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a b s t r a c t

We show that high-dimensional econometric models, such as shrinkage and complete
subset regression, perform very well in the real-time forecasting of inflation in data-rich
environments.We use Brazilian inflation as an application. It is ideal as an example because
it exhibits a high short-term volatility, and several agents devote extensive resources to
forecasting its short-termbehavior. Thus, precise forecastsmadeby specialists are available
both as a benchmark and as an important candidate regressor for the forecasting models.
Furthermore, we combine forecasts based on model confidence sets and show that model
combination can achieve superior predictive performances.
© 2017 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
ie
1. Introduction

Forecasting inflation in real-time is difficult and has
been studied extensively in the literature. The forecasting
of inflation has been crucial for both academics and
practitioners at least since Fisher (1930) introduced
the concept of real interest rates. We estimate models
for forecasting inflation in real-time and in data-rich
environments. By real-time we mean that the forecasts
are computed based solely on the information that was
available to the econometrician at the time when the
forecasts were made. A data-rich environment is one in
which the number of potential predictors is large, possibly
larger than the sample size. We consider the case of
an emerging economy with inflation targeting, where

∗ Corresponding author.
E-mail addresses: mgarcia@econ.puc-rio.br (M.G.P. Garcia),

mcm@econ.puc-rio.br (M.C. Medeiros), gabrielrvsc@yahoo.com.br
(G.F.R. Vasconcelos).

http://dx.doi.org/10.1016/j.ijforecast.2017.02.002
0169-2070/© 2017 International Institute of Forecasters. Published by Elsev
precise inflation forecasts are of the utmost importance
for monetary policy and investment strategies (Iversen,
Laséen, Lundvall, & Söderström, 2016).

Emerging markets usually exhibit higher and more
volatile inflation, which tends to shorten the investment
horizon. In Brazil, a country that only conquered hyper-
inflation in 1994, most fixed-income assets are still very
short. Therefore, the forecasting of short-term inflation is
more important than in advanced economies, and finan-
cial institutions tend to devote more resources to the en-
deavor. Short-term inflation forecasting in Brazil is a diffi-
cult exercise, with lots of data, but it is also one in which
extremely good expert forecasts exist and against which
different econometric techniques may be compared.

The literature on inflation forecasting is vast, and there
is substantial evidence that models based on the Philips
curve do not provide good inflation forecasts. Although
Stock and Watson (1999) showed that many production-
related variables are useful predictors of US inflation,
Atkeson and Ohanian (2001) showed that the Philips curve
fails to beat even simple naïve models in many cases.
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These results inspired researchers to investigate a range
of different models and variables in order to improve
inflation forecasts, with the variables used including
financial variables (Forni, Hallin, Lippi, & Reichlin, 2003),
commodity prices (Chen, Turnovsky, & Zivot, 2014) and
expectation variables (Groen, Paap, & Ravazzolo, 2013).

Real-time inflation forecasting has been considered by
several authors in recent years. Iversen et al. (2016) evalu-
ated the forecasts made in real time to support monetary
policy decisions at the Swedish Central Bank from 2007 to
2013. The authors compared dynamic stochastic general
equilibrium (DSGE) models with Bayesian vector autore-
gressive (BVAR) models. Monteforte and Moretti (2013)
proposed a mixed-frequency model for the daily forecast-
ing of euro area inflation in real-time. The authors showed
that the predictive performance of the mixed-frequency
model is superior to those of forecasts based only on eco-
nomic derivatives. Clements and Galvão (2013) considered
real-time inflation forecasts from AR models and with re-
vised data. Finally, Groen et al. (2013) evaluated the use of
Bayesian model averaging (BMA) for forecasting inflation
in real-time. However, none of these authors considered
the use of large-dimensional machine learning models.

There is also a growing body of literature on infla-
tion forecasting in Brazil. Arruda, Ferreira, and Castelar
(2011) used several linear and nonlinear models and the
Phillips curve to forecast inflation. The authors showed
that some nonlinear models and the simple autoregres-
sive (AR) model produced smaller forecast errors than the
Phillips curve. Figueiredo and Marques (2009) used long-
memory heteroskedastic models to show that Brazilian in-
flation has long-range dependence on both the mean and
the variance. However, they did not exclude the impor-
tance of the short-term AR component. The relevance of
past inflation was also pointed out by Kohlscheen (2012).
More recently, Medeiros, Vasconcelos, and Freitas (2016)
considered different high-dimensional models for fore-
casting Brazilian inflation. The authors showed that tech-
niques based on the least absolute shrinkage and selection
operator (LASSO) have the smallest forecasting errors for
short horizon forecasts. For longer horizons, the AR bench-
mark is the best model for point forecasting, even though
there are no significant differences between them. Factor
models also produce good long-horizon forecasts in a few
cases. However, none of these papers have considered real-
time forecasts.

This paper makes use of the most important advances
in econometric modeling to estimate real-time forecasts
of the Brazilian CPI inflation (IPCA). This is not only the
most widely used inflation measure in Brazil, but also the
index that is used to set the inflation target for central bank
policy.

As far as we know, this is the first paper to use
high-dimensional and machine learning models to fore-
cast inflation in real-time for an emerging economy, using
expert survey forecasts as potential candidate predictors.
The models used here may be classified as either shrink-
agemodels, such as the LASSO (Tibshirani, 1996), the adap-
tive LASSO (Zou, 2006), or the post-ordinary least squares
(Belloni & Chernozhukov, 2013), or models that combine
information, such as target factors (Bai & Ng, 2008) and
complete subset regression (Elliott, Gargano, & Timmer-
mann, 2013, 2015). We also included AR models and ran-
dom walk forecasts as benchmarks and the random forest
model (Breiman, 2011) as a nonlinear alternative. As a ro-
bustness check, we compare the high-dimensional mod-
els with the unobserved component stochastic volatility
(UC-SV) model advocated by Stock andWatson (2007) and
aBayesian vector autoregressionwith priors fromBańbura,
Giannone, and Reichlin (2010). Furthermore, we use the
Brazilian Central Bank’s (BCB) compilation of forecasts by
specialists to gauge the quality of our forecasts, and also
include them as potential variables in our models. The
specialists forecasts are obtained from the FOCUS report,
which contains expectations for several variables regard-
ing the Brazilian economy (Marques, 2013). The FOCUS is
an online environment that collects projections about key
Brazilian macroeconomic variables frommore than a hun-
dred professional forecasters. The report was created to
support the inflation target regime, and is published by the
Brazilian Central Bank weekly on Mondays. The informa-
tion is collected from several agents in the market, such
as banks, fund managers, and consulting companies. We
use themedian,mean and standard deviation of thesemar-
ket expectations in our models. In addition, the FOCUS re-
port also publishes the Top5 expectations, which includes
only the five agents who were the most accurate on previ-
ous periods. The expectations are collected daily, butmany
forecasters only update their forecasts on Fridays, since the
survey is published on Mondays. In addition to inflation,
the report also publishes expectations on GDP, industrial
production, exchange rates and other variables. All of this
information is used by the Brazilian Central Bank to gauge
its monetary policy. Finally, following Samuels and Sekkel
(2017), we use a forecast combination strategy based on
themodel confidence sets proposed byHansen, Lunde, and
Nason (2011). The idea is to compute the average of the
forecasts from the models included in a given confidence
set. We show that this delivers forecasts that are superior
to those of all of the individual models, as well as to the
simple average of all models.

We estimated forecasts for forecast horizons of be-
tween five days before the CPI index is published to 11
months plus five days (a total of 12 forecasts). For the five-
day-ahead forecast, the LASSO and FOCUS (expert) fore-
casts are virtually the same. For the second horizon, the
adaptive LASSO is superior than any other model. For the
remaining horizons, the complete subset regression dom-
inates all other alternatives. The results are the same if we
either use the root mean squared error or the mean abso-
lute error. In terms of accumulated inflation, the complete
subset regression is the model which delivers the most
precise forecasts. However, most of the forecasts from dif-
ferent models are not statistically different according the
model confidence set. In light of this finding, we construct
the final forecast as the average of the models included in
the confidence set. This approach delivers the best fore-
casts among all the competing alternatives. Finally, we also
compute density forecasts for each model based on boot-
strap re-sampling. According to the log-score statistic, the
CSR has superior performance for most of the forecasting
horizons except the first two where LASSO based methods
are ranked as the best models.
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Following this introduction, this paper has four sec-
tions. Section 2 describes the models and empirical proce-
dures that were used, while Section 3 explains the dataset.
The main results are presented and discussed in Section 4.
Finally, the main conclusions are summarized in Section 5.
A more detailed description of the dataset is included in
the Appendix.

2. Empirical methods

This section describes the methods used in this paper
for forecasting future inflation. We consider a direct
forecast approach where the inflation h periods ahead,
πt+h, is modeled as a function of a set of predictors
measured at time t , such as:

πt+h = T (xt) + ut+h, (1)

where T (xt) is a possibly nonlinear mapping of a set
of q predictors, ut+h is the forecasting error, and xt =

(x1t , . . . , xqt)′ ∈ X ⊆ Rq may include weakly exogenous
predictors, lagged values of inflation and a number
of factors computed from a large number of potential
covariates. Importantly, our focus on real-time forecasts
means that xt contains only variables that are observed and
available to the econometrician at time t . Many variables
are published months after their period of reference, and
these variables are not included in the dataset at time
t . Note further that our consideration of direct forecast
models for each horizon avoids the necessity of estimating
a model for the evolution of xt .

For most of the methods considered in this paper, the
mapping T (·) is linear, such that:

πt+h = β′xt + ut+h, (2)

where β ∈ Rq is a vector of unknown parameters.

2.1. Factor models with targeted predictors

Factor models using principal components are a very
popular approach for avoiding the curse of dimensionality
when the number of predictions may be large. The idea
is to extract common components from all variables, thus
reducing the model dimension.

Consider Eq. (2).When the number of candidate predic-
tors q is large, including potentially larger than the sample
size T , ordinary least squares (OLS) is infeasible or has a
very large variance. One way to circumvent this drawback
is to use factors as predictors instead of xt . The factors can
be observed as per Fama and French (1993, 1996) or unob-
served as per Bernanke, Boivin, and Eliasz (2005) and Han
(2015), but our focus is on unobserved factors. Consider the
following forecasting model:

πt+h =

p
i=1

γ ′

ift−i + ut+h, (3)

where ft is a vector of k common factors extracted from xt
and k is much smaller than q. Note that ft is not observed
andmust be estimated by principal components. For a dis-
cussion of the assumptions and theory behind factor mod-
els andwhenwe can treat factors as observed variables, see
Bai and Ng (2002, 2006, 2008).
Bai and Ng (2008) argued that the forecasting perfor-
mance of factormodels could be improved by targeting the
predictors. The idea is that if many variables in xt are irrel-
evant predictors of πt+h, a factor analysis using all of the
variables may result in noisy factors with poor forecasting
abilities. The target factors are regular factor models with
a pre-testing procedure that selects only relevant variables
to be included in the factor analysis. We list the steps of
this procedure below, and point out where our methodol-
ogy differs from that proposed by Bai and Ng (2008). Let
xi,t , i = 1, . . . , q, be the candidate variables andwt a set of
fixed regressors that will be used as controls in the pre-
testing. We follow Bai and Ng (2008) and use wt as AR
terms of πt . The procedure is as follows.

1. For i = 1, . . . , q, regress πt+h on wt and xi,t and com-
pute the t-statistics for the coefficient corresponding to
xi,t . We include four lags of each candidate variable in
the pre-testing. Bai andNg (2008) use only the variables
in t and select the lags later.

2. Sort all t-statistics calculated in Step 1 in descending
order.

3. Choose a significance level α, and select all of the
variables that are significant using the computed t-
statistics.

4. Let xt(α) be the variables selected in Steps 1–3. Esti-
mate the factors Ft from xt(α) by principal components.

5. Regress πt+h on wt and ft ⊂ Ft . The number of factors
in ft is selected using the BIC. Bai and Ng (2008) also
selected the number of lagged factors using the BIC.
However, we did not use lagged factors because we use
lagged variables as regressors in the pre-testing.

The same procedure was used by Medeiros and
Vasconcelos (2016), who showed that target factors
reduce the forecasting errors slightly in most cases when
compared to factor models without targeting.

2.2. LASSO and adaptive-LASSO

When estimating parameters in large dimensions,
shrinkage methods form a successful alternative to fac-
tor models. The idea is to shrink the parameters that
correspond to irrelevant variables to zero. Under some
conditions, it is possible to handle more variables than
observations. Among shrinkage methods, the least abso-
lute shrinkage and selection operator (LASSO), introduced
by Tibshirani (1996), and the adaptive LASSO (adaLASSO)
of Zou (2006) have received particular attention. It has
been shown that the LASSO can handle more variables
than observations, and the correct subset of relevant vari-
ables can be selected (Efron, Hastie, Johnstone, & Tibshi-
rani, 2004; Meinshausen & Yu, 2009; Zhao & Yu, 2006).
As was noted by Zhao and Yu (2006) and Zou (2006), the
LASSO requires a rather strong condition denoted the ‘‘ir-
representable condition’’ in order to attainmodel selection
consistency, and does not have the oracle property. Zou
(2006) proposes the adaLASSO in order to escape these de-
ficiencies. The adaLASSO is a two-stepmethodology which
uses a first-step estimator, usually the LASSO, toweight the
relative importance of the regressors.
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The LASSO estimator is defined as

β̂ = argmin
β̂


T

t=1


πt+h − β′xt

2
+ λ

q
j=1

|βj|


, (4)

where λ controls the amount of shrinkage and is deter-
mined by data-driven techniques such as cross-validation
or the use of information criteria.

The adaLASSO is defined as:

β̂ = argmin
β̂


T

t=1


πt+h − β′xt

2
+ λ

q
j=1

wj|βj|


, (5)

where wj = |β∗

j |
−τ represents different weights on

the penalization of each variable, β∗

j is the parameter
estimated in the first step, and τ > 0 determines how
much wewant to emphasize the difference in the weights.
Medeiros and Mendes (2016) showed that the conditions
that must be satisfied on the adaLASSO are very general.
The model works even when the number of variables
increases faster than the number of observations andwhen
the errors are non-Gaussian and heteroskedastic.

The most common value used for τ is one. However,
Medeiros and Vasconcelos (2016) showed that selecting τ
using the BIC reduces the forecasting errors. They refer to
thismodel as Flex-adaLASSO. The value of τ is not bounded
on both sides like λ. If τ → 0, we have the traditional
LASSO without weights, but we do not have an upper
bound. Note that if τ → ∞, then wi → 0 and we have
no penalty. Thus, selecting τ using an information criterion
requires one to establish an upper bound, otherwise the
problem becomes computationally infeasible. If we use the
LASSO as the first model, someweights will be infinite. We
deal with this issue computationally by summing T−

1
2 to

all coefficients from the first model.
Belloni and Chernozhukov (2013) showed that estimat-

ing a linear regression using the variables selected by the
LASSO (post-OLS) works at least as well as just using the
LASSO itself in terms of the rate of convergence to the or-
acle, and it also has a smaller bias. We estimated the post-
OLS regression for the Flex-adaLASSO in order to check
whether it reduced the forecasting error.

2.3. Random forest

The random forest (RF) methodology was initially pro-
posed by Breiman (2011) as away to reduce the variance of
regression trees, and is based on the bootstrap aggregation
(bagging) of randomly constructed regression trees.

A regression tree is a nonparametric model based on
the recursive binary partitioning of the covariate space X,
where the function T (·) is a sum of local models (usually
just a constant), each of which is determined in K ∈ N
different regions (partitions) of X. The model is usually
displayed in a graph which has the format of a binary
decision tree with N ∈ N parent (or split) nodes and K ∈ N
terminal nodes (also called leaves), and which grows from
the root node to the terminal nodes. Usually, the partitions
are defined by a set of hyperplanes, each of which is
orthogonal to the axis of a given predictor variable, called
the split variable. Hence, conditional on a knowledge of
the subregions, the relationship between πt+h and xt in
Eq. (1) is approximated by a piecewise constant model,
where each leaf (or terminal node) represents a distinct
regime.

We represent a complex regression-tree model mathe-
matically by introducing the following notation. The root
node is at position 0 and a parent node at position j gen-
erates left- and right-child nodes at positions 2j + 1 and
2j + 2, respectively. Every parent node has an associated
split variable xsjt ∈ xt , where sj ∈ S = {1, 2, . . . , q}. Fur-
thermore, if we let J and T be the sets of indexes of the
parent and terminal nodes, respectively, a tree architecture
can be determined fully from J and T.

The forecasting model based on regression trees can be
represented mathematically as

πt+h = HJT(xt;ψ) + ut+h =


i∈T

βiBJi (xt; θi) + ut+h, (6)

where

BJi (xt; θi) =


j∈J

I(xsj,t; cj)
ni,j(1+ni,j)

2

×

1 − I(xsj,t; cj)

(1−ni,j)(1+ni,j) , (7)

I(xsj,t; cj) =


1 if xsj,t ≤ cj
0 otherwise, (8)

ni,j =


−1 if the path to leaf i does not include

the parent node j;
0 if the path to leaf i includes the

right-child node of the parent node j;
1 if the path to leaf i includes the

left-child node of the parent node j.

(9)

Let Ji be the subset of J that contains the indexes of the
parent nodes that form the path to leaf i; then, θi is the
vector that contains all of the parameters ck such that k ∈

Ji, i ∈ T. Note that


j∈J BJi

xt; θj


= 1, ∀ xt ∈ Rq+1.

A random forest is a collection of regression trees, each
of which is specified in a bootstrapped sub-sample of the
original data. Suppose that there are B bootstrapped sub-
samples, and denote the estimated regression tree for each
of the sub-samples by HJbTb(·;ψb). The final prediction is
defined as:

πt+h =
1
B

B
b=1

HJbTb(xt;ψb). (10)

A regression tree is estimated for each of the boot-
strapped sub-samples by repeating the following steps
recursively for each terminal node of the tree until themin-
imum number of observations at each node is achieved.
1. Randomly select m out of q covariates as possible split

variables.
2. Pick the best variable/split point among the m candi-

dates.
3. Split the node into two child nodes.

Random forests can deal with very large numbers of
explanatory variables, and the predicted model is highly
nonlinear. It is important to notice that bootstrap samples
are calculated using block bootstraps, since we are dealing
with time series.
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Fig. 1. Brazilian consumer prices index and focus Top5 forecasts.
2.4. Complete subset regression with targeted predictors

The complete subset regression (CSR) was developed
by Elliott et al. (2013, 2015). The idea is that selecting
the optimal subset of xt for predicting πt+h by testing
all possible combinations of regressors is at least very
demanding computationally, and often actually unfeasible.
If we have q candidate variables, the CSR selects a number
n ≤ q and computes all combinations of regressions using
only n variables. The forecast of the model will be the
average of all regressions in the subset.

The CSR works well for small numbers of candidate
variables. However, the number of regressions to be
estimated increases very quickly for large sets; for
example, for q = 25 and n = 4,we need to estimate 12,650
regressions. As the number of candidate variables here is
much larger, we adopt a pre-testing procedure which is
similar to that used with the target factors. We start by
fitting a linear regression of πt+h to each of the candidate
variables (including lags) and saving the t-statistic of each
variable.1 The t-statistics are ranked in absolute value
and we selected the q̃ variables that were most relevant
according to the ranking. The CSR forecast is calculated on
these variables. We used q̃ = 25 and n = 4.

3. The data

Inflation is measured using the Brazilian consumer
price index (IPCA), which is the official inflation index
in Brazil. Furthermore, a sizeable number of inflation-
linked bonds use the IPCA as their reference. The dataset

1 We did not use a fixed set of controls,wt , in the pre-testing as we did
on the target factors.
is obtained from Bloomberg and from the Central Bank
of Brazil, and covers the period from January 2003 to
December 2015, a total of 156 observations. We have
59 macroeconomic variables and 34 variables linked
to specialist forecasts. The number of macroeconomic
variables is smaller than that of Medeiros et al. (2016)
because we are using only variables that were available
in the period when the forecast was computed. The
dataset also includes expert forecasts from the FOCUS
survey produced by the Central Bank of Brazil. Our
expectation variables include the median of the h-period-
ahead specialist forecasts; the median of the top five
(Top5) experts, i.e., the five experts who produced the
best forecasts in the previous period; and, finally, the
mean and the standard deviation of the Top5. The
macroeconomic variables cover several inflation and
industry indexes, unemployment and other variables
related to labour, energy consumption, exchange rates,
stock markets, government accounts, expenditure and
debt, taxes, monetary variables and exchange of goods and
services. Both the inflation series and the Top5median are
presented in Fig. 1, which shows that the Top5 delivers the
smallest RMSE for h = 1 (five days ahead), but rapidly loses
performance as h grows.

4. Main results

4.1. Forecasting errors

We estimate all models described in Section 2 for h =

1, . . . , 12. Recall that h = 1 is five days before the IPCA in-
flation is published, h = 2 is one month and five days, and
h = 12 is 11 months and five days. This section discusses
the results and compares the forecasting errors of all mod-
els. We also include in the comparison forecasts estimated
using autoregressive models with lags selected by the BIC
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Table 1
Forecast mean absolute errors and root mean squared errors.

RMSE × 1000 Brazilian consumer price index Acc.
(MAE × 1000) Forecast horizon

t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

RW 2.41 3.23 3.68 4.10 4.40 4.62 4.76 4.33 3.76 3.40 3.03 2.75 33.94
(1.99) (2.63) (3.01) (3.38) (3.44) (3.64) (3.71) (3.41) (3.04) (2.73) (2.58) (2.13) (26.11)

AR 2.30 2.89 3.26 3.31 3.23 3.18 3.04 2.82 2.72 2.70 2.67 2.64 20.75
(1.93) (2.21) (2.47) (2.60) (2.54) (2.49) (2.37) (2.16) (2.13) (2.07) (2.06) (2.01) (16.14)

Factors 1.33 2.19 2.42 2.48 2.44 2.49 2.48 2.37 2.29 2.50 2.38 2.44 14.31
(0.98) (1.75) (1.88) (1.93) (1.83) (1.91) (1.96) (1.89) (1.79) (2.01) (1.86) (1.93) (9.63)

LASSO 0.95 1.85 2.85 3.21 2.75 2.83 2.79 3.33 2.80 3.33 3.51 3.33 17.09
(0.74) (1.46) (2.28) (2.44) (2.11) (2.24) (2.12) (2.65) (2.15) (2.69) (2.89) (2.71) (12.42)

F. aL 0.98 1.58 2.20 2.43 2.39 2.42 2.53 2.86 2.48 2.56 2.54 2.46 13.50
(0.75) (1.30) (1.75) (1.94) (1.82) (1.89) (2.04) (2.33) (1.94) (2.06) (2.01) (1.88) (9.39)

P. OLS 0.98 1.62 2.23 2.23 2.49 2.52 2.53 3.08 2.52 2.66 2.61 2.46 14.02
(0.75) (1.34) (1.80) (1.80) (1.89) (1.97) (2.02) (2.48) (1.94) (2.11) (2.06) (1.89) (9.58)

RF 1.43 1.95 2.56 2.54 2.66 2.88 2.82 2.85 2.71 2.65 2.64 2.46 15.67
(0.97) (1.45) (1.93) (1.93) (2.06) (2.30) (2.21) (2.25) (2.09) (1.96) (1.99) (1.82) (12.36)

CSR 1.05 1.64 2.04 2.23 2.25 2.29 2.29 2.26 2.26 2.27 2.25 2.26 11.93
(0.88) (1.33) (1.69) (1.75) (1.79) (1.80) (1.80) (1.80) (1.81) (1.79) (1.77) (1.78) (8.41)

FOCUS 0.95 1.83 2.39 2.48 2.53 2.57 2.56 2.53 2.55 2.57 2.58 2.60 16.82
(0.76) (1.50) (1.87) (1.91) (1.93) (1.97) (1.94) (1.91) (1.93) (1.93) (1.94) (1.96) (12.51)

Top5 0.96 1.69 2.32 2.48 2.62 2.70 2.77 2.67 2.51 2.65 2.56 2.55 16.69
(0.74) (1.39) (1.83) (1.90) (1.99) (2.07) (2.06) (2.03) (1.99) (1.97) (1.91) (1.89) (12.12)

The table shows the root mean squared errors and mean absolute deviations (in parentheses) of the forecasts. The values in bold represent the best model
according to eachmeasure of error and for each forecast horizon. All values aremultiplied by 1000. The column Acc. shows the forecast errors accumulated
over 11 months.
and random walk forecasts. All models are estimated in a
nine-year rolling-window scheme, with the first forecast
being for January 1, 2012. Thus, the models are evaluated
based on 48 point forecasts, with the last forecast being for
December 2015.2 This period covers various different sit-
uations within the Brazilian economy. The Brazilian GDP
increased by 1.9% and 3% in 2012 and 2013 respectively,
2014 had an increase of 0.1%, and 2015 had a decrease of
3.7%. Fig. 1 shows that the state of the economy does not
affect the precision of the short-term forecasts. However,
the errors for longer forecasting horizons were bigger in
2015, which was an year of 10.67% inflation. Note that the
inflation target is 4.5% and its ceiling is 6.5%.

Table 1 shows the root mean squared error (RMSE) and
the mean absolute error (MAE) for all forecasting models.
The model with the smallest forecasting error for each
horizon is displayed in bold. The last column of Table 1
shows the cumulative error for the 11-month inflation.
The LASSO and the Flex-adaLASSO have the smallest errors
for h = 1 and h = 2, while the CSR has the smallest
errors for all other horizons. However, for h = 1, the
LASSO forecasts are not statistically different from the
expert forecasts. On the other hand, there is a substantial
gain from using the CSR models for the longer horizons.
The target factor models become more competitive as h
increases. The randomwalk and the autoregressivemodels

2 We start producing forecasts in 2012 in order to have a reasonable
number of point forecasts for each forecasting horizon while still having
enough observations for the in-sample estimation of the models. As the
models are for direct forecasts, we have 108 observations from which to
estimatemodels for h = 1, 107 for h = 2, and so on.We also show results
for 24 rolling windows.
both perform poorly. The random forest was not the best
model at any horizon, but its performance was not bad
overall. In fact, its cumulative forecasting errorwas smaller
than that of the FOCUS, the Top5 or the LASSO. In addition,
the Post-OLS estimation with the variables selected using
the Flex-adaLASSO delivers larger errors than the Flex-
adaLASSO itself.

The reason why the LASSO and the Flex-adaLASSO are
the best models for short horizons is that the expert
forecasts are very precise for h = 1 and h = 2. As
has been mentioned, market players devote considerable
resources to inflation forecasting. Therefore, variable selec-
tion models such as the LASSO perform better than meth-
ods that combine information frommany variables, such as
target factors and CSR. However, the expert forecasts lose
their predictive power as the forecast horizon increases
and many variables become more relevant. Models that
combine information can extract common information on
all variables that are useful for forecasting inflation. Fig. 2
shows the average numbers of variables selected by the
LASSO and the Flex-adaLASSO at all horizons. The number
of variables selected is very small for bothmodels for h = 1
and 2, but grows for longer horizons, especially in the case
of the LASSO. For shorter horizons, the Flex-adaLASSO is
mostly a combination of specialist forecasts.

Frequently, the model with the smallest average
squared error is not the model with the smallest errors in
most of the 48 rolling windows. Table 2 shows the rank-
ing of models for each forecasting window. The table re-
ports the proportion of cases where each model is in each
position of the ranking. The results are aggregated for all
horizons. Surprisingly, the randomwalk, which performed
badly in terms of average errors, was the bestmodel in 24%
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Fig. 2. Average number of variables selected by the shrinkage methods.
Table 2
Proportion of the time each model was in each position of the error ranking.

Brazilian consumer price index
Model position
1 2 3 4 5 6 7 8 9 10

RW 0.24 0.01 0.08 0.07 0.02 0.05 0.03 0.02 0.28 0.19
AR 0.04 0.06 0.06 0.06 0.03 0.07 0.06 0.06 0.24 0.31
Factors 0.14 0.05 0.18 0.07 0.09 0.15 0.09 0.10 0.06 0.08
LASSO 0.06 0.08 0.12 0.08 0.15 0.15 0.14 0.18 0.02 0.02
F. aL 0.03 0.07 0.10 0.14 0.18 0.15 0.09 0.20 0.02 0.02
P. OLS 0.05 0.10 0.11 0.12 0.18 0.12 0.11 0.17 0.03 0.02
RF 0.05 0.14 0.11 0.16 0.17 0.09 0.11 0.13 0.03 0.03
CSR 0.07 0.14 0.10 0.15 0.10 0.10 0.15 0.09 0.06 0.04
FOCUS 0.08 0.16 0.08 0.07 0.05 0.06 0.16 0.04 0.19 0.12
Top5 0.24 0.20 0.06 0.08 0.02 0.05 0.09 0.02 0.07 0.17

The table shows the proportion of the time that each model is in each ranking position, aggregated over all forecast horizons.
of cases, the same proportion as the Top5. However, the
same two models delivered the worst forecasts in 19% and
17% of cases, respectively. The CSRmodel, which is the best
model on average atmost horizons, had the smallest errors
for only 7% of forecasts, while the Flex-adaLASSO model,
which is the second-best model when considering the cu-
mulative inflation, is the bestmodel in only 3% of cases. The
modelswith the smallest average errors are those that per-
formwell whenmost models are performing poorly. How-
ever, they are no longer the best models when all models
are doing well.

We show the forecast error correlations in Fig. 3. The
figure displays heat-maps for horizons 1, 2, 6, and 12. The
pattern is very similar for all horizons. The FOCUS and
the Top5 are positively correlated with each other, but
their correlations with all other models are negative. The
remaining forecasts are all positively correlated. The two
best models, namely the Flex-adaLASSO and CSR models,
have strong negative correlations with both of the expert
forecasts considered in this paper. This shows that even
though some models and the expert forecasts all have
small forecast errors, their forecasts differ considerably.
This in turn opens the possibility of improving the results
using combinations of these forecasts, as will be discussed
on the next section.
4.2. Model confidence sets and model combination

This section reports on the model confidence set
(MCS) approach developed by Hansen et al. (2011). The
MCS allows us to compare large numbers of models
simultaneously. The test returns a confidence set that
includes the best model with probability (1 − α). The
set becomes wider (with more models) as we decrease α,
while large values ofα may result in a setwith only a single
model.

The MCS uses bootstrapped samples of a given loss
function, in our case squared errors, to create the test
statistics. The confidence set estimates p-values for all
models using the bootstrapped samples, and uses α to
select whichmodels should be inside the set. Since models
are removed from the set interactively, the MCS also
generates a ranking. The best model has a p-value of 1 by
definition, since it can only be as good as itself and there
is no other model to compare. If model 1 is removed from
the set with a p-value of k1 and model 2 is later removed
with a p-value of k2, the test p-value if only models 1
and 2 are excluded will be max{k1, k2}. Therefore, the
p-value cannot decrease when a new model is excluded
from the confidence set. We exclude models until the null
hypotheses is no longer rejected. Hansen et al. (2011)
propose twodifferent statistics to be used as decision rules,
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Fig. 3. Forecast error correlations.
the Tmax,M and the TR,M.We adopt the first, since it is simple
and easy to compute. The second statistic creates the set by
comparing all of the models two by two, which makes the
procedure more intensive.

The MCS p-values are presented in Table 3. Values in
bold represent models that remained in the confidence set
with α = 20%. The autoregressive models and the random
walk were removed from the set at most forecasting
horizons. The only models which were in the confidence
set for all horizons were the Flex-adaLASSO, the random
forest, the complete subset regression and the FOCUS
forecast. If we include the cumulative forecasts, we retain
only the Flex-adaLASSO and the CSR as themodels that are
always in the set. If we look at the ranking, the CSR is the
model with the most p-values of 1.

We use the results from Table 3 to generate combined
forecasts from the models in the confidence set. These
results are displayed in Table 4. The first row of the table
shows the forecasting errors from averaging the forecasts
from all models. The second row shows the forecasting
errors from averaging the forecasts of the models in the
confidence set, and the last row shows the forecasting error
of the bestmodel fromTable 1 at each forecasting horizon.3

3 The cumulative errors are calculated based on the 95% confidence set
in order to include the specialist forecasts. This was done because of the
results of Fig. 3, which show that the specialist forecasts are correlated
negatively with the other forecasts.
The results in Table 4 show that the simple average
of all models beats the results from the best individual
model. The combined forecast from the MCS improves
the results even more, especially when considering the
shortest forecasting horizons. Even at horizon h = 1,
which is only five days before the IPCA is published,
the forecasting errors are considerably smaller when we
combine forecasts. In many cases, the forecasting error is
less than half that from the best individual model.

4.3. Look-ahead bias in the MCS combined forecasts

Our combined forecasts based on the MCS are con-
taminated with look-ahead bias, as we need to know the
forecasting errors in order to estimate the confidence set.
However, the selectedmodels in the confidence set tend to
be stable over the time period considered here. We tested
the stability of the results and ensured that they were free
of look-ahead bias by splitting the sample of 48 observa-
tions into two sub-samples: one with 36 observations, for
estimating the confidence set, and the other with 12 ob-
servations, for estimating the combined forecasts. We also
estimated the simple average forecast for this 12-month
period.

The results are displayed in Table 5, and show that
the combined MCS forecasting errors calculated without
a look-ahead bias are still smaller than those calculated
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Table 3
Model confidence set.

Brazilian consumer price index Acc.
Forecast horizon
t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

RW 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.01 0.05 0.15 0.68 0.01
AR 0.00 0.03 0.03 0.03 0.02 0.11 0.42 0.56 0.43 0.75 0.74 0.70 0.03
Factors 0.16 0.03 0.48 0.80 0.68 0.71 0.62 0.52 0.79 0.54 0.35 0.75 0.35
LASSO 0.94 0.48 0.07 0.31 0.28 0.22 0.42 0.13 0.43 0.05 0.02 0.01 0.06
F. aL. 0.79 1.00 0.24 0.65 0.68 0.71 0.90 0.46 0.66 0.67 0.90 0.95 0.34
P. OLS 0.76 0.74 0.19 0.91 0.64 0.59 0.76 0.42 0.41 0.85 0.79 0.93 0.35
RF 0.27 0.48 0.28 0.91 0.61 0.22 0.27 0.56 0.39 0.76 0.81 0.93 0.06
CSR 0.31 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FOCUS 1.00 0.48 0.48 0.80 0.64 0.59 0.90 0.34 0.72 0.58 0.90 0.70 0.05
Top5 0.94 0.49 0.29 0.88 0.42 0.20 0.45 0.19 0.72 0.85 0.79 0.95 0.05

The table shows themodel confidence set p-values for all forecasting horizons, along with the 12-month accumulated inflation. Values in bold are included
in the α = 20% or 80% confidence set. The p-values can be used to rank the models. Models with p-values of 1 are the best models, or those that remain in
all confidence sets.
Table 4
Combined forecast mean absolute errors and mean squared errors.

RMSE × 1000 Brazilian consumer price index Acc.
MAE × 1000 Forecast horizon

t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

All models 0.74 1.18 1.48 1.53 1.52 1.58 1.58 1.63 1.49 1.55 1.52 1.42 9.72
(0.62) (0.89) (1.15) (1.17) (1.15) (1.18) (1.18) (1.32) (1.15) (1.24) (1.25) (1.12) (7.13)

MCS models 0.42 0.71 0.80 1.22 1.15 1.73 1.38 1.81 1.33 1.22 1.19 1.27 9.69
(0.33) (0.58) (0.63) (0.97) (0.85) (1.35) (1.08) (1.47) (1.05) (0.97) (0.95) (0.99) (6.72)

Best ind. model 0.96 1.58 2.04 2.23 2.25 2.29 2.29 2.26 2.26 2.27 2.25 2.26 11.93
(0.74) (1.30) (1.69) (1.75) (1.79) (1.80) (1.80) (1.80) (1.79) (1.79) (1.77) (1.78) (8.41)

The table shows the forecast errors of the average forecasts of all models and of those in the confidence set. The last row shows the best individual model,
as a comparison with the combined forecasts. All values are multiplied by 1000.
Table 5
Combined forecast mean absolute errors and mean squared errors without look-ahead bias.

RMSE × 1000 Brazilian consumer price index Acc.
(MAE × 1000) Forecast horizon

t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

All models 0.75 1.62 2.23 2.24 2.32 2.39 2.29 2.27 2.20 2.10 2.03 2.09 15.67
(0.67) (1.33) (1.93) (1.84) (1.95) (2.01) (1.89) (1.89) (1.78) (1.73) (1.73) (1.81) (13.68)

MCS models 0.43 0.93 1.02 1.71 1.71 1.35 1.80 1.61 1.85 1.64 1.71 1.86 12.08
(0.35) (0.83) (0.86) (1.43) (1.43) (1.10) (1.51) (1.39) (1.48) (1.32) (1.40) (1.61) (9.97)

The table shows the forecast errors of the average forecasts of all models and of those in the confidence set. The last row shows the best individual model,
as a comparison with the combined forecasts. All values are multiplies by 1000.
with a simple average across all models. Note that these
results are only for the last 12 months in the sample
(January–December, 2015), which was the worst year in
our sample for the Brazilian economy, in terms of GDP
growth.

4.4. Different window sizes

Given the length of the dataset, it is not viable to test
the models on a completely different sample. However,
we can check whether changing the size of the rolling
window, and consequently the number of forecasts, has
any significant impact on our results.

Increasing the window size from 9 to 10 years reduces
the number of forecasts (windows) from 48 to 24. Table 6
shows the forecasting RMSEs and MAEs when the models
are estimated on a larger window of observations. The
results are similar to the case of 48 windows. However,
the errors in Table 6 are generally larger because the
forecasts are just for 2014 and 2015, years in which the
Brazilian economy was more unstable (especially 2015).
As was mentioned earlier, the forecasting errors for longer
horizons are larger in 2015, and that shifted the errors up.
The target factor model has the smallest errors for several
forecasting horizons. The other models that deserve
a mention are the LASSO and Flex-adaLASSO, which
performed well on shorter horizons, and the complete
subset regression, which has good results for longer
horizons.Wehave already detected an improvement in the
target factor model for longer horizons in the results for
48 rolling windows; however, the difference here is that
factor models are able to beat the CSR in some cases for 24
rolling windows.

We show the model confidence set results for the
24-rolling-window analysis in Table 7. The results are
similar to those for the 48 windows. However, the only
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Table 6
Forecast mean absolute errors and root mean squared errors for 24 rolling windows.

RMSE ∗ 1000 Brazilian consumer price index: 24 rolling windows Acc.
MAE ∗ 1000 Forecast horizon

t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

RW 2.69 3.80 4.37 4.81 5.14 5.46 5.72 5.29 4.40 3.77 3.45 3.17 43.16
(2.25) (3.13) (3.68) (4.02) (4.10) (4.45) (4.69) (4.36) (3.72) (3.00) (2.97) (2.44) (34.70)

AR 2.61 3.41 3.29 3.55 3.82 3.77 3.60 3.38 3.33 3.26 3.22 3.26 32.59
(2.24) (2.66) (2.68) (2.81) (3.12) (3.06) (2.90) (2.68) (2.71) (2.62) (2.61) (2.54) (29.57)

Factors 1.50 2.45 2.72 2.96 3.15 3.11 2.95 2.85 2.56 2.45 2.45 2.55 21.83
(1.15) (1.98) (2.32) (2.40) (2.49) (2.41) (2.20) (2.33) (2.09) (2.01) (1.97) (2.07) (18.04)

LASSO 0.95 2.15 2.87 3.17 3.21 3.24 3.23 3.21 3.20 3.32 3.79 3.55 25.27
(0.76) (1.75) (2.35) (2.48) (2.45) (2.56) (2.54) (2.51) (2.48) (2.64) (2.91) (2.97) (23.04)

F. aL 1.03 1.76 2.50 2.84 2.84 2.97 3.32 3.30 3.32 3.28 3.31 3.35 24.84
(0.83) (1.46) (2.08) (2.32) (2.24) (2.32) (2.64) (2.60) (2.59) (2.56) (2.60) (2.70) (22.83)

P. OLS 1.04 1.77 2.58 2.58 2.95 3.06 3.36 3.27 2.96 2.93 2.87 2.81 22.74
(0.83) (1.48) (2.08) (2.08) (2.28) (2.38) (2.72) (2.58) (2.33) (2.31) (2.17) (2.15) (20.02)

RF 1.65 2.30 3.03 3.11 3.36 3.69 3.57 3.64 3.39 3.10 3.08 2.99 25.17
(1.08) (1.74) (2.36) (2.46) (2.60) (2.94) (2.80) (2.79) (2.52) (2.27) (2.31) (2.22) (23.00)

CSR 1.05 1.87 2.44 2.71 2.77 2.75 2.68 2.71 2.69 2.59 2.62 2.63 18.04
(0.91) (1.55) (2.09) (2.18) (2.23) (2.20) (2.11) (2.11) (2.05) (1.93) (1.99) (2.02) (16.40)

FOCUS 0.97 2.14 2.99 3.13 3.20 3.25 3.22 3.20 3.22 3.25 3.27 3.28 26.95
(0.83) (1.74) (2.38) (2.48) (2.51) (2.60) (2.56) (2.52) (2.55) (2.58) (2.58) (2.60) (24.86)

Top5 0.99 1.92 2.80 3.09 3.29 3.34 3.46 3.35 3.05 3.35 3.27 3.24 26.94
(0.78) (1.55) (2.21) (2.42) (2.57) (2.64) (2.64) (2.63) (2.48) (2.58) (2.54) (2.48) (24.72)

The table shows the root mean squared errors and mean absolute deviations (in parentheses) of the forecasts based on 24 rolling windows. The values
in bold represent the best model according to each measure of error and for each forecasting horizon. All values are multiplied by 1000. The column Acc.
shows the errors of the 12-month cumulative forecast, built using the monthly forecasts.
Table 7
Model confidence set: 24 rolling windows.

Brazilian consumer price index: 24 rolling windows Acc.
Forecast horizons
t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

RW 0.00 0.00 0.00 0.00 0.02 0.03 0.01 0.01 0.06 0.44 0.50 0.64 0.12
AR 0.00 0.08 0.23 0.39 0.04 0.03 0.14 0.72 0.26 0.27 0.43 0.43 0.03
Factors 0.09 0.10 0.56 0.75 0.35 0.67 0.33 0.60 1.00 1.00 1.00 1.00 0.06
LASSO 1.00 0.40 0.43 0.63 0.60 0.38 0.44 0.59 0.54 0.27 0.63 0.17 0.03
F. aL 0.86 1.00 0.50 0.34 0.55 0.57 0.58 0.55 0.26 0.44 0.63 0.20 0.05
P. OLS 0.91 0.60 0.50 0.75 0.45 0.67 0.44 0.59 0.28 0.35 0.33 0.45 0.06
RF 0.34 0.53 0.48 0.69 0.67 0.38 0.58 0.72 0.54 0.35 0.33 0.45 0.05
CSR 0.91 0.29 1.00 1.00 1.00 1.00 1.00 1.00 0.71 0.66 0.59 0.78 1.00
FOCUS 0.79 0.40 0.41 0.63 0.67 0.23 0.19 0.23 0.49 0.19 0.50 0.29 0.02
Top5 0.79 0.53 0.56 0.59 0.39 0.38 0.37 0.55 0.51 0.19 0.19 0.64 0.12

The table shows the model confidence set p-values for all forecast horizons, along with the 12-month cumulative inflation using 24 rolling windows. The
values in bold are those included in the α = 20% or 80% confidence set. The sizes of the p-values can be used to rank the models. Models with p-values of
1 are the best models, or those that remain in all confidence sets.
model in the confidence set on the accumulated inflation
is the CSR. If we look at the monthly horizons individually,
the models that are included in the 80% confidence set at
all horizons are the Flex-adaLASSO, the Post-OLS estimated
with the variables selected using the Flex-adaLASSO, the
random forest and the CSR. The CSRwas the last remaining
model in six cases, against four of the target factors. The
LASSO and the Flex-adaLASSO are the last remainingmodel
in one case each.

4.5. Bayesian alternatives

This section shows the results using two alterna-
tive Bayesian models. First, the unobserved component
stochastic volatility (UC-SV) model proposed by Stock and
Watson (2007), which is a very popular model for the US
inflation; and second, a large Bayesian vector autoregres-
sive (BVAR) using all variables in the dataset and with pri-
ors defined as per Bańbura et al. (2010).

4.5.1. Unobserved component stochastic volatility model
The UC-SV model is described by the following

equations:

πt = τt + eht/2εt ,
τt = τt−1 + ut ,
ht = ht−1 + vt ,

(11)

where {εt} is a sequence of independent and normally
distributed random variables with zero mean and unit
variance, εt ∼ N(0, 1); ut and vt are both normalwith zero
mean and variance given by inverse-gamma priors; τ1 ∼
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Table 8
Forecast mean absolute errors and root mean squared errors for BVAR and UCSV.

RMSE × 1000 Brazilian consumer price index Acc.
(MAE × 1000) Forecast horizon

t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

UCSV 2.56 3.17 3.54 3.86 4.06 4.09 3.95 3.51 3.08 2.79 2.59 2.61 27.74
(2.14) (2.66) (2.91) (3.11) (3.19) (3.24) (3.06) (2.75) (2.47) (2.28) (2.10) (2.00) (21.79)

BVAR 1.19 2.14 2.53 2.73 2.88 2.98 3.05 3.09 3.11 3.12 3.13 3.14 19.27
(0.92) (1.66) (1.91) (2.04) (2.20) (2.28) (2.33) (2.37) (2.39) (2.39) (2.41) (2.41) (14.60)

The table shows the root mean squared errors and mean absolute deviations (in parentheses) of the forecasts. The values in bold represent the best model
according to each measure of error and for each forecasting horizon. All values are multiplied by 1000. The column Acc. shows the errors of the 12-month
accumulated forecasts. The order of the BVAR is 4 and the UCSV is estimated using MCMC.
N(0, Vτ ); and h1 ∼ N(0, Vh), where Vτ = Vh = 0.12. The
model is estimated by Markov chain Monte Carlo (MCMC)
methods. The h-step-ahead forecast is computed asπt+h =τt|t . We computed forecasts for the same forecast horizons
as in the previous sections, and the forecasting errors are
calculated for 48 months out-of-sample as before.

4.5.2. Bayesian vector autoregressive model
Let Yt = (y1,t , y2,t , . . . yn,t)′ be described as the

following VAR model:

Yt = c + A1Yt−1 + · · · + ApYt−p + ut , (12)

where c is an n-dimensional vector of constants; Ai, i =

1 . . . p, are (n × n) matrices of coefficients; and ut is an n-
dimensional error vector. The same model may be written
as a system of equations:

Y = XB + U , (13)

where Y = (Y1, . . . , YT )
′ is a (T × n) matrix, X =

(X1, . . . ,XT )
′ is a (T × k) matrix with k = np + 1, and

Xt = (1, Yt−1, . . . , Yt−p)
′, U = (u1, . . . , uT )

′, and B =

(c,A1, . . . ,Ap)
′.

The model is estimated using dummy observations Yd
and Xd of dimensions Td × n and Td × k respectively (for
details on creating the dummy observations, see Bańbura
et al., 2010). Using these dummies is equivalent to
imposing the normal inverted Wishart prior on the
covariance matrix of B. The dummy observations are used
to create Y ∗

= (Y ′, Y ′

d)
′ and X∗

= (X ′,X ′

d)
′. The posterior

mean of B is the same as the ordinary least-squares (OLS)
estimates of the regression of Y ∗ on X∗, and also the same
as the Minnesota prior. In addition, the use of dummies
ensures that the number of observations is larger than the
number of variables for each regression of the VAR, which
makes the OLS estimation of B feasible. Another important
issue is the choice of the expected value of the priors for
the diagonal of the A1 matrix. We choose a value of 0.5 for
each element.

4.5.3. Results
The results for the UC-SV and the large BVAR are given

in Table 8. The forecasting errors are calculated for the
last 48 observations of the dataset using a rolling window
scheme. The UC-SV does not use any information other
than the past inflation, and thus, its forecasting errors
are larger than those of the multivariate models that
use the FOCUS and other macroeconomic variables as
regressors. Nevertheless, the UC-SV is comparable to the
other univariate models even though it cannot beat the AR
model. The BVAR is much more accurate than the UC-SV
and competes with the high-dimensional models directly,
especially for short forecasting horizons. However, it
is not the best model at any horizon. Note that an
h-step-ahead forecast for the BVAR is iterated, while the
models in Table 1 are estimated for the horizon of interest
directly. Table 9 shows the (Giacomini & White, 2006)
(GW) test p-values, where the null hypothesis is that the
twomodels have the same forecasting accuracies. The null
is rejected in most cases for the UC-SV, except when it
is compared to the random walk and the AR models. It
has the same forecasting ability as the random walk for
short horizons and is similar to the AR model for long
horizons. Note that thesemodels are all univariate and very
simple. Therefore, it is natural that the test fails to detect
significant differences between them when considering
only 48 rolling widows. The Bayesian VAR (second panel of
Table 9) is just as accurate as any of the other multivariate
models five days before the CPI is published (h = 1). This
is because all of themodels include forecasts by specialists,
which are very accurate right before the CPI is published,
and therefore, the forecasting errors are small for all of
the multivariate models, and differences between them
are not detected by the GW test. The performance of the
BVAR is clearly inferior for longer forecasting horizons. The
CSR, which is the best models in most cases, is statistically
different from the BVAR for all horizons longer than one.

The main conclusion from the above results is that the
performances of the two Bayesian alternatives considered
in the paper are inferior to those of the machine learning
methods.

4.6. Density forecasts

So far we have analyzed only point forecasts for
several models. This section goes on to focus on density
forecasts. The point forecasts in a rolling window scheme
provide good information as to which model is most
accurate on average, but do not tell us anything about the
forecast uncertainty. We obtain the predictive densities
by bootstrapping the in-sample residuals. For each model,
in each rolling window, we randomly selected 100,000
observations of the in-sample residuals and added them
to the point forecast, resulting on an empirical predictive
density.4

4 The procedures for the BVAR and the UCSV are slightly different,
because we did not estimate direct forecasts with these models. The t +1
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Table 9
Giacomini and White test p-values comparing the UCSV and the Bayesian VAR to all other models.

Brazilian consumer price index: GW p-values Acc.
t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

Forecast horizon: all models against UCSV

RW 0.423 0.763 0.515 0.255 0.075 0.020 0.001 0.001 0.000 0.001 0.010 0.358 0.183
AR 0.020 0.107 0.275 0.079 0.037 0.017 0.024 0.053 0.124 0.683 0.566 0.854 0.178
Factors 0.000 0.003 0.000 0.001 0.001 0.000 0.001 0.005 0.004 0.183 0.082 0.282 0.073
LASSO 0.000 0.000 0.029 0.203 0.001 0.002 0.001 0.668 0.250 0.061 0.004 0.004 0.043
F. al. 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.106 0.006 0.185 0.841 0.532 0.079
P. OLS 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.342 0.043 0.553 0.940 0.577 0.083
RF 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.004 0.023 0.447 0.794 0.503 0.059
CSR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.042 0.064 0.025
BVAR 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.085 0.912 0.223 0.059 0.042 0.002

Forecast horizon: all models against BVAR

RF 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.003 0.013 0.378 0.770 0.231 0.001
AR 0.000 0.001 0.001 0.001 0.045 0.232 0.968 0.188 0.051 0.035 0.023 0.008 0.003
Factors 0.518 0.810 0.453 0.311 0.061 0.043 0.027 0.014 0.009 0.035 0.010 0.025 0.092
LASSO 0.165 0.027 0.118 0.317 0.462 0.378 0.045 0.491 0.184 0.474 0.291 0.505 0.021
F. aL. 0.200 0.019 0.070 0.123 0.024 0.012 0.032 0.516 0.011 0.020 0.058 0.011 0.041
P. OLS 0.210 0.031 0.127 0.330 0.128 0.057 0.049 0.987 0.051 0.100 0.205 0.021 0.042
RF 0.202 0.065 0.737 0.116 0.095 0.432 0.089 0.068 0.016 0.018 0.012 0.004 0.002
CSR 0.399 0.027 0.018 0.011 0.005 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.145
UCSV 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.085 0.912 0.223 0.059 0.042 0.002

The table shows the Giacomini and White test p-values for all models compared to the UCSV (first block) and the Bayesian VAR (second block).
Table 10
Average log-scores for all models and all forecasting horizons.

Brazilian consumer price index
Forecast horizon: average log-scores
t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

RW −0.01 −0.99 −1.27 −1.79 −1.79 −1.74 −1.90 −1.78 −1.51 −1.17 −0.62 −0.61
AR −0.05 −0.34 −0.50 −0.57 −0.48 −0.50 −0.49 −0.33 −0.28 −0.23 −0.18 −0.20
Factor 0.33 −0.01 −0.17 −0.29 −0.23 −0.21 −0.28 −0.18 −0.05 −0.18 −0.14 −0.16
LASSO 0.87 0.20 −0.79 −1.00 −0.44 −0.48 −0.33 −0.85 −0.47 −1.14 −1.62 −1.87
F. aL. 0.90 0.42 0.03 −0.02 −0.08 −0.06 −0.15 −0.46 −0.10 −0.30 −0.23 −0.04
P. OLS 0.93 0.39 0.02 −0.11 −0.15 −0.20 −0.30 −0.62 −0.06 −0.43 −0.35 −0.08
RF 0.14 −0.07 −0.24 −0.22 −0.20 −0.22 −0.18 −0.26 −0.28 −0.16 −0.20 −0.29
CSR 0.85 0.38 0.16 −0.04 −0.09 −0.10 −0.07 0.00 −0.02 0.00 −0.01 −0.02
UCSV −0.85 −0.83 −0.83 −0.82 −0.80 −0.80 −0.80 −0.79 −0.78 −0.76 −0.76 −0.75
BVAR 0.62 −0.20 −0.40 −0.68 −0.69 −0.71 −0.81 −0.79 −0.82 −0.85 −0.99 −0.94

The table shows the average log-scores as described by Amisano and Giacomini (2007). The log-scoreswere calculated on the empirical densities generated
using bootstraps. Each bootstrap forecast is the sum of the point forecast and a random observation of the in-sample residuals. Each empirical density was
constructed using 100,000 bootstrap forecasts.
The predictive densities are used to estimate average
log-scores following Amisano and Giacomini (2007).
Suppose that we have estimated predictive densities f̂ (·)
for a given model. Let Y be the observed value of the
variable in the period that we aim to forecast. The log-
scores are calculated as S(f̂ , Y ) = log f̂ (Y ), and will be
larger when the probability of the observed Y is high. For
each model, we compute average log-scores across all of
the rolling windows for each forecasting horizon. In each
case, the best model is the one with the highest average
log-score. Amisano and Giacomini (2007) also propose a
test for checking whether the predictive densities for two
models are statistically equal, which will be referred as the

densities were obtained in the sameway as for the othermodels.We then
used these densities to estimate bootstrap point forecasts, which were
used to obtain the t + 2 densities, and kept iterating the bootstrap point
forecasts until t + 12.
AG test from here on. If we reject the null, the two models
have different densities.

The average log-scores and AG test p-values are
presented in Tables 10 and 11. The first interesting result
in Table 10 is that even though the LASSO and the
Flex-adaLASSO provide similar point forecasts, the Flex-
adaLASSO densities have larger log-scores, especially for
long forecasting horizons. The CSR, which is the bestmodel
for point forecasts for most forecasting horizons, also has
the largest log-scores. However, the POLS and the Flex-
adaLASSO are the best models for t + 1 and t + 2,
even though the CSR also performs well at these horizons.
The BVAR works well for t + 1, but its performance
deteriorates very rapidly for longer horizons. Note that
the BVAR calculates forecasts for horizons greater than
one by iterating previous forecasts. As a result, its point
forecasts and variances converge rapidly to their respective
unconditional values. Table 11 shows that, in general,
when there is a large difference between the average
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log-scores of two models, we reject the null and obtain
statistically different models.

5. Conclusion

We have tested several high-dimensional econometric
models for forecasting inflation in real-time and using a
large number of predictors. We have also considered a
forecasting combination mechanism based on the model
confidence sets. The methods discussed here have been
evaluated using Brazilian inflation data (IPCA). The results
can summarized as follows.

For five days ahead, the LASSO and FOCUS (expert)
forecasts are virtually the same, and deliver the best
forecasts. For the second horizon, the adaptive LASSO is
superior to all other models considered. For the remaining
horizons, the complete subset regression dominates all
other alternatives. These results are the same regardless
of whether we use the root mean squared error or the
mean absolute error. In terms of accumulated inflation, the
complete subset regression is the best model. However,
most of the forecasts from the different models are not
statistically different according to the model confidence
set. We construct the final forecast as the average of
the models included in the confidence set. This approach
delivers the best forecasts from among all of the competing
alternatives. The Bayesian VAR also produced accurate
forecasts for shorter horizons, but not as good as those
from some of the high-dimensional models.

Finally, we computed predictive densities for all indi-
vidual models, using bootstrap and estimated log-scores
to compare the models. The results are consistent with the
point forecasts. Models from the LASSO family are better
for t + 1 and t + 2 and the CSR is the best model for longer
horizons.

Appendix. Data appendix

The dataset and the computer codes are available from
https://github.com/gabrielrvsc/hdeconometrics. The ‘‘HD
econometrics’’ repository is an R package that provides
implementations of the models used in this paper and
the data in a.rda file. The package contains a number of
functions that are used in the paper, such as a function
that selects the best LASSOmodel using the BIC, a function
for the complete subset regression with several arguments
to control for pre-testing, and a function for the Bayesian
VAR model. Documentation is available in markdown and
follows the same format as traditional R documentation.
It can also be viewed in R if the package is installed. Each
function has an example included in the documentation.

All of the variables included in the models are listed in
Tables 12 and 13. The first table shows themacroeconomic
variables, all of which obtained from Bloomberg.5 Table 13
shows the variables from the expectations database of the
Brazilian Central Bank.

Most of the variables in our dataset are published for
month t before the Brazilian CPI, which is made public
around the 10th day of month t + 1. Some variables have
some delay or are available only after the CPI is published.
In such cases, we use the last available observation of such
variables.

5 The variable names in Table 12 are the same as those in the Bloomberg
database.
Table 12
Macroeconomic variables.

Prices and money Government and international transactions
1 Brazil CPI IPCA 32 Brazil National Treasury Revenue Total
2 FGV Brazil General Prices IGP-M 33 Brazil Social Contribution over Net Profit Tax Income
3 FGV Brazil General Prices IGP-DI 34 Brazil PIS & PASEP Tax Income
4 FGV Brazil General Prices IGP-10 35 Brazil Central Government Net Revenue
5 Brazil CPI IPCA-15 36 Brazil Central Government Revenue from the Central Bank

55 Brazil Monetary Base 37 Brazil Central Government Total Expenditures
56 Brazil Money Supply M1 Brazil 38 Brazil National Treasury Gross Revenue
57 Brazil Money Supply M2 Brazil 39 Brazil Importing Tax Income
58 Brazil Money Supply M3 Brazil 40 BNDES Brazil Income Taxes
59 Brazil Money Supply M4 Brazil 41 Brazil National Treasury Revenue from Industrialized Products

42 Brazil National Treasury Revenues from Other Taxes
Employment 43 Brazil Central Government Revenue from the Social Security

14 IBGE Brazil Unemployment Rate 44 Brazil National Treasury Revenue from Import Tax
15 Brazil Unemployment Statistic Male 45 Brazil Current Account
16 Brazil Unemployment Statistic Total 46 Brazil Trade Balance FOB
17 IMF Brazil Unemployment Rate 47 Brazil Public Net Fiscal Debt as a percentage of GDP
18 CNI Brazil Manufacturing Industry Employment 48 Brazil Public Net Fiscal Debt
19 Brazil Industry Working Hours 49 Brazilian Federal Government Domestic Debt

50 Brazil Public Net Government & Central Bank Domestic Debt
Exchange rates and finance 51 Brazilian States Debt Total Consolidated Net Debt

22 USD-BRL X-RATE 52 Brazilian States Debt to Foreigners
23 USD-BRL X-RATE Tourism 53 Brazilian Cities Debt
24 EUR-BRL X-RATE 54 Brazilian Cities Debt to Foreigners
25 BRAZIL IBOVESPA INDEX
26 Brazil Savings Accounts Deposits
27 Brazil Total Savings Deposits
28 Brazil BNDES Long Term Interest Rate
29 Brazil Selic Target Rate
30 Brazil Cetip DI Interbank Deposits

https://github.com/gabrielrvsc/hdeconometrics
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Table 13
Focus expectation variables.

60 t + 1 median 77 Top5 t + 5 median
61 t + 2 median 78 Top5 t + 6 median
62 t + 3 median 79 Top5 t + 7 median
63 t + 4 median 80 Top5 t + 8 median
64 t + 5 median 81 Top5 t + 9 median
65 t + 6 median 82 Top5 t + 10 median
66 t + 7 median 83 Top5 t + 11 median
67 t + 8 median 84 Top5 t + 12 median
68 t + 9 median 85 Top5 t + 13 median
69 t + 10 median 86 t + 1 medianˆ2
70 t + 11 median 87 t + 1 mean
71 t + 12 median 88 t + 1 meanˆ2
72 t + 13 median 89 t + 1 Std
73 Top5 t + 1 median 90 t + 12 medianˆ2
74 Top5 t + 2 median 91 t + 2 mean
75 Top5 t + 3 median 92 t + 2 meanˆ2
76 Top5 t + 4 median 93 t + 2 Std

The first group of Table 12 covers prices and money.
The CPI IPCA is the variable of interest, while the CPI IPCA-
15 is another index that is released earlier and used as
an indicator of the final CPI IPCA. These two indexes are
adopted officially by the government. The FGV indexes
are calculated by the Getlio Vargas Foundation (FGV).
They are also important measures of inflation. The second
group of the table covers employment variables, while the
third group deals with exchange rates, financial variables,
savings and interest rates. IBOVESPA is themost important
Brazilian stock index, and BNDES is the national bank of
investment, which lends money at lower rates and has a
significant impact on national investment. The Selic is the
target interest rate, and is published by the Central Bank.
The last group of variables in Table 12 covers government
and international transactions.

All variables in Table 13 are obtained from the Brazilian
Central Bank expectations database. Recall that the fore-
casts for h = 1 are made five days before the CPI was pub-
lished, meaning that t + 13 forecasts are for horizons of 12
months and five days. Our data include the FOCUS and the
Top5 median forecasts for h = 1 to h = 13. We also in-
clude the average forecasts, the squared average and me-
dian forecasts, and their standard deviations for horizons 1
and 2.
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