Essays on Volatility and Returns Predictability
Orientador(a): Marcelo Medeiros
Co-orientador(a): Ruy Monteiro Ribeiro
Banca: Gabriel F. R. Vasconcelos, Marcelo Fernandes, Márcio Garcia, Alan De Genaro.This thesis is composed of three papers on financial econometrics. The first two papers explore the relation between intraday equity market returns and implied volatility, represented by the CBOE Volatility Index (VIX). In both papers, we estimate one-minute-ahead forecasts using rolling windows within a day. In the first paper, the estimates indicate that our volatility factor models outperform traditional benchmarks at high frequency time-series analysis, even when excluding crisis periods. We also find that the model has a better out-of-sample performance at days without macroeconomic announcements. Interestingly, these results are amplified when we remove the crisis period. The second paper proposes a machine learning modeling approach to this forecasting exercise. We implement a minute-by-minute rolling window intraday estimation method using two nonlinear models: Long-Short-Term Memory (LSTM) neural networks and Random Forests (RF). Our estimations show that the VIX is the strongest candidate predictor for intraday market returns in our analysis, especially when implemented through the LSTM model. This model also improves significantly the performance of the lagged market return as predictive variable. Finally, the third paper explores a multivariate extension of the FarmPredict method, by combining factor-augmented vector autoregressive (FAVAR) and sparse models in a high-dimensional environment. Using a three-stage procedure, we estimate and forecast factors and its oadings, which can be observed, unobserved, or both, as well as a weakly sparse idiosyncratic structure. We provide an application of this methodology to a panel of daily realized volatilities. Finally, the accuracy of the stepwise method indicates improvements of this forecasting method when compared to consolidated benchmarks.