Macroeconomia II – 2011.2

Lista 5

Data: 10 de novembro de 2011

Monitora: Laura Candido de Souza

1) Freixas e Rochet - capítulo 7 - exercício 7.8.1

Bank runs and Moral Hazard

Consider a Diamond-Dybvig economy with a unique good and three dates, where banks managers have a choice of the technology they implement. This choice is unobservable and consists in investing one unit in either project *G* or *B*, where project *G* yields *G* with probability p_G and zero otherwise, and project *B* yields *B* with probability p_B and zero otherwise, where G < B, and $p_G G > p_B B$.

A continuum of agents endowed with one unit at time t = 0. Of these agents, a nonrandom proportion π_1 will prefer to consume at time t = 1, and the complementary proportion π_2 will prefer to consume at time t = 2.

The agents' utility function is:

 $\begin{cases} U(C_1) & for impatient consumers, \\ \rho U(C_2) & for patient consumers, \end{cases}$

So that the ex-ante expected utility is $\pi_1 U(C_1) + \pi_2 \beta U(C_2)$. If there are any bank runs, they coincide with sunspots that occur with probability α .

- a) Assuming that the risk-neutral bank manager brings in equity, and the other agents have deposit contracts, compute under what conditions the *G* allocation is obtained. Interpret the condition in terms of regulation.
- b) In what follows, we restrict our attention only to the particular case of risk-neutral depositors, U(C) = C. What is the optimal contract? What are the manager's incentives to implement *G*? Do they depend upon *a*? Could we propose a better contract by defining an equity economy?

2) Freixas e Rochet - capítulo 7 - exercício 7.8.2

Bank Runs

Consider an economy with a unique good and three dates, with a storage technology that yields a zero net interest and a standard long-run technology that yields *R* units with certainty at time t = 2, but yields only L < 1 if prematurely liquidated at time t = 1. Both technologies are available to any agent.

A continuum of agents is endowed with one unit at time t = 0. Of these agents, a nonrandom proportion π_1 will prefer to consume at time t = 1, and the complementary proportion π_2 will prefer to consume at time t = 2.

The agents' utility function is:

$$\begin{cases} \sqrt{C_1} & \text{for impatient consumers,} \\ \rho \sqrt{C_2} & \text{for patient consumers,} \end{cases}$$

So that the ex-ante expected utility is $\pi_1 \sqrt{C_1} + \pi_2 \rho \sqrt{C_2}$. Assume first that $\rho R > 1$.

- a) Compute the first-order condition that fully characterizes the optimal allocation. Compare it with the market allocation that is characterized by $C_1 = 1$ and $C_2 = R$.
- b) Consider a banking contract where a depositor's type is private information.Are bank runs possible? If so, for what parameter values?
- c) Is the optimal contract implementable within an equity economy, where each agent has a share of a firm that distributes dividends, and a market for exdividend shares opens at time t = 1, as suggested by Jacklin?

Assume now that $\rho R > 1$.

- d) What would be the optimal banking contract? Are bank runs possible? If so, for what parameter values?
- e) Is the optimal contract implementable within an equity economy à la Jacklin?

3) Freixas e Rochet - capítulo 7 - exercício 7.8.3

Information-Based Bank Runs

This problem is adapted from Postlewaite and Vives (1987). Consider a one-good, three-dates, two-agent economy in which the gross return is $r_1 (< 1)$ for an investment during the first year (t = 0 to t = 1), r_2 for an investment during the second year, and r_3 for an investment during the third year. Assume $2r_1 - 1 > 0$, and $2r_1r_2 - 1 > 0$. The preferences can be of three types. If an agent is of type 1, her utility is $U(x_1)$; of type 2, $U(x_1 + x_2)$; and of type 3, $U(x_1 + x_2 + x_3)$. The probability that agent 1 is of type i and agent 2 is of type j is p_{ij} .

The (exogenous) banking contract allows each agent to withdraw the amount initially deposited without penalty at dates 1 and 2, but interest can be collected only if the agent waits until date 3.

- a) Define a_j^i as the strategy that consists in withdrawing everything at time t. Write the matrix of payments when both agents initially deposit one unit.
- b) Consider the restriction of the game to strategies a_1^i and a_2^i . What is the equilibrium if $r_1 > (2r_1 1)r_2$, and $1 > r_1r_2$? Is this an efficient allocation?
- c) Returning to the initial matrix, assume that $(2r_1 1)r_2r_3 > 1$. Describe the equilibrium by establishing the optimal strategy for each type. Will there be any bank runs?