Adaptive LASSO estimation for ARDL models with GARCH innovations
Econometric Reviews, v. 36, TD n. 6-9, p. 622-637, 2017
Eduardo F. Mendes, Marcelo Medeiros.
Acesse o artigoIn this paper, we show the validity of the adaptive least absolute shrinkage and selection operator (LASSO) procedure in estimating stationary autoregressive distributed lag(p,q) models with innovations in a broad class of conditionally heteroskedastic models. We show that the adaptive LASSO selects the relevant variables with probability converging to one and that the estimator is oracle efficient, meaning that its distribution converges to the same distribution of the oracle-assisted least squares, i.e., the least square estimator calculated as if we knew the set of relevant variables beforehand. Finally, we show that the LASSO estimator can be used to construct the initial weights. The performance of the method in finite samples is illustrated using Monte Carlo simulation.
Veja também
The Value of Health Insurance: A Household Job Search Approach ( a sair)
Journal of Labor Economics, 2025
Gabriela Conti, Renata Narita, Rita Ginja.
Targeting in Adaptive Networks
Journal of Economic Theory, v. 228, 2025
Timo Hiller.
Tradeoffs and synergies for agriculture and environmental outcomes in the tropics (a sair)
Review of Environmental Economics and Policy, 2025
Fanny Moffette, Jennifer Alix-Garcia, Juliano Assunção, Prakash Mishra, Teevrat Garg.