Optimal Environmental Targeting in the Amazon Rainforest
Review of Economic Studies, v. 90, p. 1608–1641, 2023
Eduardo Souza-Rodrigues, Joshua Murphy, Robert MacMillan, Juliano Assunção.
Acesse o artigoThis paper sets out a data-driven approach for targeting environmental policies optimally in order to combat deforestation. We focus on the Amazon, the world's most extensive rainforest, where Brazil's federal government issued a `Priority List' of municipalities in 2008 { a blacklist to be targeted with more intense environmental monitoring and enforcement. First, we estimate the causal impact of the Priority List on deforestation (along with other relevant treatment effects) using `changes-in-changes' (Athey and Imbens, 2006), finding that it reduced deforestation by 43 percent and cut emissions by 49 million tons of carbon. Second, we develop a novel framework for computing targeted optimal blacklists that draws on our treatment effect estimates, assigning municipalities to a counterfactual list that minimizes total deforestation subject to realistic resource constraints. We show that the ex-post optimal list would result in carbon emissions
Veja também
The Value of Health Insurance: A Household Job Search Approach ( a sair)
Journal of Labor Economics, 2025
Gabriela Conti, Renata Narita, Rita Ginja.
Targeting in Adaptive Networks
Journal of Economic Theory, v. 228, 2025
Timo Hiller.
Tradeoffs and synergies for agriculture and environmental outcomes in the tropics (a sair)
Review of Environmental Economics and Policy, 2025
Fanny Moffette, Jennifer Alix-Garcia, Juliano Assunção, Prakash Mishra, Teevrat Garg.