Counterfactual Analysis with Artificial Controls: Inference, High Dimensions and Nonstationarity
Journal of the American Statistical Association, v. 116, p. 1773-1788, 2021
Ricardo Masini, Marcelo Medeiros.
Acesse o artigoRecently, there has been growing interest in developing econometric tools to conduct counterfactual analysis with aggregate data when a “treated” unit suffers an intervention, such as a policy change, and there is no obvious control group. Usually, the proposed methods are based on the construction of an artificial counterfactual from a pool of “untreated” peers, organized in a panel data structure. In this paper, we consider a general framework for counterfactual analysis in high dimensions with potentially non-stationary data and either deterministic and/or stochastic trends, which nests well-established methods, such as the synthetic control. Furthermore, we propose a resampling procedure to test intervention effects that does not rely on post-intervention asymptotics and that can be used even if there is only a single observation after the intervention. A simulation study is provided as well as an empirical application where the effects of price changes on the sales of a product is measured.
Veja também
The Value of Health Insurance: A Household Job Search Approach ( a sair)
Journal of Labor Economics, 2025
Gabriela Conti, Renata Narita, Rita Ginja.
Targeting in Adaptive Networks
Journal of Economic Theory, v. 228, 2025
Timo Hiller.
Tradeoffs and synergies for agriculture and environmental outcomes in the tropics (a sair)
Review of Environmental Economics and Policy, 2025
Fanny Moffette, Jennifer Alix-Garcia, Juliano Assunção, Prakash Mishra, Teevrat Garg.