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Abstract

Experimental evidence shows that in first-price auctions bidders
tend to “misbehave” (Harrison, 1989) by bidding more aggressively
than predicted by basic theory. This notes considers the possibility
that this is due to bidders making one of three possible types of mis-
takes: mistakes in their valuation assessment, mistakes in optimizing
their best response, or mistakes in predicting the behavior of their
opponents. Bounds on the distribution of bid-valuation pairs are ob-
tained, and hypothesis testing is performed using the experimental
data from Dyer, Kagel, and Levin (1989). The tests indicate that the
most likely type of mistake is on predicting the behavior of the other
bidders.

JEL Codes: D44, C91, C52

1 Introduction

Experimental evidence has been widely used to test if subjects do follow
the behavior prescribed by theory. When they do not, the standard next

∗I thank Pat Bajari, Lanier Benkard, In-Koo Cho, Ali Hortaçsu and Roger Koenker
for helpful comments. Besides the bidders, all mistakes are mine.
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step is to redo the theory, by changing the assumptions made about the
environment, including the hypothesis of full rationality. The pitfall of this
endeavour is the risk of ending up with an ad hoc set of theories, that explain
one empirical finding but not others.

This paper proposes an empirical methodology that uses experimental
data not only to test the established theory, but also to identify in what step
of the process of decision making the assumption of full rationality fails (if
any). As such it can be used to inform the development of broader theories of
boundedly rational behavior that are better grounded in empirical evidence.

This paper will develop and apply the methodology in the context of
experiments of independent private values first-price auctions; in particular,
the experimental data collected by Dyer, Kagel, and Levin (1989). It is
however, broadly applicable to any social situation that can be conceived as
a mechanism or as an imperfect information game.

A well-known empirical regularity in experiments involving independent
private value auctions is that bidders do not play according to the theoretical
Nash equilibrium, but rather tend to bid too aggressively. The most popular,
albeit controversial, explanation is the one provided by Cox, Smith, and
Walker (1988): risk aversion.1 Studying the same data as in here, Bajari and
Hortaçsu (2004) have concluded that a model with risk aversion fits the data
better than the other alternatives considered there. In section 8 we shall
compare our results with those obtained under risk aversion. Here we will
seek an alternative explanation; we shall assume throughout that bidders are
indeed risk neutral, but make mistakes of one several different types.

We shall consider three possible mistakes:

Mistakes in valuations: Bidders misunderstand their valuations, and act
rationally given this misunderstanding;

Mistakes in maximization: Bidders do not maximize perfectly: they bid
in a way that is nearly, but not fully, optimal.

Mistakes in beliefs: Bidders fail to predict exactly the behavior of their
rivals, and therefore respond rationally to mistaken beliefs.

This objective of this paper is to study if those three different types of
mistakes lead to different observed bidding patterns, and if these differences

1Kagel (1995, section I.G) provides a survey of the debate.
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allows us to identify which of these alternatives is more empirically relevant.2

The rest of the paper is organized as follows: The next section reviews
the standard First-price auction model under independent private values.
Section 3 describes formally the three different types of mistakes considered in
this paper and derives formulas for the bounds consistent with these mistakes.
Section 7 is the heart of the paper: it tests the three bounds against the
experimental data collected by Dyer, Kagel, and Levin (1989). Section 8
discusses the leading alternative explanation that bidders may be risk averse.
Section 9 concludes.

2 The First-Price Auction

In an independent private values first price auction, a bidder’s expect profit
is

π = (v − b)Q(b)

where v is the value it assigns to the good, b is its bid, and Q the probability
of winning the auction as a function of b (of course, it depends also on the
other bidders strategies). We shall assume that valuations across different
bidders are independent and identically distributed, with distribution F and
density f .

In a symmetric Nash Equilibrium of this game, all players follow the same
strategy b = β(v). Once β has been shown to be an increasing and differ-
entiable function, one can write Q(b) = Pr(β(v) < b)N−1 = F (β−1(b))N−1,
where N is the number of bidders.

Optimal bidding is therefore uniquely characterized by a differential equa-
tion,

−F (v)N−1 + (v − β(v))
(N − 1)f(v)F (v)N−2

β ′(v)
= 0

as well as a boundary condition, β(v0) = v0, where v0 is the lowest possible
value for v.

2It is important to make clear that the term “mistake” is not meant in a derogatory
sense. Here, bidders are assumed to be procedurally rational, and fail to follow the pre-
scriptions of fully rational behavior because they face communicational or computational
costs that lead to apparent mistakes. So mistakes here are meant to represent in a re-
duced form fashion the effect of such cost, just as stochastic errors are often used to capture
unobserved covariates.
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This is a relatively complex mathematical problem, and a skeptical reader
may have the impression that experimental subjects may fail to solve this
problem exactly. This possibility will be discussed in section 5 below. First,
we shall discuss a simpler type of mistake, that arises if agents solve the right
problem, but for the wrong input, namely, v.

3 Three mistakes

4 Mistakes in valuation assessment

In this section we assume bidders act thinking that their valuation is ṽ =
v + ν, with ν ∈ [−A/2, A/2], that is, they play the bid b̃ that maximizes

π = (ṽ − b)Q(b).

Suppose an econometrician has data such type of bidding and estimates
the valuation distribution compatible with the (fully rational) Nash equilib-
rium. We are interested in studying how ν will bias this estimation. More
precisely, we want to characterize the bounds for V̂ = β−1(b̃), as a function
of A.

We shall proceed by making a revealed preference argument. If b is played
by a bidder with (true) valuation v, then

(v + ν − b)Q(b) ≥ (v + ν − b′)Q(b′)

for all alternative bids b′. For b′ < b, we can write

v − ν ≥ b+
(b′ − b)Q(b′)

Q(b′)−Q(b)

and likewise for b′ > b, v + ν ≤ b + (b′−b)Q(b′)
Q(b′)−Q(b)

. Therefore, v ∈ [vV , vV ], where

vV = max
b′:b′<b

b+
(b′ − b)Q(b′)

Q(b′)−Q(b)
− A/2

and

vV = min
b′:b′>b

b +
(b′ − b)Q(b′)

Q(b′)−Q(b)
+ A/2

The tightest bounds are obtained when b′ ' b:
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Proposition 1 For any point where Q is differentiable, v ∈ [vV , vV ], where

vV = b +
Q(b)

q(b)
− A/2,

vV = b +
Q(b)

q(b)
+ A/2,

and q(b) = Q′(b).

Proof: To find the b′ that provides the tightest bounds, we solve the first or-
der conditions for minb′:b′>b b+

(b′−b)Q(b′)
Q(b′)−Q(b)

. We obtain Q(b′)(Q(b′)−Q(b))+(b′−
b)[q(b′)(Q(b′)−Q(b))−q(b′)Q(b′)] = Q(b′)(Q(b′)−Q(b))−(b′−b)q(b′)Q(b) = 0.
Note that, since Q is continuous, b′ → b satisfies this condition. Taking this
limit yields the result. �

Note that V̂ = b+ Q(b)
q(b)

(Guerre, Perrigne, and Vuong, 2000). This means
that, as expected, the econometrician will always find estimated values that
are A/2 away from the truth.

5 Mistakes in maximization

A more complex calculation is required to investigate mistakes in maximizing
π. Let us model mistakes in maximization as if instead of maximizing π, the
bidder maximizes π̃(b) = π(b)+ε(b), where ε is a random process that assigns
to each bid a disturbance with support on [−B/2, B/2]. This is in the spirit
of discrete choice models that are popular in the literature of heterogenous
good demand estimation. It can also be justified as way to incorporate a
satisficing type of behavior: suppose a bidder is happy to play a given bid
b̃ as long as there is no other bid b∗ that improves its profits by more than
B. Such bidder will act exactly as predicted by this model, with ε(b̃) = B/2
and ε(b) = −B/2 for all b 6= b̃.

Mistakes in maximization are also reminiscent of Harrison (1989). In
his “flat maximum critique” Harrison argues that the relevant metric for
evaluating deviations from rational behavior is the one of payoffs, rather
than the one of messages (bids). The mistakes in maximization approach is
in accordance with this view, in that it admits only behavior that is slightly
suboptimal in the payoff metric.
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Under mistakes in maximization by revealed preference we know that,
from an observed bid b,

(v − b)Q(b) + ε(b) ≥ (v − b′)Q(b′) + ε(b′),

for all other bids b′, so that

v ≤ b+
(b′ − b)Q(b′)

Q(b′)−Q(b)
+

B

Q(b′)−Q(b)
,

for all b′ such that Q(b′) > Q(b), and

v ≥ b +
(b− b′)Q(b′)

Q(b)−Q(b′)
− B

Q(b)−Q(b′)
,

for all b′ such that Q(b′) < Q(b). These provide upper and lower bounds to
values of v compatible with the observed behavior and a limited scope for
maximization error.

Proposition 2 If Q is differentiable, v ≥ vM , where

vM = max
b′:b′>b

b +
(b′ − b)Q(b′)

Q(b′)−Q(b)
− B

Q(b′)−Q(b)

and b′ solves (
b′ − b +

Q(b′)

q(b′)

)
Q(b)− Q(b′)2

q(b′)
+B = 0.

Proof: The tightest bound vM can be characterized using the first-order

condition of maxb′:b′<b V (b′) = b + (b′−b)Q(b′)
Q(b′)−Q(b)

− B
Q(b′)−Q(b)

. Since the argument

of the maximization program asymptotes to infinity as b′ → b or ∞, the
problem is well-defined and has an interior solution.

It is convenient to start with the condition that determines V (b′), namely

(V (b′)− b)Q(b)− (V (b′)− b′)Q(b′) +B = 0

Using the implicit function theorem, we have that the first-order condition
is

∂

∂b′
V (b′) = −Q(b′)− (V (b′)− b′)q(b′)

Q(b)−Q(b′)
= 0
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so b′ solves

V (b′) = b′ +
Q(b′)

q(b′)
.

Substituting in the equation above, we obtain
(
b′ − b +

Q(b′)

q(b′)

)
Q(b)− Q(b′)2

q(b′)
+B = 0,

as claimed. �

For example, if bids follow a uniform distribution between 0 and X and
there are three bidders, Q = (b/X)2 and the condition that determines the
b′ that achieves the highest lower bound for v is

(
b′ − b+

b′

2

)
b− b′3 +X2B = 0,

A cubic polynomial equation that must be solved for b′.

6 Mistakes in Beliefs

A third possibility is that bidders act on mistaken beliefs about the rivals’
behavior. In a first price auction, such beliefs affect a bidder in two related
ways: it determines Q(b), the probability of winning given her current bid
b, and how this probability changes if she bid b′ instead, Q(b′) − Q(b) =
q(b′′)(b′ − b), for some b′′ between b and b′. In principle, a bidder may be
mistaken in either one or both ways.

Here we shall assume that a bidder knows the correct Q, but is mistaken
in q: she acts with Q̃(b′) = Q(b) + λq(b′′)(b′ − b) instead of Q(b), where
log(λ) ∈ [−C/2, C/2]. This assumption is made for several reasons; as will
be seen below, it provides an analytically convenient bound; but also, if
agents form their beliefs from past experience, then they would be able to
obtain better estimates of Q than q, just like an econometrician would more
easily estimate a distribution than a density. The multiplicative form is
also convenient because it allows us to impose some conditions that would
naturally be valid even for the wrong belief; for example, it does not allow
Q̃ to be decreasing.

If a bidder know the right Q, but is mistaken about q, we have

(v − b)Q(b) ≥ (v − b′)Q̃(b′)
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so, for b′ < b, Q̃(b′) < Q(b) we obtain a lower bound:

v ≥ bQ(b)− b′Q̃(b′)

Q(b)− Q̃(b′)
= b +

(b− b′)Q̃(b′)

Q(b)− Q̃(b′)
= b +

Q̃(b′)

λq(b′′)
= b′ +

Q(b)

λq(b′′)
.

The worst case scenario is therefore when log λ = C/2, and the bidder
overestimates q. Notice that the derivative of the bound with respect to b′ is
1−Q(b)/(λq′(b′′) ∂

∂b′ b
′′. If Q is regular3, then the bound is strictly increasing

in b′ in a neighborhood of b, and as b′ → b we obtain a local, and perhaps
the global, maximum bound:

v ≥ vB = b +
Q(b)

q(b)
e−C/2.

7 Bringing the Bounds to Data

The three last sections provide three alternative theories of why and how
bidders may deviate from predicted behavior in a first price auction. This
section brings this analysis to data. We will use part of the experimental data
from Dyer, Kagel, and Levin (1989) to investigate if the pattern of deviations
conforms with which of the three alternative theories.

In this experiment, subjects were given a valuation drawn from the U [0, 30]
distribution, and ask to provide two provisional bids, one conditional on par-
ticipating in an auction with 3 bidder, and the other with 6 bidders. Actual
payoffs were based on the same rules, so for fully rational players this un-
usual design should not affect the analysis.4 We shall focus mainly on the
subsample of the bids for auctions with 3 bidders; results for the 6 bidder
subsample are qualitatively identical, and are discussed in section 7.1.

Figure 1 shows the data. The solid line represents the Nash Equilibrium
bid function (more precisely, β−1, since bids are represented in the horizontal
axis). Actual bids are the data points. Since the vast majority of points are
to the right of the theoretical bid function, there seems to be systematic
overbidding.

3Q is regular if x + Q(x)/q(x) is increasing in x. It is a necessary condition for the
identifiability of the valuation distribution (Guerre, Perrigne, and Vuong, 2000).

4There might be however a framing effect: since bidders are asked to solve two problems
at the same time, and the other problem involves bidding more aggressively, that might
lead to over-aggressive bidding in the 3-bidder auction.
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Figure 1: Dyer, Kagel, and Levin (1989) data, 3 bidder subsample

Before proceeding with the estimation of the bounds we must make a
choice on which Q(b) to use. The natural alternatives are either using the
formula corresponding to the theoretical bid distribution coming out of the
Nash Equilibrium without mistakes, or to use an estimate based on the empir-
ical distribution of bids. The first alternative would lead to Q(b) = (b/20)2,
since Nash Equilibrium implies b ∼ U [0, 20] in this environment.

Since there is significant overbidding, the empirical distribution of bids
departs from this prediction, but is still approximately uniform. Figures 2
and 3 show kernel estimates for the density of bids for a variety of bandwidths
against the density of the U [0, 26] distribution. 26 is the highest observed
bid and is the maximum likelihood estimate of the upper bound of the bid
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Figure 2: Estimates for the bid density in the Dyer, Kagel, and Levin (1989)
data, Epanechnikov kernel.

Except for some concentration of bids between 20 and 23, and perhaps
for the density to be decreasing at the right tail, the estimated density is
remarkably similar to U [0, 26]. Besides being of independent interest, this
is convenient since is allows us to nest the two alternatives into a class of
distributions U [0, X], where X = 20 or 26.

In this case Q(b) = (b/X)2 and the lower bounds are

5The estimates in figure 2 use the Epanechnikov kernel. Because kernel estimators are
based on the assumption that the density is continuous, they are biased around disconti-
nuity points of the density, such as 0 and the upper bound of support in the case of the
uniform distribution. Figure 3 is based on a Gaussian kernel augmented by a procedure
that corrects for this effect, by reflecting data points around the boundaries.
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Figure 3: Estimates for the bid density in the Dyer, Kagel, and Levin (1989)
data, modified Gaussian kernel.

vV = b +
b

2
+
A

2

vM = max
b′:b′<b

b +
b− b′
b2 − b′2 −

BX2

b2 − b′2

vV = b +
b

2
e−C/2

Interestingly, since Q(b)/q(b) does not depend on X, neither do vV and
vV , whereas the effect of X on vM amounts to a change of the scale of B. So
the following analysis does not depend in any significant way on whether X
is chosen to be 20 or 26, and we proceed assuming that X = 26.

In order to estimate A, B and C we use the fact that the lower bounds
vj(b), j = V,M,B are extreme quantile regressions, with quantile τ = 0.

While in principle one would like to estimate the lower extreme quantile
τ = 0, it is convenient for statistical reasons to estimate instead a near
extreme quantile, such as τ = 0.1. Extreme quantile estimators that are

11



consistent do exist (Chernozhukov, 2005), but are not asymptotically normal,
and therefore they are ill-suited to standard hypothesis testing. Since the
main focus of the inference is the shape of the conditional quantiles, rather
than their location, such simplification is not likely to significantly distort
the findings.

Also, because the three alternatives are not nested, we consider addition-
ally a non-parametric quantile regression in order to nest the alternatives
and facilitate testing. We fitted a second degree polynomial on bids. This
nests the quantile regressions for the case of error in values and beliefs, and
hopefully is flexible enough to nest the errors in maximization case as well.

Estimates of the bounds were obtained by minimizing the objective

Sj =
∑

t

ρτ (vt − vj(bt))

where j = V,M or B, τ = .1 and ρτ is the “tilt” function ρτ (x) = τx+ +
(1 − τ)x−. Likewise, the coefficients of the polynomial approximation P̂ (b)
to the nonparametric quantile regression minimize S0 =

∑
t ρτ (vt − P̂ (bt)).

The test performed is the first likelihood ratio test proposed by Koenker
and Machado (1999),

Lj =
2(S0 − Sj)
τ(1− τ)ŝ(τ)

which is asymptotically χ2
2. ŝ(τ) is an estimator for the scarcity function

s(τ). Here we shall follow Koenker and Machado (1999) and use ŝ(τ) =
(P̂ (τ + h) − P̂ (τ − h))/(2h), where h is a bandwidth parameter, and P̂ is
evaluated at the mean bid. Using h = 0.05, ŝ(.1) = 4.4645.

Test results are as follows:6

Statistical testing strongly supports the hypothesis mistakes in beliefs;
this is the only hypothesis that is not rejected at conventional significance
levels.

Figure 4 redraws figure 1 with the estimated lower bounds implied by the
three models. It is clear from the picture that the theory of mistakes in beliefs
provides a much better fit to the data than the alternatives considered, as
the formal hypothesis testing indicates.

6The estimated polynomial approximation to the unrestricted quantile regression is
P̂ (b) = 10.8756 + 1.1177(b− 10) + 0.0031(b− 10)2.
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Model Coefficient(s) Sj test statistic p-value

Values A = 11.3900 144.56 418.97 0.0000
Maximization B = 0.54236 170.59 548.53 0.0000

Belief C = 3.3316 61.189 3.9998 0.1353
Unrestricted 60.385 — —

Table 1: Hypothesis testing, 3 bidders sample.

7.1 Evidence from the 6 bidder sample

Dyer, Kagel, and Levin (1989) have also collected bids from the same sub-
jects under the assumption that they are participating in an auction with 6
bidders. The testing procedure can be applied to this sample as well, once
the bound formulas are modified accordingly.

Test results for the 6 bidder sample are as follows:7

Model Coefficient(s) Sj test statistic p-value

Values A = 3.944 63.509 210.09 0.0000
Maximization B = 1.19× 10−12 46.147 66.521 0.0000

Belief C = 4.8159 38.332 1.8998 0.3868
Unrestricted 38.102 — —

Table 2: Hypothesis testing, 6 bidders sample.

Again, statistical hypothesis testing strongly favour the mistakes in be-
liefs interpretation. Figure 5 graphically illustrates the test for the 6 bidder
sample.

Bidding in the 6 bidder sample seems to be closer to the teoretical Nash
equilibrium, and indeed estimated bounds are tighter. This might be due to
the fact that there is less “room” for overbidding, as the distance between
the theoretical predictions and the 45 degree line shrinks as the number of
bidders grows large. It may also be due to a framing effect, as bidder neglect
to react strongly enough to the increase in competition.8

7For 6 bidders the estimated polynomial approximation to the unrestricted quantile
regression is P̂ (b) = 10.4135 + 1.0557(b− 10) + 0.0015(b− 10)2.

8In 111/480 = 23% of the observations subjects have place the exact same bid for 3
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Figure 4: Bounds for Dyer, Kagel, and Levin (1989) data, 3 bidders sample

In any case, this comparison is not central to the main point of this
paper. Here the main insight is that different types of mistakes would lead
to different predictions on how overbidding varies with values. The mistakes
in beliefs story is the one that predicts the pattern observed in both samples:
the more serious bidders are the ones that do most of the overbidding.

8 Comparison with risk aversion

If bidders are risk averse, they seek to maximize

u(v − b)Q(b),

where u is a concave Bernoulli utility function. Assuming both u and Q are
differentiable, the FOC is

u(v − b)
u′(v − b) =

Q(b)

q(b)
.

and 6 bidders; therefore about in about quarter of the sample such neglect is evident.
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Figure 5: Bounds for Dyer, Kagel, and Levin (1989) data, 6 bidders sample

Cox, Smith, and Walker (1983, 1985, 1988); Bajari and Hortaçsu (2004) focus
on constant relative risk aversion (CRRA) preferences, that have u(x) = xη,
for η ∈ (0, 1]. In that case, u(v − b)/u′(v − b) = η(v − b), and one obtains

v = b +
1

η

Q(b)

q(b)
.

Which is very similar to the expression for vB. It is no wonder that both
models fit the experimental data well, since they predict similar patterns.

It must be pointed out that however the assumption of CRRA, while stan-
dard in financial economics, is by no means the most reasonable one in the
context of auction experiments. The dollar amounts involved in experiments
is a negligible fraction of subjects’ wealth, and therefore it is not reasonable
to expect that income effects exist in a range of 10–20 dollars (even if it did,
the effect should not be proportional to receipt in the experiment).

One important difference between our and the standard risk-averse model
is that the latter predicts bias, but not dispersion: v should be exactly b +
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(1/η)Q(b)/q(b), or at least E[v] should be this, with nothing said about the
variance of v given b. In paticular, the basic risk averse story does not explain
the observed pattern that v|b is more dispersed for higher b. In contrast,
risk-neutral bidders with mistaken assessments of q would bid in a way that
generates this heteroskedastic pattern.

One plausible extension of the risk-aversion hypothesis that would fit
this feature of the data as well is heterogeneity on η, as advocated by Cox,
Smith, and Walker (1985, 1988). If each bidder has a different η, then each
observation (v, b) will fall into a different ray going through the origin, and
that model would fit the data well.

A potential critique of introducing heterogeneity is that it makes the
model “too rich”: in principle one can rationalize any pattern of bids with
it, by simply picking ηi = (vi − bi)q(bi)/Q(bi). Without restrictions of what
ηi can be, the theory does not provide any testable predictions.9

It is hard to distinguish these two competing theories based on the data
used here only; one possibility is to augment the experiment with additional
exercises devoted to measuring η independently. Harrison (1990) has done
that, and have found that subjects in his experiments exhibit risk attitudes
that are not consistent with the amount of risk aversion necessary to ratio-
nalize bidding behavior.

Another possibility is to redesign the experiment in a way that controls for
risk attitudes. A clever way to do so is to pay bidders in lottery tickets instead
of dollars (Roth and Malouf, 1979; Berg, Daley, Dickhaut, and O’Brien, 1986;
Cox, Smith, and Walker, 1985). If the winner of the auction receives x1

with probability (proportional to) vi − bi and x2 otherwise, his or her payoff
is u(x2) + [u(x1) − u(x2)](vi − bi)Q(bi) = A + B(vi − bi)Q(bi), and he or
she should behave as a risk neutral bidder, independently of the shape of
u. Cox, Smith, and Walker (1985) have applied this idea to the context
of independent private values first-price auction, and have found that the
tendency to overbid still exists in auctions for lottery tickets: that evidence
points against risk aversion being the only source of overbidding (Kagel and
Roth, 1992).

9A natural restriction, that bidders are not risk lovers (ηi ≤ 1), is violated by part of
the data, since one does observe underbidding as well, as seen in Figure 1.
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9 Concluding remarks

In summing up the evidence regarding overbidding in experiments involving
independent private values first price auctions, Kagel (1995) has stated that
“it is probably safe to say that risk aversion is one element, but far from the
only element, generating bidding above the (risk-neutral) Nash equilibrium”
(p. 525). I see this paper as contributing to this literature by providing one
such other element, namely, the inability to form accurate beliefs about other
players’ behavior. Such element is not only reasonable a priori, but it has
also found strong empirical support from the data investigated.

More generally, and beyond the debate about the sources of overbidding in
first price auctions, this paper proposes a methodology to empirically identify
what is the potential source of the breakdown when theory fails to predict
economic behavior. The decomposition among errors in valuations/types,
maximization and beliefs is conceivable in any social situation that can be
framed as an incomplete information game or a mechanism; as such, the
methodology proposed here can be applied to a variety of contexts.
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