now let us prove that x is the unique strong Nash equilibrium outcome. By contradiction,

suppose that there is another strong Nash equilibrium outcome y 6= x. By Condition 3
of Proposition 1, we have that fi 2 N jx �i yg < qvk(fxg). This is a contradiction since
m > n�m � qv1(fxg):

2) Suppose that the tie breaking criterion coincides with the chooser�s preferences over

the set of candidates.

2.1) Consider m � qvk:
Let x be the best alternative of the majoritarian group out of the chooser�s (a�k+1)-top

32



candidates. Since m � qvk; and by de�nition of qvk; there is a strategy pro�le that can be
adopted by the majoritarian group that leads to the election of x; and the minoritarian

group is unable to change it. Notice also that the majoritarian group will not have any

incentive in changing this outcome. Therefore, there exists a strategy pro�le that sustains

x as a strong Nash equilibrium outcome.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose, by con-

tradiction that there is another strong Nash equilibrium outcome y 6= x. By Condition
2 of Proposition 1, we have that fi 2 N jx �i yg < qvk(X) where x is the chooser�s best
alternative in X. This is a contradiction since fi 2 N jx �i yg > m > qvk > q

v
k(X):

2.2) Consider qvk > m.

Let x be the chooser�s best candidate. Notice that qvk > m implies that n � m �
qvk(fxg):Suppose the following strategy pro�le: every proposer cast a vote for x. Thus, x
will be in the selected list and it will be elected. No group can take x from the selected

list by a unilateral deviation, since both has size larger than qvv(fxg). Since both group
have the reverse preference pro�le than the others, they do not have incentive to joint

deviate from this strategy pro�le. Therefore, this strategy pro�le sustains x as strong

Nash equilibrium outcome.

Now let us prove that x is the unique strong Nash equilibrium outcome. By contradiction,

suppose that there exists another strong Nash equilibrium outcome y 6= x. By Condition
3 of Proposition 1, we have that fi 2 N jx �i yg < qvk(fxg). This is a contradiction since
m > n�m � qv1(fxg):

3) Suppose that the tie breaking criterion coincides with the minoritarian group�s prefer-

ences over the set of candidates.

3.1) Consider m � qvk:
Let x be the best alternative of the majoritarian group out of the chooser�s (a�k+1)-top
candidates. Since m � qvk; and by de�nition of qvk; there is a strategy pro�le that can be
adopted by the majoritarian group that leads to the election of x; and the minoritarian

group is unable to change it. Notice also that the majoritarian group will not have any

incentive in changing this outcome. Therefore, there exists a strategy pro�le that sustains

x as a strong Nash equilibrium outcome.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose, by con-
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tradiction that there is another strong Nash equilibrium outcome y 6= x. By Condition
2 of Proposition 1, we have that fi 2 N jx �i yg < qvk(X) where x is the chooser�s best
alternative in X. This is a contradiction since fi 2 N jx �i yg > m > qvk > q

v
k(X):

3.2) Consider qvk > m.

Let x be the chooser�s best candidate. Consider the following strategy pro�le: every

proposer casts a vote for x. Thus, x will be in the selected list and it will be elected.

Notice that the minoritarian group cannot take x out from the selected list by a unilat-

eral deviation since m � qvv(fxg). If some y is better than x for the majoritarian group,
then it will be ranked below than x by the tie breaking criterion. Thus, the majoritarian

group cannot deviate in any way that simultaneously includes y and excludes x from the

selected list. Since both groups have the reverse preferences , they do not have incentive

to jointly deviate from this strategy pro�le. Therefore, this strategy pro�le sustains x as

an strong Nash equilibrium outcome. Now let us prove that x is the unique strong Nash

equilibrium outcome. By contradiction, suppose that there is y 6= x that is also a strong
Nash equilibrium outcome. Suppose that the minoritarian group of proposers prefers y to

x. By Condition 3 of Proposition 1, we have that fi 2 N jx �i yg < qvk(x) which implies
that m < qvk(x). This is a contradiction, since m � qv1(fxg). Suppose that the majoritar-
ian group of proposers prefers y to x. Thus x is ranked above than y according by the tie

breaking criterion. By Condition 4 of Proposition 1, we have that fi 2 N jy �i xg � qvk;
which implies that m � qvk. This is a contradiction since qvk > m. Therefore, y cannot be
strong Nash equilibrium outcome.

Proof of Proposition 5. Proposition 5 is a direct consequence of lemmas 1-4.

Lemma 1 Let a �
p
2a+ 2 + 2 be an integer number: If k = a + 2 �

p
2a+ 2 then

E(up(rp)ja; k) = E(uc(rc)ja; k):

Proof of Lemma 1. First notice that for every k we have that:

E(up(rp)ja; k)E(uc(rc)ja; k) = a+1
2

Take any k� 2 [1; a] such that E(up(rp)ja; k�) = E(uc(rc)ja; k�): Thus,
E(uc(rc)ja; k�)2 = a+1

2

E(uc(rc)ja; k�) = a�k�+2
2

= 2

q
a+1
2

Therefore, k� = a+ 2� 2
p
2a+ 2:
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Lemma 2 A k 2 f1; :::ag maximizes E(up(rp)ja; k) + E(uc(rc)ja; k) if and only if it
minimizes jE(up(rp)ja; k)� E(uc(rc)ja; k))j.
Proof of Lemma 2. First notice that for every k we have that:

E(up(rp)ja; k)E(uc(rc)ja; k) = a+1
2

The equality above implies that

(E(up(rp)ja; k) + E(uc(rc)ja; k))2 = E(up(rp)ja; k)2 + E(uc(rc)ja; k)2 + (a+ 1)
The expression above implies that, given that E(up(rp)ja; k) + E(uc(rc)ja; k) < 0; a k 2
f1; :::ag maximizes E(up(rp)ja; k)+E(uc(rc)ja; k) if and only if it minimizes E(up(rp)ja; k)2+
E(uc(rc)ja; k)2:
Notice also that:

(E(up(rp)ja; k)� E(uc(rc)ja; k))2 = E(up(rp)ja; k)2 + E(uc(rc)ja; k)2 � (a+ 1):
The expression above implies that a k 2 f1; :::ag maximizes E(up(rp)ja; k)2+E(uc(rc)ja; k)2

if and only if it maximizes (E(up(rp)ja; k)� E(uc(rc)ja; k))2:
Therefore, a k 2 f1; :::ag maximizes E(up(rp)ja; k)+E(uc(rc)ja; k) if and only if minimizes
jE(up(rp)ja; k)� E(uc(rc)ja; k))j:

Lemma 3 A k 2 f1; :::ag maximizes E(up(rp)ja; k) +E(uc(rc)ja; k) if and only if it also
maximizes (E(up(rp)ja; k)� d)(E(uc(rc)ja; k)� d) where d < 0:

Proof of Lemma 3. First notice that for every k we have that:

E(up(rp)ja; k)E(uc(rc)ja; k) = a+1
2
.

Thus, (E(up(rp)ja; k)�d)(E(uc(rc)ja; k)�d) = a+1
2
+d2�d(E(up(rp)ja; k)+E(uc(rc)ja; k))

Given that d < 0; the expression above implies that k maximizesE(up(rp)ja; k)+E(uc(rc)ja; k)
if and only if it maximizes (E(up(rp)ja; k)� d)(E(uc(rc)ja; k)� d):

Lemma 4 Consider any a:

1) E(up(rp)jk; a) + E(uc(rc)jk; a) > E(up(rp)jk � 1; a) + E(uc(rc)jk � 1; a) for every k <
a+ 5

2
�
q
2a+ 9

4
;

2) E(up(rp)jk; a) +E(uc(rc)jk; a) = E(up(rp)jk � 1; a) +E(uc(rc)jk � 1; a) if k = a+ 5
2
�q

2a+ 9
4
;

3) E(up(rp)jk; a) + E(uc(rc)jk; a) < E(up(rp)jk � 1; a) + E(uc(rc)jk � 1; a) for every k >
a+ 5

2
�
q
2a+ 9

4
:

35



Proof of Lemma 4. For every k 2 f2; ::ag we have the following equality:
E(up(rp)ja; k)+E(uc(rc)ja; k)�(E(up(rp)ja; k�1)+E(uc(rc)ja; k�1)) = a+1

(a�k+2)(a�k+3)�
1
2
:

Notice a+1
(a�k+2)(a�k+3) is decreasing with k and

a+1
(a�k+2)(a�k+3) =

1
2
when k = a� 1

2

p
8a+ 9+

5
2
. Let P (k) = a+1

(a�k+2)(a�k+3) �
1
2
and k� = a+1

(a�k+2)(a�k+3) �
1
2
: Thus, P (k�) = 0, P (k) > 0

for any k < k� and P (k) < 0 for any k > k�:

Proof of Proposition 6. Proposition 6 is a direct consequence of Proposition 5 and

the assumption that agent´s preferences are randomly drawn from a uniform distribution

over the domain of preferences.

1) Consider m � qk: By Proposition 5, the equilibrium outcome is the best alternative

of the majoritarian group out of the chooser�s (a � k + 1)-top candidates. Thus, Rc
has the same distribution than a discrete random variable uniformly distributed over

f1; 2; : : : ; a� k + 1g. RG1 has the same distribution as the smallest element of a random
sample with size s = a� k + 1 drawn without replacement from a uniformly distributed

population D = f1; 2; : : : ; ag. RG2 has the same distribution as the biggest element of
a random sample with size s = a � k + 1 drawn without replacement from a uniformly

distributed population. Therefore, we have:

E(uc(rc)ja; k; v) = �(a�k+22
)

E(uG1(rG1)ja; k; v) = � (a+1)
(a�k+2)

E(uG2(rG2)ja; k; v) = � (a+1)(a�k+1)
(a�k+2)

E(up(rp)ja; k; v) = �m
n

(a+1)
(a�k+2) �

n�m
n

(a+1)(a�k+1)
(a�k+2) ;

2) Consider qvk > m � qv1 > n � m: By Proposition 5, the equilibrium outcome is the

chooser�s best alternative out of the majoritarian group�s k-top candidates. Thus, Rc

has the same distribution as the smallest element of a random sample with size s = k

drawn without replacement from a uniformly distributed population D = f1; 2; : : : ; ag.
RG1 has the same distribution than a discrete random variable uniformly distributed over

f1; 2; : : : ; kg. RG2 has the same distribution than a discrete random variable uniformly

distributed over fa� k + 1; : : : ; ag. Therefore, we have:

E(uc(rc)ja; k; v) = � (a+1)
(k+1)
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E(uG1(rG1)ja; k; v) = � (k+1)
2

E(uG2(rG2)ja; k; v) = � (2a�k+1)
2

E(up(rp)ja; k; v) = �m
n
(k+1)
2
� n�m

n
(2a�k+1)

2

3) Consider qvk > m > n � m � qv1 : By Proposition 5, the equilibrium outcome is the

chooser�s best candidate. Thus, Rc is a constant and it is equal to 1. RG1 and RG2

have the same distribution than a discrete random variable uniformly distributed over

f1; 2; : : : ; ag.

E(uc(rc)ja; k; v) = �1

E(up(rp)ja; k; v) = � (a+1)
2
.

Proof of Proposition 7. Proposition 7 is a direct consequence of Proposition 6

and lemmas 5 and 6 below.

Lemma 5 In the domain of all pairs (k; v) such that m � qk > n�m; we have that:
1) E(up(rp)ja; k; v) > E(uc(rc)ja; k; v) for every k < � 1;

2) E(up(rp)ja; k; v) = E(uc(rc)ja; k; v) if k = � 1 is an integer number;

3) E(up(rp)ja; k; v) < E(uc(rc)ja; k; v) for every k > � 1:

where � 1 = m
n

�
n
m
+ (a+ 1)�

p
n
m
(2� n

m
) + (2a+ 1) + a2( n

m
� 1)2

�

Proof of Lemma 5. Given thatm � qk > n�m, by Proposition 6, E(up(rp)ja; k; v) =
�m
n

(a+1)
(a�k+2) �

n�m
n

(a+1)(a�k+1)
(a�k+2) ;

and E(uc(rc)ja; k; v) = �(a�k+22
):

Notice that:

jE(up(rp)ja; k; v) � E(uc(rc)ja; k; v)j is single dipped and reaches the minimum when

k = � 1:When k = � 1, we have that: jE(up(rp)ja; k; v)� E(uc(rc)ja; k; v)j = 0:

Lemma 6 In the domain of all pairs (k; v) such that qk > m � q1 > n�m; we have that:
1) E(up(rp)ja; k; v) > E(uc(rc)ja; k; v) for every k < � 2;

2) E(up(rp)ja; k; v) = E(uc(rc)ja; k; v) if k = � 2 is an integer number;
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3) E(up(rp)ja; k; v) < E(uc(rc)ja; k; v) for every k > � 2:

where � 2 =
m
n

2m
n
�1
�
(a� 1)� a n

m
+
p

n
m
(2� n

m
) + (2a+ 1) + a2( n

m
� 1)2

�

Proof of Lemma 6. Given that qk > m � q1 > n �m, by Proposition 6, we have
that E(up(rp)ja; k; v) = �m

n
(k+1)
2
� n�m

n
(2a�k+1)

2

E(uc(rc)ja; k; v) = � (a+1)
(k+1)

:

Notice that:

jE(Rpjk; v; a) � E(Rcjk; v; a)j is single dipped and reaches the minimum when k = � 2:

When k = � 2; we have that jE(Rpjk; v; a)� E(Rcjk; v; a)j = 0:
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Appendix B

Remark 3 Consider any v-screening rule for k names and any x 2 A; if x is one of
the k-top candidates according to the tie breaking criterion then qvk(fxg) = qv1 � 1 or
qvk(fxg) = qv1 . If x is not one of k-top candidates according to the tie breaking criterion
then qvk(fxg) = qv1 .

Remark 4 Consider any v-screening rule for k names and any X 2 Ak; if the set X is

formed by the k-top candidates according to the tie breaking criterion then qvk(X) = q
v
k�1

or qvk(X) = q
v
k. If X is not formed by the k-top candidates according to the tie breaking

criterion then qvk(X) = q
v
k.

Proposition 8 If a screening rule for k names is a v�screening rule for k names then
qvk = d kn

(k+v)
e+ I(bvd

kn
(k+v)

e
k

c � n� d kn
(k+v)

e) and qv1 = d vn
(k+v)

e+ I( vn
(k+v)

= d vn
(k+v)

e); where I
denotes the indicator function.18

Proof . Take any coalition Q � N with #jQj = q and any subset of candidates

B � A with #jBj = k. Suppose that the members of coalition Q coordinate their votes in
order to elect B. The worst scenario is the one where all members of the complementary

coalition NnQ vote together for some x 2 A=B; and x receives n � q votes. Given this
worst scenario, the best that coalition Q can do to ensure the selection of B is to spread

equally, as much as possible, their v:q votes among the k candidates in B: Though this

strategy, the number of votes that any candidate in B receives is b qv
k
c or qv

k
: Thus, the set

B will be elected if b qv
k
c > n � q. By de�nition, qvk is the minimum q that the following

inequality holds: b qv
k
c > n� q. It implies that qvk = d kn

(k+v)
e+ I(bvd

kn
(k+v)

e
k

c � n� d kn
(k+v)

e);
where I denotes the indicator function. Thus the �rst part of the proposition is established
Take any coalition Q � N with #jQj = q and any candidate x 2 A. Suppose that the
members of coalition Q coordinate their votes in order to ensure that x is one of the k

selected names. The worst scenario is the one where the members of the complementary

coalition NnQ distribute their v(n � q) votes as equally as possible, among some set
B � A=fag with #jBj = k: This implies that at least one candidate in B receives

b (n�q)v
k
c votes. Given this worst scenario, the best response of coalition Q to ensure the

inclusion of x in the list is to have all its members vote for x. Given this strategy, a

18The indicator function, I(�); takes value 1 if the expression in brackts is true, and 0 otherwise.
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candidate x will receives q votes. Thus, x will be one of the k listed names if q > b (n�q)v
k
c.

By de�nition, qv1 is the minimum q for which this inequality holds. This implies that

qv1 = d vn
(k+v)

e+ I( vn
(k+v)

= d vn
(k+v)

e); where I denotes the indicator function.
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Appendix C1

The three propositions in this appendix provide di¤erent su¢ cient conditions on the

distribution of preferences guaranteeing that a candidate will be the unique strong Nash

equilibrium outcome.

Proposition 9 Consider a v-rule of k names. If candidate x satis�es the two conditions

below then it is the unique strong Nash equilibrium outcome of the Constrained Chooser

Game:

1. It is a chooser�s (a� k + 1)-top candidate.

2. There exists X 2 Ak such that x is the chooser�s best candidate and there exist

qvk(X) proposers that rank x �rst.

Proof . We must show that there is a strategy pro�le that sustains x as a strong

Nash equilibrium outcome. Let C � N be the set of proposers that rank x �rst, so

#C � qvk(X): By de�nition of qvk(Y ), there exists mC 2MC such that for every pro�le of

the complementary coalition mNnC 2 MNnC we have that Sk(mC ;mNnC) = X. Consider

any strategy pro�le, where the coalition C uses mC : At this strategy pro�le, X will

be selected and x will be the winning candidate independently of the actions of the

complementary coalition. Thus, there is no coalition of proposers that has incentives to

deviate. Therefore, this strategy pro�le sustains x as a strong Nash equilibrium outcome.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose by

contradiction that there is a strategy pro�le that sustains y 2 Anfxg as a strong Nash
equilibrium outcome. By Proposition 1, this implies #fi 2 N jx �i yg < qvk(X); and y is
a chooser�s (a�k+1)-top candidate. This is a contradiction since x is a qvk(X)-Condorcet
winner over the set of the chooser�s (a� k + 1)-top candidates.

Proposition 10 Consider a v-rule of k names. If candidate x satis�es the two conditions

below then it is the unique strong Nash equilibrium outcome of the Constrained Chooser

Game:

1. It is a chooser�s (a� k + 1)-top candidate.

2. If y is a chooser�s (a� k + 1)-top candidate then #fi 2 N jy �i xg < bnv2k c:
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Proof. Let us show that there is a strategy pro�le that sustains x as a strong Nash

equilibrium outcome. Take any set B � A with #jBj = k; where x is chooser� best

candidate in the set (this set exists because x is a chooser�s (a � k + 1)-top candidate).
Consider a strategy pro�le where each candidate in B receives at least bnv

k
c votes and

all the candidates in AnB receive zero votes. Notice that the candidates in B will form

the chosen list: Then, candidate x will be elected, since he is the best candidate for the

chooser in the list. In order to change this result, the only way is to avoid the inclusion of

x in the list or to substitute another listed name by a candidate that the chooser would

prefer to x. A necessary condition to make this change would be to transfer at least bnv
2k
c

votes of a candidate in B to another candidate in A=fBg. Hence, no coalition with size
smaller than bnv

2k
c can avoid the inclusion of x in the chosen list. Notice that no coalition

with size higher or equal to bnv
2k
c has incentive to deviate, since there is no y 2 Anfxg

among the chooser�s (a� k + 1)-top candidates such that #fi 2N jy �i xg � bnv2k c (recall
that only the chooser�s (a� k+ 1)-top candidates can be the chooser�s best name among
the candidates of a set with cardinality k). Therefore, this strategy pro�le is a strong

Nash equilibrium of the Constrained Chooser Game.

Now let us show that x is the unique strong Nash equilibrium outcome. First notice

that n � bnv
2k
c + 1 � qvk (Because any coalition with size higher than n � bnv2k c + 1 can

impose all the k names in the list), so if y is a chooser�s (a � k + 1)-top candidate then
#fi 2 N jx �i yg � qvk. Suppose by contradiction that there is a strategy pro�le that

sustains y 2 Anfxg as strong Nash equilibrium outcome. By Proposition 1, this implies

that #fi 2 N jx �i yg < qvk and y is a chooser�s (a�k+1)-top candidate, a contradiction.

Proposition 11 Consider a v-rule of k names. If candidate x satis�es the two conditions

below, then it is the unique strong Nash equilibrium outcome of the Constrained Chooser

Game:

1. It is the chooser�s best candidate.

2. If y is a chooser�s (a� k + 1)-top candidate then #fi 2 N jx �i yg � qvk(fxg):

Proof. First let us show that there is a strategy pro�le that sustains x as a strong

Nash equilibrium outcome. Consider the strategy pro�le where all proposers votes for x.
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Notice that x will be in the chosen list.

Then, candidate x will be elected since he will be in the list and he is the chooser�s top

candidate. The only way to change this result is to avoid the inclusion of x in the chosen

list. So, no coalition with size smaller than n � qvk(fxg) can avoid the inclusion of x in
the chosen list, because the complementary coalition would have size higher than qvk(fxg).
Notice that no coalition with size higher or equal to n � qvk(fxg) + 1 has incentive to
deviate, since there is no y 2 Anfxg among the chooser�s (a� k+ 1)-top candidates that
is considered better than x by all proposers in the coalition (recall that only the chooser�s

(a� k + 1)-top candidates can be the chooser�best name among the candidates of a set
with cardinality k). Therefore, this strategy pro�le is a strong Nash equilibrium of the

Constrained Chooser Game.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose by

contradiction that there is a strategy pro�le that sustains y 2 Anfxg as strong Nash
equilibrium outcome. By Proposition 1, this implies that y is a chooser�s (a� k + 1)-top
candidate and #fi 2 N jx �i yg < qvk(fxg), a contradiction.

Proposition 12 If the chooser�s best candidate is a strong Nash equilibrium outcome of

the Constrained Chooser Game under a v��rule of k names, it is also a strong Nash equi-
librium outcome of the Constrained Chooser Game for any ev� rule of k names wheneverev < v�(provided that both rules share the same tie breaking criterion).
Proof . First notice that since the chooser�s best candidate is a strong Nash equi-

librium outcome under a v��votes screening rule for k names, it implies that any strategy
pro�le where all proposers vote for x is a strong Nash equilibrium.

Take any strategy pro�le where all voters vote for x, and call it m�. Since it is a strong

Nash equilibrium, no coalition of voters that can make any pro�table deviation. The

voters that would wish to avoid the election of x are those that prefer another of the

chooser�s (a � k + 1)-top candidates to x (recall that only the chooser�s (a � k + 1)-top
candidates can be the chooser�best name among the candidates of a set with cardinality

k ).The only way to avoid the election of x would be to avoid the inclusion of x in the

chosen list. Take any chooser�s (a � k + 1)-top candidate and call it y. Even if all the
voters that prefer y to x deviate from m�by not voting for x, x would still have enough

votes to be among the k listed names. Otherwise, the strategy pro�le where all the voters
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vote for x would not be a strong Nash equilibrium.

Now let us show that x is also a strong Nash equilibrium under any ev�votes screening
rule for k names for any ev < v�.
Take any strategy pro�le where all voters vote for x and call this strategy em. So, x will be
one of k listed names, and it will be the elected candidate. We need to show that there

is no coalition of voters that can make a pro�table deviation under m�. Given m�and em,
notice that it is more di¢ cult to make a pro�table deviation under a ev�rule of k names
than v��rule of k names. Because, under a ev�rule of k names, any coalition of voters that
would have incentive to avoid the election of x has less votes to distribute among the k

candidates in order to avoid the inclusion of x in the list. Thus, given that there exists no

coalition that can make a pro�table deviation under m�, there exists no coalition that can

make a pro�table deviation under em. Therefore, x is a strong Nash equilibrium outcome

under ev�votes screening rule for k names.
Proposition 13 If the chooser 1-top-candidate is a strong Nash equilibrium outcome of

the Constrained Chooser Game under v�rule of k� names then it is also a strong Nash
equilibrium outcome of the Constrained Chooser Game under any v� rule of ek names
whenever k�< ek provided that both rules share the same tie breaking criterion.
Appendix C2
The example below shows that without Assumption 4 the Polarized Proposers Model

may not have a strong Nash equilibrium outcome.

Example 6 Let A = fa; b; c; d; e; fg and let N = f1; 2; 3g. The proposers use the

rule of 4 names, (k = 4; v = 1), with the following tie breaking rule when needed:

e � d � c � b � a � f . The preferences of the chooser and the committee members

are as follows:
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Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Proposer 4 Proposer 5 Chooser

d d d d f f

e e e e b a

c c c c a b

a a a a c c

b b b b e d

f f f f d e

First, notice that qvk(fxg) = 1 for any x 2 fb; c; d; eg, qvk(fxg) = 2 for any x 2 Anfb; c; d; eg
and qvk(X) = 5 for any X 2 Aknfb; c; d; eg and qvk(fb; c; d; eg) = 4 :Notice that proposers
1, 2, 3, and 4 form the majoritarian group of proposers, so m = 4. Notice also that the tie

breaking rule is equal to the reverse of the chooser�s preference over the set of candidates.

The �rst step in describing the equilibrium outcomes is to identify those candidates that

satisfy the three necessary conditions established in Proposition 1.

Inspecting the preference pro�le above, we have that:

1. Condition 1: fa; b; fg.
2. Condition 2: fa; b; c; d; eg:
3. Condition 3: fa; b; c; d; e; fg:
4. Condition 4: fa; b; c; d; e; fg:
So, only candidates a and b satisfy all four conditions. However, there exists no strategy

pro�le that can sustain them as an strong Nash equilibrium outcome of the Constrained

Chooser Game.

45


