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Abstract

Experiments with first-price auctions document that subjects tend
to overbid in comparison to the risk-neutral Nash equilibrium. In this
paper, I argue that overbidding may be done by procedurally rational
agents that receive only partial information about behavior of other
players and need to optimize over estimated, rather then true, bid
distributions. I propose a Best-Response to Estimate Equilibrium and
argue that, beyond overbidding, this concept captures a number of
stylized facts observed in experimental data, such as the shape of the
support, expectation, and variance of bids conditional on values.

1 Introduction

Studies involving experiments on first-price auctions, first carried out by
Cox, Smith and Walker in the eighties, have found that subjects tend to
systematically overbid, i.e., place bids that are significantly above the figures
predicted by the symmetric Nash equilibrium when players are risk-neutral.
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This evidence poses a challenge to one of the fundamental models in auction
theory, and have been addressed in a number of papers (Cox et al., 1983,
1985, 1992; Goeree et al., 2002; Harrison, 1989, 1990; Friedman, 1992; Kagel
and Roth, 1992; Merlo and Schotter, 1992; Kagel and Levin, 1985; Armantier
and Treich, 2005; Salo and Weber, 1995; Bajari and Hortaçsu, 2004; Rezende,
2006). Alternative explanations involve risk aversion (Cox et al., 1985), weak
incentives (Harrison, 1989), misperception of probabilities (Cox et al., 1985;
Goeree et al., 2002; Armantier and Treich, 2005), “joy of winning” (Cox
et al., 1992; Goeree et al., 2002) and ambiguity aversion (Salo and Weber,
1995).

In this paper, I propose a new explanation to the overbidding phenomenon.
Here, I suggest that this behavior can be linked to imperfect inference about
bidding by the other players.

In a Nash equilibrium one assumes that bidders are endowed with ex-
act information about the other players strategies; in an incomplete infor-
mation game such as an auction, one assumes that bidders know both the
other players’ type distribution but also the bid function, as well as knowing
how to combine these pieces of information into a correct bid distribution.
This seems to be a much more challenging cognitive task than to find the
maximizing bid once that information is available. Additionally, and more
importantly, even if bidders have infinite cognitive power, it is unclear how
they would acquire the information needed about the other players behavior
in equilibrium.

In this paper, I propose an alternative equilibrium concept that explicitly
models imperfect inference about other players behavior. In a nutshell, I
assume that each player must act like an econometrician before selecting
her action; she observes a sample of bids drawn from the equilibrium bid
distribution, forms estimates based on the sample, and places a bid that
is the best response to beliefs based on those estimates. The equilibrium
is a distribution that is a fixed point in this process, that is, when bids
drawn from the equilibrium distribution are best response to estimates from
samples from that same distribution. I call these Best-Response to Estimates
Equilibria.

Since the inference adds some imprecision in the bidder’s problem, clearly
the actions chosen would deviate from the exact predictions from the Nash
equilibrium. In this paper, I show that in the case of a First-price auction this
deviation is systematic: players responding to estimates will tend to overbid
compared to Nash even when the estimation errors from the procedure they
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employ are not systematic! This feature is in sharp contrast to to the litera-
ture based on probability misperception (Goeree et al., 2002; Armantier and
Treich, 2005), as there the overbidding is linked to a systematic pessimistic
bias in the perceived probabilities (at least in the relevant range).

The papers is organized as follows: In section 2 I present the standard
model of Nash behavior in a first-price auction and compare with experimen-
tal data from Guarino (2008). These data are typical of experiments with
first-price auctions. I document systematic overbidding, and also point out
a number of other empirical regularities yet to be explained.

In section 3 I present more formally the concept of best-response-to-
estimate equilibrium. I also provide an existence result for this solution
concept, based on the theory of Markov chains. In section 4 I apply the solu-
tion concept to the context of first-price auctions. I derive characterizations
of best-response to estimate equilibria in the exact setting of the Guarino
(2008) experiment, and use them to draw testable implications, which I test
in section 5. Section 6 provides some concluding remarks.

2 Overbidding in First-Price Auctions

In this section, I review the standard theory of Nash equilibrium in first-price
independent private value auctions and describe some empirical regularities
found in data from an experiment involving these games.

In an symmetric independent private values first price auction n+1 play-
ers (called the bidders) compete to acquire a single item. The value of the
item for bidder i is vi, a random variable drawn from a given distribution F .
The values for all bidders are drawn independently from the this same distri-
bution. Bidder i observes his or her own value vi, but not the other players
values. Thus, this is an incomplete information game, where the values are
the players’ types.

The rules of the game asks for all players to simultaneously place bids.
The bidder who has played the highest bid wins the item, and pays for it his
or her own bid. Thus, writing bi for i’s bid, we find that player i earns a profit
of πi = vi − bi if bi > bj, ∀j 6= i, and 0 otherwise. (If there is a tie, then a tie
breaking rule is used. Typically, bidder i will earn vi − bi with a probability
equal to the inverse of the number of tying bidders, and 0 otherwise.)

Let GNE(t) be the cumulative distribution of a bid in a symmetric Nash
equilibrium. To simplify notation, I assume this distribution is continuous,
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so that the probability of a tie is negligible. Knowing this distribution, bidder
i selects a bid that maximizes expected profit:

(vi − bi) Pr(bi > bj,∀j 6= i) = (vi − bi)GNE(bi)
n.

Writing the solution to this problem as a function of vi, one obtains the
optimal bid function βNE(vi). With knowledge of the bid function, one can
compute the distribution GNE(t) = F (β−1

NE(t)). Observing that βNE depends
on the rivals’ bid distribution, we find that the symmetric Nash equilibrium
of this game can be characterized as a fixed point GNE of the mapping that
leads from the space of distributions into itself.

In what follows, I will be particularly interested in the case where the
value distribution is uniform. In this case, the bid distribution arising in a
Nash equilibrium will also be uniform. Suppose bj ∼ U [a, c], the uniform
distribution over the interval [a, c]. Then the best response for a bidder i
with value vi is

bi =







n
n+1

vi + 1
n+1

a, vi ∈ [a, n+1
n
c− 1

n
a];

any number in [0, a], vi < a;
c, vi >

n+1
n
c− 1

n
a.

If vi ∼ U [0, 1], I claim that in equilibrium a = 0, c = n
n+1

. Indeed, for these

choices always vi ∈ [a, n+1
n
c− 1

n
a] and therefore bi = n

n+1
vi+

1
n+1

0 ∼ U [0, n
n+1

].

2.1 Experimental data

In this section, I present some statistical findings from experiments performed
in Guarino (2008). I employ data from the first four sessions, which were
the ones that involved subjects playing a first-price auction game exactly
as described in the previous section. (The other sessions involved subjects
playing against pre-specified automated strategies.)

In each session, 10 subjects were randomly grouped in pairs and each pair
played an independent private values auction. (Thus, n = 1.) Values were
drawn from the Uniform distribution between [0,10], and rounded up to the
first decimal case. To facilitate comparison, I report data on values and bids
normalizing to the unit interval. I also ignore the discretization and treat
these values as continuous.

In each section 15 rounds of auctions were performed. In an effort to
avoid repeated game effects, subjects were randomly re-matched after each
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repetition, and identities of opponents were kept secret. Overall, a sample
of 4 × 10 × 15 = 600 observations of value/bid pairs were obtained. In
what follows I assume that repeated game effect are not present and that
observations are mutually independent.

The experiments have been performed under the binary lottery procedure
to control for risk attitudes (Roth and Malouf, 1979; Berg et al., 1986; Cox
et al., 1985). In a nutshell, the idea is to pay bidders in lottery tickets instead
of dollars so that behavior is not affected by risk aversion. If the winner of the
auction receives x1 with probability (proportional to) vi−bi and x2 otherwise,
his or her payoff is u(x2)+[u(x1)−u(x2)](vi−bi)G(bi)

n = A+B(vi−bi)G(bi)
n,

and he or she should behave as a risk neutral bidder, independently of the
shape of u. This is true as long as B = u(x1)− u(x2) > 0, that is, that x1 is
a better prize than x2 for all individuals.

Figure 1 presents the data points with values in the horizontal axis and
bids in the vertical axis. The flatter straight line is the locus b = n

n+1
v = v/2

that is predicted in a Nash equilibrium; the steeper line is the 45◦ line.
Clearly, bidders tend to overbid: 82.7% of the observed bids were above
the Nash equilibrium prediction, while only 3% were equal to the latter. In
comparison, 5% of the bids were equal to the value, and 1.2% were equal to
0, and 9.8% were equal to 5.

It is worth noting that, even though subjects typically overbid, they do
sometimes underbid (in one extreme case, a bidder with value 0.89 places a
bid of zero). Also, players never bid strictly above value. It is also apparent
from the picture that the support of the empirical bid distribution is nearly
as big as the one for values (the highest observed bid was 0.96).

Figure 2 presents plots of linear and quadratic regressions, as well as a
non-parametric estimate of the conditional expectation of bids on values. The
coefficients of the regressions are presented on table 1. Standard errors are
presented in parentheses. The slope coefficient of the linear specification is
0.65, significantly above the Nash equilibrium prediction of 0.5. The intercept
is positive, but not significant. The quadratic specification shows that, once
again against the Nash equilibrium theory prediction, the linear functional
form is rejected: The quadratic term is negative and significant.

Figure 2 presents a plot of a non-parametric estimate of the conditional
expectation of bids on values, the Nadaraya-Watson local constant estima-
tor.1 The plot confirms the conclusion that the conditional expectation is

1This plot was done using a bandwidth of 0.1 and the Epanechnikov kernel.
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Figure 1: Guarino (2008) dataset, sessions 1–4.

intercept v v2

0.01668 0.6565
(0.00894) (0.0155)
-0.0207 0.8795 -0.2232
(0.0133) (0.0610) (0.0591)

Table 1: Regressions of bids on values.
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concave. The relationship seems to be piecewise linear, with a kink at around
0.8.
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Figure 2: Estimates of the conditional expectation of bids on values.

Figure 1 also suggest a heteroskedasticy pattern in the data, with the
conditional variance of bids being increasing in values. This is confirmed in
figure 3, which shows a non-parametric estimate of the conditional variance
of bids on values.2 For comparison purposes, the figure also presents a plot
of v2/12, the conditional variance if b|v ∼ U [0, v].

We conclude this section by summarizing a number of stylized facts about
the distribution of bids conditional on values:

1. On average, there is overbidding: most bids are above the Nash equi-
librium prediction.

2. There is a positive probability of underbidding: even bidders with high
values sometimes bid as low as 0.

2This is the Nadaraya-Watson estimator of the conditional expectation of squared
residuals of the previous non-parametric regression, with the Epanechnikov kernel and
a bandwidth of 0.2.
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Figure 3: Estimate of the conditional variance of bids on values.

3. There is never bidding above value.

4. There is positive probability of bidding equal to value.

5. There is a positive probability of bids as high as the maximum value.

6. The conditional expectation of bids on values is concave, and every-
where above the Nash equilibrium prediction.

7. The conditional variance of bids on values is increasing.

3 Best-Response-to-Estimate Equilibrium

In this section, we provide a formal definition for the Best-Response-to-
Estimate Equilibrium and discuss some of its general properties.

Let Γ be an incomplete information game with n + 1 players. Let vi

represent the type of a player i and bi her action in the game. We assume both
vi and bi can be represented by real numbers. We also assume that Γ is a game
with symmetric independent private types, namely, that v1, . . . vn+1 ∼ i.i.d.
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F , and that the payoff of player i can be written as a function πi(b, vi), where
b is the profile of all actions. We also assume the game itself is symmetric,
which means that the payoff function is the same across bidders, and the
effect of actions of other players is exchangeable. These assumptions allow
me to focus on symmetric strategy profiles.

It is standard practice to represent pure strategies as functions from vi

to bi. Here, it is more convenient to characterize a strategy (pure or mixed)
as the joint distribution H(bi, vi) of action/type pairs. In a symmetric Nash
equilibrium, all players select actions that generate the same distribution
HNE.

For a given joint distribution of action/types H, let G(bi) be the marginal
distribution of actions associated with it. As before, let GNE be the marginal
distribution of actions in a Nash equilibrium.

For any distribution G over the space of action/type pairs, let3

βi(G, vi) = argmax
b′
i

∫

πi(b
′
i, b−i, vi)d

∏

j 6=i

G(bj).

This is the best response correspondence of a player i that believes her rivals
will play actions that follow the distribution specified by G. In this notation
the Nash Equilibrium distribution HNE is such that, for every i and vi, the
distribution of bi conditional on vi according to HNE equals the distribution
of a selection of βi(GNE, vi).

I depart from the Nash equilibrium formulation by assuming that each
player has access only to a sample of actions of the rivals.

Define a sampling scheme S to be a mapping betweenG and a distribution
for a K-dimensional vector X = (x1, . . . , xK). X is a sample of G. An
example of sampling scheme is random sampling, where X is a random vector
i.i.d. G.

Define an estimator Ψ to be a mapping from a sample X to an estimate
Ĝ = Ψ(X) for the distribution function for b.

Definition 1 (BE equilibrium) A Best-Response-to-an-Estimate Equilib-
rium for a given sampling scheme S and choice of estimator Ψ is a distribu-
tion G such that, for each player i,

3It is worth observing that, due to the private types assumption, H affects βi only
through the marginal distribution of actions; thus only information about G affect choice.
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• for each realization of S, i forms an estimate Ĝ according to the esti-
mator Ψ;

• and there is a selection β̃(Ĝ, vi) ∈ β(Ĝ, vi) that generates G; that is,
G(bi) =

∫

Pr(β̃(Ĝ, vi) ≤ bi|vi)dF (vi).

The properties of a BE equilibrium naturally depend on the choice of
sampling scheme and estimator being used. The next section will provide a
characterization of the BE equilibrium to the case of a first-price auction. In
the remainder of this section, I present a discussion of how existence proofs for
this equilibrium concept can be obtained, as well as providing some remarks
on the relation between BE equilibria and Nash Equilibria.

3.1 Existence

Existence of BE Equilibria can be shown exploring the theory of invariant
distributions of Markov Chains.

One can associate a Markov Chain to the BE equilibrium construction as
follows: Any sampling scheme leads to a mapping between a bid distribution
G and the distribution of the sample X; for example, with random sampling
this distribution is

∏

G. I construct a Markov chain in the space of samples
as follows: given a state X, let the next state X ′ to be a sample drawn from
sampling scheme S on the bid distribution

∫

Pr(β(ψ(X))(vi) ≤ bi|vi)dF (vi),
generated by bids from players that best-respond to X.

By definition, a BE equilibrium is an invariant distribution of such Markov
Chain. Any recurrent chain admits a unique invariant distribution (Meyn
and Tweedie, 1993, Theorem 10.0.1). All that is required to prove existence
and uniqueness of a symmetric BE equilibrium is to show that this chain is
recurrent.

In the case where there are finitely many actions, recurrence corresponds
to the condition that the probability of the chain going from any state to
any other state eventually is positive; if P is the transition matrix for the
chain, all elements of P n should be positive for sufficiently large n. Even
when the chain is not recurrent, it is often possible to restrict attention to
an absorbing set (a set of states such that once in, the Markov chain never
leaves) and verify recurrence in the absorbing set.

In the case of a continuum of actions, one must employ generalizations of
the concept of recurrence. While recurrence is hard to verify directly, there
a variety of sufficient conditions that can be easy to verify.
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One example of set of sufficient conditions is as follows: Let P (x,A) be
the transition kernel of the Markov chain (the continuous space analog of the
transition kernel), where x is a state and A a Borel set of future states. Write
L(x,A) for the probability that the chain ever enter set A starting from x.
Following Meyn and Tweedie (1993), we call a Markov chain ψ-irreducible
if there exists a measure ψ such that for every set A such that ψ(A) > 0,
and every initial state x, L(x,A) > 0. In addition, we require a topological
condition: A chain is (weak) Feller if, for any open set O, P (·, O) is a lower
semicontinuous function of the initial state. Any ψ-irreducible Feller chain
in a compact set is recurrent, and therefore has an invariant distribution.

3.2 Relation with Nash Equilibrium

The concept of BE equilibrium does not coincide with Nash equilibrium,
except on the case where the bid distribution is degenerate. (Here by “Nash
equilibrium” I refer to the joint distribution of actions and types induced by
a symmetric Nash equilibrium, so that the two concepts are comparable.)

In general, the BE equilibrium will not be a Nash equilibrium, and vice-
versa. Intuitively, sampling error will lead more dispersion on the actions in
the BE equilibrium.

The concepts are related only for large sample sizes K. If the chosen
estimators have good asymptotic properties, as K → ∞ one could expect
the BE equilibrium to approach the Nash equilibrium. However, the stan-
dard assumptions used to guarantee consistency of the estimator may not
be enough, because here, unlike in the standard econometric problem, as
the sample size K grows, so does the underlying distribution (i.e., the BE
equilibrium associated with K).

4 BE equilibria in First-Price Auctions

In this section, I provide a characterization of a BE equilibrium in the case of
a first-price auction with independent private values drawn from a uniform
distribution.

In this setting, I suppose that a bidder i is required to select a bid bi
based on her own value vi and a sample of equilibrium bids X. The first task
is to select an estimation strategy. In this context, it is natural to work with
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the family of uniform distributions; after all, both the value distribution and
the Nash equilibrium bid distribution belong to this family.

If the bidder believes that X is a random sample of the distribution
U [a, c], where a and c are unknown parameters, a natural choice of estimation
procedure is maximum likelihood, which would lead to using x = minX as
an estimator for a and x = maxX as an estimator for c. From now, we
assume that the estimation procedure is maximum likelihood based on the
uniform distribution and characterize the BE equilibrium for this choice.

As discussed before, the best response for bids drawn from a uniform
distribution is as follows:

β(Ĝ, vi) =







n
n+1

vi + 1
n+1

x, vi ∈ [x, n+1
n
x− 1

n
x];

any number in [0, x], vi < x;
x, vi >

n+1
n
x− 1

n
x.

Before we proceed, two tasks remain; we must make a selection in the
region where the best-response is not single-valued, and we must select a
sampling scheme.

The best response is not single-valued if the bidder observes a sample
where all bids are above the value. She infers that she cannot win the auction
at any price below the value, and therefore cannot obtain positive profits in
this game. Strictly speaking, any legal bid that leads to zero expected profits
is optimal. Throughout the paper, I make the selection of a bid equal to the
bidder’s value. This is in line with equilibrium behavior of a bidder that
believes she has the lowest possible value for the item, and makes the best-
response function continuous on both vi, x and x. It is also compatible with
the empirical evidence that a bid is never greater than, but is sometimes
equal to, the value.

As for the sampling scheme, the obvious choice would be a random sample
of k observations of the equilibrium bid distribution. However, this choice
neglects an implicit additional source of information, the bidder’s own value
vi. If i knows her own value vi, and knows that the game is symmetric, she
can infer that it is possible that all the other bidders have a value equal to
her own. In a game where all bidders have values around vi, equilibrium bids
would also be around vi. Thus, even in the absence of any other information,
bidder i may infer that it is possible that some bid would be near vi.

We provides two characterizations BE equilibria for two different sam-
pling schemes. One sampling scheme is the “obvious choice” of a random
sample X = (x1, . . . , xk), i.i.d. from the equilibrium bid distribution. The
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second scheme incorporates the implicit information discussed in the previ-
ous paragraph, using instead X = (x1, . . . , xk, vi), where vi is added to the
estimation procedure as if it was a possible bid.

We call the BE equilibrium arising from the latter sampling scheme “BE
equilibrium with introspection” (BEI) and the former “standard BE equilib-
rium” (BE). We characterize first the BEI, as it is analytically simpler.

4.0.1 BE equilibrium with introspection

In this section, we assume the bidder follows the estimation procedure out-
lined above, but utilizes a modified sampling scheme X = (x1, . . . , xk, vi).
Thus, the bidder always believes she could have seen a bid equal to her own
value. We call that an “equilibrium with introspection” because a bidder
could introspect that, if she has a value vi, all other bidders could have that
value as well, in which case one would observe an auction price equal to vi.

With this modified sampling scheme, it is always true that vi ∈ [x, x].
Thus, the optimal bid simplifies to

bi =
n

n+ 1
vi +

1

n+ 1
x.

We can immediately observe that, for any realization of vi, bi ≥ βNE(vi) =
n

n+1
vi. Also, bi ≤ vi. We can anticipate that the bid distribution of the

modified BE equilibrium, GBEI , will first-order stochastically dominate GNE,
and will be dominated by F .

To characterize GBEI , we first develop an expression for the distribution
of x conditional on vi, as it affects the bid. To save notation, we drop the i
subscript of vi and bi. We have, if t < v,

Pr(x > t|v) = Pr(x1 > t|v) × · · · × Pr(xk > t|v) = (1 −GBEI(t))
k;

if t ≥ v, Pr(x > t|v) = 0; and of course, if t ≤ 0, Pr(x > t|v) = 1. From this,
we can compute the distribution of b conditional on v:

Pr(b ≤ t|v) = Pr(x ≤ (n+ 1)t− nv)

=







0 , t ≤ n
n+1

v

1 − (1 −GBEI((n+ 1)t− nv))k , n
n+1

v < t < v

1 , t ≥ v
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Integrating over the distribution of v, we find the unconditional distribution
of b, which in equilibrium must coincide with GBEI . If t < n

n+1
,

GBEI(t) =

∫ 1

0

Pr(b ≤ t|v)dv

=

∫ t

0

1 dv +

∫ n+1

n
t

t

[1 − (1 −GBEI((n+ 1)t− nv))k]dv

= n+1
n
t−

∫ n+1

n
t

t
(1 −GBEI((n+ 1)t− nv))kdv

= 1 −
1

n

∫ t

0

(1 −GBEI(s))
kds;

if t > n
n+1

,

GBEI(t) =

∫ 1

0

Pr(b ≤ t|v)dv

=

∫ t

0

1 dv +

∫ 1

t

[1 − (1 −GBEI((n+ 1)t− nv))k]dv

= 1 −

∫ 1

t

(1 −GBEI((n+ 1)t− nv))kdv

= 1 −
1

n

∫ t

(n+1)t−n

(1 −GBEI(s))
kds

We have therefore an integral equation

GBEI(t) =

{

n+1
n
t− 1

n

∫ t

0
(1 −GBEI(s))

kds , t < n
n+1

1 − 1
n

∫ t

(n+1)t−n
(1 −GBEI(s))

kds , t ≥ n
n+1

that along with the initial condition GBEI(0) = 0 characterizes GBEI . At t ∈
[0, n

n+1
] this is equivalent to the nonlinear autonomous ordinary differential

equation G′
BEI(t) = n+1

n
− 1

n
(1 − GBEI(t))

k. In the region t ∈ [ n
n+1

, 1], this
becomes a delay differential equation.

From the fact that GBEI(s) ∈ [0, 1], using the integral equation one can
readily verify that t ≤ GBEI(t) ≤ GNE(t), whereGNE is the Nash equilibrium
bid distribution.
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4.0.2 Standard BE equilibrium

We now consider the case where introspection does not occur and the bidder
forms her estimate using a sampleX including only k independent bids drawn
from GBE.

In this case, since the optimal bid depends on both x and x, we need to
employ the joint distribution of these variables, which are now independent
of v.

We do so by observing that Pr(x ≤ s) = GBE(s)k, and that, for t < s,

Pr(x ≤ t|x ≤ s) = 1− (Pr(xj ∈ (t, s]|xj ≤ s)k = 1−

(

GBE(s) −GBE(t)

GBE(s)

)k

,

and for t ≥ s, Pr(x ≤ t|Pr(x ≤ s)) = 1. Combining the two expressions we
obtain

Pr(x ≤ t, x ≤ s) =

{

GBE(s)k − (GBE(s) −GBE(t))k , t < s;
GBE(s)k, t ≥ s.

Similarly, Pr(x ≥ t, x ≤ s) = (GBE(s) −GBE(t))k, if s > t, and 0 otherwise.
Using these expressions, we obtain the following distribution for a bid,

conditional on the value v:

Pr(b ≤ t|v) =















GBE(t)k , t ≤ { n
n+1

v

1 − (1 −GBE((n+ 1)t− nv))k

+(GBE(t) −GBE((n+ 1)t− nv))k , n
n+1

v < t ≤ v

1 , t > v

This distribution is discontinuous at t = v; Pr(b = v|v) = (1 − GBE(v))k.
This atom is due to the assumption that b = v when x > v. Elsewhere
(including at n

n+1
v) it is continuous (assuming of course gBE is continuous).

To obtain an integral equation for GBE, we integrate Pr(b ≤ t|v) over the
distribution of v. If t < n

n+1
,

GBE(t) = n+1
n
t+ (1 − n+1

n
t)GBE(t)k

−
1

n

∫ t

0

(1 −GBE(s))k − (GBE(t) −GBE(s))kdv;

and if t ≥ n
n+1

,

GBE(t) = 1 −
1

n

∫ t

(n+1)t−n

(1 −GBE(s))k − (GBE(t) −GBE(s))kdv.
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5 Do People Play like Econometricians?

In this section, we report result of simulated BE equilibria and investigate
if they produce predicted statistics that are similar to the ones found in the
experimental data. To assess the sensitivity of the results to the size of the
sample observed by the bidders, results for two values for k are reported: a
small value of k = 3, and a moderate value of k = 10. (For large values of k,
the BE equilibrium bids are approximately equal to the Nash equilibrium.)

Figures 4 and 5 present plots of the predicted bid distributions for the BE
equilibrium (labeled BE) and the BE equilibrium with introspection (BEI).
The steeper straight line is the bid distribution in the Nash equilibrium and
the flatter straight line is the value distribution. The picture also presents
the empirical bid distribution in the Guarino dataset.

The BEI distribution always first-order stochastically dominates the Nash
equilibrium distribution. The same is not true for the BE distribution; for
every value of k, GBE is aboveGNE in a neighborhood below 0.5, although the
neighborhood becomes small as k grows. Notwithstanding this, the expected
bid under the BE equilibrium is above the Nash equilibrium in all cases
except when k = 2, as reported in table 2.

Still, the amounts of predicted overbidding are smaller than in the data
(the average bid is 0.34495). Figures 4 and 5 show that predicted distribu-
tions are similar in shape to the empirical one, but tend to lie to the left of
it. Also, in the data bidders with low values tend to bid less aggressively,
and bidder with high values more aggressively than predicted by the theory.

The theory also predicts some specific patterns in the joint distribution
of bids and values that are qualitatively similar to those in the data. Both
the BE and BEI predict that bids always lie at or below values, and this is
verified in the data. Less obviously, both the BE and BEI predict that there
is a strictly positive probability of observing a bid equal to value, as there is
an atom at this point in the conditional distribution of bid given value. This
apparently irrational choice is indeed observed in the data. Furthermore,
theory predicts that the event b = v is more likely when v is small; this
pattern is verified in the data as well. Figures 6 and 7 plot the predicted
and estimated densities4 conditional on this event and both are generally
decreasing.

Figures 8 and 9 present conditional expectations of bids given values.

4For the estimated density a Gaussian kernel with bandwidth 0.05 was used.
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Figure 4: Estimated and Predicted Bid distributions, k = 3.
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Figure 5: Estimated and Predicted Bid distributions, k = 10.
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k NE BEI BE
2 0.25 0.34613 0.23450
3 0.25 0.32191 0.26818
4 0.25 0.30690 0.27417
5 0.25 0.29663 0.27414
6 0.25 0.28916 0.27265
7 0.25 0.28348 0.27068
8 0.25 0.27902 0.26885
9 0.25 0.27541 0.26717
10 0.25 0.27244 0.26556
11 0.25 0.26995 0.26420
12 0.25 0.26784 0.26290
13 0.25 0.26602 0.26173
14 0.25 0.26443 0.26075
15 0.25 0.26305 0.25979
16 0.25 0.26182 0.25891
17 0.25 0.26072 0.25812
18 0.25 0.25974 0.25746
19 0.25 0.25886 0.25679
20 0.25 0.25806 0.25618

Table 2: Predicted Expected bids.
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Figure 6: Bid density conditional on the event b = v, k = 3.
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Figure 7: Bid density conditional on the event b = v, k = 10.
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In line with the findings concerning the marginal bid distributions, we find
that there is generally overbidding, but less so than in the data. In the
BEI equilibrium, bidders with all values are expected to overbid. In the BE
equilibrium, all bidders except those with highest values tend to overbid.
Compared to the data, we see that again the theory predicts higher expected
bids for subject with very low values.

Both the BEI and the BE equilibrium predicted expected valuation that
are concave, as found in the data. Remarkably, for moderate values of k the
BE equilibrium predicts a near kink that resembles the one observed in the
data, as can be seen in figure 9.

The documented pattern of increasing heteroskedasticity is also predicted
by the theory of best-response to estimate equilibrium. Figures 10 and 11
present the predicted conditional variance of bids given values, and compares
them with the estimates ones. All of them are increasing, although predicted
variances are much smaller in the case of the BEI equilibrium and are larger
in the case of the BE equilibrium.

The BEI equilibrium predicts that bids are never below the Nash equilib-
rium bids (and never above values); since subjects do bid outside this range,
the dispersion tends to be larger in the data than in theory. On the other
hand, in the BE equilibrium, even bidders with high values place very low
bids with some probability. This is indeed observed in the data, but less
frequently then predicted by theory.

6 Concluding Remarks

In summary, one can conclude from the discussion in section 5 that the the-
ory proposed in this paper is successful in predicting qualitative features in
the observed patterns of behavior. It predicts overbidding; it predicts that
subject never bid above value, but sometimes bid at value, and sometimes
underbid as low as zero; it predicts that the conditional expectation of bids
given values is increasing and concave; it predicts that the conditional vari-
ance is increasing; and it predicts that bids equal to values are more likely
to appear when values are low. All of these features are found in the data.

Quantitative predictions are less successful; for example, the predicted
intensity of overbidding is still smaller than what is found in that data.
One should keep in mind however that the results reported in this paper are
entirely out of sample; no information from the sample has been used to select
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Figure 8: Conditional expectations of bids given values, k = 3.
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Figure 9: Conditional expectations of bids given values, k = 10.

21



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

co
nd

iti
on

al
 v

ar
ia

nc
e

value

estimated conditional variance
BEI
BE

Figure 10: Conditional variances of bids given values, k = 3.
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Figure 11: Conditional variances of bids given values, k = 10.
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or calibrate the BE equilibrium predictions. It would indeed be remarkable
that the somewhat arbitrary choices made in section 4 would lead to optimal
goodness of fit.

Perhaps the task of obtaining a quantitatively accurate description of
bidder behavior in this auction may be accomplished by searching over BE
equilibria with variety of sampling and estimation procedures; perhaps other
ingredients are needed, such as risk aversion or probability misperception.

However, this is not the main task of the paper; rather, the objective
here was to propose a framework to formalize procedurally rational behavior
and to verify that it can provide explanations from some apparent depar-
tures from rationality in one experimental setting. A more fruitful avenue of
future research is to investigate if the Best-response to Estimate equilibrium
framework can be successful in explaining anomalies found in experiments
about other games as well.
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