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Abstract AnEnglish auction is studied in which bidders can acquire information dur-
ing the bidding process, allowing for heterogeneity both in ex-ante private information
and the cost of information acquisition. The best response has a simple characteriza-
tion where the optimal information acquisition time is unaffected by the other bidders’
strategies.We prove the existence of an equilibrium in a novel way by characterizing it
as a fixed point in the space of bid distributions rather than the space of bid functions.
Furthermore, we show that when bidders have homogeneous ex-ante private infor-
mation about valuations: (1) The English auction generates more revenue than the
Vickrey auction when the number of bidders is sufficiently large; and (2) the English
auction is more efficient than the Vickrey auction when the information acquisition
cost are relatively small. We present numerical simulations that show that these effects
can be large. Our findings provide an additional explanation for the popularity of the
English auction, even in settings where the bidders’ valuations are independent.
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1 Introduction

This paper studies a continuously ascending price independent private values auction
where bidders are allowed to acquire further information about the value of a good
during the game.
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Given the fundamental role that asymmetric information plays in auction theory,
developing ways to make information acquisition endogenous is a very natural agenda
for research; we contribute to the literature by examining mid-auction information
acquisition. In some contexts, the bidding process is slow enough that bidders may
have the opportunity to invest in due diligence during the auction; for example, some
of the spectrum auction took up to 80days, and this time frame makes a mid-auction
information acquisition strategy practically feasible. Alternatively, the mid-auction
information acquisition process may be interpreted more broadly to represent the
cognitive process of mentally focusing to obtain a clearer assessment of one’s own
willingness to pay for the object being auctioned; under this interpretation,mid-auction
information acquisition may play a role in virtually any dynamic auction.

This paper presents a model of an English auction with continuously ascending
prices. We characterize the optimal information acquisition strategy for bidders that
are heterogeneous about their information acquisition cost, their valuation for the
good, and possibly their ex-ante information about their valuation. An insight from
the analysis is that the optimal timing of the information acquisition depends on the
bidder’s own information, but not on the beliefs about other players strategies. There
is a one-to-one mapping between the time of information acquisition and the bidder’s
personal cost of information that does not depend on the equilibrium behavior of other
players.

We provide a proof of existence of an equilibrium in a novel way by applying
Schauder’s fixed-point theoremon the set of bid distributions, rather than bid functions.
This method of proof can be helpful in models with multidimensional types and single
dimensional action spaces, since it reduces the dimensionality of the space under
consideration.

We also study how the expected revenue of this auction compares with a one-shot
auction where bidders are prevented from acquiring information during the auction.
We present a theorem that states that the revenue of the English auction is larger
provided that the number of bidders is sufficiently large and there is no heterogeneity
on the bidders ex-ante information about valuations.

We also study efficiency gains. The analysis is involved because with endogenous
information acquisition the two auctions generate different allocations and different
levels of information acquisition costs.We show that formoderate levels of information
acquisition costs, the English auction is more efficient.

We also present simulations that show that gains in revenue and efficiency can be
large in some circumstances (up to 6 and 1%, respectively).

Our findings suggest that mid-auction information acquisition may be an additional
reason why English auctions seem to be so much more popular than their one-shot
counterpart, the Vickrey auction (Compte and Jehiel 2007). The literature on auctions
provides several alternative explanations of this fact. Milgrom andWeber (1982) have
shown that under affiliation a dynamic English auction generates more revenue than
an auction under one-shot, sealed-bid rules. An English auction may also be preferred
because it is more immune to manipulation by the auctioneer: In a Vickrey auction, a
dishonest auctioneer can profit by introducing a fake bid between the winner and the
second highest bid. Any attempt of doing so in an English auction would involve the
risk of not selling the good.
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An alternative explanation for why dynamic auctions might be useful is related to
the fact that bidders often have to invest in acquiring information about the value of the
item being traded. In circumstances where this information acquisition is important,
dynamic auctionsmay be preferable because theymay lead tomore aggressive bidding
and/or participation, and therefore, to higher final selling prices.

Engelbrecht-Wiggans (1988) has attempted to formalize this insight by working
with two-stage auctions. However, the analysis of two-stage auctions is quite diffi-
cult, and hence, the existing results have been limited to very restrictive functional
assumptions. Similarly, Compte and Jehiel (2007) investigate the hypothesis in a con-
text of an ascending auction with discrete bids and valuations distributed over a finite
support. They establish that expected revenue in the dynamic auction is larger than
in the one-shot auction in their setting, but do not provide a full characterization of
optimal bidding. Our aim in this paper is to propose a more flexible and tractable way
to capture this economic intuition.

The present analysis does not impose unusual restrictions on the valuation distri-
bution. Furthermore, the information structure allows bidders to have different initial
signals of their valuation and different privately known costs of acquiring information.
In addition, the framework accounts for the possibility that some bidders already know
their valuation at the outset of the auction, or conversely, that some bidders may not
be able to acquire any information at all. We permit these possibilities by allowing
bidders to be heterogeneous along three dimensions: their valuation for the item, their
ex-ante information about the valuation, and the information acquisition costs.

A methodological contribution of this paper is that it proposes a novel way to
characterize and prove the existence of an equilibrium in private value auctions. In this
class of games, the payoff-relevant aspect of the equilibriumstrategyprofile of the other
players for anygivenbidder is the distributionof the highest bid (or the lowest bid, in the
case of procurement). This property allows us to characterize a symmetric equilibrium
as a fixed point in the space of highest bid distributions, rather than in the space of
strategies. This characterization is useful, as the former space is mathematically less
complex: In the current model, the space of highest bid distributions is the space of
increasing, right-continuous functions from a compact interval into [0, 1], and each
strategy is a pair of mappings from two or three dimensions into the information
acquisition time and the bid. Using this shift in perspective allows us to prove that an
equilibrium exists in a novel way, using the Schauder fixed-point theorem.

The rest of the paper is structured as follows: The next section discusses the relation-
ship of this paper with the literature on information acquisition in auctions. Section 3
presents the setup that is used throughout the paper. The problem of characterizing
the bidder’s best response is investigated in Sects. 4, and 5 contains a proof that an
equilibrium for this game exists. Section 6 presents a simplified version of the game
where bidders have homogeneous ex-ante private information about valuations. In this
setting, we compare the equilibrium of the dynamic auction with the one-shot sealed-
bid auction. We find that the dynamic auction provides larger expected revenues when
the number of bidders is sufficiently large and is more efficient when information
acquisition costs are moderate. Section 7 provides results of numerical simulations
that show that the revenue gain may be substantial even with as few as two bidders.
Section 8 provides some concluding remarks.
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2 Connections with the literature

Inmost of the literature on information acquisition in auctions, the analysis is restricted
to ex-ante information acquisition. Matthews (1984) and Persico (2000) study models
where bidders can purchase information out of a continuum of alternative degrees of
informativeness. These authors resolve the non-trivial problemof ranking distributions
in terms of informativeness in different ways. Due to the simple structure of the infor-
mation acquisition problem that is examined in this paper, this ranking is immediate
here. On the other hand, the present model allows for information acquisition at any
moment in a continuous time game, whereas these papers consider only information
acquisition prior to the auction.

In addition to Engelbrecht-Wiggans (1988), two other papers, namely Compte and
Jehiel (2007) and Rasmusen (2006), have independently investigated the theme of
mid-auction information acquisition in ascending auctions. Compte and Jehiel (2007)
consider an English auction where a set of bidders begin the auction informed and
another set begin uninformed, having a choice to learn their valuations during the game.
They also study a symmetric model where any bidder has an exogenous probability
q of being uninformed.1 Unlike in this paper, in Compte and Jehiel (2007) there is
no heterogeneity in the information acquisition costs or in the prior beliefs among the
bidders. Conversely, they allow bidders to observe the rivals’ drop-out points; here,
we limit the analysis to an auction format where this information is not available.
Another major difference is that their setting is discrete (both in terms of actions and
distributions) and our setting is continuous.

Finally, subsequent work by Gretschko andWambach (2014) andMiettinen (2013)
studymid-auction information acquisition inDutch auctions.Gretschko andWambach
(2014) investigate Dutch auctions in the same setting that is considered here and
employ the analytical tools I propose in this paper to characterize and prove the exis-
tence of an equilibrium and obtain a revenue ranking: They show that if the cost of
information acquisition is low, the descending price auction generates less revenue than
the first-price auction. Their work is complementary to this paper: Taken together, the
papers establish a theory of mid-auction information acquisition in all four classical
auction formats under the same setting.

Miettinen (2013) characterizes the equilibrium for a situation where there is no
heterogeneity in either the information acquisition cost or the prior information about
valuations, and an exogenous fraction of the bidders have already acquired information
before the auction begins. In the equilibrium described byMiettinen, bidders random-
ize their information acquisition point over a region of prices over which the informed
bidders do not bid. He also shows that in this setting, as the number of bidders becomes
large, the Dutch auction produces more revenue than the first-price auction.

1 In a related paper, Compte and Jehiel (2004) study an environment where one bidder obtains better
information as time proceeds, but this work is less closely related to the current paper than Compte and
Jehiel (2007) since information acquisition is exogenous. Rasmusen (2006) study information acquisition
in a more restricted setting with two bidders and a specific distributional assumption for the value of the
good.
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3 Setup

We study an auction of a single good among n bidderswith symmetric and independent
private valuations. Valuations are i.i.d. random variables v1, . . . , vn . The distribution
function of vi is Fv , and this function is absolutely continuous with support [0, v̄].

The auction rules are also conventional: Our model for the English ascending price
auction is a blind Japanese button auction, where the price p begins at a low level
(which is assumed without loss of generality to be 0) and increases continuously. The
bidders should decide at which price to drop out. The auction ends when only one
bidder is left, and he or she pays the price at which the last of the other bidders dropped
out. If all the remaining bidders drop out at the same time, the winner is selected at
random, i.e., each of these bidders has an equal probability of winning. The auction
is “blind”: During the auction, a bidder only observes the price clock and does not
observe any action of the other players (neither if and when they drop out nor if and
when they acquire information).

Each bidder can have two possible levels of information about her own valuation:
They observe an informative signal wi . At any point during the auction, she can learn
vi instantaneously at a cost ci . There is heterogeneity on the information acquisition
cost: the costs ci are i.i.d. Fc and are private information of each bidder.

We assume that the conditional expectation of vi is strictly increasing inwi ; without
further loss of generality, we set wi = E[vi |wi ]. Bidders may be heterogeneous or
homogeneous regarding their ex-ante prior information about valuations. In Sects. 4
and 5, we assume the conditional expectations wi are i.i.d. Fw. In Sect. 6, we consider
the simpler case were bidders have homogeneous prior beliefs about their valuations,
in which case Fw is degenerate.

Both ci and wi are known by player i in the beginning of the game, but are not
directly observed by anyone else. It is common knowledge that allwi are i.i.d. Fw and
the ci are i.i.d. Fc. The distribution of vi conditional on wi is represented by Fv|w, and
a similar notation is used for the other conditional distribution functions. Except for
wi and vi , all other variables are assumed to be independent.2

It is convenient to impose some further assumptions on the distributions of ci ,wi and
vi . They have bounded intervals as supports; the support of vi is [0, v̄] and the support
for ci is [0, c̄]. The distribution of ci has an atom at 0: this feature accommodates
bidders that already have all the information at the outset of the auction in the same
framework. Conversely, if the maximum information acquisition cost c̄ is very high,
the framework accommodates bidders that cannot acquire information. Additionally,
the presence of an atom at 0 is used in proving the existence of an equilibrium in
Sect. 5. Apart from the atom at 0, the distributions of ci and vi are assumed to have
densities that are bounded above and away from zero everywhere in the support.

When there is heterogeneity in wi (Sects. 4, 5), we assume Fw is absolutely con-
tinuous, with density bounded above and away from zero everywhere in the support.
We also assume that the maximum of the support of wi is strictly below v̄. Bounds on

2 Independence across different bidders is an important simplifying assumption. Independence between ci
and wi or vi is not important, and the analysis would not change much without it.
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densities are not required to characterize the equilibrium in Sect. 4, but will be used
to prove existence of equilibrium in Sect. 5 and to study its properties in Sect. 6.

During the auction, the only information about the behavior of other players that a
bidder observes is whether all of them have dropped out or not, i.e., if the auction has
ended or not. We conjecture that the assumption on the unobservability of drop-out
points does not qualitatively affect the analysis (even though it greatly simplifies part
of it). Notice that due to the independent private values assumption, knowledge of
another player’s drop-out point/valuation does not change i’s estimate of her own vi ,
and hence, a linkage effect as in Milgrom and Weber (1982) is not expected to exist.

Assuming information acquisition is unobservable is possibly not innocuous, as
direct observation of the information acquisition point can in principle generate addi-
tional strategic effects that have not been accounted for in the present model.

4 The individual bidder’s problem

We begin by studying the individual bidder’s problem taking as given the behavior of
the other bidders. We fix a specific player i and whenever it is clear from the context
we drop the subscript i in the notation and relabel vi = v, etc.

It is convenient to summarize the other bidders’ behavior in a reduced-form fashion.
Let the random variable y represent the price at which the last of the other bidders
drops out if player i were to stay in the game forever. The price y is the price bidder i
will pay for the item if she wins.

The price y is a function of (c−i , w−i , v−i ), a random variable that is independent
of the bidder’s private information on ci and wi (and vi ). Let the distribution of y be
Fy . During the auction, no information about y is obtained during the auction except
that y is greater than the current price.

The possible strategies of the bidder can be split into two groups: either she decides
never to acquire information and place a bid that depends only on wi , or she decides
to wait until a price p̂ is reached and acquire information at this point. Under this
formulation, p̂ = 0 represents immediate information acquisition and p̂ = ∞ repre-
sents never acquiring information and never dropping out of the auction. Thus, all pure
strategies are represented by a tuple of four choices as a function of the bidder private
information: a binary decision about acquiring information; a choice of information
acquisition timing p̂; a choice of when to drop out if information is not acquired; and
a choice of when to drop out if information is acquired, as a function of the observed
value. Figure 1 presents a pure strategy graphically.

Acquire info?

yes

no

Choice of p̂ Choice of bid with info

Choice of bid without info

Fig. 1 A schematic representation of a bidder’s strategy
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The bidding decision in this game, as in standard English auctions, is strategically
simple: It is always weakly dominant to stay in the auction as long as the conditional
expectation of the value of the item is above the current price and drop out other-
wise. If the bidder never acquires information, she will drop out at w. If she acquires
information, she will drop out at v, or immediately, if she finds that v < p̂.

The novel aspects of the analysis are the determination of the optimal information
acquisition point p̂ and the decisionwhether to acquire information or not. Sections 4.1
and 4.2 present each in turn.

4.1 Optimal timing of information acquisition

The task in this section is to find the function p̂(w, c, Fy), which is defined as the
optimal information acquisition point for a bidder that observes a signal w of her
valuation, faces a cost c to acquire information, and expects the other bidders to
behave in such a way that the highest price at which any of them stays in the auction
is distributed according to Fy .

We have the following characterization:

Proposition 1 Let p̂ satisfy

c =
∫ p̂

0
( p̂ − v) dFv|w(v) =

∫ p̂

0
Fv|w(v) dv.

Then p̂ is an optimal information acquisition point.

Proof First, note that since Fv|w is absolutely continuous, integrating by parts one
obtains

∫ t
0 (t − v) dFv|w(v) = ∫ t

0 Fv|w(v) dv for any t ∈ [0, v̄]. This establishes the
second equality in the formula. Note that

∫ t
0 (t − v) dFv|w(v) is strictly increasing in

t .
If the distribution of the highest bid among the other players is Fy , then the expected

utility of a bidder that decides to wait until p to acquire information and afterward
acts optimally is:3

U (p) =
∫ p

0
E [v − y|w] dFy(y) +

∫ v̄

p
(E [max{v − y, 0}|w] − c) dFy(y);

if y < p, the bidder receives v − y; if y ≥ p, she pays c and learns v before the end
of the auction, having the option to quit if v < y.

For p < p′,

3 I am indebted to an anonymous referee for suggesting a proof based on that function.
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U (p′) −U (p) =
∫ p′

p
{E [v − y|w] − E [max{v − y, 0}|w] + c} dFy(y)

=
∫ p′

p

{
c +

∫ v̄

0
(v − y)dFv|w(v) −

∫ v̄

y
(v − y)dFv|w(v)

}
dFy(y)

=
∫ p′

p

{
c −

∫ y

0
(y − v)dFv|w(v)

}
dFy(y)

=
∫ p′

p

{
c −

∫ y

0
Fv|w(v) dv

}
dFy(y).

The integrand is 0 when y = p̂, negative if y > p̂ and positive if y < p̂. Therefore,
U (p)−U ( p̂) ≤ 0 for all p, and the inequality is strict if there is a positive probability
that y falls between p and p̂. ��

A remarkable property of the optimal information acquisition point is that it does
not depend on the behavior of other players; the proof above did not require any
assumption about the distribution of y. It is also the unique optimum, provided there
is a positive probability of bidding in any neighborhood of p̂.

To see why the optimal information acquisition point is independent of the behavior
of other players, consider the trade-off involved in deciding to delay the information
acquisition over a given period. Due to the independent private values assumption,
actions of other players during this period do not provide any information about the
bidder’s own valuation, but may affect expected payoffs since they may lead to the
auction ending during this period. If the auction does not end, it makes no difference
delaying the information acquisition. If it ends, then it makes a difference: Deciding
to delay the time to acquire the bidder has the benefit of saving the acquisition cost
c, while running the risk of later learning that the item is not worth the price paid.
Notice, however, that both the expected benefit and the expected cost are proportional
to the probability of the auction ending; hence, the latter does not affect which one is
greater.

From Formula 1, one immediately obtains that p̂ is a strictly increasing function
of c, and that if c > 0, p̂ > 0: A bidder always finds it optimal to wait to acquire
information, unless the information acquisition cost is zero.

One can also use the formula to investigate comparative statics regarding w. For
example, if w is good news about v (that is, if w > w′, then Fv|w first-order stochas-
tically dominates Fv|w′ ; Milgrom 1981), then p̂ is increasing in w.

4.2 Whether to acquire information: an option trade

To investigate whether a bidder should acquire information, we compare the expected
utility of acquiring information with the expected utility of participating in the auction
without learning v. The former was calculated in Sect. 4.1 to be

U ( p̂) =
∫ p̂

0
E [v − y|w] dFy(y) +

∫ v̄

p̂
(E [max{v − y, 0}|w] − c) dFy(y);
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the latter is Ǔ = ∫ w

0 E [v − y|w] dFy(y), since conditional on y the utility of the
bidder is E[v − y|w] if y < w and 0 otherwise.

It is convenient to write the net expected benefit of acquiring information as the
expectation of a function of y:

U ( p̂) − Ǔ =
∫

r(y; c, w)dFy(y)

where

r(y; c, w) =

⎧⎪⎨
⎪⎩

(w − y) − (w − y) = 0 if y < p̂∫ v̄
y (v − y)dFv|w − c − ∫ v̄

0 (v − y)dFv|w = ∫ y
0 Fv|w − c if y ∈ [ p̂, w)∫ v̄

y (v − y)dFv|w − c = ∫ y
0 Fv|w − c + w − y if y > w

or more compactly

r(y; c, w) = max

{∫ y

0
Fv|w(s)ds − c, 0

}
− max{y − w, 0}

= max

{∫ y

p̂
Fv|w(s)ds, 0

}
− max{y − w, 0}

The decision whether to acquire information is an option trade on the underlying
asset y. The expression

∫
rdFy is the expected profit of an option strategy composed by

selling a call option on y at the strike pricew and buying a call option on
∫ y
0 Fv|w(s)ds

with price c. Figure 2 shows the shape of the r function: It is an asymmetric spread
that pays if y is close to w, has a negative value if y is too high, and has a value of 0 if
y is too low. This shape suggests that information acquisition depends negatively on
the variance of y with respect to v|w.

For comparison purposes, Fig. 2 also depicts the shape of the option r0 that would
determine the information acquisition decision of a bidder in a one-shot auction. In
that case, the expected gain from learning about v is

∫
r0(y; c, w)dFy(y), where

r0(y; c, w) =
∫ y

0
Fv|w(s)ds − c − max{y − w, 0}.

Comparing r and r0, one sees that the possibility of acquiring information during
the auction provides a value to the bidder: If y < p̂, she can save on the information
acquisition cost.

Figure 3 represents schematically a bidder’s best response in this game. The strate-
gies of the opponents only affect the decision whether to acquire information (this
decision should be affirmative if

∫
r(t, c, w)dFy > 0). After this decision has been

made, the best response prescribes behavior that is unaffected by the rivals’ strate-
gies: If information is going to be acquired, it should happen when the auction price

reaches the price p̂ that solves c = ∫ p̂
0 ( p̂ − v)dFv|w, and the bidder will either

drop out immediately (if v < p̂) or stay in the auction until the price reaches v. If
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Fig. 2 A Graph of the r function (the solid line) and the r0 function (the dotted line), for the case where
v|w ∼ U [0.25, 0.75] and c = 0.01

rdFy ≥ 0?

yes

no

p̂: p̂

0 (p̂ − v)dFv = c bid max{v, p̂}

bid w

Fig. 3 A schematic representation of a best response strategy

∫
r(t, c, w)dFy < 0, then the bidder never acquires information and drops out when

the price reaches w = E[v|w].

5 Existence of an equilibrium

Section 4 described the single best response strategy against any profile of the oppo-
nents’ strategies that lead to an absolutely continuous distribution of drop-out points.
However, this is not sufficient to guarantee that a symmetric equilibrium exists; we
must still show there exists a distribution of drop-out points that leads bidders to bid
in a way that generates itself.

This section provides an existence result for the case where there is a positive
probability that bidders have zero information acquisition cost (Proposition 3).Readers
uninterested in the technical aspects of the proof may skip to Sect. 6.

There is an extensive literature on the existence of equilibria in auction games. They
can be divided into lattice-theoreticmethods (e.g., Topkis 1979;Milgrom and Shannon
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1994; Athey 2001; McAdams 2003) and topological methods that allow for specific
types of discontinuity (e.g., Dasgupta andMaskin 1986; Reny 1999; Simon and Zame
1990; Jackson and Swinkels 2005). These methods are not directly applicable to our
model, as the first group requires monotonicity properties that are not valid in our
setting and the second group focuses on discontinuity problems that do not arise here
because our assumptions make a bidder’s expected profit continuous. The issue here
is whether one can find a set of types A that is willing to acquire information given
that types in A are acquiring information. We shall proceed directly by defining an
operator over this set and applying a fixed-point theorem from functional analysis.

Let F be the set of all absolutely continuous distributions over [0, v̄], and let A be
the collection of all measurable subsets of types (c, w).

We define two mappings between these spaces. T : A → F gives the distribution
of yi that would arise if a bidder was acquiring information if her type was in A, i.e.,

T (A)(x) = Pr[A]Pr [max{ p̂, v} ≤ x |A] + (1 − Pr[A])Pr [w ≤ x |Ac]

=
∫
A
Pr

[
max{ p̂, v} ≤ x |c, w]

dFc,w +
∫
Ac

Pr [w ≤ x |c, w] dFc,w.

Notice that T (A) ∈ F , as it is a mixture of absolutely continuous distributions. Let F
be the closure of F under the sup norm.4

Define R : F → A as follows:

R(F) =
{

(c, w) |
∫

r(t, c, w)dFn−1(t) ≥ 0

}
,

where r(t, c, w) = max
{∫ t

0 Fv|w(s)ds − c, 0
}

− max{t − w, 0}. For an absolutely

continuous distribution F , R(F) selects the best response A to it. Notice that because
any distribution function is of finite variation and r is continuous with respect to y, the
integral

∫
rdFn−1 is well defined, and for a sequence Fk → F , limk→∞

∫
rdFn−1

k =∫
rdFn−1 by Helly’s second theorem (e.g., Natanson 1961).
Using this notation, the object that we need to find to obtain a symmetric equilib-

rium is a distribution F∗ ∈ F such that the information acquisition decisions that are
consistent with it do generate it; that is, we need to find a fixed point

F∗ = T
(
R(F∗)

)
.

It is convenient at this point to impose bounds on the densities of w, c and v:

Assumption 1 (density bounds) Assume that the distributions of w and v are abso-
lutely continuous, the distribution of c is absolutely continuous except possibly for an
atom π at 0 and there are positive constants Mc, Mw,mv and Mv such that fw ≤ Mw,
mv ≤ fv ≤ Mv , and fc ≤ Mc everywhere.

4 F\F contains continuous distribution functions with a singular part.
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A set is relatively compact if it is a subset of a compact set, and a continuous
application is a compact map if its image is relatively compact. We seek to apply the
Schauder fixed point theorem, which states that a compact map from a closed, convex
subset of a normed linear space onto itself has a fixed point (e.g., Brown 1993). The
closureF ofF is a closed, convex subset of the normed linear space of functions from
[0, v] to [0, 1]. It remains to verify that T ◦ R is a compact map, i.e., a continuous map
with a relatively compact image.

Lemma 1 T (A) is relatively compact.

Proof In the Appendix. ��
The continuity of the T ◦ R operator depends on the following condition:

Lemma 2 If F ∈ F is such that Pr
{
(c, w) | ∫

rdFn−1 = 0
}
is zero, then T ◦ R is

continuous at F.

Proof In the Appendix. ��
An equilibrium would necessarily exist if one could restrict the analysis to distri-

butions where Pr
[{

(c, w) | ∫
rdFn−1 = 0

}] = 0. Unfortunately, this condition is not
necessarily valid for distributions that concentrate mass in low values: because r = 0
for sufficiently low values of y (see Fig. 2), against these distributions a positive mass
of types will be indifferent between acquiring information or not and Lemma 2 cannot
be applied.

It is not hard to impose assumptions that avoid this technical problem. For example,
suppose that with some positive probability π bidders start the game already knowing
v. This assumption is equivalent to having an atom π in the distribution of c at 0, since
bidders that start knowing v behave in exactly the same way as bidders with zero cost.

This assumption is sufficient for existence. For π > 0, define Fπ = { (1 − π)F +
πFv | F ∈ F }, where Fv is the (unconditional) distribution of v. The next proposition
shows that we can restrict our attention to this set, and that T ◦ R is continuous there.

Proposition 2 Suppose Fc(0) = π > 0. Then:

1. T ◦ R(F) ⊂ Fπ , so if a fixed point exists, it will be in Fπ .
2. T ◦ R is continuous in Fπ .

Proof In the Appendix. ��
Then, we can state an existence result:

Proposition 3 If Fc(0) = π > 0, a symmetric equilibrium exists.

Proof After Proposition 2, it only remains to show that there exists a fixed point for
the T ◦ R map in F .

The set Fπ is convex and closed. By Lemma 1 and Proposition 2, the restriction of
T ◦ R on Fπ is a compact map, and by Proposition 2 its image is in Fπ . Hence, the
Schauder theorem applies, and therefore, a fixed point F∗ exists in Fπ . As F∗ is in
the image of T ◦ R, it also belongs to F . ��
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6 Comparison with the Vickrey auction

In this section, we compare the welfare properties of an auction with mid-game
information acquisition with the one-shot Vickrey auction: In particular, we want
to investigate if the alternative of acquiring information during the game leads to more
aggressive bidding and larger expected revenues for the seller.

In a Vickrey auction, bidders simultaneously post sealed bids. The winner of the
auction is the bidder who placed the highest bid, and he or she pays the price of the
secondhighest bid. Since all biddingoccurs simultaneously, all information acquisition
must necessarily happen before the auction.We continue to assume that players do not
directly observe the information acquisition of other players. Therefore, the Vickrey
auction is strategically equivalent to the dynamic auction we have been studying, with
the added restriction that bidders can only acquire information at the start of the game.

To simplify the analysis, in this sectionwe restrict attention to the casewhere all bid-
ders share the same prior distribution regarding v (that is,w is the same for all bidders).
The analysis of the individual bidder best response in Sect. 4 is unchanged in this case.5

We shall also assume in this section that the cost distribution has no atom at zero.
In the case of homogeneous ex-ante private information, existence of an equilibrium
is guaranteed with or without an atom, and ruling it out simplifies the exposition of
the revenue comparison result.

The characterization of the equilibrium is simpler in this case: because the expected
net gain from information acquisition is decreasing in the information acquisition
cost, we know that the set of types that acquire information in equilibrium is A =
[0, c∗] × {w}; the set of types that acquire information is summarized by c∗, the
highest cost type that acquires information in equilibrium.

Let α = Fc(c∗) be the ex-ante probability that a bidder acquires information in
equilibrium. To characterize the equilibrium, it is sufficient to characterize α, since it
holds a one-to-one relationship to c∗.

More precisely, once we know the equilibrium value of α the equilibrium of the
game can be described as follows: the set of types that acquire information have cost
below c∗ = F−1

c (α); they acquire information when the price reaches the value p̂(c)

that solves
∫ p̂
0 Fv(v)dv = c and they drop out at max{v, p̂}. Bidders with cost above

c∗ do not acquire information and drop out at w.
The following proposition provides an equation that characterizes α, and therefore,

the equilibrium of this game.

Proposition 4 For a ∈ [0, 1], let
Er(a; n) = −

∫ w

F−1
p̄ (a)

an−1Fv(t)
ndt +

∫ v̄

w

[1 − a (1 − Fv(t))]
n−1 (1 − Fv(t)) dt

+
∫ v̄

F−1
p̄ (a)

Fv(t)dt + w − v̄.

5 Optimal bidding will lead to a tie with positive probability at w, since at that price all bidders that do not
buy information will simultaneously drop out. The specifics of the tie breaking rule are not important here,
since all winning bidders have an expected utility of zero.
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Then the equilibrium value of α satisfies

Er(α, n) = 0.

Proof Let c∗ be the highest cost type that acquires information in equilibrium, and
let p̄ be his or her optimal information acquisition time. He or she must be indifferent
between acquiring information or not. Therefore, it must be that

0 =
∫

r(y; c∗, w)dFy(y)

=
∫ v̄

p̄

(∫ y

p̄
Fv(t)dt

)
dFy(y) −

∫ v̄

w

(y − w)dFy(y)

=
∫ v̄

p̄
Fv(t)dt Fy(v̄) − 0 −

∫ v̄

p̄
Fy(s)Fv(s)ds

−
(

(v̄ − w)Fy(v̄) − 0 −
∫ v̄

w

Fy(s)ds

)

=
∫ w

p̄

(
1 − Fy(s)

)
Fv(s)ds + w − v̄ +

∫ v̄

w

Fy(s)ds,

applying integration by parts and observing that Fy(v̄) = 1.
Since this is the last bidder to acquire information, his or her decision is contingent

on the behavior of other players during the period between p̄ and v̄, when all player
have either already acquired information and decided to drop out at price v or decided
to not acquire information and drop out at w. Therefore, the equilibrium distribution
of the highest bid is easy to characterize over this range:

Fy(y) =
{

(αFv(y))n−1 if y ∈ ( p̄, w)

(αFv(y) + (1 − α))n−1 if y ≥ w

(For y < p̄ the distribution is affected by information acquisition points, but does
not affect the calculation of c∗.) Substituting Fy(y) and p̄ = F−1

p̂ (α) in the former

expression yields the desired expression.6 ��
When a = 0, Er(a; n) > 0; in equilibrium the probability of information acquisi-

tion is always positive, since the information acquisition cost can be arbitrarily small.
If Er(a; n) is positive when a = 1, in equilibrium all bidders acquire information;
this is a possibility if the highest possible information acquisition cost c̄ is small.
Otherwise, since Er(a; n) is strictly decreasing in a, there is a unique value of α that
satisfies equation Er(α; n) = 0.

In the one-shotVickrey auction,mid-auction information acquisition is not allowed,
and this has two effects on the bid distribution: The distribution of bids below p̄

6 Since Fc and p̂(c) are one-to-one, the distribution of p̂ is also one-to-one.We can write p̄ as an increasing
function F−1

p̂ (α) of α.
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changes, but also the set of types that acquire information shifts. Since r ≥ r0, we
know that holding other player’s behavior constant, the value of information is higher
with mid-auction information acquisition, and more types acquire information. The
next proposition shows that this is still true when we compare equilibria.

Proposition 5 Let α0, α be the equilibrium fraction of types that acquire information
in the one-shot Vickrey auction and in the English auction, respectively. Then α0 ≤ α.

Proof We prove the result by providing a characterization of α0, analogous to the one
we have for α. In a one-shot auction, the highest type c∗

0 that acquires information is
determined by the following equation:

0 =
∫

r0(y)dFy

= r0(v̄) −
∫ w

0
Fy(y)r

′
0(y)dy −

∫ v̄

w

Fy(y)r
′
0(y)dy

=
∫ v̄

0
Fv(s)ds − c∗

0 − v̄ + w −
∫ w

0
Fy(y)Fv(y)dy +

∫ v̄

w

Fy(y) (1 − Fv(y)) dy

To explicitly state the effect of α0 in this equation, as before we write Fy(y) =
(α0Fv(y))n−1 for y < w and Fy(y) = (1 − α0 (1 − Fv(y)))n−1 for y > w and let

F−1
p̄ (α0) satisfy

∫ F−1
p̄ (α0)

0 Fv(s)ds = c∗
0.

We then have the following equation characterizing the equilibrium of the one-shot
auction:

Er0(α0; n) = −
∫ w

0
αn−1
0 Fv(y)

n−1Fv(y)dy +
∫ v̄

w

[1 − α0 (1 − Fv)]
n−1 (1 − Fv)dy

+
∫ v̄

F−1
p̄ (α0)

Fv(y)dy + w − v̄

= 0

Comparing the expressions we find that for any a > 0, Er(a; n) > Er0(a; n), since

the difference is
∫ Fp̄(α)

0 αn−1Fv(y)n−1Fv(y)dy > 0. Thus, α0 ≤ α. ��
We now turn to the investigation of the asymptotic properties of the equilibria when

the number of bidders goes to infinity. This is needed because our revenue comparison
result applies to auctions with many bidders.

The next proposition shows that as the number of bidders grows, each bidder
acquires less and less information, but the expected number of bidders that become
informed grows higher.

Proposition 6 As the number of bidders n grows to infinity, the equilibrium fraction of
bidder types that acquire information in both games converge to zero at a rate slower
than 1/n: as n → ∞, α, α0 → 0, but nα, nα0 → ∞.
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Proof The equilibrium fraction of bidders that acquire information in the one-shot
auction α0(n) solves the equation Er0 (α0(n); n) = 0, where

Er0(a; n) =
∫ v̄

w
(1 − a (1 − Fv(y)))n−1 (1 − Fv(y)) dy −

∫ w

0
an−1Fv(y)ndy − F−1

c (a).

Er0(a; n) is a decreasing function of a. Since Er0(0; n) = ∫ w

0 Fv(y)dy > 0, we
know that α0(n) > 0, for all n. For any a > 0, limn→∞ Er0(a; n) = −F−1

c (a) < 0.
Since α0(n) ∈ [0, 1], a compact set, the sequence {α0(n)} converges to 0, since no
subsequence can converge anywhere else.

Suppose now that, counter to the claim, for all n, nα0 ≤ M , for a finite bound M .
Then (1 − α0 (1 − Fv(y)))n−1 ≥ (1 − M/n (1 − Fv(y)))n−1 → e−M(1−Fv(y)) > 0.
Since α0 → 0, that would imply that lim inf Er0(α0) ≥ e−M(1−Fv(y)), a contradiction
since Er0(α0) = 0 by definition. We have thus proved the claim for the one-shot
auction.

For the dynamic auction, the equilibrium fraction of bidder that acquire information
α(n) is the solution to Er(α(n); n) = 0, where

Er(a; n) =
∫ v̄

w
(1 − a (1 − Fv(y)))n−1 (1 − Fv(y)) dy −

∫ w

Fp̂(a)
an−1Fv(y)ndy − F−1

c (a).

For a > 0, limn→∞ Er(a; n) = −F−1
c (a) < 0, and α(n) → 0, by the same argument

used for α0. Since α0(n) ≤ α(n), αn cannot converge faster than 1/n, either. ��
It is important to notice that the previous result is valid for the case where there is

no atom at zero in the cost distribution. If a Fc(0) = π > 0, then α0, α → π and
trivially nα0 and nα0 → ∞.

The fact that the expected number of bidders that acquire information in equilibrium
goes to infinity means that information acquisition is economically meaningful even
when the number of bidders is large. For example, it implies that the expected revenue
of both auctions converge to v̄, rather than w.

6.1 Revenue

The next result is the main proposition of this section:

Proposition 7 There exists n∗ such that if the number of bidders is above n∗, the
expected revenue in the English auction is larger than the one-shot Vickrey auction.

Proof In the equilibrium of the English auction, with probability α a bidder drops
out at max{ p̂, v} and with probability 1− α she drops out at w. Consider the random
variable X (a) where

X =
{

v prob. a
w prob. 1 − a

Since the distribution of X (α) is first-order stochastically dominated by the bid distri-
bution, the expected revenue in the English auction is larger than E

[
X (α)(2:n)

]
, the

expectation of the second order statistic of X (α).
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Fig. 4 A lower bound for
ψ(u) = G−1(u) − G−1

0 (u)

x

G0(x)

G(x)
u

ũ

u−ũ
αMv

ψ(u)

The equilibrium bid in the one-shot auction is X (α0), that is, v with probability α0
and w with probability 1 − α0. In order to prove the result, we need to show that for
sufficiently high n, E

[
X (α)(2:n)

] ≥ E
[
X (α0)(2:n)

]
.

Ganuza and Penalva (2010) have shown that, if a random variable is greater than
another in the convex order, then for sufficiently high n, the expectation of the second
order statistic of the former is greater then the latter (Theorem 5 (ii); see also Board
(2009), Proposition 2). It is easy to prove that X (α) is greater than X (α0) in the convex
order since α ≥ α0; however, our situation here is more delicate since α and α0 depend
on the number of bidders as well.

To complete the proof, instead of relying on this argument we explicitly compute
a lower bound for the difference between expected revenues in the two games. As in
the proof in Ganuza and Penalva (2010), we begin by expressing this difference as an
integral in terms of quantiles:

E
[
X (α)(2)

] − E
[
X (α0)(2)

] = �ER = n(n − 1)
∫ 1

0
ψ(u)un−2(1 − u)du

where ψ(u) = G−1(u) − G−1
0 (u) and G and G0 are the distributions of X (α) and

X (α0).
We obtain a lower bound forψ(u) as follows. For u > 1−α0 (1 − Fv(w)), let ũ be

the quantile such thatG−1(ũ) = G−1(u) (see Fig. 4). SinceG(x) = 1−α (1 − Fv(x))
and G0(x) = 1 − α0 (1 − Fv(x)) in this range, ũ = 1 − α

α0
(1 − u).

The function G−1 is differentiable between ũ and u and the derivative is greater
than 1/(αMv), where Mv is an upper bound for fv . Therefore, G−1(u) ≥ G−1(ũ) +
1

αMv
(u − ũ). Using G−1(ũ) = G−1

0 (u), we obtain a bound for ψ(u):

ψ(u) ≥ α − α0

Mvα α0
(1 − u), u > 1 − α0 (1 − Fv(w)).

An analogous calculation when u < αFv(w) leads to a similar lower bound for
ψ(u) in this range:
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ψ(u) ≥ α − α0

mvα α0
u, u < αFv(w).

Finally, we know that for u ∈ [αFv(w), 1 − α0 (1 − Fv(w))] we have ψ(u) ≥ 0,
since G−1

0 (u) = w and G−1(u) ≥ w in this range.
Therefore, we obtain a lower bound for �ER = E

[
X (α)(2)

] − E
[
X (α0)(2)

]
:

�ER = n(n − 1)
∫ 1

0
ψ(u)un−2(1 − u)du

≥ n(n − 1)
∫ αFv(w)

0

α − α0

mvα α0
uun−2(1 − u)du

+ n(n − 1)
∫ 1

1−α0(1−Fv(w))

α − α0

Mvα α0
(1 − u)un−2(1 − u)du

= α − α0

(n + 1)αα0

[
1

Mv

− P

mv

(αFv(w))n − Q

Mv

(1 − α0 (1 − Fv(w)))n−1
]

where P = (n − 1) (n + 1 − nαFv(w)) and Q = n(n + 1) − 2(n + 1)(n − 1)(1 −
α0 (1 − Fv(w)) + n(n − 1) (1 − α0 (1 − Fv(w)))2 are polynomials in n. Since the
term outside the bracket is positive, the sign of �ER is the sign of the term in
brackets. From Proposition 6, we know that as n → ∞, (αFv(w))n → 0 and
(1 − α0 (1 − Fv(w)))n−1 → 0 exponentially, and therefore, the term in brackets con-
verges to 1/Mv > 0. We conclude that for sufficiently high n, the expected revenue
of the dynamic auction is larger than in the one-shot auction. ��

It is surprising and perhaps counter-intuitive that Proposition 7 applies for auctions
with many bidders. When the auction has many bidders, both the one-shot and the
ascending auction generate revenue near the maximum of the valuation distribution;
one should expect that the difference in expected revenue should go down as the
number of bidder grows (as the numerical simulations in Sect. 7 illustrate). Why then
assuming n is large is needed for the result?

The reason is that the key effect of more information acquisition is to make the bid
distribution more spread out (technically, larger in the convex order). That, unfortu-
nately, does not always translate to a larger revenue, because the expectation of the
second order statistic does not necessarily go up when the underlying distribution
spreads out when n is small (in fact, it goes down when n = 2).7 Assuming that n is
large allows us to guarantee that, as bidding becomes more aggressive at the top of
the bid distribution, expected revenue goes up. Board (2009) and Ganuza and Penalva
(2010) provide additional discussion of this issue.

7 The simulations in Sect. 7 show that even with n = 2 the revenue of the English auction tend to be larger,
since bidders bid aggressively at the beginning of the auction as well.
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6.2 Efficiency

When comparing the dynamic and one-shot auctions, it is natural to ask also about
how social welfare changes. Welfare may differ for two different reasons: Because
the allocation of the item may change, and because the amount of resources spent in
information acquisition may change.

When an auction rule change leads bidders to acquire more information, it becomes
easier for the mechanism to select the bidder with the highest value, and therefore,
allocative efficiency improves; but at the same time, there is more spending in infor-
mation acquisition costs. These two effects tend to operate in opposite directions, and
it is difficult to obtain general statements about which effect dominates.

A definite ranking on net allocative welfare can be obtained for the case where
information acquisition costs are low enough so that all types prefer to eventually
acquire information in equilibrium, that is, α = α0 = 1.8

The following proposition establishes that in that case, the ascending auction is
always more efficient that the one-shot auction: The expected cost savings are always
larger than the loss in allocative efficiency.

Proposition 8 Suppose the cost distribution is such that all bidders prefer to acquire
information at the equilibria of the ascending auctions and the one-shot auction. Then,
the ascending auction is more efficient: the expected valuation of the winner minus the
expected sum of the information acquisition costs is larger in the ascending auction.

Proof In an equilibrium of the ascending auction where all bidders eventually decide
to acquire information, each bidder i stays in the auction until her information acqui-
sition point p̂i is reached, drops out immediately if vi < p̂i or continues until the
price reaches vi . Therefore, player i stays in the auction until the price reaches
bi = max{vi , p̂i }. If we order all values of bi , the auction ends when the player
with the second highest value for bi is reached, and the winner is the bidder with the
highest value for bi .

Let [1] = argmaxi bi be the index of the winner, and [2] be the index of the bidder
with the second highest value of bi . The value of the allocation of the ascending
auction is v[1], which is equal or less than v(1), the value of the allocation in the
one-shot auction.

The expected difference in (gross) allocative efficiency is

�AE = E
[
v[1] − v(1)

]
< 0;

on the other hand, the ascending auction allows some information acquisition cost
savings. In the one-shot auction, all bidders pay their costs ci upfront. In the ascending
auction, all bidders except the winner eventually pay the cost as well, but the winner
sometimes does not pay. More precisely, the cost saving happens when the auction
ends before the price reaches the information acquisition point of the winner, that is,
when b[2] < p̂[1]. The expected difference in information acquisition costs is

8 I am indebted to an anonymous referee for suggesting this line of investigation.
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�CS = E
[
c[1]I

{
b[2] < p̂[1]

}]
> 0.

Our objective is to show that the net efficiency gain �CS + �AE is positive.
We begin by characterizing the distribution of v[1] and p̂[1]. In an auction without

heterogeneity in w, p̂i is a function of ci and is therefore independent of v j , for all
i, j . We have

P
(
p̂[1] ∈ [s, s + ε), v[1] ∈ [t, t + ε)

) � nP
(
p̂1 ∈ [s, s + ε)

)
P (v1 ∈ [t, t + ε))

×P
(
p̂2, . . . , p̂n < max{s, t})

×P (v1, . . . , vn < max{s, t}) ;

either p̂[1] or v[1] is a maximum, but (usually) not both. Taking limits, we obtain an
expression for the joint density:

f p̂[1],v[1](s, t) = nFp̂ (max{s, t})n−1 Fv (max{s, t})n−1 f p̂(s) fv(t).

The probability of the auction ending before the winner acquires information, condi-
tional on p̂[1] and v[1], can be derived as follows:

P(b[2] < s| p̂[1] = s, v[1] = t) = P( p̂2, . . . , p̂n, v2, . . . , vn < s| p̂1 = s, v1 = t,

p̂2, . . . , p̂n, v2, . . . , vn < max{s, t})
= Fp̂(s)

n−1Fv(s)n−1

Fp̂ (max{s, t})n−1 Fv (max{s, t})n−1

We are now in a position to explicitly compute the expected cost saving. Let c[1] =
C( p̂[1]) = ∫ p̂[1]

0 Fv(t)dt ; then

�CS = E
[
C( p̂[1])I

{
b[2] < p̂[1]

}]

=
∫ p̄

0

∫ v̄

0
C(s)P

(
b[2] < s| p̂[1] = s, v[1] = t

)
f p̂[1],v[1](s, t)dt ds

=
∫ p̄

0

∫ v̄

0
C(s)

Fp̂(s)
n−1Fv(s)n−1

Fp̂ (max{s, t})n−1 Fv (max{s, t})n−1

× nFp̂ (max{s, t})n−1 Fv (max{s, t})n−1 f p̂(s) fv(t)dt ds

=
∫ p̄

0

∫ v̄

0
C(s)Fp̂(s)

n−1Fv(s)
n−1n f p̂(s) fv(t)dt ds

=
∫ p̄

0
C(s)Fp̂(s)

n−1Fv(s)
n−1n f p̂(s)ds.
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The marginal density of v[1] is

fv[1](t) =
∫ p̄

0
f p̂[1],v[1](s, t)ds

=
∫ p̄

0
nFp̂ (max{s, t})n−1 Fv (max{s, t})n−1 f p̂(s) fv(t)ds

=
∫ t

0
nFp̂(t)

n−1Fv(t)
n−1 f p̂(s) fv(t)ds

+
∫ p̄

t
nFp̂(s)

n−1Fv(s)
n−1 f p̂(s) fv(t)ds

= nFp̂(t)
n Fv(t)

n−1 fv(t)

+ fv(t)
∫ p̄

t
nFp̂(s)

n−1Fv(s)
n−1 f p̂(s)ds

in the interesting region t ∈ [0, p̄). In the region t ∈ [ p̄, v̄], fv[1](t) =
nFv(t)n−1 fv(t) = fv(1) (t).

The difference in allocative efficiency is

�AE =
∫ v̄

0
t
(
fv[1](t) − fv(1) (t)

)
dt =

∫ p̄

0
x

(
fv[1](t) − fv(1) (t)

)
dt

=
∫ p̄

0
t
{(

Fp̂(t)
n − 1

)
nFv(t)

n−1 fv(t)

+ fv(t)
∫ p̄

t
nFp̂(s)

n−1Fv(s)
n−1 f p̂(s)ds

}
dt

= 0 − 0 −
∫ p̄

0
Fv(t)

n ∂

∂t

[
t (Fp̂(t)

n − 1)
]
dt

+
∫ p̄

0
t fv(t)

∫ p̄

t
nFp̂(s)

n−1Fv(s)
n−1 f p̂(s)ds dt

=
∫ p̄

0
Fv(t)

n (
1 − Fp̂(t)

n) dt −
∫ p̄

0
t Fv(t)

nnFn−1
p̂ f p̂(t)dt

+
∫ p̄

0

∫ s

0
t fv(t)nFp̂(s)

n−1Fv(s)
n−1 f p̂(s)dt ds

using integration by parts from the second to the third line, and changing the order of
integration in the last line.

Also applying integration by parts, C(s) − sF(s) = ∫ s
0 Fv(t)dt − sF(s) =

− ∫ s
0 t fv(t)dt . We can conclude that

�EE = �CS + �AE

=
∫ p̄

0
(C(s) − sFv(s))Fv(s)

n−1nFn−1
p̂ f p̂(s)ds
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+
∫ p̄

0
Fv(t)

n (
1 − Fp̂(t)

n) dt

+
∫ p̄

0

∫ s

0
t fv(t)nFp̂(s)

n−1Fv(s)
n−1 f p̂(s)dt ds

= −
∫ p̄

0

(∫ s

0
t fv(t)dt

)
Fv(s)

n−1nFn−1
p̂ f p̂(s)ds

+
∫ p̄

0
Fv(t)

n−1 (
1 − Fp̂(t)

n) dt

+
∫ p̄

0

∫ s

0
t fv(t)nFp̂(s)

n−1Fv(s)
n−1 f p̂(s)dt ds

=
∫ p̄

0
Fv(t)

n (
1 − Fp̂(t)

n) dt > 0

��
I am indebted to an anonymous referee for pointing out that Proposition 8 is a

consequence of the expression for the optimal information acquisition point presented
in Proposition 1. The argument is as follows: Efficiency differs only in situations
where one of the bidders does not acquire information—if all bidders acquire infor-
mation, the final allocation and the information acquisition costs are the same in both
auctions.

Consider then a situation where the winner i does not acquire information in the
English auction. The cost saving is ci . Let j be the index with the highest value besides
the winner. The loss in efficiency is v j −vi if this expression is positive or 0 otherwise.
Since the winner does not know her own value, vi could be less than v j or even p̂i ;
but we know that v j ≤ p̂i , and therefore, from Proposition 1,

∫ v j

0
(v j − vi )dFv(vi ) ≤

∫ p̂i

0
( p̂i − vi )dFv(vi ) = ci .

Therefore, the expected efficiency loss (once one takes the expectation conditional on
the identity of the winner) is less than the expected saving in information acquisition
cost.

7 Numerical simulations

This section presents explicit computations of expected revenue and social surplus
for some choices of distributions for c, w, and v. This exercise establishes some
quantitative meaning to the comparative statics finding that the dynamic auction is
superior to the one-shot procedure in terms of expected revenue and efficiency.
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Table 1 Expected revenue for the seller

v|w ∼: n If info was free One-shot Dynamic % gain

(true) (simul.)

U [0, 2w] 2 0.2593 0.2599 0.2702 0.2870 6.20

3 0.4410 0.4420 0.4382 0.4524 3.25

4 0.5750 0.5762 0.5619 0.5703 1.50

U [w,w + 1] 2 0.7667 0.7655 0.7880 0.8006 1.60

3 1 0.9999 0.9852 0.9953 1.03

4 1.1274 1.1278 1.0930 1.1039 1.00

U [w, 1] 2 0.6296 0.6283 0.6452 0.6535 1.28

3 0.7795 0.7790 0.7638 0.7650 0.16

4 0.8465 0.8461 0.8131 0.8135 0.05

In the simulations we present, we assume w ∼ U [0, 1] and c ∼ U [0, 0.05]. We
present results for three alternatives for the distribution of v|w, for n between 2 and
4.9

The three alternatives for the distribution of v|w were U [0, 2w], U [w,w + 1] and
U [w, 1]. The reason for these choices was to look at distributions where the variance
increases, stays constant, and decreases withw. This is of interest because according to
the discussion of Sect. 4.2, the impact ofw through variance is a potentially important
determinant of information acquisition.

Table 1 presents the computed expected revenue of the seller under each circum-
stance. In order to provide a benchmark, the first column shows what would be the
revenue if information was costless to all bidders (i.e., if every bidder would drop
out at v).10 The second and third columns show the expected revenue in the one-shot
and the dynamic auctions. Finally, the last column shows the percentage difference of
revenue between the dynamic and the one-shot auction.11

9 The models have also been simulated for all values for n up to 10. Results are the same, although profit
differentials across auction rules become smaller as n grows high.
10 A counterintuitive finding is that sometimes the dynamic auction is more profitable than if information
was for free. This can only occur however for n = 2. The logic is the following: suppose c is extremely high,
so that nobody effectively buys information. In this case the revenue is the expected value of the second order
statistic of a sample of E[v|wi ], rather than of vi . With many bidders, the latter is larger than the former,
but not when the number of bidders is 2: in this case, E[min{E[v|w1], E[v|w2]}] > E[min{v1, v2}]. (I
thank Paul Milgrom for pointing me that).
11 The equilibrium was computed by searching for a fixed point in the set A of (w, c)-types by direct
iteration of the R ◦ T operator. A is represented numerically as a subsample of a quasi-Monte Carlo
sequence.
In order to provide some evidence of the accuracy of the simulations, 8 sequence lenghts from 8000 to
20000 points have been used. In all cases, the different simulations lead to results within an interval of
width 0.0008 or less. Based on this crude accuracy analysis, the numbers reported in the following tables
are accurate up to the third digit. (Percentage gain figures are less accurate, with results disagreeing up to
0.19. But in all cases that inaccuracy is not enough to revert the reported signs).
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Table 2 Ex-ante expected payoff to each bidder

v|w ∼: n If info was free One-shot Dynamic % gain

(true) (simul.)

U [0, 2w] 2 0.2407 0.2413 0.2187 0.2140 −2.18

3 0.1500 0.1502 0.1345 0.1309 −2.65

4 0.1052 0.1055 0.0931 0.0914 −1.82

U [w,w + 1] 2 0.2333 0.2343 0.2018 0.1994 −1.17

3 0.1167 0.1170 0.1019 0.1008 −1.07

4 0.0742 0.0744 0.0655 0.0642 −2.00

U [w, 1] 2 0.1204 0.1208 0.0998 0.0961 −3.74

3 0.0454 0.0455 0.0399 0.0396 −0.73

4 0.0231 0.0231 0.0232 0.0231 −0.34

Table 3 Expected efficiency

v|w ∼: n If info was free One-shot Dynamic % gain

(true) (simul.)

U [0, 2w] 2 0.7407 0.7426 0.7077 0.7149 1.02

3 0.8906 0.8827 0.8417 0.8453 0.43

4 0.9958 0.9981 0.9344 0.9361 0.18

U [w,w + 1] 2 1.2333 1.2340 1.1916 1.1994 0.66

3 1.35 1.3509 1.2910 1.2979 0.53

4 1.4242 1.4253 1.3549 1.3605 0.41

U [w, 1] 2 0.8704 0.8699 0.8448 0.8456 0.10

3 0.9158 0.9154 0.8835 0.8839 0.04

4 0.9389 0.9384 0.9059 0.9060 0.01

In percentage terms, the increased revenue of a dynamic procedure ranges from 0
to 6%—arguably, an economically significant figure. In all cases, the gain is positive.

It is interesting to note that as n grows high, the gain becomes small, both in abso-
lute and percentage terms. This observation, coupled with the asymptotic comparison
result, suggests that the expected revenue is generally larger with the dynamic proce-
dure.

Table 2 shows the ex-ante expected payoff of an individual bidder under each rule
for all settings, i.e., the expected profit average over all (c, w)-types. The expected
payoff under the dynamic procedure is lower than in the one-shot auction. So dynamic
auctions seem to benefit the seller partially at the expense of the bidders.

Table 3 presents expected efficiency (net of information acquisition costs) under
each auction. Once again the dynamic auction rule is preferable under this criterion,
although the gains in efficiency are smaller than those in seller revenue.

Figures 5, 6, and 7 exhibit how the sets of types that acquire information (top panels)
and the distributions of the individual drop-out points (bottom panels) are under each
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Fig. 5 Information acquisition sets and drop-out point distributions when v|w ∼ U [0, 2w]. Top panel:
shape of the equilibrium R0 (squares) and R (dots) sets. Bottom panel: distribution function of the bidder’s
drop-out point at the dynamic (solid line) and one-shot (dotted line) auctions. All graphs assume n = 2,
w ∼ U [0, 1], and c ∼ U [0, 0.05]

alternative. For convenience, only equilibria with n = 2 are depicted. Equilibria with
more bidders have smaller information acquisition regions, but the shape of these
regions and of the drop-out distributions are qualitatively similar.

As the top panels show, the information acquisition regions are indeed monotone
in c, but not necessarily so in w. A more optimistic signal about the good’s valuation
can make the bidder more (as in the first specification) or less (as in the second one)
eager to acquire information, depending on how this news affect the dispersion of her
valuation vis-à-vis the auction price.

The bottom panels show the distribution function of a bidder’s drop-out price, in
the dynamic (solid line) and the one-shot (dotted line) auctions. In all cases, bidding is
more aggressive in the dynamic game, and almost in a first-order stochastic dominance
sense.

8 Concluding remarks

This paper has investigated a model of an auction where bidders have the freedom
to improve the information they have about their valuations at any point in time.
The model accommodates heterogeneity both in the prior information each bidder
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Fig. 6 Information acquisition sets and drop-out point distributions when v|w ∼ U [w,w + 1]. Top panel:
shape of the equilibrium R0 (squares) and R (dots) sets. Bottom panel: distribution function of the bidder’s
drop-out point at the dynamic (solid line) and one-shot (dotted line) auctions. All graphs assume n = 2,
w ∼ U [0, 1], and c ∼ U [0, 0.05]

possesses and in the information acquisition costs. Because these costs can be zero
or very high, the model allows for treating the cases of bidders who cannot acquire
information or already have done so in the same framework.

In spite of this generality, we found a remarkably simple formula to determine the
optimal moment to acquire information. Furthermore, the formula determines a time
that is independent of the strategies followed by the other players.

Another virtue of the model is that it accommodates the analysis of a one-shot
version of the auction. We have compared the expected revenue and the expected
efficiency of the equilibrium of the English auction with the one-shot auction.We have
proved that the expected revenue of the seller is larger in the dynamic auction when the
number of bidders is sufficiently large. We also show that the expected efficiency of
the ascending auction is larger, in the case where all types acquire information. These
results provide an additional explanations for the prevalence of the English auction in
practice, even under independent private values.
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Fig. 7 Information acquisition sets and drop-out point distributions when v|w ∼ U [w, 1]. Top panel:
shape of the equilibrium R0 (squares) and R (dots) sets. Bottom panel: distribution function of the bidder’s
drop-out point at the dynamic (solid line) and one-shot (dotted line) auctions. All graphs assume n = 2,
w ∼ U [0, 1], and c ∼ U [0, 0.05]
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9 Appendix: Proofs

Proof of Lemma 1 According to the Ascoli–Arzelà theorem, if X is any compact met-
ric space, and S ⊂ C(X) is equicontinuous and bounded, then S is relatively compact.

Take X = [0, v̄] and S = T (A) in the Ascoli–Arzelà theorem statement. Because
all distributions are bounded in the sup norm, it only remains to verify equicontinuity.

Take ε > 0. Let δ < ε/ (Mc + Mv + Mw). Let F be a distribution in T (A).
So, for any x ∈ [0, v̄], one can write 0 ≤ F(x +δ)− F(x) = Pr[y1 ∈ [x, x +δ]] ≤

Pr [v ∈ [x, x + δ]] + Pr
[
p̂ ∈ [x, x + δ]] + Pr [w ∈ [x, x + δ]].

Next, we observe that, using the Jacobian rule and the definition of p̂, we have that
f p̂(s) = ∫

Fv|w(s) fc
(∫ s

0 Fv|w(t)dt
)
fw(w)dw. Inasmuch as fc ≤ Mc and Fv|w ≤ 1,

we obtain f p̂ ≤ Mc. Furthermore, fw ≤ Mw. It then follows that, for sufficiently
small δ,
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0 ≤ F(x + δ) − F(x) ≤ (Mc + Mv + Mw) δ < ε.

For the case where x = 0, notice that v ≥ p̂(0, w) = 0. Therefore, the atom in the p̂
distribution is irrelevant, since we can write 0 ≤ F(δ)− F(0) ≤ Pr [v ∈ [x, x + δ]]+
Pr [w ∈ [x, x + δ]] < (Mv + Mw)δ < ε. Consequently, T (A) is equicontinuous. ��
Proof of Lemma 2 Take Ft → F uniformly. Then

∫
rdFn−1

t → ∫
rdFn−1, by the

Helly Second theorem. We can write

T ◦ R(F)(x)

=
∫

I{w ≤ x} + I

{∫
rdFn−1 ≥ 0

} (
Pr

[
max{ p̂, v} ≤ x |c, w] − I

{
p̌ ≤ x

})
dF(c,w),

where I{} denotes the indicator function. Applying Cauchy–Schwarz and the fact that
indicator functions are bounded by 1, we obtain that

(T ◦ R(Fk)(x) − T ◦ R(F)(x))2

=
(∫ (

I

{∫
rdFn−1

k ≥ 0

}
− I

{∫
rdFn−1 ≥ 0

})

× (
Pr

[
max{ p̂, v} ≤ x |c, w] − I{w ≤ x}) dF(c,w)

)2

≤
∫ (

I

{∫
rdFn−1

k ≥ 0

}
− I

{∫
rdFn−1 ≥ 0

})2

dF(c,w)

×
∫ (

Pr
[
max{ p̂, v} ≤ x |c, w] − I{w ≤ x})2 dF(c,w)

≤
∫ (

I

{∫
rdFn−1

k ≥ 0

}
− I

{∫
rdFn−1 ≥ 0

})2

.

For any point outside { (c, w) | ∫
rdFn−1 = 0 }, I

{∫
rdFn−1

k ≥ 0
}
converges

pointwise to I
{∫

rdFn−1
k ≥ 0

}
. Therefore, the limit of the integral of the last expres-

sion is of a function that is zero almost everywhere. In addition, because the last
expression does not depend on x , convergence is uniform and continuity is estab-
lished. ��
Proof of Proposition 2 For the first statement, notice that r(y, 0, w) ≥ 0. Thus,
because we are resolving any indifference in favor of acquiring information, for any
A ⊂ R(F), {c = 0} ⊂ A (meaning that all types with c = 0 are in A). Additionally,
p̂(0, w) = 0. As a result, for such A, separating the types where c = 0, we obtain

T (A)(x) =
∫
Ac∩{c>0}

I{w ≤ x}dFc,w +
∫
A∩{c>0}

Pr[max{ p̂, v} ≤ x |c, w]dFc,w

+
∫

{c=0}
Pr

[
max p̂, v ≤ x |c, w]

dFc,w
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= (1 − π)

[∫
Ac∩{c>0}

I{w ≤ x}dFc|c>0,w

+
∫
A∩{c>0}

Pr
[
max{ p̂, v} ≤ x |c, w]

dFc|c>0,w

]

+π

∫
{c=0}

Pr[v ≤ x |w]dFc,w

= (1 − π)F(x) + π

∫
Fv|w(x)dFw

= (1 − π)F(x) + πFv(x),

by the law of iterated expectations. Here, F is the distribution defined as the term
between square brackets.

For the second statement, by Lemma 2, it is enough to verify that the measure of
{∫ rdFn−1 = 0} is zero. From the Envelope theorem, ∂

∂c

∫
rdFn−1 = 1 − Fn−1( p̂).

For all distributions in Fπ , and any x < v̄, F(x) < 1−πFv(x) < 1. Thus,
∫
rdFn−1

is strictly increasing in c everywhere, and for each w, there is at most one c > 0
such that (c, w) ∈ {∫

rdFn−1 = 0
}
. Furthermore, this c can never be zero, because

if F is in Fπ , there is a positive probability of yi that occurs in any interval in the
support [0, v̄]. We conclude that the integral

∫
r(t, 0, w)dFn−1 is positive for these

types. ��
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