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This review� of value at risk� or �VaR�� describes some of the basic issues involved

in measuring the market risk of a �nancial �rm�s �book�� the list of positions in vari�

ous instruments that expose the �rm to �nancial risk� While there are many sources

of �nancial risk� we concentrate here on market risk� meaning the risk of unexpected

changes in prices or rates� Credit risk should be viewed as one component of market

risk� We nevertheless focus narrowly here on the market risk associated with changes

in the prices or rates of underlying traded instruments over short time horizons� This

would include� for example� the risk of changes in the spreads of publicly traded corpo�

rate and sovereign bonds� but would not include the risk of default of a counterparty on
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a long�term swap contract� The measurement and management of counterparty default

risk involves a range of di	erent modeling issues� and deserves its own treatment��

Other forms of �nancial risk include liquidity risk 
the risk of unexpectedly large and

stressful negative cash �ow over a short period� and operational risk� which includes

the risk of fraud� trading errors� legal and regulatory risk� and so on� These forms of

risk are considered only brie�y�

This article is designed to give a fairly broad and accessible overview of VaR� We

make no claims of novel research results� and we do not include a comprehensive survey

of the available literature on value at risk� which is large and growing quickly�� While

we discuss some of the econometric modeling required to estimate VaR� there is no

systematic attempt here to survey the associated empirical evidence�

� Background

In managing market risk� there are related objectives

�� Measure the extent of exposure by trade� pro�t center� and in various aggregates�

�� Charge each position a cost of capital appropriate to its market value and risk�

�� Allocate capital� risk limits� and other scarce resources such as accounting capital

to pro�t centers� 
This is almost the same as ���

�� Provide information on the �rm�s �nancial integrity and risk�management tech�

nology to contractual counterparties� regulators� auditors� rating agencies� the

�nancial press� and others whose knowledge might improve the �rm�s terms of

trade� or regulatory treatment and compliance�

�� Evaluate and improve the performance of pro�t centers� in light of the risks taken

to achieve pro�ts�

�� Protect the �rm from �nancial distress costs�

�An example of an approach that measures market risk� including credit risk� is described in

Jamshidian and Zhu �	����

�Other surveys of the topic include Jackson� Maude� and Perraudin �	����� Linsmeier and Pearson

�	����� Mori� Ohsawa� and Shimizu �	����� Littlejohn and Fry �	���� and Phelan �	����
 For empirical

reviews of VaR models� see Hendricks �	����� Beder �	����� and Marshall and Siegel �	����
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These objectives serve the welfare of stakeholders in the �rm� including equity owners�

employees� pension�holders� and others�

We envision a �nancial �rm operating as a collection of pro�t centers� each running

its own book of positions in a de�ned market� These pro�t centers could be classi�

�ed� for example� as �equity�� �commodity�� ��xed income�� �foreign exchange�� and

so on� and perhaps further broken down within each of these groups� Of course� a

single position can expose the �rm to risks associated with several of these markets

simultaneously� Correlations among risks argue for a uni�ed perspective� On the other

hand� the needs to assign narrow trading responsibilities and to measure performance

and pro�tability by area of responsibility suggest some form of classi�cation and risk

analysis for each position� We will be reviewing methods to accomplish these tasks��

Recent proposals for the disclosure of �nancial risk call for �rm�wide measures of

risk� A standard benchmark is the value at risk 
�VaR��� For a given time horizon t

and con�dence level p� the value at risk is the loss in market value over the time horizon

t that is exceeded with probability �� p� For example� the Derivatives Policy Group�

has proposed a standard for over�the�counter derivatives broker�dealer reports to the

Securities and Exchange Commission that would set a time horizon t of two weeks and

a con�dence level p of �� percent� as illustrated in Figure �� Statistically speaking�

this value�at�risk measure is the ����� critical value� of the probability distribution of

changes in market value� The Bank for International Settlements 
BIS� has set p to

�� percent and t to �� days for purposes of measuring the adequacy� of bank capital�

although� BIS would allow limited use of the bene�ts of statistical diversi�cation across

�Models of risk�management decision making for �nancial �rms can be found in Froot and Stein

�	���� and Merton and Perold �	����
 The Global Derivatives Study Group� G�� �	���� reviews

practices and procedures� and provides a follow up survey of industry practice in Group of Thirty

�	����

�See Derivatives Policy Group �	����

�For more on capital adequacy and VaR� see Dimson �	����� Jackson� Maude� and Perraudin �	�����

and Kupiec and O�Brien �	����

�See the December 	� 	��� communiqu�e of the Bank for International Settlements� �announcing

an amendment to the Basle Committee on Banking Supervision�� from BIS Review� Number ���

December 	� 	���� Basle� Switzerland
 See also the draft ISDA response to the Basle market risk

proposal made in April� 	���� in a memo from Susan Hinko of ISDA to the Basle Market Risk Task

Force� July 	�� 	���
 The ISDA response proposes to allow more �exibility in terms of measurement�

but require that �rms disclose a comparison between the value�at�risk estimated at the beginning

of each period� and the ultimately realized marks to market
 This would presumably lead to some

discipline regarding choice of methodology
 Incidentally� VaR is not the di�erence between the expected
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di	erent positions� and factors up the estimated ���� critical value by a multiple of ��

Many �rms use an overnight value�at�risk measure for internal purposes� as opposed to

the two�week standard that is commonly requested for disclosure to regulators� and the

���percent con�dence level is far from uniformly adopted� For example� J�P� Morgan

discloses its daily VaR at the ���percent level� Bankers Trust discloses its daily VaR

at the ���percent level�

One expects� in a stationary environment for risk� that a ���percent ��week value�at�

risk is a ��week loss that will be exceeded roughly once every four years� Clearly� then�

given the over�riding goal of protecting the franchise value of the �rm� one should not

treat one�s measure of value�at�risk� even if accurate� as the level of capital necessary

to sustain the �rm�s risk� Value at risk is merely a benchmark for relative judgements�

such as the risk of one desk relative to another� the risk of one portfolio relative to

another� the relative impact on risk of a given trade� the modeled risk relative to the

historical experience of marks to market� the risk of one volatility environment relative

to another� and so on� Even if accurate� comparisons such as these are speci�c to the

time horizon and the con�dence level associated with the value�at�risk standard chosen�

Whether the VaR of a �rm�s portfolio of positions is a relevant measure of the

risk of �nancial distress over a short time period depends in part on the liquidity of

the portfolio of positions� and the risk of adverse extreme net cash out�ows� or of

severe disruptions in market liquidity� In such adverse scenarios� the �rm may su	er

costs that include margins on unanticipated short�term �nancing� opportunity costs

of forgone �pro�table� trades� forced balance�sheet reductions� and the market�impact

costs of initiating trades at highly unfavorable spreads� Whether the net e	ect actually

threatens the ability of the �rm to continue to operate pro�tably depends in part on

the �rm�s net capital� Value at risk� coupled with some measure of cash��ow at risk�� is

relevant in this setting because it measures the extent of potential forced reductions of

the �rm�s capital over short time periods� at some con�dence level� Clearly� however�

VaR captures only one aspect of market risk� and is too narrowly de�ned to be used

on its own as a su�cient measure of capital adequacy�

In order to measure VaR� one relies on

value and the �
�	�critical value� but rather the di�erence between the current portfolio value and the

�
�	 critical value at the speci�ed time horizon
 To the error tolerance of current modeling techniques�

and for short time horizons� there is not much di�erence in practice

�By �cash��ow at risk� we mean a �worst�case�� say �
�� critical value� of net �cash� out�ow over

the relevant time horizon
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Figure � Value at Risk 
DPG Standard�

�� a model of random changes in the prices of the underlying instruments 
equity

indices� interest rates� foreign exchange rates� and so on��

�� a model for computing the sensitivity of the prices of derivatives to the underlying

prices�

In principle� key elements of these two basic sets of models are typically already

in place for the purposes of pricing and hedging derivatives� One approach to market

risk measurement is to integrate these models across the trading desks� and add the

additional elements necessary for measuring risks of various kinds� Given the di�culty

of integrating systems from diverse trading environments� however� a more common

approach is a uni�ed and independent risk�management system� In any case� the chal�

lenges are many� and include data� theoretical and empirical models� and computational

methods�

The next section presents models for price risk in the underlying markets� The

measurement of market risk for derivatives and derivative portfolios are then treated

�



in Sections � through ��

As motivation of the remainder� the reader should think in terms of the following

broadly de�ned recipe for estimating VaR

�� Build a model for simulating changes in prices across all underlying markets�

and perhaps changes in volatilities as well� over the VaR time horizon� The

model could be a parameterized statistical model� for example a jump�di	usion

model based on given parameters for volatilities� correlations� and tail�fatness

parameters such as kurtosis� Alternatively� the model could be a �bootstrap� of

historical returns� perhaps �refreshed� by recent volatility estimates�

�� Build a data�base of portfolio positions� including the contractual de�nitions of

each derivative� Estimate the size of the �current� position in each instrument


and perhaps a model for changes in position size over the VaR time horizon� as

considered in Section ���

�� Develop a model for the revaluation of each derivative for given changes in the un�

derlying market prices 
and volatilities�� On a derivative�by�derivative basis� the

revaluation model could be an explicit pricing formula� a delta�based 
�rst�order

linear� approximation� a second�order 
delta�and�gamma based� approximation�

or an analytical approximation of a pricing formula that is �splined� for VaR

purposes from several numerically�computed prices�

�� Simulate the change in market value of the portfolio� for each scenario of the un�

derlying market returns� Independently generate a su�cient number of scenarios

to estimate the desired critical values of the pro�t�and�loss distribution with the

desired level of accuracy�

We will also consider� in Section �� the accuracy of shortcut VaR approximation meth�

ods based on multiplication of an analytically estimated portfolio standard deviation

by some scaling factor 
such as ���� for the ���� critical value under an assumption of

normality��

� Price Risk

This section reviews basic models of underlying price risk� Key issues are �fat tails�

and the behavior and estimation of volatilities and correlations�
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��� The Basic Model of Return Risk

We begin by modeling the daily returns R�� R�� � � � on some underlying asset� say on a

continuously�compounding basis� We can always write

Rt	� � �t � �t�t	�� 
����

where

�t is the expectation of the return Rt	�� conditional on the information available at

day t� 
In some cases� we measure instead the �excess� expected return� that is�

the extent to which the expected return exceeds the overnight borrowing rate��

�t is the standard deviation of Rt	�� conditional on the information available at

time t�

�t	� is a �shock� with a conditional mean of zero and a conditional standard deviation

of one�

The volatility of the asset is the annualized standard deviation of return� The volatility

at day t is therefore
p
n �t� where n is the number of trading days per year� 
In

general� the annualized volatility over a period of T days is
q
n�T times the standard

deviation of the total return Rt	� � � � � � Rt	T over the T �day period�� �Stochastic

volatility� simply means randomly changing volatility� Models for stochastic volatility

are considered below�

One sometimes assumes that the shocks ��� ��� � � � are statistically independent and

have the same probability distribution� denoted �iid�� but both of these assumptions

are questionable for most major markets�

A plain�vanilla model of returns is one in which � and � are constant parameters�

and in which the shocks are �white noise�� that is� iid and normally distributed� This

is the standard benchmark model from which we will consider deviations�

��� Risk�Neutral Versus Actual Value at Risk

Derivative pricing models are based on the idea that there is a way to simulate returns

so that the price of a security is the expected discounted cash �ow paid by the security�

This distorted price behavior is called �risk�neutral�� The fact that this risk�neutral
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pricing approach is consistent with e�cient capital markets
 does not mean that in�

vestors are risk�neutral� Indeed the actual risk represented by a position typically

di	ers from that represented in risk�neutral models�

For purposes of measuring value�at�risk at short time horizons such as a few days

or weeks� however� the distinction between risk�neutral and actual price behavior turns

out to be negligible for most markets� 
The exceptions are markets with extremely

volatile returns or severe price jumps�� This means that one can draw a signi�cant

amount of information for risk�measurement purposes from one�s derivative pricing

models� provided they are correct� Because this proviso is such a signi�cant one� many

�rms do not in fact draw much risk�measurement information about the price behavior

of underlying markets from their risk�neutral derivative pricing models� Rather� it is

not unusual to rely on historical price data� perhaps �ltered by some sort of statistical

procedure� Option�implied volatilities are sometimes used to replace historical volatili�

ties� but the goal of standard risk�measurement procedures that are independent of the

in�uence 
benign or otherwise� of the current thinking of option traders has sometimes

ruled out heavy reliance on derivative�implied parameters� We shall have more to say

about option�implied volatility later in this section�

The distinction between risk�neutral and actual price behavior becomes increasingly

important over longer and longer time horizons� This can be important for measuring

the credit exposure to default by a counterparty� One is interested in the actual�

not risk�neutral� probability distribution of the market value of the position with the

counterparty� For that reason alone� if not also for measuring the exposure of the �rm

to long�term proprietary investments� it may be valuable to have models of price risk

that are not derived solely from the risk�neutral pricing of derivatives�

��� Fat Tails

Figure � shows the probability densities of two alternative shocks� The �thinner tailed�

of the two is that of a normally distributed random variable� Even though the fatter

tailed shock is calibrated to the same standard deviation� it implies a larger overnight

VaR at high con�dence levels� A standard measure of tail�fatness is kurtosis� which is

E
S�
t �� the expected fourth power of the shock� That means that kurtosis estimates

are highly sensitive to extremely large returns� For example� while the kurtosis of

	See Harrison and Kreps �	����
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a normally distributed shock is �� S�P ��� daily returns for ���� to ���� have an

extremely high sample kurtosis of ���� in large measure due to the exceptional returns

associated with the market �crash� of October� ����� The �Black�Monday� return

of this crash represents a move of roughly �� to �� standard deviations� relative to

conventional measures of volatility just prior to the crash�

If one is concerned exclusively with measuring the VaR of direct exposures to the

underlying market 
as opposed to certain non�linear option exposures�� then a more

pertinent measure of tail fatness is the number of standard deviations represented by

the associated critical values of the return distribution� For example� the ���� critical

value of the standard normal is approximately ���� standard deviations from the mean�

By this measure� S�and�P ��� returns are not particularly fat�tailed at the ���� level�

The ���� critical value for S�and�P ��� historical returns for ������� is approximately

���� standard deviations from the mean� The ���� �right�tail� critical value� which

is the relevant statistic for the value at risk of short positions� is only ���� standard

deviations from the mean� As shown in Figure �� the ���� and ���� critical values

of S�P ��� returns are in fact closer to their means than would be suggested by

the normal distribution� One can also can see that S�P ��� returns have negative

skewness� meaning roughly that large negative returns are more common than large

positive returns���

Appendix F provides� for comparison� sample statistics such as kurtosis and tail

critical values for returns in a selection of equity� foreign exchanges� and commodity

markets� For many markets� return shocks have fatter than normal tails� measured

either by kurtosis or tail critical values at typical con�dence levels� Figures � and

� show that many typical underlying returns have fat tails� both right and left� at

both daily and monthly time horizons� For the markets included�� in Figures � and ��

left tails are typically fatter at the ��� con�dence level� showing a predominance of

negative skewness 
especially for equities��

Fat tails can arise through di	erent kinds of models� many of which can be explained

�
Skewness is the expected third power of shocks

��The markets shown are those for equities� foreign currencies� and commodities shown in the table

of sample return statistics in Appenidx F� as well as a selection of interest rates made up of� US

��month LIBOR� US �year Treasury� US ���year Treasury� UK ��month Bank Bills� UK overnight

discount� German Mark ��month rate� German Mark ��year rate� French Franc 	�month rate� Swedish

discount rate� Yen 	�month rate� and Yen 	�year rate
 Changes in log rates are used as a proxy for

returns� which is not unreasonable for short time periods provided there are not jumps
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Figure � Left Tail Fatness of Selected Instruments
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Figure � Right Tail Fatness of Selected Instruments

��



with the notion of �mixtures of normals�� The idea is that if one draws at random

the variance that will be used to generate normal returns� then the overall result is fat

tails��� For example� the fat�tailed density plotted in Figure � is that of a t�distribution�

which is a mixture of normals in which the standard deviation of the normal is drawn

at random from the inverted gamma�� distribution�

While there are many possible theoretical sources of fat tails� we will be emphasizing

two in particular �jumps�� meaning signi�cant unexpected discontinuous changes in

prices� and �stochastic volatility�� meaning volatility that changes at random over time�

usually with some persistence�

��� Jump�Di�usions

A recipe for drawing fat�tailed returns by mixing two normals is given in Appendix A�

This recipe is consistent 
for short time periods� with the so�called jump�di�usion

model� whose impact on value�at�risk measurement is illustrated in Figure �� which

shows plots of the left tails of density functions for the price in two weeks of ���� in

current market value of the underlying asset� for two alternative models of price risk�

Both models have iid shocks� a constant mean return� and a constant volatility � of

���� One of the models is plain vanilla 
normal shocks�� The price of the underlying

asset therefore has a log�normal density� whose left tail is plotted in Figure �� The

other model is a jump�di	usion� which di	ers from the plain�vanilla model only in the

distribution of shocks� For the jump�di	usion model� with an expected frequency of

once per year� the daily return shock is �jumped� by adding an independent normal

random variable with a standard deviation of � � ���� The jump arrivals process is a

classical �Poisson�� independent of past shocks� The jump standard deviation of ���

is equivalent in risk to that of a plain�vanilla daily return with an annual volatility

of ����� Because the plain�vanilla and jump�di	usion models are calibrated to have

the same annual volatility� and because of the relatively low expected frequency of

jumps� the two models are associated with roughly the same ��week ��� value�at�risk

measures� The jump�di	usion VaR is slightly larger� at ������ than the plain�vanilla

VaR of ������ The major implication of the jump�di	usion model for extreme loss shows

up much farther out in the tail� For the jump�di	usion setting illustrated in Figure ��

one can calculate that with an expected frequency � of roughly once every ��� years� one

��For early models of this� see Clark �	����
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will lose overnight at least one quarter of the value of one�s position� In the comparison

plain�vanilla model� one would expect to wait far longer than the age of the universe

to lose as much as one quarter of the value of one�s position overnight��� Appendix F

shows that there have been numerous daily returns during ���������� across many

markets� of at least � standard deviations in size� Under the plain�vanilla model� a

��standard�deviation return is expected less than once per million days� Even ���

standard�deviation moves have occurred in several markets during this ���year period�

but are expected in the plain�vanilla�model less than once every ���� days�

Jump�Di�usion
Plain�Vanilla

VaR � � �
�� �Plain�Vanilla�
� � �
�	 �Jump�Di�usion�

� � 	��
� � 	��
� � 	 per year

Change in Value ��� for a �	�� Position

P
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b
a
b
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y
D
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�		 �	� �� �� �� �� �� �� �� � �	

Figure � ��Week ����VaR for Underlying Asset

Figure � compares the same plain�vanilla model to a jump�di	usion with � jumps

per year� with each jump having a standard deviation of � percent� Again� the plain

vanilla and jump�di	usion models are calibrated to the same volatility� While the ���

��week VaR for the underlying asset is about the same in the plain�vanilla and jump�

di	usion models� the di	erence is somewhat larger than that shown in Figure �� The

��The expected frequency of an overnight loss of this magnitude in the plain�vanilla model was

verbally related to us by Mark Rubinstein
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implications of the jump�di	usion model for the value at risk of option positions can

be more dramatic� as we shall see in Section ��

��� Stochastic Volatility

The second major source of fat tails is stochastic volatility� meaning that the volatility

level �t changes over time at random� with persistence� By persistence� we mean that

relatively high recent volatility implies a relatively high forecast of volatility in the near

future� Likewise� with persistence� recent low volatility is associated with a prediction

of lower volatility in the near future� One can think of the jump�di	usion model

described above as approximated in a discrete�time setting by an extreme version of a

stochastic volatility model in which the volatility is random� but with no persistence�

that is� each day�s volatility is drawn at random independently of the last� as in the

example described in Appendix A�

Even if returns are actually drawn each day with thin tails� say normally distributed�

given knowledge of that day�s volatility� we would expect to see fat tails in a frequency

plot of un�normalized daily returns� because returns for di	erent days are generated

with di	erent volatilities� the usual �mixing�of�normals� story� If this were indeed the

cause of the fat tails that we see in Figures � and �� we would expect to see the tail

fatness in those plots to be reduced if we normalized each day�s return by an estimate

of the level of the volatility �t for that day�

The e	ect of stochastic volatility on left tail fatness and negative skewness could be

magni�ed over time by negative correlation between returns and changes in volatility�

which is apparent� for example� in certain�� equity markets�

We will devote some attention to stochastic volatility models� not only because of

the issue of fat tails� but also in order to address the estimation of current volatility� a

key input to VaR models�

While one can envision a model for stochastic volatility in which the current level

of volatility depends in a non�trivial way on the entire path that volatility has taken

in the past� we will illustrate only Markovian stochastic volatility models� those of the

form

�t � F 
�t��� zt� t�� 
����

��For the empirical evidence in equity markets of stochastic volatility and correlation of volatility

and returns� see for example Bekaert and Wu �	����
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where F is some function in three variables and z�� z�� � � � is white noise� The term

�Markovian� means that the probability distribution of the next period�s level of volatil�

ity depends only on the current level of volatility� and not otherwise on the path taken

by volatility� This form of volatility also rules out� for reasons of simpli�cation� depen�

dence of the distribution of changes in volatility on other possible state variables� such

as volatility in related markets and macro�economic factors� which one might actually

wish to include in practice�

In principle� we would allow correlation between the volatility shock zt and the

return shock �t of 
����� and this has important implications for risk management� For

example� negative correlation implies negative skewness in the distribution of returns�

So that the VaR of a long position could be more than the VaR of a short position of

equal size�

There are several basic classes of the Markovian stochastic volatility model 
�����

Each of these classes has its own advantages� in terms of both empirical reasonability

and tractability in an option�pricing framework� The latter is particularly important�

since option valuation models may� under certain conditions� provide volatility esti�

mates implicitly� as in the Black�Scholes setting� We will next consider some relatively

simple examples�

����� Regime�Switching Volatility

A �regime�switching� model is one in which volatility behaves according to a �nite�state

Markov chain� For example� if one takes two possible levels� va and vb� for volatility in

a given period� we can take the transition probabilities of �t between va and vb to be

given by a matrix

 �

�
 aa  ab

 ba  bb

�
�

For example� if �t � va� then the conditional probability
�� that �t	� � vb is  ab�

An example� with parameters estimated�� from oil prices� is illustrated in Figure ��

One may want to allow for more than � states in practice� The diagonal probabilities

��This �ts into our general Markovian template �
� by taking F �va� z� t� � va for all z � z�a� where

z�a is chosen so that the probability that zt � z�a is  aa� by taking F �va� z� t� � vb whenever z � z�a�

and likewise for F �vb� z� t�

��This and the other energy volatility estimates reported below are from Du�e and Gray �	����


For more extensive treatment of regime�switching models of volatility� see Gray �	���� and Hamilton

�	����
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Volatility of Oil

day t day t! 	

Figure � Regime�Switching Volatility Estimates for Light Crude Oil

 aa and  bb of the regime�switching model can be treated as measures of volatility

persistence�

����� Auto�Regressive Volatility

A standard Markovian model of stochastic volatility is given by the log�auto�regressive

model

log ��t � 	 � 
 log ��t�� � �zt� 
����

��



where 	� 
� and � are constants��� Volatility persistence is captured by the coe�cient


� A value of 
 near zero implies low persistence� while a value near � implies high

persistence� We always assume that �� � 
 � �� for otherwise volatility is �explosive��

The term structure of volatility is the schedule of annualized volatility of return�

by the time�horizon over which the return is calculated� For the stochastic volatility

model 
����� in the case of independent shocks to returns and volatility��� the term

structure of conditional volatility is

!vt�T �
s
vart
Rt	� � � � ��RT �

T � t

�

vuut ��

T � t

T�t��X
k��

���
k

t exp

�
�	
k
�� 


� ��
�k

�
�� 
��

�
� 
����

where

�� � exp

�
	

�� 

�
�

�

��

�� 
�

�

is the steady�state�
 mean of ��t �

For the case of non�zero correlation between volatility and shocks� one can obtain

explicit calculations for the term structure of volatility in the case of normally dis�

tributed shocks� but the calculation is more complicated��� Allowing this correlation

is empirically quite important�

��From �
	�� with constant mean returns� we may write log�Rt � ��� � log��t�� ! logS
�
t � Harvey�

Ruiz� and Shepard �	��� and Harvey and Shepard �	���� have shown that one can estimate the

log auto�regressive model coe�cients by quasi�maximum likelihood� which is indeed consistent under

certain technical restrictions
 Taking logS�
t to be normally distributed� this would be a standard

setup for Kalman �ltering of volatility
 In such a setting� we would have access to standard methods

for estimating volatility given the coe�cients �� 	� and 
� and for estimating these coe�cients by

maximum likelihood
 See� for example� Brockwell and Davis �	��	� for the consistency of the estimators

in this setting

��This calculation is repeated here from Heynen and Kat �	����

�	That is� �� � limtE��

�
t �


�
Kalman �ltering can be applied in full generality here to get the joint distribution of return shocks

conditional on the path of volatility
 With joint normality� all second moments of the conditional dis�

tribution of return shocks are deterministic
 At this point� one applies the law of iterated expectations

to get the term volatility as a linear combination of the second moments of the log�normal stochastic

volatilities� which is also explicit
 The same calculation leads to an analytic solution for option prices

in this setting� extending the Hull�White model to the case of volatility that is not independent of

shock returns
 See Willard �	����
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����� Garch

Many modelers have turned to ARCH 
autoregressive conditional heteroscedasticity�

models of volatility proposed by Engle "����#� and the related GARCH and EGARCH

formulations� because they capture volatility persistence in simple and �exible ways�

For example� the GARCH�� model of stochastic volatility proposed by Bollerslev "����#

assumes that

��t � 	 � 
Rt � ��� � 
��t���

where�� 	� � and 
 are positive constants� Here� 
 is the key persistence parameter A

high 
 implies a high carryover e	ect of past to future volatility� while a low 
 implies

a heavily damped dependence on past volatility�

One can estimate the parameters 	� � and 
 from returns data� For example�

estimated GARCH parameters associated with crude oil have maximum likelihood

estimates 
with t statistics in parentheses� from recent data�� given by

��t � �����

�����

� �����

�����


Rt � ��� � �����

�����

��t���

The estimated persistence parameter for daily volatility is ������

Under the �non�explosivity� condition � �  � 
 � �� the steady�state volatility��

is � �
q
	�
�� ��� One can show that the term structure of volatility associated with

the GARCH model is

vt�T �

s

T � t��� � 
��t	� � ���

�� �T�t

�� �
�

A potential disadvantage of the GARCH model� noting that the impact of the

current return Rt on ��t	� is quadratic� is that a day of exceptionally large absolute

returns can cause instability in parameter estimation� and from this �overshooting� in

forecasted volatility� For example� with any reasonable degree of persistence� a market

crash or �jump� could imply an inappropriately sustained major impact on forecasted

volatility���

��This is known more precisely as the �GARCH�	�	�� model
 For speci�cs and generalizations� as

well as a review of the ARCH literature in �nance� see Bollerslev� Chou� and Kroner �	���

��The GARCH model is in the class �
� of Markov models since we can write �t � F ��t��� zt� �

��! ���t��zt ! 	��t���
���� where zt � �t is white noise


��See Du�e and Gray �	����

��This is limT�� E���t �
 The non�explosivity condition fails for the parameter estimates given for

crude oil

��Sakata and White �	���� have therefore suggested �high�breakdown point� estimators in this sort

��



����� Egarch

A potentially more �exible model of persistence is the exponential Garch� or �EGARCH�

model proposed by Nelson "����#� which takes the form��

log ��t � 	 � 
 log ��t�� � �

�
Rt � �

�t��

�
� �

�
����� Rt � �

�t��

���� �
s
�

�

�
A �

The term structure of volatility implied by the EGARCH model is

vt�T �

vuutT�t��X
k��

Ck�
��k

t �

where Ck is a relatively complicated constant given� for example� by Heynen and Kat

"����#� Nelson "����# has shown that the EGARCH model and the log�auto�regressive

model 
���� converge with decreasing period length� and appropriate normalization of

coe�cients� to the same model�

����� Cross�Market Garch

One can often infer volatility�related information for one market from changes in the

volatility of returns in another� A simple model that accounts for cross�market inference

is the multivariate GARCH model� For example� a simple ��market version of this

model takes �
BB�
��a�t
�ab�t

��b�t

�
CCA � 	 � 

�
BB�

R�
a�t

Ra�tRb�t

R�
b�t

�
CCA� 


�
BB�
��a�t��
�ab�t��

��b�t��

�
CCA �

where

� Ra�t is the return in market a at time t

� Rb�t is the return in market b at time t

� �a�t�� is the conditional volatility of Ra�t

� �b�t�� is the conditional volatility of Rb�t

� �ab�t�� is the conditional covariance between Ra�t and Rb�t

of environment� and give example estimates for S�P ��� returns

��The term

p
� is equal to Et��j�Rt � ���t��j�


��



� 	 is a vector with � elements

�  is a �� � matrix

� 
 is a �� � matrix�

With  and 
 assumed to be diagonal for simplicity� a maximum�likelihood estimate

for the bivariate GARCH model for heating oil 
a� and crude oil 
b� is given by

�
�����������	

��a�t

�ab�t

��b�t



������������
�

�
�����������	

������

�������

������

�������

�������

�������



������������
�
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�����������	
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�
�����������	
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��b� t��



������������
�

with t�statistics shown in parentheses�

One notes the di	erences between the univariate and multivariate GARCH param�

eters for crude oil 
alone�� In principle� cross�market information can only improve the

quality of the model if the multivariate model is appropriate�

��	 Term Structures of Tail�Fatness and Volatility

Like volatility� tail�fatness� as measured for example by kurtosis� has a term structure

according to the time horizon over which the total return is calculated� In the plain�

vanilla model� the term structures of both volatility and tail�fatness are �at� In general�

the term structures of tail�fatness and volatility have shapes that depend markedly on

the source of tail�fatness� Here are several cases to consider�

��



�� Jumps Consider the case of constant mean and volatility� and iid shocks with

fat tails� 
This could be� for example� a jump�di	usion setting�� In this case�

the term structure of volatility is �at� As illustrated in Figure �� the central

limit theorem tells us that averaging iid variables leads to a normally distributed

variable��� We therefore expect that the term structure of tail fatness for the

jump�di	usion model underlying Figure � to be declining� when measured by

kurtosis� This is borne out in Figure ��� For example� while the ������� sample

daily return kurtosis for the S�P ��� index is ���� at the monthly level� the

sample kurtosis for this period is ���� 
estimated on an overlapping basis�� If we

were to measure tail fatness by the number of standard deviations to a particular

critical value� such as the ���� critical value� however� the term structure of tail

fatness would �rst increase and then eventually decline to the normal level of

������ as illustrated in Figure ��� At the ���� critical level� for typical market

parameters such as those shown in Figures � and �� the likelihood of a jump on

a given day is smaller than ����� so the impact of jumps on critical values of the

distribution shows up much farther out in the tail than at the ���� critical value�

At an expected frequency of � jumps per year� we would expect the �����critical

value to be more seriously a	ected by jumps at a time horizon of a few weeks�

�� Stochastic Volatility Suppose we have constant mean returns and iid normal

shocks� with stochastic volatility that is independent of the shocks� The term

structure of volatility can have essentially any shape� depending on the time�

series properties of �t� �t	�� � � �� For example� under an autoregressive model


���� of stochastic volatility� the term structure of volatility 
���� approaches an

asymptote from above or from below� as illustrated in Figure ��� depending on

whether the initial volatility �t is above or below the stationary level� This plot is

based on a theoretical stochastic volatility model 
����� using as the parameters

the maximum�likelihood estimates 	 � ����� 
 � ����� and � � ���� for this

model �tted to the Hang Seng Index by Heynen and Kat "����#� The three initial

levels shown are the steady�state mean volatility implied by the model 
B�� one

standard deviation of the steady�state distribution above the mean 
A�� and one

��The theory of large deviations� outlined in Appendix B for a di�erent application� can be used

to address the speed of convergence to normal tails
 For special cases� such as our simple jump�

di�usions� the calculations are easy
 Figure � plots the densities of t�distributed variables with the

indicated degrees of freedom
 The case of �t ��� is standard normal
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standard deviation of the steady�state distribution below the mean 
C�� Starting

from the steady�state mean level of volatility� the term structure of kurtosis is

increasing and then eventually decreasing back to normal� as illustrated�� for

case �B� in Figure ��� This �hump�shaped� term structure of tail fatness arises

from the e	ect of taking mixtures of normals with di	erent variances drawn from

the stochastic volatility model� which initially increases the term structure of

tail fatness� The tail fatness ultimately must decline to standard normal� as

indicated in Figure �� by virtue of the central limit theorem��
 For typical VaR

time horizons� however� the term structure of kurtosis is increasing from the

standard normal level of �� as shown in Figure ��� This plot is based on three

di	erent theoretical stochastic volatilitys models� using as the parameters the

maximum�likelihood estimates for the British Pound 
A�� which has extremely

high mean reversion of volatility and extremely high volatility of volatility� the

Hang�Seng Index 
B�� which has more moderate mean reversion and volatility of

volatility� and the S�P ��� Index 
C�� which is yet more moderate��� Uncertainty

about the initial level of volatility would cause some variation from this story�

and e	ectively increase the initial level of kurtosis� as illustrated for the case �A�

of random initial volatility� shown in Figure ��� for which the initial volatility is

drawn from the steady�state distribution implied by the estimated parameters�

A caution is in order We can guess that the presence of jumps would result is a

relatively severe mis�speci�cation bias for estimators of the stochastic volatility

model 
����� For example� a jump would appear in the estimates in the form

of a high volatility of volatility and a high mean�reversion of volatility� The

presence of both jumps and stochastic volatility is anticipated for these three

markets� Evidence for both jumps and stochastic volatility 
modeled in the form

of a GARCH� is presented by Jorion "����#�

��This plot is based on a theoretical stochastic volatility model �
�� using as the parameters the

maximum�likelihood estimates � � ����� 	 � ��	�� and 
 � ��� for this model �tted to the dollar

price of the British Pound by Heynen and Kat �	����

�	We are grateful to Ken Froot for pointing this out
 We can rely on the fact that� over time

intervals of �large� length� the volatilities at the begining and end of the intervals are �essentially�

independent� in the sense of the central limit theorem for recurrent Markov processes

�
These parameter estimates are given above for the Hang�Seng Idex and the Pound� and for the

S�P ��� are � � ����	� 	 � ����� and 
 � ����� �tted by Heynen and Kat �	����
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�� Mean Reversion Suppose we have constant daily volatility and iid normal

shocks� but we have mean reversion� For example� let �t � 	
R� �Rt���� where

	 � � is a coe�cient that �dampens� cumulative total return Rt � R�� � � ��Rt

to a long�run mean R�� This model� which introduces negative autocorrelation in

returns� would be consistent� roughly� with the behavior explained by Froot "����#

and O�Connell "����# of foreign exchange rates over very long time horizons� For

this model� the term structure of volatility is declining to an asymptote� while

the term structure of tail fatness is �at�

��
 Estimating Current Volatility

A key to measuring VaR is obtaining an estimate of the current volatility �t for each

underlying market� Various methods could be considered� The previous sub�section

o	ers a sample of stochastic volatility models that can� in principle� be estimated from

historical data� Along with parameter estimates� one obtains at each time period an

estimate of the current underlying volatility� See Hamilton "����#� Other conventional

estimators for current volatility are described below�

����� Historical Volatility

The historical volatility %�t�T implied by returns Rt� Rt	� � � � � RT is the usual naive

volatility estimate

%��t�T �
�

T � t

TX
s�t	�


Rs � %�t�T �
��

where %�t�T � 
Rt	� � � � � � RT ��
T � t�� In a plain�vanilla setting� this 
maximum�

likelihood� estimator of the constant volatility parameter � is optimal� in the usual

statistical sense� If the plain�vanilla model of returns applies at arbitrarily �ne data

frequency 
with suitable adjustment of � and � for period length�� then one can learn

the volatility parameter within an arbitrarily short time interval�� from the historical

volatility estimator� Empirically� however� returns at exceptionally high frequency

have statistical properties that are heavily dependent on institutional properties of the

��Literally� limT�� #�t�T � � almost surely� and since an arbitrary number of observations of returns

is assumed to be possible within an arbitrarily small time interval� this limit can be achieved in an

arbitrarily small amount of calendar time


��



market that are of less importance over longer time periods���

For essentially every major market� historical volatility data strongly indicate that

the constant�volatility model does not apply� For example� the rolling ����day historical

volatility estimates shown in Figure ��� for a major Taiwan equity index� appear to

indicate that volatility is changing in some persistent manner over time��� Incidentally�

in the presence of jumps we would expect to see large upward �jumps� in the ����day

rolling historical volatility� at the time of a jump in the return� coupled with a downward

jump in the rolling volatility precisely ��� days later� which suggests caution in the use

of rolling volatility as an estimator for actual volatility�

Exponential weighting of data can be incorporated in order to place more emphasis

on more recent history in estimating volatility� This amounts to a restrictive case of

the GARCH model� and is the standard adopted by J�P� Morgan for its RiskMetrics

volatility estimates� 
See Phelan "����#��

����� Black�Scholes Implied Volatility

In the plain�vanilla setting� it is well known that the price of an option at time t�

say a European call� is given explicitly by the famous Black and Scholes "����# formula

Ct � CBS
Pt� �� ��K� r�� given the underlying price Pt� the strike price K� the time � to

expiration� the continuously compounding constant interest rate r� and the volatility

�� It is also well known that this formula is strictly increasing in �� as shown in

Figure ��� so that� from the option price Ct� one may theoretically infer without error

��When estimating �� in certain markets one can also take special advantage of additional �nancial

price data� such as the high and low prices for the period� as shown by Garman and Klass �	�����

Parkinson �	����� and Rogers and Satchell �	��	�

��Of course� even in the constant�volatility setting� one expects the historical volatility estimate to

vary over time� sometimes dramatically� merely from random variation in prices
 �This is sometimes

called �sampling error
�� One can perform various tests to ascertain whether changes in historical

volatility are �so large� as to cause one to reject the constant volatility hypothesis at a given con�dence

level
 For example� under the constant volatility hypothesis� the ratio Fa�b � #��t�a��T �a�#�
�
t�b��T �b� of

squared historical volatilities over non�overlapping time intervals has the F distribution �with degrees

of freedom given by the respective lengths of the two time intervals�
 From standard tables of the F

distribution one can then test the constant�volatility hypothesis� rejecting it at� say� the ���percent

con�dence level� if Fa�b is larger than the associated critical F statistic
 �One should take care not

to select the time intervals in question in light of one�s impression� based on observing prices� that

volatility apparently di�ers between the two periods
 This would introduce selection bias that makes

such classical tests unreliable
�

��
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the volatility parameter � � �BS
Ct� Pt� ��K� r�� The function �BS
 � � is known�� as
the Black�Scholes implied volatility� While no explicit formula for �BS is available� one

can compute implied volatilities readily with simple numerical routines���
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Volatility �

Figure �� Black�Scholes �Price of Volatility�

In many 
but not all� markets� option�implied volatility is a more reliable method

of forecasting future volatility than any of the standard statistical methods that have

been based only on historical return data� 
For the empirical evidence� see Canina

and Figlewski "����#� Campa and Chang "����#� Day and C�Lewis "����#� Jorion "����#�

Lamoureux and Lastrapes "����#� and Scott "����#�� Of course� some markets have no

reliable options data�

Because we believe that volatility is changing over time� one should account for this

in one�s option�pricing model before estimating the volatility implied by option prices�

For example� Rubinstein "����#� Dupire "����#� Dupire "����#� and Derman and Kani

"����# have explored variations of the volatility model

�t � F 
Pt� t�� 
����

��This idea goes back at least to Beckers �	��	�

��For these and many other details on the Black�Scholes model and extensions� one may refer to

Cox and Rubinstein �	����� Stoll and Whaley �	����� and Hull �	����� among many other sources


��



where Pt is the price at time t of the underlying asset� for some continuous function F

that is chosen so as to match the modeled prices of traded options with the prices for

these options that one observes in the market� This is sometimes called the implied�tree

approach���

����� Option�Implied Stochastic Volatility

One can also build option valuation models that are based on stochastic volatility�

and obtain a further generalization of the notion of implied volatility� For instance� a

common special case of the stochastic volatility models of Hull and White "����#� Scott

"����#� and Wiggins "����# assumes that� after switching to risk�neutral probabilities�

we have independent shocks to returns and volatility� With this 
in the usual limiting

sense of the Black�Scholes model for �small� time periods� one obtains the stochastic�

volatility option�pricing formula

Ct � CSV 
Pt� �t� t� T�K� r� � E�

h
CBS
Pt� vt�T � T � t�K� r�

i
� 
����

where

vt�T �

s
�

T � t

��t � � � �� ��T��� 
����

is the root�mean�squared term volatility� CBS
 � � is the Black�Scholes formula� and
E� denotes risk�neutral expectation at time t� This calculation follows from the

fact that� if volatility is time�varying but deterministic� then one can substitute vt�T

in place of the usual constant volatility coe�cient to get the correct option price

CBS
Pt� vt�T � T � t�K� r� from the Black�Scholes model��� With the above indepen�

dence assumption� one can simply average this modi�ed Black�Scholes formula over all

possible 
probability�weighted� realizations of vt�T to get the result 
�����

For at�the�money options 
speci�cally� options struck at the forward price of the

underlying market�� the Black�Scholes option pricing formula is� for practical purposes�

essentially linear in the volatility parameter� as illustrated in Figure ��� In the �Hull�

White� setting of independent stochastic volatility� the naive Black�Scholes implied

volatility for at�the�money options is therefore an e	ective 
albeit risk�neutralized� fore�

cast of the root�mean�squared term volatility vt�T associated with the expiration date of

��See Jackwerth and Rubinstein �	���� for generalizations and some empirical evidence

��This was noted by Johnson and Shanno �	����
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the option� On top of any risk�premium�� associated with stochastic volatility� correla�

tion between volatility shocks and return shocks causes a bias in Black�Scholes implied

volatility as an estimator of the expectation of the root�mean�squared volatility vt�T �


This bias can be corrected� see for example Willard "����#�� The root�mean�squared

volatility vt�T is itself larger than annualized average volatility 
�t�� � ���T����
q

T � t�

over the period before expiration� because of convexity e	ect of squaring in 
���� and

Jensen�s Inequality�

The impact on Black�Scholes implied volatilities of randomness in volatility is more

severe for away�from�the�money options than for at�the�money options� A precise

mathematical statement of this is rather complicated� One can see the e	ect� however�

through the plots in Figure �� of the Black�Scholes formula with respect to volatility

against the exercise price� For near�the�money options� the plot is roughly linear� For

well�out�of�the�money options� the plot is convex� A �smile� in plots of implied volatil�

ities against exercise price thus follows from 
����� Jensen�s inequality� and random

variation in vt�T � We can learn something about the degree of randomness in volatility

from the degree of convexity of the implied�vol schedule��


It may be useful to model volatility that is both stochastic� as well as dependent on

the price of the underlying asset� For example� we may wish to replace the univariate

Markovian stochastic�volatility model with

�t � F 
�t��� Pt� zt� t��

so that one combines the stochastic�volatility approach with the �implied tree� ap�

proach of Rubinstein� Dupire� and Derman�Kani� To our knowledge� this combined

model has not yet been explored in any systematic way�

����� Day�of�the�week and other seasonal volatility e	ects

Among other determinants of volatility are �seasonality� e	ects� For example� there

are day�of�the�week e	ects in volatility that re�ect institutional market features� in�

cluding the desire of market makers to close out their positions over weekends� One can

��See� for example� Heston �	���� for an equilibrium model of the risk premium in stochastic volatil�

ity

�	We can also learn about correlation between returns and changes in volatility from the degree of

�tilt� in the smile curve
 See� for example� Willard �	����
 For econometric models that exploit option

prices to estimate the stochastic behavior of volatility� see Pastrorello� Renault� and Touzi �	���� and

Renault and Touzi �	���
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�correct� for this sort of �seasonality�� for example by estimating volatility separately

for each day of the week�

For another example� the seasons of the year play an important role in the volatilities

of energy products� For instance� the demand for heating oil depends on winter weather

patterns� which are determined in the winter� The demand for gasoline is greater� and

shows greater variability� in the summer� and gasoline prices therefore tend to show

greater variability during the summer months�

��� Skewness

Skewness is a measure of the degree to which positive deviations from mean are larger

than negative deviations from mean� as measured by the expected third power of these

deviations� For example� equity returns are typically negatively skewed� as show in in

Appendix F� If one holds long positions� then negative skewness is a source of concern

for value at risk� as it implies that large negative returns are more likely� in the sense

of skewness� than large positive returns�

If skewness in returns is caused by skewness in shocks alone� and if one�s model of

returns is otherwise plain vanilla� we would expect the skewness to become �diversi�ed

away� over time� through the e	ect of the central limit theorem� as illustrated in

Figure �� for positively skewed shocks��� In this case� that is� the term structure of

skewness would show a reversion to zero skewness over longer and longer time horizons�

If� on the other hand� skewness is caused� or exacerbated� by correlation between shocks

and changes in volatility 
negative correlation for negative skewness�� then we would

not see the e	ect of the central limit theorem shown in Figure ���

��� Correlations

A complete model of price risk requires not only models for mean returns� volatilities�

and the distribution of shocks for each underlying market� but also models for the

relationships across markets among these variables� For example� a primary cross�

market piece of information is the conditional correlation at time t between the shocks

in markets i and j� Campa and Chang "����# address the relative ability to forecast

�
Plotted in Figure 	� are the densities of V �n�n for various n� where V �n� is the sum of n

independent squared normals
 That is V � ��
n
 By the central limit theorem� the density of

p
nV �n�

converges to that of a normal
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Figure �� Skewness Correcting E	ect of Diversi�cation

correlation of various approaches� including the use of the implied volatilities of cross�

market options�

In order to measure value�at�risk over longer time horizons� in addition to the

conditional return correlations one would also depend critically on one�s assumptions

about correlations across markets between changes in volatilities�
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