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Abstract

I investigate the aggregate effects of R&D tax credits in the US. Because it subsidizes
R&D activity and because credit rates vary between states, this policy has both spatial and
dynamic effects on the economy. To address this issue, I construct an endogenous growth
model with spatial heterogeneity and agglomeration spillovers in innovation. Aggregate
outcomes in this model are thus affected by the spatial distribution of the population in the
economy, which is itself endogenous and reacts to policy. I use this framework to identify a
set of local R&D subsidies that maximize aggregate welfare.

∗I thank my advisors Ufuk Akcigit, Jonathan Dingel and Chad Syverson for their help and guidance. I also
thank Rodrigo Adão, Antonio Gabriel, John Grigsby, Peter Hull, Krisztina Orban, Stefano Pegoraro, Esteban Rossi-
Hansberg, James Traina, and seminar participants at the Illinois Economic Association meeting and the University
of Chicago for helpful comments and discussions.
†e-mail: absollaci@uchicago.edu

1

https://www.dropbox.com/s/3stcd7dp81cqbmq/JMP_ASollaci.pdf?dl=0
absollaci@uchicago.edu


1 Introduction

Research and Development (R&D) tax credits are one of the biggest and most important policies
that foster innovation in the US. Introduced in 1981 at the federal level, these credits apply to
company-funded R&D expenditures above a pre-determined baseline level. With regards to
size, it is estimated that R&D tax credits amount to over US$ 9 billion in foregone revenue to the
federal government in 2019 – which is about 20% more than the National Science Foundation’s
entire budget request for that year.1 In addition to federal credits, most states have adopted
some type of subsidy to research activity as well (see appendix figure A.1). As a result, the US
features a wide spatial dispersion of R&D tax credits, as shown in figure 1.

Figure 1: Spatial Distribution of R&D Tax Credit Rates.

Note: The figure shows the effective R&D tax credit rates as computed by Wilson (2009). Statutory and effective
credit rates differ based on how the base amount is defined and whether or not the credit is “recaptured” (i.e.,
considered taxable income). The two discontinuities in the federal credit rate are due to (1) a change in the method
for computing the federal base level in 1991 and (2) the fact that there were no federal credits in 1995.

In this paper, I investigate how the spatial dispersion of R&D tax credits impacts aggregate
quantities in the economy. R&D tax credits (subsidies) are fundamentally different from most
other policies because they can impact both the spatial configuration of the economy and the
dynamic decisions of firms. In contrast, most of the existing studies that evaluate the impact
of spatial policies do so in a static setting (Kline and Moretti, 2014; Ossa, 2015; Gaubert, 2018;
Fajgelbaum and Gaubert, 2018). Similarly, the literature on endogenous growth that studies
the long-run effects of R&D policy seldom accounts for local externalities or the spatial hetero-
geneity of subsidies (e.g., Akcigit et al., 2018a). Importantly, note that the effects of R&D tax
credits are not necessarily predicated on changes in the overall level of the credit rate: their
distribution across space is also relevant for aggregate outcomes.

1The cost of R&D tax credits for the federal government is estimated by the Joint Committee on Taxation (2010).
The NSF’s budget request can be found in https://www.nsf.gov/about/budget/fy2019/pdf/01_fy2019.pdf.
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The spatial effects of R&D tax credits are a product of the interaction between spatial hatero-
geneity/agglomeration externalities and the variation of the credit rate over space.2 Inventors
and firms have incentives to move to places where taxes are relatively lower; thus, changes in
the spatial distribution of tax credits can change the location of agents in the economy (Moretti
and Wilson, 2014, 2017; Akcigit et al., 2016). This is relevant because innovative activity bene-
fits from agglomeration spillovers: the productivity of individual inventors (and the firms that
hire them) in producing patents increases when they are located in densely populated cities
(see the survey by Carlino and Kerr, 2015). The benefits from agglomeration, however, must
be weighted against congestion costs and the fact that local benefits might be offset by losses
elsewhere.3

R&D tax credits have dynamic effects by their very nature, as they subsidize the cost of
innovation. However, they can also affect firms decisions because they increase creative de-
struction. The intuition is straightforward: firms invest in R&D to able to produce goods at a
higher quality than anyone else and drive their competitors out of the market. As the rate of cre-
ative destruction increases, however, the probability that a firm remains a market leader after its
innovation decreases (they might be driven out by future innovations by other firms) – an out-
come that reduces the incentive for firms to invest in R&D in the first place. Furthermore, this
effect feeds back into the spatial aspects of the policy discussed above (and vice-versa), which
means that both the space and time dimensions must be considered jointly if one is interested
in assessing the aggregate effects of R&D policy.

To evaluate the effects of counterfactual R&D policies, I build an endogenous growth model
with local agglomeration externalities and spatial heterogeneity. This framework captures both
the spatial and dynamic aspects of R&D tax credits by allowing the productivity of individual
inventors to increase with the population density of the city where they live. In addition, the
spatial distribution of the population in this model is itself endogenous, which means that
changes in local R&D tax credits can affect the location of inventors/firms. I use this model to
compare the welfare level under the current distribution of tax credits in the US with two other
policies: a spatially neutral R&D subsidy (i.e., that does not vary over space) and a theoretical
welfare maximizing distribution of R&D subsidies that is obtained by solving a social planner’s
problem. My findings suggest that removing the spatial variation of R&D policy hurts the
economy, but that the current distribution of subsidies is far from being optimal.

In its essence, the framework I develop adds a spatial dimension to Schumpeterian models
of endogenous growth (see Aghion et al., 2014). The economy is composed of a system of cities
c ∈ {0, 1, . . . , C}, where C → ∞. Each city is endowed with an amenity level, land mass
and a stochastic city-specific productivity for innovation. Cities are populated by inventors
(who produce innovation), production workers (who produce goods), and by the firms that
hire them. I assume that both inventors and production workers are freely mobile at all points

2Note that spatial heterogeneity is important: a policy that subsidizes all regions at the same rate could still have
an impact over the spatial configuration of the economy if R&D costs and local caracteristics are complementary.

3For example, Kline and Moretti (2014) find that the gains due to agglomeration from investments made by the
Tennessee Valley Authority were largely neutralized by losses in the rest of the country. Glaeser and Gottlieb (2008)
stress that aggregate gains can only be obtained from the redistribution of economic activity if the policy makers
favor areas where the elasticity of output with respect to agglomeration is high.
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in time, but can only be hired by firms located in the city where they live.
I also allow for agglomeration spillovers in the production of innovation. Specifically, in-

ventors become more productive when they are living in cities that are densely populated by
other inventors. As a result, firms that invest in R&D also benefit from locating in cities where
there is a large population of inventors. The remainder of the structure of the model regard-
ing innovation follows a standard quality ladder framework, with a few modifications that will
discussed in detail in the model section.4 Firms innovate over intermediate goods, which exist
in a continuum of varieties, each with a different quality level. After a successful innovation,
a firm is able to produce the good over which it innovated at a higher quality than any other
firm, becoming the technical leader over that product. The leader is then able to drive all of its
competitors out of the market, producing the good under monopolistic competition.

Firms in this economy produce three types of goods. Intermediate goods are freely tradable
and used as inputs in the production of a final (tradable) good. A second type of final good,
which is non-tradable, is produced and consumed in each city (e.g., housing). Both types of
final good are produced by a representative producer under perfect competition. I also assume
the existence of a central planner (government) that fully taxes all land- and firm-owners to
provide R&D subsidies and a public good. Consumers derive utility from the consumption of
both final goods (tradable and non-tradable) and the public good. For ease of notation, I refer
to the final tradable good as “final” and the final non-tradable good as “non-tradable.” In line
with Henderson (1974), the production of the non-tradable good displays decreasing returns
to scale in equilibrium (involves a fixed factor – land), which generates congestion costs and
limits the size of cities.

The last ingredient of the model is the free entry of firms into any city in the economy.
Along with the free mobility of inventors and production workers, this condition implies that
the distribution of the population is endogenous and responds to changes in R&D policy. This
is one of the key results in the model, as it allows the government/social planner to use R&D tax
credits to influence the location of inventors and firms – and therefore leverage agglomeration
spillovers to affect the productivity of investments in innovation.

Because the population of inventors determines the agglomeration spillovers in each city,
all other variables in the model’s equilibrium will be a function of how inventors are distributed
across space. The rate of growth of the economy, for example, is directly affected by both the
dispersion of the population of inventors and by their location: more inventors in more pro-
ductive cities will generate a higher rate of growth. One of the appealing aspects of the model
is therefore that the share of inventors in each city can be expressed with a closed form solu-
tion. Furthermore, this share is completely determined by city-specific features (R&D subsidies,
amenity levels and the expected productivity of innovation) and three parameters: the elastic-
ity of agglomeration, the elasticity of congestion and the share of expenditures on non-tradable

4Most of the structure will take elements from Akcigit and Kerr (2018). There are, however, a few simplifications.
First, the rate at which firms innovate does not scale with firm size (this is relaxed in one extension of the model in
appendix G). Second, all innovation generates creative destruction: i.e. there is no “internal” innovation. Lastly, all
innovation is homogeneous, in the sense that the improvement in quality generated by an innovation (step size) is
fixed.
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goods.
The estimation of the parameters in the model is done in three steps. In the first step I

calibrate the value of the set of parameters that can be directly matched to quantities in the data.
The second step takes advantage of the model’s structure, which suggests that the elasticity of
agglomeration and the elasticity of congestion can be estimated through linear regressions.
In each case, the estimation consists of regressing the relevant outcome on the population of
inventors or the population of production workers in each city (in addition to other controls,
including city and year fixed effects). To account for endogeneity in each city’s population,
I propose an instrument that is based on shift-share research designs (see Adão et al., 2018;
Borusyak et al., 2018; Goldsmith-Pinkham et al., 2018). Like shift-share designs, the instrument
leverages industry-specific growth in the employment shares of inventors as exogenous shifters
for the population in each city.

The third step recovers the remaining parameters by matching model predictions to mo-
ments in the data. I focus on moments related to the production of innovation, such as the
share of the population of inventors and patents filed in each city. I verify the model’s exter-
nal validity by showing that it can accurately replicate the spatial distribution of variables that
were not targeted for estimation: the correlation between distributions generated by the model
and in the data range from 0.5 (patents per capita by city) to 0.97 (share of firms by city). I also
show that changes in R&D tax credits over time can explain a large part of the variation in the
share of inventors and patents filed in each city since the 1970’s. This result suggests that R&D
policy is indeed well suited to spatially reallocate innovation in the country.

Finally, I use the framework described above to analyze the welfare effects of alternative spa-
tial distributions of R&D subsidies. Specifically, I address the following question: “Given the
government’s revenue, how much can we increase aggregate welfare5 in the economy simply
by reshaping the distribution of R&D subsidies among cities/states?” Heuristically, this exer-
cise consists of fixing the average level of the subsidy but changing its value across locations.
I consider the effect of two counterfactual policies: one that removes all spatial variation by
implementing a common subsidy in the entire country, and one that implements an “optimal”
distribution of subsidies (that is found by solving a central planner’s problem).

Quantitatively, I find that removing the spatial variation of R&D tax credits in the US would
generate a slightly less concentrated distribution of the population (the HHI index moves from
0.027 to 0.025) and reduce welfare by 0.77%. This suggests that the states that offer the largest
credits are indeed to ones that are comparatively better at producing innovation. When com-
paring the current welfare level with the level attained by an optimal distribution of R&D tax
credits, I find that the potential welfare gains are fairly high: if subsidies are allowed to vary by
city, aggregate welfare increases by at least 6% under the optimal distribution. If subsidies are
only allowed to vary by state, the gains are about half as large, at 3.2%. Both cases, however,
imply that part of population of inventors in small and medium-sized cities should instead be
working at large (and more productive) cities.

5Because firm- and land-owners are fully taxed be the government, welfare in the context of the model means
the sum of the utility of all inventors and production workers.
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1.1 Relationship to the Literature

This paper is related to several strands of the economic literature. The main findings of the
paper contribute to the literature on spatial misallocation and optimal spatial policies. In line
with my findings, a number of other studies have found large potential gains from reallocating
resources across space in the US.6 Hsieh and Moretti (2019) argue that housing supply restric-
tions adopted in some of the most productive cities in the US significantly lowered the country’s
rate of growth between 1964 and 2009. Fajgelbaum et al. (2019) find that tax dispersion across
states leads to aggregate losses because it distorts the spatial allocation of resources. Adopting
a strategy closer to mine (although not necessarily focusing on policies that foster innovation),
Gaubert (2018) and Fajgelbaum and Gaubert (2018) develop general quantitative frameworks
that allow them to compute optimal local subsidies designed to attract workers and firms to
each city. Similarly, Ossa (2015) explores the welfare effects of subsidy competition among
states, while Kline and Moretti (2014) study the long run effects of the Tennessee Valley Au-
thority development program.

While these are important contributions, the existing literature has analyzed the welfare
effects of spatial policies primarily though static frameworks. As discussed above, R&D tax
credits have both spatial and dynamic effects that interact with each other. A purely spatial
model would incorrectly evaluate the welfare effects of spatially reallocating R&D subsidies
because it would ignore the effects of a rise/fall in the rate creative destruction over the incen-
tives of firms. Similarly, a purely dynamic model would predict no relationship between the
location of subsidies and aggregate growth. Thus, to understand how the aggregate economy
reacts to changes in the distribution of R&D subsidies, one must adopt a setting that captures
both the dynamic and spatial effects of this policy.

The theoretical framework developed here is based on endogenous growth models where
innovation is the main driving force of economic growth (e.g., Aghion and Howitt, 1992; Klette
and Kortum, 2004; Akcigit and Kerr, 2018). It contributes to this literature by nesting a simple
model of innovation through creative destruction into a spatial setting. The resulting model
retains many of the features present in the growth literature, but also allows for spatial hetero-
geneity, agglomeration spillovers and an endogenous distribution of the population. Adding a
spatial dimension to this class of models helps us to understand the linkages between innova-
tion at the firm level, which is greatly impacted by the firm’s location through agglomeration
spillovers, and broader economic growth. It is also fundamental to the investigation of the
impact of spatial policies over aggregate welfare and growth.

This framework also contributes to the literature on spatial and dynamic models. One
closely related paper is Duranton (2007), who embeds the quality ladder model of Grossman
and Helpman (1991) into an urban structure in order to study the city size distribution and

6In light of the recent rise in economic inequality across the US, some economists have diverted their focus to
policies designed to mitigate economic distress (Austin et al., 2018) or income inequality Farrokhi (2018). Related to
the topic of this paper, Glaeser and Hausman (2019) discuss changes in innovation policies that focus on particularly
impoverished areas as means of reducing joblessness. At the same time, they recognize that spatially reallocating
innovative activity might reduce the overall production of innovation in the country, and so they suggest alternatives
that minimize the spatial reallocation of R&D funding.
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the movement of industries across cities. The main advantage of the current setting is that ag-
glomeration and congestion externalities are microfounded and endogenously generated in the
model’s equilibrium; in contrast, Duranton (2007) relies on a reduced form that captures the net
effect of these externalities on the size of cities. An alternative branch of spatial and dynamic
models is developed by Desmet and Rossi-Hansberg (2014) and other papers that follow (see
also Desmet et al., 2018).7 The models in those papers feature a realistic geography, which in-
cludes trade and moving costs and locations that are ordered in space. I ignore most of these
geographical frictions, which enables me to focus on the dynamics of innovation for individual
firms. This produces a model that has a natural link between innovation at the firm level and
patent data.

The remainder of this paper is organized as follows. Section 2 develops a formal endoge-
nous growth model that replicates the linkages between city-specific R&D subsidies and aggre-
gate growth. Section 3 solves for the model’s equilibrium in a Balanced Growth Path. Section 4
shows how to map the model’s equilibrium to the US data and estimate its parameters. In sec-
tion 5, I use this framework to measure the effects of the adoption of alternative R&D policies.
Section 6 concludes.

2 A Dynamic Spatial Model of Innovation and Growth

In this section I describe in detail the environment of the model; section 3 then defines and
solves for its equilibrium. The main contribution of this model is to allow for spatial hetero-
geneity and agglomeration externalities to affect the productivity of R&D investments by firms.
Not only does this imply that the spatial distribution of population in the economy matters for
growth, but, because firms and workers choose where to locate, this distribution is also en-
dogenously determined. Since the goal of the model is to capture the aggregate effects of R&D
subsidies, there are no agglomeration effects in the production of goods. I also introduce local
shocks to the productivity of R&D investments in each city. Assuming that the number of cities
is large, this structure allows for the existence of a Balanced Growth Path where the aggregate
growth rate of the economy is constant, but the growth rate and population in each individual
city can still fluctuate over time.

2.1 Cities

There are C + 1 cities, indexed by c ∈ {0, 1, . . . , C}. I also assume that there is large number
of cities, i.e., C → ∞. Cities differ from each other by their level of amenities, αc, the amount
of land they posses, m̄c, and a stochastic (time-varying) city-specific productivity in the pro-
duction of innovation, χc(t). Amenities reflect features that improve the quality of life in a
particular city, making it more attractive for workers to live there. These features can be related
to the city’s geographical location, such as climate or proximity to an ocean, or to the city’s

7Yet a third strand of the literature using spatial and dynamic models analyzes the dynamic response of the
economy to local shocks (e.g., Caliendo et al., 2019). Models such as those are fundamentally different from the
one presented here. Indeed, those studies do not attempt to explain the effects of local policies/shocks on long-run
economic growth, but instead focus on how the economy adjusts to these shocks in steady state.
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history, customs, etc. Importantly, amenities are fixed over time. Land is a fixed factor in each
city and is owned by absentee land owners, who are fully taxed by the government. Without
loss of generality, I normalize m̄0 = 1 and m̄c = 1/C for all c ≥ 1 (a discussion on why city 0 is
different from the others will follow below).8

The city-specific productivity for innovation reflects the fact that some cities are “hubs”
of innovation. These cities are usually the home to more venture capitalists, who favor local
investments (Gompers and Lerner, 2001; Kolympiris et al., 2011), or have a “culture” that is
favorable to entrepreneurship and innovation.9 Unlike amenities or land, this productivity is
not fixed over time. Specifically, I assume that it evolves stochastically according to

χc(t) = χ̄ce
zc(t),

where χ̄c is a constant, capturing permanent differences in the productivity of investments in
R&D between cities, and zc(t) follows an Ornstein-Uhlenbeck (O-U) process: dzc(t) = φ(µ −
zc(t))dt+ σdWc(t), where Wc(t) is a (city-specific) Wiener process.10 I assume µ = −σ2/4φ, so
that, under the process’ stationary distribution, E[ezc ] = 1.

All cities are populated by workers and firms. Workers are separated into two types: inven-
tors and production workers. Inventors are hired by firms who wish to invest in R&D, while
production workers are used to produce final goods. The total population of inventors in the
economy is given by I , while the total population of production workers is given by L, both
of which are kept constant over time. Note that this assumption excludes the possibility that
workers adjust their occupation based on the amount of R&D subsidy offered. This is not far
from reality, however, as the supply of inventors is very inelastic (Goolsbee, 1998).

Both types of workers are freely mobile between cities, but are hired locally. Free mobility of
labor is of course a simplification of reality, but in line with empirical findings that individuals
react quite strongly to tax differentials between regions (Moretti and Wilson, 2017). In contrast,
I assume that firms are able to enter any city they wish, but are not allowed to move once their
location is set (a common assumption in spatial models; see e.g., Behrens et al., 2014). The
requirement that workers are hired locally thus guarantees that firms are located in the same
city where their employees live. Finally, goods can also be subdivided into three types: a final
non-tradable good, a final tradable good and intermediate goods. Both the tradable final good

8This normalization stresses the fact that when the number of cities is large, each city represents a small share of
the country – an argument that will be relevant for the application of the Law of Large Numbers when constructing
the equilibrium of the model. Furthermore, the normalization is without loss of generality because differences in
the land mass between these cities cannot be differentiated from differences in αc or χc.

9For example, Manso (2011) stresses the need for tolerance for failure in innovation and compensation practices.
This idea is embodied in the Silicon Valley mantra “fail fast, fail often”, while in some places the legal or reputational
costs of an early failure are so high that entrepreneurs essentially have one shot. Saxenian (1994) describes strong
cultural differences between Boston’s Route 128 and the Silicon Valley in her arguments for why the semiconductor
industry grew at a faster pace in the latter. See also the survey by Carlino and Kerr (2015) for a more detailed
discussion on the topic.

10The O-U process has several properties that make it ideal for modeling the evolution of the city-specific shock.
In particular, it admits a stationary distribution (which is also its limiting distribution as t → ∞) with finite mean
and variance (see Stokey, 2008) – meaning that the Law of Large Numbers applies to city-specific outcomes in the
model. As a result, the model allows for uncertainty on the city level, but no aggregate uncertainty when the number
of cities is large.
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and intermediate goods can be traded at no cost. Firms, like land, are owned by absentee firm
owners who are fully taxed by the social planner/government.

2.2 Preferences

Consumers in this model are inventors and production workers. All consumers have the same
utility function, but might differ in their wages. Recall that both types of worker are free to
move into any city they wish, so that a worker of type h ∈ {i, `} (i.e., inventor and production
worker, respectively) has utility given by

Uh(t0) =

∫ ∞
t0

e−ρt max
c(t)
{uhc(t)(t)G(t)}dt,

where c(t) indicates the city where the worker lives during time t, G(t) is the amount of public
good consumed in period t and uhc(t)(t) is the highest utility that a worker of type h living in
city c during time t can attain from the consumption of the final goods. Formally, for each c

uhc (t) = max
n(t),y(t)

[αcn(t)]θy(t)1−θ s.t. y(t) + pn,c(t)n(t) ≤ whc (t).

In the expression above, n(t) is the amount of the non-tradable final good consumed by the
worker in time t and y(t) is the amount of the tradable final good consumed in the same pe-
riod. For simplicity of notation, I will refer to the non-tradable final good simple as “non-
tradable good” and to the tradable final good as “final good” (to differentiate it from interme-
diate goods). All workers inelastically supply one unit of labor per period, so their income is
equal to their wage, whc (t). To keep the model tractable, I assume that all consumers are “hand-
to-mouth”, in the sense that they cannot borrow or save.11

2.3 Technology

2.3.1 Non-tradable Good

Non-tradable goods are locally produced by a competitive firm using land and the labor of
production workers. The representative non-tradable goods producer in each city chooses how
many production workers to hire and how much land to rent in order to solve

max
`n,c(t),mc(t)

pn,c(t)n(t)− w`c(t)`n,c(t)− pm,c(t)mc(t) s.t. n(t) = `n,c(t)
βmc(t)

1−β,

where pn,c(t) is the price of the non-tradable good, pm,c(t) is the price of land, and w`c(t) is the
wage received by production workers in city c.

11This assumption simplifies the worker’s problem so that their demand functions can be easily computed re-
gardless of the worker’s location history – because wages vary between cities, a consumer’s wealth would depend
on the cities where he or she lived if savings were allowed. However, it also implies that the consumer’s problem
is essentially static. As a result, all of the dynamics in this model are generated in the production side, as firms
invest in R&D and innovate upon goods. In addition, note that consumers cannot hold assets, so the redistribution
of profits cannot be done through the ownership of equity by workers. Instead, profits will be redistributed by the
government/social planner by taxing firms to provide the public good.
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Land is a fixed factor in each city, which means that the production of the non-tradable
good will have decreasing returns to scale in equilibrium. This is what generates congestion
costs in cities: as the population of a city increases, so does the demand for the non-tradable
good. Because of decreasing returns to scale, the higher demand will push the price pn,c up,
making it less attractive to live in that city.12

2.3.2 Final Goods

The representative final good producer uses the labor of production workers and all interme-
diate goods as inputs to competitively produce the final good. Like all other firms, the final
good producer is free to choose where to locate. If production occurs in city c∗, the final good
producer solves

max
`y,c∗ (t),{kj(t)}j∈J

Y (t)−
∫
J
pj(t)kj(t)dj−w`c∗(t)`y,c∗(t) s.t. Y (t) =

`y,c∗(t)
ε

1− ε

∫
J
kj(t)

1−εqj(t)
εdj,

where `y,c∗ is the number of production workers hired by the final good producer, and kj and
qj are the quantity and quality of intermediate good j used in production, respectively. Each
intermediate good is sold at a price pj to the final good producer and the price of the final good
is normalized to 1. Recall that all intermediate goods and the final good are freely tradable
across cities, so the location of their production does affect their price.

2.3.3 Intermediate Goods

Intermediate goods exist in a continuum of varieties j ∈ J ≡ [0, 1]. Intermediate good produc-
ers (or simply “firms”) can produce any number of varieties. The set of products that each firm
is able to produce – and the quality at which it can produce them – is given by the set of prod-
uct over which that firm has innovated in the past. For now, I take this set as given. Following
Akcigit and Kerr (2018), firms compete over the production of each variety j by choosing prices
according to the following.

Assumption 1. All firms able to produce intermediate good j enter a two-stage pricing game. In the
first stage, firms decide whether to pay a small fee to be able to announce their price. In the second stage,
they choose the price at which they propose to sell good j, given the set of firms who paid the fee in the
first stage.

A direct result of assumption 1 is that only the firm who can produce good j with highest
quality (i.e., the technical leader) pays the fee and enters the second stage of the game. As it will
be shown in the equilibrium description below, the demand for intermediate goods increases
with their quality, so technical laggards in the production of good j can never recover their fee

12The production function shown above also implies that, unlike in Hsieh and Moretti (2019), the elasticity of
the supply of the non-tradable good with respect to the population is the same for all cities. Note, however, that
the supply function itself responds to differences in land mass and amenities (through their effect of wages). One
way to interpret this result is that this production function abstracts from differences in land regulation that might
induce the non-tradable good producer to have different responses to the amount of land in each city. While this
obviously imposes some restriction to the model, it is also important to keep its tractability.
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if they choose to enter the second stage. The technical leader can therefore choose its price as
if it were a monopolist in the production of good j. One crucial condition for this argument to
hold is that all firms have the same cost of production, regardless of their location (this excludes
a production function where labor is used to produce intermediate goods, since wages vary by
city). If the location of a firm affects its cost of production, the technical leader in the production
of a good j might not be able to drive low quality firms off the market. For example, firms who
produce the good at a lower quality but who also face lower costs of production could remain
in the market by selling that good at a lower price than the leader is willing to.13

I follow Akcigit et al. (2018a) and assume that the final good is used a factor of production
for intermediate goods. Since the final good is freely tradable, all firms face the same marginal
cost ν > 0 and the technical leader in each variety chooses the amount of good to produce by
solving

max
kj(t)

pj(kj(t); qj(t))kj(t)− νkj(t).

where pj(kj ; qj) is the inverse demand function for intermediate good j the price of the final
good is normalized to 1 in all periods. Also note that there is nothing that is city-specific in
the production of intermediate goods. The only incentive that firms have to locate in specific
cities comes from their investments in R&D, which ultimately determines the set of products
that firms produce.

2.3.4 Research and Development

Innovation serves two purposes in this model. First, it increases the quality of intermediate
goods, which is the driving force for economic growth. Second, it adds products into a firm’s
portfolio by making it the quality leader for a given variety of intermediate good. Whenever a
firm f innovates over a product line j, it is immediately able to produce that good with quality
(1 + λ)qj(t), where λ > 0 is the quality improvement of the innovation (or the step size in the
quality ladder) and qj(t) is the highest quality at which good j is currently produced by any
firm. Note that the quality improvement makes the innovating firm the new technical leader
on the production of good j, “stealing” this product from whichever firm currently produces
it.

To produce innovation, firms must invest in R&D. For any given investment, the number
of innovations realized in each period is stochastic and follows a Poisson distribution. In con-
tinuous time, this means that each firm produces at most one innovation per period.14 I also
assume that firms are not able to target any specific product line with their R&D investments,
so the resulting innovation is realized over any product j ∈ J with equal probability. There are
two important consequences of this assumption. First, there is no strategic interaction between

13The same issue arises if there are transportation costs for intermediate goods, where technological laggards are
still able to make profits by selling a good to nearby cities. Eaton and Kortum (2002) highlight a similar mechanism,
where the most productive firms are not necessarily the only ones who sell goods in the market, since geographic
barriers also play a role in determining prices.

14Fix x as the arrival rate of an innovation for an arbitrary firm. The number of arrivals N in a period of length
∆ is distributed according to P(N = k) = e−∆x(∆x)k/k!. By Taylor expansion of e∆x, it is straightforward to show
that P(N = 0) = 1−∆x+ o(∆), P(N = 1) = ∆x+ o(∆) and P(N ≥ 2) = o(∆).
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firms in their R&D investment decisions, as they cannot target each others’ products. Second,
since all firms start with no product lines in their portfolio and can only add at most one prod-
uct per period, the number of products in any firm’s portfolio is always countable. Because
there is a continuum of product lines in the economy, the probability that a firm innovates over
one of its own products is zero. A firm does, however, need to consider the probability that
another firm will innovate over a product it is currently producing. In this case, the product is
stolen and the incumbent producer removes it from its portfolio.

The arrival rate of an innovation is determined by the firm’s location and its investment in
R&D. This investment requires the labor of inventors, who benefit from agglomeration exter-
nalities in the city where they work. Specifically, let Ĩc be the population of inventors per unit of
land in city c. The productivity of each individual inventor who resides in c on the production
of innovation is proportional to Ĩηc , for η ≥ 0. Hence, a firm f located in city c who hires if,c
inventors will produce an innovation with arrival rate

xf,c(t) = χc(t)
(
Ĩc(t)

ηif,c(t)
)ψ

. (1)

The “strength” of the agglomeration externality is controlled by the parameter η; in particular
this model nests the case where there are no agglomeration externalities by setting η = 0.

Investment in R&D also involves a fixed cost, paid in terms of the labor of inventors: firms
need to hire κ > 0 inventors to cover their fixed cost. This cost is paid in every period that
the firm decides to invest in R&D, and reflects managerial and maintenance costs associated
with research, such as cleaning and repairing laboratory equipment and the management of
inventors. Firms that decide not invest in R&D in a given period do not need to pay the cost
in that period; but will need to pay it in case they decide to invest in the future. In terms of
the model, this fixed cost acts as a benchmark for the value of entry – so that free entry drives
the expected value of entrant firms to zero. Including a fixed cost instead of an entry cost is
convenient in this model because it makes entrants and incumbents symmetric.

There are several assumptions implicit in the functional form of the production of inno-
vation (1). The first assumption is that the population of inventors is the relevant measure of
agglomeration. This is empirically tested and confirmed in appendix C.3.3. Second, innova-
tion does not scale with firm size, so that all firms in the same city innovate at the same rate.
Appendix G presents an extension of the model that allows for the scaling of innovation and
the fixed cost with firm size, and shows that the aggregate predictions of the model remain
unchanged.

Third, agglomeration spillovers are fixed for all inhabitants of the same city, and non-existent
outside the borders of the city. In practice, agglomeration externalities are likely to change con-
tinuously with the distance between agents (Rosenthal and Strange, 2001; Carlino et al., 2012).
Under this interpretation, the elasticity of agglomeration defined in this paper is in fact the
aggregate effect of agglomeration within a distance that corresponds to the average size of a
city. With that said, an analysis that explicitly takes into account the distance between inven-
tors would be both impossible to conduct given the available data and most likely not add
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much intuition to the model. Recall also that all policies/regulations are defined over specific
geographical boundaries, so analyzing the effect of agglomeration over those boundaries is
consistent with the purpose of this paper.

Fourth, there is no sorting into cities because inventors and firms are homogeneous. If there
is sorting in reality, the ex-post differences between the productivity of workers in different cities
will be captured by χ̄c, although this does not change the fact that sorting is endogenous and
might respond to policy changes. Furthermore, it is unclear how the introduction of sorting
would affect the optimal distribution of R&D subsidies. If sorting and agglomeration are com-
plements (i.e., inventors with high productivity also benefit more from agglomeration), then it
is likely that the economy would benefit from a higher spatial concentration of inventors. Nev-
ertheless, the infra-marginal inventors moving in to larger cities would also be less productive,
and reduce the average productivity in those places.

Finally, firms can’t target innovations at their own goods, so that all innovation generates
creative destruction. Intuitively, this means that firms do not benefit from their own past invest-
ments to increase the quality of goods that they own. Since firms located in more productive
cities innovate more frequently, the absence of “internal” innovation reduces the incentives for
firms to locate in those places. Both assumptions (lack of sorting and of internal innovation),
however, are crucial for the tractability of the model and are thus kept throughout the paper.
The counterfactual results in section 5 should be interpreted with those caveats in mind. With
that said, including both sorting and internal innovation is likely to only strengthen those re-
sults, which already imply that a higher spatial concentration of inventors is welfare enhancing.

City 0. To reflect the fact that some cities in the US have never produced a single patent, I
allow for the existence of one city where χ̄0 = 0. Intuitively, city 0 is representative of all cities
that do not have minimal necessary conditions for investment in R&D (and therefore do not
innovate) in the country. Firms located in city 0, however, can still engage in the production of
goods.

2.4 Local Policies and the Government

The policy of interest in this paper are local R&D subsidies. These subsidies transfer a share
of each firm’s R&D cost back to the firm. They are local in the sense that the subsidy rate, sc,
varies according to the city where the firm is located. On top of R&D subsidies, the government
also provides a public good, G. The public good is nationally available and is consumed by all
workers.

I assume that the government fully taxes all firm- and land-owners to finance its expendi-
tures. In this setting, the provision of the public good plays two important roles. First, it is a
simple device for redistributing profits and land rents back to workers. Second, expenditures
on on the provision of this good are used to balance the government’s budget constraint, given
that the values of the R&D subsidy rates are taken directly from the data. Throughout the
model and in all counterfactuals, the amount of public good provided in each period is fixed
at G(t) = Ḡ for all t.
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3 The Balanced Growth Path Equilibrium

In this section, I explicitly pose all problems faced by consumers and firms and solve for the
model’s equilibrium. In what follows, I will impose two restrictions on the equilibrium. First,
I will solve for a Balanced Growth Path, in which all aggregate variables grow a constant rate.
Second, I require that each one of the local shocks zc(t) follows its stationary distribution. Not
surprisingly, I refer to this equilibrium as a Stationary Balance Growth Path (SBGP), formally
defined below.

Definition 1. Given initial product quality levels {qj(0) > 0}j∈J and a set of values for the R&D sub-
sidy, amenity level and expected productivity of innovation in each city {sc, αc, χ̄c}Cc=0 such thatχc(t) =

χ̄ce
zc(t), χ̄0 = 0 and dzc = ψ(µ−zc)+σdWc, a Stationary Balanced Growth Path Equilibrium of

the model consists of, for all periods t ≥ 0: (a) an allocation of goods
(
Y (t), {nc(t)}Cc=0, {kj(t)}j∈J

)
, (b)

a spatial distribution of inventors, production workers and firms {Ic(t), Lc(t), Nc(t)}Cc=0 and (c) prices
{wic(t), w`c(t), pn,c(t)}Cc=0 such that

(i) zc(t) is normally distributed with mean µ and variance σ2 for all t and all c.

(ii) The production of the final good Y (t), the average quality of intermediate goods in the economy
Q(t) =

∫
j∈J qj(t)dj, “baseline” wages (i.e., congestion-adjusted), and the utility of consumers

grows at a constant rate.

(iii) All workers are freely mobile and maximize their utility over the consumption of final and non-
tradable goods, as well as over the city where they live.

(iv) Final and non-tradable good producers maximize profits taking prices as given. Intermediate good
producers (firms) operate under monopolistic competition in the production of each product line j.

(v) Incumbent firms take their location as given and choose R&D investments to maximize their dis-
counted stream of profits. There is free entry to all cities and a large mass of potential entrants.

(vi) All labor and goods markets clear, and the amount of public good produced, Ḡ, balances the gov-
ernment’s budget constraint.

3.1 The Firm’s Static Problem

Each firm’s problem can be broken down into a static problem and a dynamic problem. In the
static problem the firm chooses how much to produce of each good, taking as given the set of
products it is able to produce and their respective qualities. In the dynamic problem, the firm
chooses how much to invest in R&D after observing the local productivity shock.

Final goods production. The final good producer is free to choose in which city to locate.
Because agglomeration externalities do not have any effect over the production of the final
good, production will take place in whichever city has the lowest wages (least congestion): city
0. Since χ0(t) = 0 for all t, no firms investing in R&D will locate there, which means that there
no inventors living city 0 as well. As a result, the only workers in city 0 are the ones hired by the
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final good producer and those who produce the non-tradable good. In each period, the final
good producer’s profit maximization problem is therefore (I drop time from the notation as it
causes no confusion)

max
`y,0,{kj}j∈J

`εy,0
1− ε

∫
J
k1−ε
j qεjdj −

∫
J
pjkjdj − w`0`y,0.

The first-order conditions define the wage in city 0 and the demand for intermediate goods:

[`y,0] :
ε

1− ε
`ε−1
y,0

∫
J
k1−ε
j qεjdj = w`0; (2)

[kj ] : pj =

(
`y,0

qj
kj

)ε
, ∀j ∈ J . (3)

Intermediate goods production. Given the demand function (3), each firm chooses kj to

max
kj

pj(kj ; qj)kj − νkj .

Since there are no transport costs and the marginal cost of production does not vary between
cities, the firm’s production decision is completely independent from the city where it is located.
Solving the problem above gives the quantity of good j produced

kj = qj

(
1− ε
ν

) 1
ε

`y,0. (4)

The profit made with product line j is πj = `y,0
(

1−ε
ν

) 1−ε
ε εqj .

3.2 Local Wages and Congestion Costs

Before getting into the dynamics of firm decisions, it is useful to understand how local wages
respond to the city’s population. Wage variation between cities is driven by differences in city-
specific characteristics (i.e., amenities and productivity) and congestion costs among cities and,
crucially, the fact that workers are freely mobile. Because of free mobility, it follows that uhc (t) =

uh(t) for all c, t and h ∈ {i, `} in equilibrium – that is, the utility level of workers must be the
same in all cities and in all periods.15 Given this condition, wages must adjust to compensate
workers for any variation in utility caused by different levels of amenities or the price of the non-
tradable good between cities. Wages between inventors and production workers differ due to
differences in the supply and demand for each type of worker.

Congestion costs in this model arise from the fact that the production of the non-tradable
good involves a fixed factor (land), and thus displays decreasing returns to scale in equilibrium.
Combined with the fact that the demand for non-tradable goods increases with the population
of workers in each city, DRS in the production of non-tradable goods implies that cities with a

15With the exception that ui0 is not defined, as there are no inventors in city 0. The same caveat applies to any
other city that is not populated by some type of worker – although cities 1, . . . , C are populated by both inventors
and production workers with probability 1 in the equilibrium.
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larger population will also have more expensive non-tradable goods – generating a congestion
cost. Note that, unlike agglomeration, the congestion force in this model is not an externality, as
its effects occur through prices.16 It does, however, limit the size of cities: as the population of
a city increases, so does the cost of living/producing there, so firms will start to favor locating
in other places. Lemma 1 describes how wages respond to the city’s population. In this lemma
and throughout the paper, I use the “tilde” notation to refer to variables per unit of land: if Ic
is the population of inventors in city c, then Ĩc = Ic/m̄c.

Lemma 1. Define Ic and Lc, respectively, as the population of inventors and production workers in
each city (with I0 = 0). Under the free mobility of workers, wages can be expressed as the product of a
“baseline” wage and a term that adjusts for congestion costs in each city. The wages of inventors in cities
c ∈ {1, . . . , C} is given by

wic = wi

(
Ĩ1−β
c

αc

) θ
1−θ

where wi =
1

1− θ

[
ui

[(1− θβ)]θ

] 1
1−θ
(

I

L− L0

) θβ
1−θ

, (5)

while the wages of production workers are

w`c = w`

(
L̃1−β
c

αc

) θ
1−θ

where w` =
1

1− θ

[
u`

(θβ)θ

] 1
1−θ

, (6)

where ui and u` are the utility levels of inventors and production workers, respectively. Land rents in
each of those cities is given by

pm,cm̄c =
(1− β)θ

1− θβ
wicIc.

In city 0, the number of production workers hired to produce non-tradable goods is `n,0 = θβL0,
and the number of workers hired to produce the final good is `y,0 = (1− θβ)L0. The wage of production
workers is given by

w`0 = w`

(
L̃1−β

0

α0

) θ
1−θ

(θβ)
(1−β)θ

1−θ (7)

and the total land rent is pm,0m̄0 = (1− β)θw`0L0.

See appendix B for the proof. The equations in lemma 1 also imply that the number of
inventors and production workers cities where there is innovation is proportional: Ic/I =

Lc/(L − L0). As a result, the population of production workers is sufficient to characterize
the population of inventors in each city, and vice-versa.17 Finally, note that the wage of produc-
tion workers in city 0 can be written in an alternative form by plugging (4) into the F.O.C. of

16For this statement, I use a more restrictive definition of externality which only includes effects that are not
reflected on prices. Alternatively, one could classify agglomeration as a non-pecuniary externality and congestion
as a pecuniary externality.

17While greatly simplifying the model, this proportionality also means that the model fails to capture any special-
ization of cities into activities that are more or less intensive in innovation. One potential extension that addresses
this issue is to allow for heterogeneity at the city-industry level, so that different industries, who might produce in-
novation with varying intensity, self-select into different cities. Being that as it may, this model can still reasonably
replicate both the spatial distribution of inventors and of the general population in the data (see section 4.4).
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the final good producer, equation (2):

w`0 =
ε

1− ε

(
1− ε
ν

) 1−ε
ε

Q, (8)

where Q =
∫
J qjdj is the average quality of all intermediate goods produced in the economy.

3.3 The Firm’s Dynamic Problem

Firms can either be entrant or incumbent. In each period firms choose how much to invest in
innovation, given the set of product varieties they own and the optimal production decisions
described above. Incumbent firms take their location as given, and are not allowed to move.
Entrant firms are free to choose which city to locate in. The timing of decisions in each period
is as follows:

(i) The shock zc(t) is realized and observed in all cities.

(ii) Potential entrants decide whether or not to enter and in which city to locate.

(iii) Entrants and incumbents decide how many inventors to hire.

(iv) Innovations are realized (based on the arrival rates xf,c) and production takes place.

Incumbents The dynamic problem faced by an incumbent firm located in city c can be de-
scribed by the Hamilton-Jacobi-Bellman (HJB) Equation in lemma 2 below. To make the expo-
sition clearer, first define qf to be the multiset of the qualities of products that are currently
being produced by the firm18 and D to be the rate of creative destruction of the economy – or
equivalently, the aggregate rate of innovation. Because the measure of intermediate good vari-
eties in the economy is one, D also coincides with the probability than any single product line
will be “stolen” at any point in time.

Let r be the (exogenous) interest rate and A = (Q,wi, D, L0) denote the “aggregate state”
of the economy, where Q is the average quality of all intermediate goods produced, wi is the
“baseline” wage of inventors, D is the rate of creative destruction, and L0 is the population
of production workers in city 0 (which affects the flow of profits for firms). For notational
convenience, I also define π̄ = (1 − θβ)

(
1−ε
ν

) 1−ε
ε ε, so that the per-period profit of each firm is

πj = π̄L0qj , and Zc = ezc , so that the city-specific productivity in the production on innovation
is χc = χ̄cZc.

Lemma 2. The HJB equation that describes the problem faced by an incumbent firm located in city
18A multiset is a generalization of a set that allows for multiple instances of each of its elements. The notation ∪+

indicates the multiset union operator, such that {a, b} ∪+ {b} = {a, b, b}. Similarly, the notation \− indicates the
multiset difference operator, such that {a, b, b}\−{b} = {a, b}. The reason why qf is a multiset is that a firm can
have multiple products that have the same quality.
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c ∈ {1, . . . , C} is

rVc(qf , Ĩc, Zc, A)−
∂Vc(qf , Ĩc, Zc, A)

∂A

∂A

∂t
=

max
xf,c



∑
qj∈qf

π̄L0qj + xf,cEj [Vc(qf ∪+ {(1 + λ)qj}, Ĩc, Zc, A)− Vc(qf , Ĩc, Zc, A)]

−(1− sc)wic(if,c + κ)−D
∑
qj∈qf

[Vc(qf , Ĩc, Zc, A)− Vc(qf\−{qj}, Ĩc, Zc, A)] +Rc(qf , Ĩc, Zc, A)


xf,c = χ̄cZc(Ĩ

η
c if,c)

ψ

The derivation of this equation can be found in appendix B. There are three groups of state
variables in the firm’s problem: the first is firm-specific, the second is city-specific and the third
is common across all firms in the economy. The first group includes qf , the set of qualities of the
product lines that are currently produced by the firm; the second group has Ĩc, the population
of inventors per unit of land in city c (which determines agglomeration spillovers), and Zc, the
productivity shock in city c; finally, the third group has the aggregate state A, which includes
the rate of creative destruction (i.e., the probability that one of the firm’s product lines will be
“stolen”), the “baseline” wage of inventors (which along with Ĩc determines the wage wic) and
the average quality of all intermediate goods produced in the economy.

The first term inside the curly brackets is the profit made through the production and sale of
goods. It is followed by the expected gain from one more innovation, which introduces a new
product into qf (recall that the number of innovations per period follows a Poisson distribution,
so that in continuous time the probability that two or more arrivals occur can be ignored).
The first term in the second line is the cost of investment in R&D (both variable and fixed),
subsidized at rate sc. The second term in the second line is the expected cost from the loss of
a product line due to creative destruction. The remaining term, Rc(qf , Ĩc, Zc, A), captures the
risk that firms in city c face due to the productivity shock.

As a final note, recall from section 2 that one of the sources of revenue for the government are
taxes on firm owners. Taxing firm owners in this model is the same as taxing firm’s profits; yet
no corporate income taxes appear on the HJB equation above. As shown in the proof of lemma
2, this can be done because a tax on a firm’s profit will not affect any of the firm’s decisions,
as long as the “profit” also includes R&D expenditures. As a result, the corporate income tax
only shifts the share of the firm’s value that is accrued to the firm owner, without having any
effect on the allocation of resources in the economy. By fully taxing firm owners, I study the
limiting case where corporate taxes are arbitrarily close to one, but where firms still behave as
profit maximizers (i.e. they behave as if their value function was Vc, as in lemma 2).

Entrants Entrants behave in the same way that incumbents do, with two exceptions: entrants
do not yet have any product lines of their own and are able to choose where to locate. As before,
define the aggregate state of the economy as A = (Q,wi, D, L0). The entrant firm’s problem
can be solved in two steps:
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Step 1: Choose which city to locate in after observing all shocks {Zc}Cc=1:

V e(A) = max
c
V e
c (Ĩc, Zc, A).

Step 2: Choose the level of innovation subject to being in city c.

rV e
c (Ĩc, Zc, A)− ∂V e

c (Ĩc, Zc, A)

∂A

∂A

∂t
=

max
xf,c

{
xf,cEj [Vc(qj , Ĩc, Zc, A)− V e

c (Ĩc, Zc, A)]− (1− sc)wic(if,c + κ) +Rec(Ĩc, Zc, A)
}

s.t. xf,c = χ̄cZc(Ĩ
η
c if,c)

ψ

The HJB equation for the second stage of the entrant’s problem is exactly analogous to the
incumbent’s problem, but does not include the flow of profits from current production or the
risk of loosing products to other firms by creative destruction. Proposition 1 describes the value
function for entrants and incumbents (see appendix B for the proof).

Proposition 1. In a Stationary Balanced Growth Path Equilibrium where the production of final goods
Y grows at rate g < r, the value function of an incumbent firm located in city c ≥ 1 and whose portfolio
of products is qf is

Vc(qf , Ĩc, Zc, A) = F (D,L0)
∑
qj∈qf

qj + max
{

0, Ec(Ĩc, Zc, w
i/Q,D,L0)Q

}
,

where F (D,L0) = π̄L0/(r + D) is the “franchise value” of adding a new product to the portfolio and
Ec is the entry value for firms city c (see the proof for a complete characterization).

In addition, the second stage value function of an entrant firm who is located in city c is

V e
c (Ĩc, Zc, A) = max

{
0, Ec(Ĩc, Zc, w

i/Q,D,L0)Q
}
.

Intuitively, F can be interpreted as the quality-adjusted franchise value of adding a new
product to the firm’s portfolio, while EcQ is the value at entry for all firms in city c. Note that
Ec does not depend on the firm’s portfolio of products, so it does not vary across firms in the
same city. The term max{0, EcQ} in the firm’s value function reflects the fact that each firm
has the choice to invest in R&D or not, and as such can be interpreted as the option value of
investments in innovation. When investing in R&D is optimal, Ec ≥ 0 and the arrival xf,c is
strictly positive. However, firms can also choose not to invest in R&D in any given period –
for example if the realized value of the shock Zc is too low. In this case, the firm does not hire
inventors if,c = 0, produces no innovation xf,c = 0, and does not need to pay the fixed costwicκ.

The assumption that g < r is a technical requirement for the present discounted value of
firms to be finite. From an intuitive point of view, note that the firm’s value from investing in
R&D grows at rate g (so long as Ec ≥ 0). Thus, if g > r, the optimal strategy for any given
firm will be to invest as much as possible on R&D (for example, by borrowing capital at rate r).
This will generate an expected growth in the firm’s value that is larger than the firm’s discount
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factor and thus the PDV diverges. The assumption that the rate of growth is smaller than the
real interest rate mitigates those concerns.

Free Entry. The first stage of the entrant’s problem specifies that entrants are free to locate in
any city they wish. Since there is a large mass of potential entrants to every city in the economy,
free entry implies that, in equilibrium

V e
c (Ĩc, Zc, A) = 0 for all c ∈ {1, . . . , C} and all t.

This condition says that the value of entry must be zero for all cities and at all times. The
intuition behind it simple: if the entry value were positive, firms would keep entering the city,
which increases congestion and eventually pushes the value of entry to zero. If the entry value
were negative (i.e., Ec < 0), two things happen. First, no firms will enter the city. Second,
incumbents will refrain from investing in R&D (see the discussion above). This pushes down
the demand for inventors in the city, which reduces congestion costs and the value of entry
grows back to zero.

One alternative way to read the free entry condition is that V e
c (Ĩc, Zc, A) = 0 for all cities

and for any value of the shock Zc and the aggregate state A. In other words, the population
of inventors must adjust so that the value of entry is zero in all cities. From proposition 1, this
implies that Ec = 0 regardless of the value of the state variables. This interpretation of the free
entry condition, proposition 2 determines the population of inventors in each city (once again
the proof can be found in appendix B).

Proposition 2. Imposing (1) free entry, (2) labor market clearing for both inventors and production
workers, and (3) assuming a large number of cities C → ∞ (so that the Law of Large Number applies
and the average of city-specific shocks converges to its mean), the population of inventors in each city is
given by

Ic = I ×

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c∑C

c=1

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c

× Z
1−θ
Θ

c

e
1−θ
Θ ( 1−θ

Θ
−1)σ

2

4φ

(9)

where Θ = (1−β)θ−ψη(1− θ). Moreover, the arrival rate of an innovation for a firm f located in city
c is

xf,c =

(
κ

ψ

1− ψ

)ψ
χ̄cĨ

ψη
c Zc, (10)

if the firm chooses to invest in R&D and zero otherwise. Similarly, the number of inventors hired by each
firm in city c is if,c = ψ

1−ψκ in case of positive investment and zero otherwise. The number of firms
located in city c who invest in R&D in each period is

Nc =

(
1− ψ
κ

)
Ic (11)

Finally, it can also be shown that the population of production workers in city 0 is proportional to L
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(i.e., L0 does not vary over time), and that wi is not affected by the city-specific productivity shocks

wi

Q
∝ π̄L0

r +D

{
1

C

C∑
c=1

(
χ̄c

1− sc

) 1−θ
Θ

α
θ
Θ
c

} Θ
1−θ

. (12)

Proposition 2 has three important results. First, it shows that the population of inventors
in each city has a closed form solution in equation (9), with relatively simple terms. Cities
with higher amenities, higher productivity for innovation, and higher R&D subsidies will have
more inventors (note that Θ > 0 using the parameter values from section 4). The population
of inventors in each city also reacts to the productivity shock Zc, increasing in periods where
the shock is larger. The composite parameter Θ can be interpreted as the “net elasticity” of
congestion: (1 − β) captures the elasticity of congestion with respect to a city’s population,
while ψη is the elasticity of the production of innovation with respect to the population of
inventors. Θ is then defined as the weighted difference between these two elasticities, where
the weights are determined by the share of expenditure on the tradable good, θ.

Second, proposition 2 says that the baseline wage of inventors – and therefore of production
workers as well (see equation B.4) – does not react to any of the city-specific productivity shocks.
Put differently, even though each city is subject to an idiosyncratic productivity shock, these
shocks “average out” on the aggregate, so the economy can still operate on a Balanced Growth
Path where there is no aggregate uncertainty.

Third, this proposition shows that the optimal arrival rate of innovation xf,c is uniform
across firms located in the same city and who make positive investments in R&D. Note, how-
ever, that the expected value of investing in R&D is null because of the free entry condition. As
a result, it is possible that some firms in the city choose to invest in R&D and some choose not
to. Indeed, the number of inventors hired by firms who make positive investments does not
respond to productivity shocks. Instead, the adjustment to those shocks is done entirely on the
extensive margin – both by incumbents who decide whether or not to hire inventors and by the
entry and exit of firms.19

3.4 Determining the Growth Rate

In this section, I finish the characterization of the SBGP equilibrium of the model by determin-
ing the rate of growth of the economy. To be able to do this, I first must determine the aggregate
rate of creative destruction of the economy, D. Note that, because all firms located in the same
city will make the same investment in R&D,D =

∑C
c=1Ncxf,c. Corollary 1 shows that this rate

can be expressed as a function of the spatial distribution of the population of inventors in the
economy (see appendix B for the proof).

19This is seldom the case in reality, as firms face a number of frictions (which are not included in the model) that
discourage them to, for example, periodically shut down their entire R&D division due to a bad transitory shock.
Having said that, this counterfactual conclusion for individual firms need not be an issue for this model, since its
purpose is not capture firms’ responses to local shocks, but to reproduce the link between city- and nation-wide
economic activity.
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Corollary 1. Define Īc = I
(

χ̄c
1−sc

) 1−θ
Θ
α
θ
Θ
c

{∑C
c=1

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c

}−1

to be the expected value of Ic

w.r.t. the local productivity shocks. Similarly, ˜̄Ic is the expected density of inventors in city c. The
aggregate rate of creative destruction is then

D ∝ 1

C

C∑
c=1

χ̄c
˜̄I1+ψη
c , (13)

Corollary 1 shows one of the key takeaways from this model: the aggregate rate of innova-
tion in the economy depends not only on the amount of inventors in the country, but also on
how inventors are geographically distributed. Since local R&D subsidies can change the spatial
distribution of inventors by attracting more firms to a given location, it follows that changes in
the spatial distribution of those subsidies affect the aggregate rate of innovation in the econ-
omy – even if the average subsidy rate (or total expenditure) is kept constant. The corollary
also proves, as alluded to before, that the rate of creative destruction is indeed constant on the
SBGP equilibrium (as both χ̄c and ˜̄Ic are fixed over time).

Proposition 3 now determines the value of the rate of growth of the economy in the SBGP
equilibrium, defined by g = Ẏ /Y . The proof can be found in appendix B.

Proposition 3. In a Stationary Balanced Growth Path equilibrium where the production of the final
good in the economy grows at rate g, the following are true:

(1) The average quality of intermediate goods,Q, and the baseline wage for both types of workers, wi and
w`, all grow at rate g. The utility level of workers, ui and u`, grows at rate (1− θ)g.

(2) The value of the rate of growth is g = λD.

(3) Let Jc(t) be the set of intermediate goods that are produced in city c at time t,Qc(t) =
∫
Jc(t) qj(t)dj

their aggregate quality, and gc(t) = Q̇c(t)/Qc(t) the rate of growth ofQc in time t. For large values
of t (i.e., as t grows to infinity), we have that

E[Q̇c(t)]

E[Qc(t)]
= g or, equivalently, E[gc(t)] = g − Cov(gc(t), Qc(t))

E[Qc(t)]
.

Part (1) of proposition 3 describes the rate of growth of aggregate variables in the SBGP
equilibrium of the model. Part (2) then shows that the rate of growth of the economy is equal
to the rate of creative destruction multiplied by the innovation step-size. Part (3) shows that the
ratio between the expected variation in the aggregate quality of goods produced in city c and
the expected quality of these goods converges to the national growth rate with time. Intuitively,
this result is a consequence of innovation by creative destruction: cities that produce goods with
higher-than-average quality will innovate over products whose qualities are, on average, lower
than the goods already produced in the city – and vice-versa. Through this mechanism, creative
destruction acts as a mean reverting force for the quality and the value of goods produced in

22



each city, precluding all economic activity from concentrating in a single city.20,21 Lastly, note
that none of the results in the proposition are predicated upon the initial spatial distribution
of economic activity: as long as no city is large enough to drive the evolution of aggregate
variables by itself, proposition 3 holds regardless of where the economy starts from.

3.5 Existence and Uniqueness

The existence of a solution for the SBGP equilibrium relies in two conditions. First, it requires
that r > g so that present discounted values of profits are finite (see the discussion following
proposition 1). Second, the number of cities must large enough so that the local shocks do not
generate aggregate uncertainty in the economy.22 Uniqueness comes from the unique spatial
distribution of inventors defined by equation (9). One important caveat here is that this dis-
tribution is only unique if the net elasticity of congestion Θ > 0. If this is not the case, the
agglomeration force is always larger than congestion and therefore it is always profitable for all
firms to locate in the same place. This generates multiple equilibria since the initial distribution
of population can affect the entire path of the economy – for example, if the entire population
is located in city ĉ in the initial period, there is no incentive for entrants to go anywhere else.

4 Identification and Estimation of the Model

The identification and subsequent estimation of the parameters in the model proceeds in three
steps. In the first step (section 4.1), I calibrate a set of parameters that can be directly matched
to quantities in data or reliably found in other studies in the literature. The second step (sec-
tion 4.2) uses linear regressions to estimate the elasticity of the agglomeration spillover with
respect to the population of inventors, as well as the elasticity of congestion with respect to the
population of production workers in each city. Finally, the third step (section 4.3) identifies the
remaining parameters by matching moments in the model to moments in the data. This step-
by-step structure simplifies identification of the model by allowing each step of the process to
take as given the values of parameters identified in previous steps.

To estimate the model, I use data on patent filings and economic activity within cities. Data
on patents filed is available on the USPTO Patent Dataset, which records all patents registered
in the US. It also provides data on the patent’s inventors and assignees (owners) and, impor-
tantly, their location. In addition, I use the County Business Patterns Dataset (CBP), which
provides information on the demography and economic activity in each county in the US. To
approximate the prices of non-tradable goods I use the Zillow Rent Index (ZRI), which esti-

20The rate of growth ofQc is also a measure of the rate of growth of the value of tradable goods produced in each
city, since

∫
Jc(t)

pj(t)kj(t)dj ∝ Qc(t).
21Another way to see this result is to note that the covariance between the rate of growth of a city and the quality

of goods produced there is proportional to g−E[gc]. Hence, if the expected rate of growth of a city is larger than g,
this city tends to grow faster when the quality of goods produced there is lower.

22An equilibrium could still exist if this condition is violated, but it would not be a balanced growth path.
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mates the median rental value per square foot across counties.23 Both the CBP and the ZRI
are aggregated to the city level, whose empirical counterpart is a CBSA. CBSAs, or core-based
statistical areas, are geographic areas defined by the US Office of Management and Budget that
consist of one or more counties (or equivalents) anchored by an urban center of at least 10,000
people plus adjacent counties that are socioeconomically tied to the urban center by commut-
ing. I use the most recent definitions of CBSAs, based on the 2010 Census standards. Appendix
C.1 describes in detail the construction of the dataset. For most of the estimation procedure, I
focus on a panel of firms (and their respective locations) who have filed patents between 1998
and 2016.

4.1 Calibration

A subset of the parameters in the model, shown in table 1, can be matched to the data in a
straightforward way. In this section, I detail how to calibrate these parameters. I start by setting
the rate of growth of the economy to g = 2%, which corresponds to the annualized historic rate
of growth in the US. Similarly, the discount rate of consumers is also set to ρ = 2%, following
a common practice in the growth literature (e.g., Acemoglu et al., 2018). The real interest rate
is fixed at r = 3.8%, which corresponds to the average interest rate in the US between 1961 and
2017 according to the World Bank.24

Innovation. I rely on the economic literature to determine the value of two parameters in the
innovation process: the curvature of the innovation production function, ψ, and the innova-
tion quality multiplier (or step-size), λ. I set ψ = 0.5 following several studies that agree on this
number. A series of papers identify ψ as the elasticity of patents with respect to R&D expendi-
ture. Blundell et al. (2002) estimates this elasticity to be 0.5 using count data models. Griliches
(1990) and Hall and Ziedonis (2001) find similar values. Other researchers identify ψ using the
elasticity of R&D expenditure with respect to taxes/subsidies, which is equal to ψ/(1−ψ).25 In
a survey, Hall and Van Reenen (2000) conclude that this elasticity is around unity. Similar esti-
mates have been found in more recent papers as well (Bloom et al., 2002; Wilson, 2009). Akcigit
et al. (2018b) add interesting nuances to this result, differentiating between the impact of taxes
on inventors/firms (micro level) and on states over time (macro level). Consistent with the dis-
cussion here, they find that “a one percentage point increase in the personal tax rate leads to
a 1.1 percent decline in the number of patents” at the inventor level. Note that a unit elasticity
of patents relative to taxes also implies ψ = 0.5. Finally, Acemoglu et al. (2018) arrive at the
same conclusion when computing the elasticity of R&D expenditures with respect to scientists’

23One drawback of this series is that it is only available after 2010. As an alternative, I also employ the Zillow
Home Value Index (ZHVI) as a measure of the price of non-tradable goods. The ZHVI has the median house price
per square foot in each county in the US, starting in 1996.

24See https://data.worldbank.org/indicator/FR.INR.RINR?locations=US&view=chart.
25The mapping is straightforward: the FOC from the firm’s problem (proposition 1) yields xf,c =

(χ̄cZc)
1

1−ψ [ψF (1 + λ)QĨηc (wic(1 − sc))
−1]

ψ
1−ψ . Using if,c = x

1
ψ

f,c/((χ̄cZc)
1
ψ Ĩηc ) and the fact that R&D spending

(minus the fixed cost) is (1 − sc)w
i
cif,c, The FOC gives (1 − sc)w

i
cif,c ∝ ( 1

(1−sc)wic
)
ψ

1−ψ . The elasticity of R&D
spending w.r.t. to the subsidy (tax) is therefore ψ/(1− ψ).
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wages using firm level data from the Census Bureau.
The innovation step-size is λ = 0.132. This is the value estimated by Acemoglu et al. (2018)

in a setting close to the one presented here. Akcigit and Kerr (2018) find a similar value for the
step size of “external” innovations (i.e., innovations that do not target a firm’s own products).
In both cases, the estimation of the step size is achieved through a simulated method of mo-
ments procedure that targets, among others, firms’ sales and R&D costs. Intuitively, these data
identify the innovation step-size because the increase in the quality of goods after an innovation
is reflected on the sales to R&D cost ratio of firms.26

R&D Subsidies. R&D subsidies are equivalent to R&D tax credits in the model, to which
I assign the values of existing credits in each state (i.e., the sum of federal and state-specific
credits). Because of differences in the tax code for each state, the statutory credit rates can be
different from the effective credit rates (i.e., the rates that are actually applicable as subsidies to
firms). For example, R&D tax credits are only applicable to R&D investments over and above
a given base value, which can differ across states. In addition, some states consider the federal
tax credit as taxable income, thus “recapturing” part of the credit. In all that follows, I assign sc
to be equal to effective R&D tax credit rate that applies to the highest tier of R&D investments
in each state, as computed by Wilson (2009), who has made this data publicly available27.

Nevertheless, there are a couple of details that require attention in this data. First, the value
of R&D credits changes over time, while the model assumes that sc is fixed. Most of these
changes happen before 1995, but there are still some cases where there is variation in the credit
rate after this period. I therefore use the average credit rate between 1998 and 2006 (the last
year available in the data) as a measure of the R&D subsidy in each state. Second, the model
is written in terms of cities (CBSAs), which is some instances do not fall into the geographical
boundaries of states. In those cases, I match the CBSA to the state of its largest urban center and
assume that the R&D credit rate of that state applies to the entire CBSA. For example, the New
York-Newark-Jersey City, NY-NJ-PA MSA is matched to the state of New York, the Chicago-
Naperville-Elgin, IL-IN-WI MSA is matched to Illinois, the Boston-Cambridge-Newton, MA-
NH MSA is matched to Massachusetts, and so on.

Production and Preferences. The elasticity of quality in the production of the final good, ε,
coincides with the profit/sales ratio for intermediate good producers, which can be observed in
the National Income and Product Accounts tables published by the Bureau of Economic Anal-
ysis (BEA). In addition, the preference parameter θ is the share of expenditure on non-tradable
goods by consumers. I set this parameter to 0.6, which is roughly the share of expenditure
in housing and transportation found in the Consumer Expenditure Survey, published by the
Bureau of Labor Statistics (BLS) and the share of aggregate investment on non-tradable goods
found by Bems (2008).

26This information, however, cannot be found in widely available datasets. Compustat contains this data for some
firms, but they represent a very small fraction of the universe of firms that file patents.

27See https://www.frbsf.org/economic-research/economists/daniel-wilson/.
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Population. The population of inventors in the economy, I , can be found through the unique
inventor ID in the USPTO patent data. For each year, I compute the total number of inventors
in the US – let Ipat be the average of this series over time.28 Since only inventors that have
authored patents are identified in the data, Ipat = ψI , which is the total number of inventors
hired by firms to produce patents (

∑
cNcif,c), not including those hired to cover fixed costs. A

simple adjustment gives I = Ipat/ψ.
The population of production workers or “non-inventors” in the economy is set so that

L+ I matches the total employed population in the CBP data. Finally, L0 is the total employed
population in CBSAs that did not file any patents throughout the sample (once again averaged
over time). Since the size of the economy does not affect the results in the quantitative exercises,
I normalize the population so that the total number of inventors in the economy is 1.

The number of cities is also chosen to match the data. There are 917 CBSAs in the US (not
counting Puerto Rico because it is not included in the CBP), of which 860 have filed at least one
patent between 1998 and 2016. Given that the number of patents filed is my measure of inno-
vation, I assume that the remaining CBSAs have not produced any innovation over my sample.
As a result, C = 860 (the cities who have a positive expected productivity in innovation) and
city 0 is representative of the remaining 57 CBSAs.

Table 1: Calibrated Parameters

Parameter Value Description Matches

ψ 0.5 Elast. innovation wrt R&D Literature
λ 0.132 Innovation step size Acemoglu et al. (2018)
sc [0.13, 0.30] Effective R&D credit rate Wilson (2009)
ρ 0.02 Discount rate Literature
g 0.02 Growth rate Annualized growth rate
r 0.038 Real interest rate Avg. real interest rate
ε 0.15 Elast. quality in final goods Profit/sales ratio (BEA)
θ 0.6 Preference parameter Share of expenditure in non-

tradables (BLS; Bems, 2008)
I 1 Population of inventors Avg. number of inventors re-

siding in CBSA’s (1998 - 2016)
L 175 Population of production

workers
Avg. employed population re-
siding in CBSA’s (1998 - 2016).

L0 0.85 Population of production
workers in CBSA’s that do
not innovate

Avg. employed population re-
siding in CBSA’s w/ no patents
filed (1998 - 2016).

4.2 Linear Regressions

In this section, I show how to identify and estimate η and β, which help to determine the elas-
ticities of agglomeration and congestion, respectively. In both cases, these parameters can be
estimated using linear regressions based on relationships predicted by the model.

28The superscript “pat” alludes to the fact that this is the total number of inventors who have authored patents.
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4.2.1 The Elasticity of Agglomeration

The functional form of the production function for innovation, equation (1), leads to a log-linear
relationship between the arrival rate of innovation, the number of inventors hired, and popula-
tion of inventors in the city for each firm located in city c – which suggests that the parameters of
this function can be estimated by linear regression. However, the model presented in section 2
is written continuous time, while the data is only available at a yearly rate. Therefore, we must
first transform equation (1) to reflect the same frequency as the data. This transformation is
straightforward and is described in detail in appendix C.2. It leads to the following regression
model

log(xf,c,t) = ψ log(if,c,t) + ψη log(Ic,t) + δc + zf,c,t, (14)

where, xf,c,t is the number of innovations produced by firm f , located in city c, during year t;
if,c,t is the number of inventors hired by firm f during year t; Ic,t is the population of inventors in
city cduring year t; δc is a city fixed-effect; and zf,c,t is a function off the city-specific productivity
shocks.

To proxy for the production of innovation in each year, I use the number of patents filed
by a firm in that same year. This is a fairly common practice, but it does have some caveats.
First of all, not all innovations are patented. Possible reasons for that include firms who decide
to protect their intellectual property by other means (for example with trade secrets) or the
fact that some innovations are not “patentable” (e.g., new managerial practices or marketing
strategies).29 Second, not all patents represent an innovation over a product. Examples include
defensive patenting and patent trolls.

To reduce the potential for a mismatch between patents filed and the production of inno-
vation by firms, I include two controls into the regression above. The first is the total number
of citations that the patents filed by each firm jointly receive. Patents whose main goal is not to
generate an innovation to increase the quality of a product are less likely to be cited by future
patents – so including the number of citations as a control helps to separate innovations over
products from other types of patents. On top of that, more recent patents mechanically receive
fewer citations (Hall et al., 2001), so I interact the number of citations with a dummy for the
year in which the patent applications were filed.30 The second variable included is the firm’s
industry, which controls for the possibility that some industries are more prone to patent in-
novations than others. In addition, I also add a year fixed effect into the regression to capture
aggregate variations over time (for example population growth).

One important empirical prediction of the model regarding the regression model (14) is that
both if,c,t ad Ic,t are correlated with the local shock zf,c,t, so that estimating the coefficients in

29Argente et al. (2019) argue that a substantial amount of product innovation comes from firms who do not patent.
However, patenting is positively associated with product innovation both at the intensive and extensive (when firms
switch to patents) margins.

30One alternative is to use citation-weighted patent counts as a measure of the production of innovation. While
this is likely a better measure of the impact of patents produced by a firm, it is not clear how much control firms
have over the quality of the patents that result from their investments. Because of that, I use patent counts as a
measure of the output of a firm’s R&D investment.
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that regression via OLS would recover neither ψ or η. To see why the model predicts that if,c,t
is correlated with zf,c,t, recall that the value of the productivity shock changes the number of
firms investing in R&D – so that a particularly low shock could induce some firms not to invest
in R&D in a particular period, while a high value of the shock would induce more firms to
invest (along with a larger number of entrants). Since zf,c,t is a function of the local productivity
shocks, the correlation follows. In the case of Ic,t, this correlation is easily seen from equation
(9), where the population of inventors in each city is a function of the city’s productivity in each
period (see appendix C.2 for more details). In practice what this means is that estimating the
coefficients on regression (14) via OLS would not recover neither ψ or η.

Note, however, that the regression (14) can be rearranged as

log(patentsf,c,t)− ψ log(if,c,t) = ψη log(Ic,t) +X ′f,c,tΓ + δc + δt + zf,c,t

whereXf,c,t includes the controls mentioned above, and δt is a year fixed effect. Note that, since
the value of ψ is known from the previous literature, the left-hand side of the equation above
can be constructed in the data. Furthermore, because my the goal is to estimate η, this equation
can be aggregated to the city level

1

Nc,t

Nc,t∑
f=1

[
log(patentsf,c,t)− ψ log(if,c,t)

]
= ψη log(Ic,t) +X ′c,tΓ + δc + δt + zc,t (15)

whereNc,t be the number of firms in city c during year t and zc,t is the average shock inside each
city. The control vector Xc,t includes the average number of citations received by patents filed
by firms in city c (interacted with a year dummy) and the employment shares in each NAICS
2-digit industry in city c.31 The dependent variable in this model is the average log production
of patents per inventor in each firm, where number of inventors per firm is transformed by
raising it to the elasticity of labor in the production of innovation.

The regression model (15) simplifies the analysis by removing one of the endogenous vari-
ables from the RHS of the equation. I account for the endogeneity of the population of inventors
Ic,t by constructing an instrument that leverages exogenous shocks to industries. I partition the
set of products J into K industries, so that each product j can be assigned to a single industry
k. Note that the population of inventors in city c can then be written as

Ic,t =

K∑
k=1

Ik,c,t =

K∑
k=1

Ik,c,t−l(1 + γk,c,t−l→t)

where Ik,c,t is the number of inventors in industry k living at city c during time t and γk,c,t−l→t
31I use the employment shares (instead of a simple firm count) to measure the industry composition in each

city because it accounts for differences in firm size across industries. Furthermore, industry shares are computed
including all firms in each CBSA (not only those who innovate). This is done to avoid having a correlation between
the industry employment share and the population of inventors in the city, which is endogenous.
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is the rate of growth of Ik,c,t between periods t − l and t.32 Based on this identity, I construct
the following instrument for Ic,t:

Ic,t,l =
K∑
k=1

Ik,c,t−l(1 + γk,t−l→t). (16)

where γk,t−l→t is the overall growth rate of employment in industry k from year t − l to year
t. To avoid picking up variation in the total number of inventors in each year, the industry
growth rate is computed using the shares of employment in each industry relative to the total
population of inventors. Slightly abusing notation to define Ik,t as the number of inventors in
industry k during year t, γk,t−l→t =

Ik,t/It−Ik,t−l/It−l
Ik,t−l/It−l

.
To ensure the exogeneity of the instrument, I follow Autor et al. (2013) and Acemoglu and

Restrepo (2017) and compute the industry growth rates γk,t−l→t using inventors residing out-
side of the US who have registered patents with the USPTO (who are responsible for about
50% of all patents during the period of my sample). Industries are defined based on NBER’s
patent subcategories (which add up to 38 different industries) and inventors are assigned to an
industry based on the modal sub-class of the patents he or she filed (see the data appendix C.1
for more details).

The instrument Ic,t,l has a structure that resembles the commonly used “shift-share” re-
search design (Adão et al., 2018; Borusyak et al., 2018; Goldsmith-Pinkham et al., 2018), with
the obvious difference that Ic,k,t−l is the population level, not a share. This difference is not
as important as it may seem, since regression (15) contains a city fixed-effect, and therefore is
equivalent to a specification where all variables are demeaned (see appendix C.3.1 for more
details). In fact, the economic content of the instrument remains the same: the growth rate of
employment in each industry acts as an exogenous shock or “shifter” and the population level
Ik,c,t−l measures the city’s exposure to industry shocks. 33

The results of the estimation are in table 2. The top panel shows the first stage of the IV
estimation, and the bottom panel shows the second stage. Column (1) shows the OLS estimates.
Columns (2) - (4) show the IV estimates with lags l between 5 and 10 years (specified at the
bottom of the table). Column (5) has the IV estimates for l = t−t90−95 – that is, Ii,c,t−l = Ii,c,t90−95

is fixed at its average level between 1990 and 1995, and γk,t90−95→t is computed using average
industry shares in the same period as the base value (the first year of the estimation period is
1998). All regressions are weighted by the number of firms in each city, to account for the fact
that the data consists of averages over firms. Standard errors are clustered at the city level to
allow for serial correlation of shocks within each city. I report when coefficients are statistically

32Since the model does not include industries, it does not predict that different industries would experience dif-
ferent growth in employment. I therefore deviate from the structure of the model by leveraging industry-level
variation to estimate η. It should be noted, however, that equation (15) is derived from the theoretical model re-
gardless of the instrument that is used to estimate the parameters in it. As a result, the estimated parameters also
retain their interpretation in the model regardless of the estimation procedure.

33The main advantage of adopting the ‘fixed-effects’ specification in (15) is that it only requires that the data used
to construct the instrument itself is available starting in, say, period t0. In contrast, the usual shift-share design
relies on taking differences of all variables relative to their t0 values – which requires that data on all variables in
the regression are available since period t0. This is not always the case in this paper: rental prices, used in the next
subsection, are only available after 2010.
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different from zero at the 10%, 5%, 1% and 0.1% levels to account for the fact that the usual
confidence intervals might be too short (Adão et al., 2018).

Table 2: Estimation of the elasticity of agglomeration, ψη.

First Stage
(1) (2) (3) (4) (5)

log(Ic,t,l) 0.546d 0.481d 0.398d 0.244d
(0.031) (0.033) (0.035) (0.042)

F-stat. excluded inst. 315.10 214.79 130.93 33.94

Second Stage
log(Inventors in City) 0.070d 0.104d 0.098d 0.105d 0.104a

(0.014) (0.019) (0.020) (0.023) (0.060)

Method OLS IV (l = 5) IV (l = 7) IV (l = 10) IV (l = t− t90−95)
Observations 11279 11231 11220 11201 11210

Implied η 0.140 0.208 0.196 0.210 0.208

Standard errors are clustered at the CBSA level and shown in parenthesis. a, b, c and d indicate that the coefficient
is statistically different from 0 at the 10%, 5%, 1% and 0.1% levels, respectively. All specifications control for patent
quality and city industry composition, as well as CBSA and year fixed effects.

By and large, the estimated coefficients are highly significant and vary between 0.07 and
0.10.34 Those numbers do not change much in most of the robustness checks – and when they
do, the value of the agglomeration elasticity tends to be higher. If compared to the other esti-
mates of the elasticity of agglomeration (which usually do not focus on innovation), the values
in table 2 are quite large. Duranton and Puga (2014), for example, state that most studies have
found this elasticity to be between 0.02 and 0.05.35

Innovation can, however, be more responsive to agglomeration spillovers than the produc-
tion of goods. In an exercise similar to mine, Carlino et al. (2007) compute the elasticity between
the number of patents per capita and employment density in metropolitan/urban areas in the
US. In their baseline specification, they find this elasticity to be approximately 0.19, which is
quite larger than the values shown in table 2. The main difference between that study and re-
gression (15) is that the amount of patents per capita does not account for differences in firm
size that arise in different cities – and cities with higher agglomeration will also have more and
larger firms, so they naturally produce more patents.

Identification Conditions and Robustness Checks. There are two ways to interpret the or-
thogonality condition for shift-share instruments, and therefore for the instrument proposed

34Note that the IV estimates tend to be slightly larger than their OLS counterpart, which is counter-intuitive
since the OLS estimate is likely biased up due to a positive correlation with the error term. However, recall that
the dependent variable of the regression includes −

∑
log(if,c,t), and that Ic,t =

∑
f if,c,t. Thus, if there is any

measurement error in if,c,t, it will also be present in Ic,t and could bias the OLS coefficient downwards.
35There are at least two broad methods to identify this elasticity. First, one can estimate the response of firms’

outputs with respect to some measure of agglomeration, such as Greenstone et al. (2010) or Gaubert (2018). A second
strand of the literature explores variation on workers’ wages to learn about agglomeration spillovers. Examples
include Glaeser and Maré (2001), Combes et al. (2008) or De La Roca and Puga (2016).
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here as well. The first one, discussed at length by Goldsmith-Pinkham et al. (2018), is that it
requires that the exposures Ik,c,t−l to be uncorrelated with the local shock zc,t. This is unlikely
to be true for small values of the lag l, as local shocks can differentially affect industry employ-
ment shares depending on the city’s industrial composition (and be correlated with the lagged
share if shocks are serially correlated). However, this condition becomes plausible when lags
are larger, for example in column (4) that uses a 10-year lag, or when the industry employment
levels are fixed at a period that predates the estimation sample, as in column (5).36

The second interpretation, suggested by Borusyak et al. (2018), assumes that the industry
growth rates γk,t−l→t are asymptotically uncorrelated with the industry-specific average of local
shocks, E[Ik,c,t−lzc,t] (where the expectation is taken over c). Measuring growth rates γk,t−l→t
outside of the US addresses many of the issues that could be raised about the plausibility of this
assumption. One concern that remains is that some industries might be highly concentrated
in one single city – enough that the city’s local shocks are able to affect global trends in that
industry (Silicon Valley may come to mind). To address this issue, I re-run the regressions in
table 2 with a slightly different instrument that excludes industries whose employment share
in a single city exceeds 15% in any point in time (varying this threshold between 10 and 25%
produces comparable results). Once again, those estimates are in line ones presented here and
can be seen in appendix C.3.2.

Another argument that might call into question the validity of the estimates above is that the
log-log specification of the regression discards observations in which firms have not produced a
patent. Since innovation is stochastic, this specification would introduce bias by selecting firms
located in larger cities or firms located in cities who by chance experienced mostly positive
shocks (both of which increase the arrival rate of innovation). To put those concerns to rest,
I slightly modify (15) to interpret it as a count-data (Poisson regression) model, which allows
for firms to produce zero patents in any given year. Appendix C.3.3 describes this regression
model in detail and shows the estimated coefficients. The resulting elasticity of agglomeration
is even slightly higher than above, estimated at approximately 0.13− 0.15.

One last robustness check, also described in appendix C.3.3, tests the hypothesis inven-
tors/firms might benefit from other sources agglomeration. For example, firms could benefit
from being close to other firms that they can observe and learn from; alternatively, inventors
could benefit simply from living in densely populated areas, not necessarily by other inven-
tors. The results I find suggest otherwise: the coefficients on the number of firms (investing in
R&D), total employment and total establishments in each city are either negative or not statis-
tically significant (after accounting for the population of inventors).

The value of η. Taking into account the results in table 2, as well as the robustness checks
in appendix C.3, I use η = 0.20 as the baseline value to compute the optimal distribution of
R&D subsidies in section 5. In appendix F, I perform sensitivity analyses of my results using
η = 0.15 and η = 0.25, which roughly spans the range of estimated coefficients found in all

36There is, however, a tradeoff when fixing shares in some pre-period, as the instrument becomes less predictive
of Ic,t in the first stage regression.
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specifications.

4.2.2 The Elasticity of Congestion

Given the share of consumer expenditures on the non-tradable good, the parameter that deter-
mines the elasticity of congestion in the model is the return to scale on the production of that
good, β. With constant returns to scale (β = 1) there is no congestion force, as the production of
the non-tradable good scales up with the city size. As β becomes closer to zero, congestion costs
become more and more relevant – up to the point where the supply of the non-tradable good is
fixed and all variation in city size is absorbed into prices. This intuition offers some insight into
how best to identify β. The first-order condition of the non-tradable good producer’s problem

gives pn,c ∝ w`c

(
Lc
m̄c

)1−β
. Using equation (6) to substitute for wages and approximating the

price of the non-tradable good by the median rental value in each city, the model implies the
following empirical relationship (details in appendix C.4)

log(phc,t) =

(
1− β
1− θ

)
log(Lc,t) + δc + δt + zhc,t (17)

where phc,t is the median rental value per square foot of housing units in city c during year t, Lc,t
is the population of non-inventors in city c during year t, δc is a city fixed effect that accounts
for variation in amenities and land availability, δt is a year fixed effect that accounts for the
growth in wages/prices and zhc,t is a city-specific shock (again a function of the productivity
shock zc(t)).

Given θ = 0.6, β is identified by the coefficient on Lc,t in the regression above. However,
like the population of inventors in each city, the model also predicts that the population of
production workers is correlated with zhc,t. As a result, estimating this regression via OLS will
not recover the value of β. Notwithstanding, given that the population of production workers
and the population of inventors in each city is highly correlated (the model predicts that they
are proportional), Ic,t,l also serves as an instrument for the population of production workers.

Table 3 displays the estimation results from (17) using Ic,t,l as an instrument for Lc,t. As
one would expect, the instrument in this case has a much lower predictive value in first stage,
but the F-statistic is never far below the rule-of-thumb value of 10 (and is higher in columns
(1) and (3)). The values of the elasticity of rental prices with respect to each city’s population
are also quite large. For comparison, Behrens et al. (2014) find this elasticity to be between
0.08 and 0.09. This difference is due to the inclusion of city fixed effects in my model.37 Those
fixed effects reflect in part the fact that cities have different amenities, which affect the utility
of consumers. Leaving them out of the regression can therefore severely bias the elasticity of
prices with respect to the population, since individuals are willing to pay higher prices to live
in cities where amenities are higher.

The different specifications shown in the table all produce similar results, with β around
0.5 − 0.6. As was the case with the elasticity of agglomeration, I also run this regression us-

37Running the regression in my data without the city fixed effects produces coefficients in the range of 0.074 to
0.078, depending on the lag of the instrument.
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Table 3: Estimation of the elasticity of congestion, (1− β)/(1− θ).

First Stage
(1) (2) (3) (4)

log(Ic,t,l) 0.020d 0.023c 0.018d 0.023c
(0.005) (0.008) (0.005) (0.008)

F-stat. excluded inst. 14.58 7.47 12.95 8.89

Second Stage
log(Prod. Workers in City) 0.981c 1.013c 1.267d 0.902c

(0.326) (0.394) (0.392) (0.337)

Method IV (l = 5) IV (l = 7) IV (l = 10) IV (l = t− t90−95)
Observations 2855 2849 2845 2846

Implied β 0.608 0.595 0.493 0.639

Standard errors are clustered at the CBSA level and shown in parenthesis. a, b, c and d indicate that the coefficient
is statistically different from 0 at the 10%, 5%, 1% and 0.1% levels, respectively. All specifications control for CBSA
and year fixed effects.

ing an instrument that is lagged up to 12 years and when excluding industries that are highly
concentrated in one single place. Those results can be found in appendix C.4.

Identification Conditions and Robustness Checks. The structural error in equation (17) is a
function of the same productivity shock that determines the residual in the previous section.
Hence, the conditions for the orthogonality of the instrument in both cases are also the same.
Table 3 shows the estimated elasticity of congestion when the lag l used to construct the instru-
ment varies from 5 to 10 years and when industry employment shares in each city are fixed at
their average level between 1990 and 1995 – leveraging the fact that for large l, Ic,k,t−l and zhc,t

are likely to be uncorrelated. Appendix C.4 presents these same results when using an instru-
ment that excludes industries whose employment share (of inventors) in any single city share
exceed 15% at any point in time.

Rental values are only available in the ZRI database after 2010, which explain the small
number of observations in table 2. Because of that, I also an alternative version of (17), where
phc,t is approximated by the median housing price in each city (a series that goes back to 1996)38.
This regression implies a higher value or β, around 0.8, which reflects the fact that housing
prices tend to be less elastic to the population than rental prices.

The value of β. Combining the estimation results in table 3 and in appendix C.4, I adopt
β = 0.6 as the baseline value to compute the optimal distribution of R&D subsidies in section
5. I also perform sensitivity analyses using β = 0.5 and β = 0.8, which spans the range of
estimated coefficients found in all specifications.

38Using housing prices to approximate phc,t presents its own issues, as houses can also be thought of assets, whose
prices might reflect agents’ expectations about the future of the economy.
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4.3 Moment Matching

Fixed Cost of Innovation. To estimate size of the fixed cost of innovation, κ, I use equation
(11), which relates the number of firms in each city to the number of inventors in the city. Sum-
ming both sides of that equation over cities and rearranging gives

κ = (1− ψ)
I

N

where N is the total number of firms in the economy. Given that the average number of inven-
tors per firm in the data is I/N ≈ 21.07 and ψ = 0.5, this relationship gives κ = 10.53.

City-Specific Parameters. Next, I turn to the set of city amenities αc and mean productivities
χ̄c in each city. For cities c ∈ {1, . . . , C}, these parameters can be identified off the average share
of inventors and patents filed by cities over time. Specifically, the average share of inventors in
city c over time is

1

T

∫ T

0

Ic(t)

I
dt =

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c∑C

c=1

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c

× 1

T

∫ T

0

Zc(t)
1−θ
Θ

exp
(

1−θ
Θ

(
1−θ
Θ − 1

)
σ2

4φ

)dt.
Given the assumptions on the evolution of Zc(t), it is not hard to show that it is an ergodic pro-
cess. As such, the ergodic theorem applies (see Bergelson et al. (2012) for more on continuous-
time ergodic theorems) and the integral in the expression above converges to an expected value
when T → ∞. Assuming that the number of periods available in the data is large enough so
that this result approximately holds, the average share of inventors in each city is given by

(avg. share of inventors)c =

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c∑C

c=1

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c

≡ Īc
I
.

Similarly, the average share of patents filed in each city is

(avg. share of patents filed)c =
1

T

∫ T

0

Nc(t)xf,c(t)∑C
c=1Nc(t)xf,c(t)

dt =
χ̄cĪ

1+ψη
c∑C

c=1 χ̄cĪ
1+ψη
c

.

The two sets of equations above identify αc and χ̄c for every c up to a constant. Since αc is a
preference parameter, its level does not have much meaning and I normalize Ec[αc] = 1. The
scale of χ̄c can be identified off equation (13) by imposing that the rate of growth of the model
g = λD equals 2%, the historic annualized rate of growth in the US. The amenity in city 0 can
be found by requiring that the share of population in city 0, L0/(I + L), matches this share in
the data. Both of these procedures are described in detail in appendix D.1. Before doing all of
that, however, the value of σ2/4φ must be known.

34



Law of Motion of the Productivity Shock Lastly, I describe the identification of shock distri-
bution parameters σ and φ. Since only the ratio σ2/φ matters for the equilibrium of the model,
I set φ = 1. Next, σ can be found by matching the model-generated cross-sectional variance of
the population of inventors between cities with the same moment in the data. Appendix D.2
derives the expression for this variance in the model and shows how to identify σ.

4.4 Comparison to Untargeted Moments

I assess the model’s external validity by measuring how well it can fit the spatial distribution of
variables that were not targeted for estimation. Figure A.2 plots the model’s predictions against
the data four untargeted variables: the share of firms per city (panel a), the average number of
patents per firm in each city (panel b), the share of total employed population per city (panel c)
and the spatial distribution of patents per capita (panel d). In general the model matches those
distribution quite well – the correlation between the share of firms per city in the model and
data is particularly high, at about 0.97. The distribution of patents per firm is harder to match,
as there are many cities that have on average one patent per firm. This pattern holds for cities
with widely different sizes and production of patents (see the vertical alignment of points in
panel (b) of figure A.2).

Panels (c) and (d) of figure A.2 show the match between the total employed population and
patents per capita between model and data. As a general rule, the model tends to underesti-
mate the total population in cities where there is a small number of inventors and overestimate
the population of cities where many inventors live – recall that the model predicts that the pop-
ulation of inventors and production workers is proportional; in practice, however, cities tend to
specialize to some degree in innovation or in production. As a result, the model-predicted total
population and model-predicted patents per capita tend to be off in each end of the city size
distribution. Nevertheless, the match between model and data is not bad, with the correlations
shown in panel A of table 4.

Panel B in table 4 compares the outcomes in the model and data at different sections of the
city size distribution. Specifically, it ranks cities based on their average population of inventors
between 1998 and 2016 and divides them into five bins with an equal number of cities. It then
compares the share of firms and the average number of patents per firm in each of those quin-
tiles separately.39 For reference, I also include share of inventors and patents in each quintile
of the city size distribution (there is no comparison between model and data in those cases, as
the match is one-to-one).

4.4.1 Can R&D Tax Credits Shift the Spatial Distribution of the Economy?

Another question addressed in this section is the extent to which R&D tax credits can influence
the location of firms. Moretti and Wilson (2017) offer evidence that inventors are very sensitive
to state taxes, but R&D tax credits tend to have a smaller effect than other forms of taxation.
Similarly, Slattery (2019) finds that state-level subsidies have an important effect over firms’

39I focus on these two variables since they are the ones more closely related to the spatial distribution of innova-
tion, which is what the model is designed to capture.
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Table 4: Spatial Distribution of Untargeted Variables

Panel A: Correlations Between Untargeted Variables: Model and Data
Number of Firms Patents per Firm Employed Population Patents per Capita

0.97 0.58 0.81 0.49

Panel B: Spatial Distribution of Untargeted Variables
Bin Share of Inventors Share of Patents Share of Firms Avg. Patents/Firm

(model) (data) (model) (data)

1 0.002 0.001 0.002 0.003 1.052 0.81
2 0.006 0.002 0.006 0.007 1.006 0.875
3 0.013 0.006 0.013 0.017 1.234 0.993
4 0.04 0.018 0.04 0.045 1.271 1.171
5 0.939 0.973 0.939 0.927 2.181 2.894

locations, but this effect includes all discretionary state subsidies and cannot be attributed to
R&D tax credits alone. Understanding the extent to which R&D tax credits can change the
spatial distribution of the economy is relevant for interpreting the counterfactual results in
the next section, which assess the welfare effects of alternative spatial configurations of those
credits. It is also relevant for policy-makers who wish to quantify the effects of R&D policy.

To answer this question, I leverage the variation of R&D tax credits over time and measure
how well the model can predict the spatial dispersion of the economy in the years when the
spatial distribution of R&D tax credits differed from what it is today. I focus on the spatial
distribution of the population of inventors and of patents filed in the decades of 1970-1979,
1989-1989 and 1990-1999. Using averages across longer periods has two advantages. First, the
equilibrium of the model assumes a BGP, so its predictions do not apply to short-term varia-
tions. Second, these three decades roughly coincide with broad trends in the adoption of R&D
subsidies: in the 1970’s, there were no subsidies; in the 1980’s, there was a spatially uniform
federal subsidy, plus a few states offering subsidies of their own; in the 1990’s, this policy had
already been adopted by most states.

I construct the model-implied distribution of inventors and patents per city in any given
year by simply providing the model with the value of the R&D tax credit rates in that year
(keeping all other parameters fixed). Using those credit rates and the parameters estimated
above, I construct the share of inventors and patents produced in each city for all years, then
calculate their averages for each decade. Panel A of table 5 shows the correlations between
model outcomes and the data for each decade. For better visualization, I again aggregate cities
according to quintiles of the city size distribution (where cities are ordered according to their
population of inventors) and report the model-predicted and observed share of inventors and
patents in each of those bins.

To account for persistence in city size, I also analyze the model- and data-implied changes
in the shares of inventors and patents in each city across time. To this end, I again compute the
average share of inventors and patents produced in each city during the 1970’s, 1980’s, 1990’s
and 2000’s. Next, I find the difference between those shares in the decades of 1970, 1980 and
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Table 5: Spatial Distribution of Inventors and Patents Over Time

Panel A: Comparison in Levels
Bin Share of Inventors Share of Patents

1970’s 1980’s 1990’s 1970’s 1980’s 1900’s

(model) (data) (model) (data) (model) (data) (model) (data) (model) (data) (model) (data)
1 0.002 0.004 0.002 0.004 0.002 0.004 0.001 0.003 0.001 0.002 0.001 0.002
2 0.006 0.01 0.006 0.01 0.006 0.009 0.002 0.004 0.002 0.004 0.002 0.003
3 0.014 0.019 0.014 0.021 0.013 0.018 0.006 0.012 0.006 0.011 0.006 0.009
4 0.041 0.051 0.042 0.054 0.041 0.05 0.02 0.027 0.02 0.031 0.019 0.026
5 0.936 0.916 0.936 0.91 0.938 0.92 0.971 0.954 0.971 0.952 0.972 0.96

Corr. 0.86 0.92 0.96 0.76 0.84 0.95

Panel B: Regressing Differences in the Data on Differences in the Model
Share of Inventors Share of Inventors

1970’s 1980’s 1990’s 1970’s 1980’s 1990’s

Coefficient 2.27 1.78 2.15 3.27 2.77 3.16
Std. Error 0.09 0.06 0.08 0.08 0.06 0.08

R-squared 0.39 0.45 0.44 0.64 0.68 0.64
Observations 860 860 860 860 860 860

1990 relative to their value in 2000. Figure A.3 shows the correlation between model and data
outcomes in each decade, which hover around 0.6 for changes in the share of inventors and 0.8

for changes in the share of patents filed. Panel B of table 5 displays the output of regressing the
changes in shares observed in the data on its counterpart in the model, where only the value
of the R&D tax credit is allowed to vary.

My results suggest that R&D tax credits are quite relevant for the location decisions of in-
ventors/firms and the production of innovation. The R-squared of the regressions in table 5
show that changes in the R&D tax credit rate can explain about 40% of the variation of changes
in population shares over time and over 60% of the variation of changes in the production of
patents. The correlations in Panel A of that same table indicate that those changes often go in
the direction predicted by the model.40

5 The Welfare Effects of Spatial Policies

I now turn to the main question motivating this study: can a redistribution of local R&D sub-
sidies increase aggregate welfare in the economy? The answer to this question has two parts.
First, I compare the current spatial distribution of R&D subsidies in the US with a spatially ho-
mogeneous subsidy that is implemented with the same amount or resources. In practice, each
state is able to choose its own tax credit level, so the spatial distribution of R&D subsidies US
can be understood as the outcome of a non-cooperative game played by policy makers in each

40Keep in mind that I analyze the effects of effective R&D tax credit rates, which can be affected by changes in
corporate income taxes through the recapturing of tax credits (see Wilson, 2009).
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state. Comparing this decentralized outcome with a spatially neutral subsidy informs us about
the welfare gains of allowing states to compete by choosing R&D policy.

Second, I compare the aggregate welfare level under the current distribution of R&D subsi-
dies with the theoretical maximum welfare level that is obtained by solving a central planner’s
problem. Specifically, I assume the existence of a government that is able to choose the value
of all local R&D subsidies in order to maximize welfare. The government’s problem highlights
some of the main tradeoffs associated with changing the spatial distribution of agents in the
economy. I compute an approximate solution for this problem, which produces a set of “opti-
mal” R&D subsidies. This approximate solution is then used to measure the potential welfare
gains from the redistribution of local R&D subsidies in the US and to inform us about which
places should benefit from R&D policy.

5.1 The Government’s Problem

Aggregate welfare in this model is measured as the sum of the utility of all workers in the
economy, since all firm- and land-owners are fully taxed. For convenience, I assume that the
cost of producing Ḡ units of the public good is γ(Ḡ) = π̄ḠQ(t), and that the production of this
good is fixed throughout all counterfactuals. I also define Π(t) be the aggregate flow of profits
by all firms in the economy in period t. The government’s problem is

max
{sc}Cc=1

∫ ∞
0

e−ρt

{
C∑
c=0

[
Lc(t)u

`(t) + Ic(t)u
i(t)
]}

Ḡdt

s.t.
∫ ∞

0
e−rt

[
C∑
c=1

scw
i
c(t)Ic(t) + γ(Ḡ)

]
dt =

∫ ∞
0

e−rt

[
pm,0m̄0 +

C∑
c=1

pm,c(t)m̄c + Π(t)

]
dt.

Note that the population of inventors and production workers, as well as their utility, wages, the
rate of creative destruction, land prices and profits are all endogenously defined in the model.
Using the expressions for these variables obtained in the model’s equilibrium and defining
w̄i = wi(t)/[π̄Q(t)] to be the normalized (static) baseline wage of inventors, the government’s
problem can be reduced to a static one (see appendix E):

max
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where I use the notation w̄i(s) to indicate that wages are a function of the vector of R&D subsi-
dies s = (s1, . . . , sC) – the same applies to L0(s), ˜̄Ic(s) and D(s). In the version of the problem
shown in (18), it becomes clear that changing the value of the R&D subsidy affects the govern-
ment’s problem through its effect on (1) the population distribution, ˜̄Ic and L0; (2) wages, w̄i;
(3) the rate of creative destruction,D (and the rate of growth, λD); and (4) the direct effect over
expenditures.

The term w̄i(s)1−θ

ρ−(1−θ)λD(s) highlights one important tradeoff in the government’s problem. On
the one hand, this term increases with the rate of creative destruction, D: a higher rate of cre-
ative destruction means that the economy grows at a higher rate, which therefore implies a
higher present value of welfare. Furthermore, from corollary 1, D ∝ 1

C

∑C
c=1 χ̄c

˜̄I1+ψη
c which

means that a more spatially concentrated population leads to a higher rate of innovation – espe-
cially if the population is concentrated on cities with a large χ̄c. On the other hand, the normal-
ized wage w̄i decreases with the rate of creative destruction (see equation 12 in proposition 2).
Intuitively, when the rate of creative destruction increases, so does the rate at which firms dis-
count the future, r+D, because the probability that any of the firm’s product lines will be stolen
by a competitor increases. This leads firms to decrease investments in R&D, which reduces the
demand for inventors and pushes their wages down (the same happens for production workers
through general equilibrium effects).41 Lower wages then result in lower welfare.

5.2 A Spatially Homogeneous Subsidy

The current spatial distribution of R&D subsidies in the US can be understood as the outcome
of the competition among states to attract innovative firms and inventors into their jurisdiction.
To evaluate the effects of this competition, consider a counterfactual economy where states are
not allowed to compete, so that R&D subsidies are fixed over space sc ≡ s̄ for all c. Since taxes
and other government expenditures are kept constant throughout all counterfactuals, s̄ is fully
determined by the government’s budget constraint. Under the parameter values found in the
previous section, this subsidy rate is close to 19% (the average subsidy rate under the current
distribution is about 16%).

Moving to a spatially homogeneous subsidy spreads the population of inventors more evenly
over space: the HHI index of the city population shares moves from 0.027 to 0.025. Under this
alternative population distribution, aggregate welfare falls by 0.77% due to a decrease in the
growth rate of the economy of approximately 0.03 percentage points. In contrast, the static
baseline wage w̄i increases by 0.91%. In words, the decentralized adoption of R&D subsidies
by states has led to a higher welfare level than what would be attained under a spatially neu-
tral subsidy that is implemented using the same amount of resources. This suggests that the
states that offer the largest R&D tax credits are indeed to ones that are comparatively better at
producing innovation (leading to a higher growth rate). In the next section, I ask whether we
can do even better by allowing a social planner to choose the value of all local subsidies.

41Note that it is the baseline wage of inventors that falls. This statement is not necessarily true for the actual wage
that inventors receive, as it also depends on congestion costs in the city where each inventor lives.
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5.3 Approximating the Optimal R&D Subsidies

Finding the exact optimal subsidies that solve (18) can be computationally challenging, as this
a non-convex problem with 860 choice variables (cities). Therefore, I compute an approximate
solution by imposing a functional form to sc:

sc =

{
ζαξcχ̄ωc , if ζαξcχ̄ωc ≤ τ ;

τ, if ζαξcχ̄ωc > τ.

This functional form is motivated by the fact that cities only differ from each other because of
either αc or χ̄c – and therefore any differences in the optimal subsidy across cities will necessar-
ily be driven by differences in these two parameters. Imposing this functional form, however,
reduces the government’s problem to the choice of a few parameters, instead of the full distri-
bution of subsidies.

I consider three different values for the subsidy cap: τ ∈ {0.3, 0.4, 0.5}. The highest credit
rate currently offered in the data (combining state and federal tax credits) coincides with the
lowest value of the cap, at about 30%. In each case, the parameters ξ and ω are chosen in the
interval [−5, 10] to maximize aggregate welfare. The scale parameter ζ ensures that the budget
constraint is satisfied.

Figure A.4 plots aggregate welfare as a function of ξ and ω (fixing τ = 0.4) and the resulting
optimal subsidy as a function of amenities and local productivity. It is clear from panel (b)
that the welfare is maximized when innovation is concentrated in cities with high amenities
and high productivity, so the optimal subsidy rates try to move the economy in this direction.
This result is intuitive: cities with high productivity produce more innovation per worker, so
moving the population to those cities will generate a higher growth rate. Alternatively, workers
living in cities with high amenities will accept relatively lower wages, so firms in those cities
experience less congestion costs, all else equal.

Figure A.5 plots the changes in the share of inventors and innovation by city when the econ-
omy moves from the current distribution of subsidies to the optimal one. For better visualiza-
tion, each plot aggregates cities into percentiles. The x-axis shows the share of inventors and
patents in each percentile of the city distribution (in log scale), where cities are ordered by their
current share of inventors (panel a) or patents filed (panel b). The y-axis plots the expected
change in those shares should the economy move to the optimal subsidy scheme. Note that a
big part of the effect of the optimal subsidies is to move the population from mid-sized cities
to a few high productivity/high amenity cities, dramatically increasing their share of the pop-
ulation and innovation.

The welfare gains from the spatial reallocation of the population caused by the optimal
distribution of R&D subsidies is shown in table 6. When capping the city-level subsidy at 50%,
the model predicts that total welfare would grow by at least 6% if the optimal distribution of
R&D subsidies was adopted. This gain is generated in part by an increase of 0.26 percentage
points in the rate of growth of the economy. However, as mentioned above, baseline wages also
fall by over 7%, indicating that the higher rate of creative destruction has lowered the demand
for labor by innovative firms.
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5.3.1 Subsidies by State

The results described above are predicated on the assumption that R&D subsidies can vary by
city.42 In practice, however, these subsidies are chosen at the state level – which means that
allowing subsidies to vary by city will necessarily increase welfare as it increases the set of
policies available for the planner. Taking the geographical scope of the policy as given, I re-run
the exercise above while constraining subsidies to be constant within states. To do that, let c(S)

indicate a city c that is located in state S . Denote byC(S) the total number of cities in each state
and the approximate optimal subsidy by

sc(S) =

{
ζ 1
C(S)

∑C(S)
c=1 αξcχ̄ωc , if ζ 1

C(S)

∑C(S)
c=1 αξcχ̄ωc ≤ τ ;

τ, if ζ 1
C(S)

∑C(S)
c=1 αξcχ̄ωc > τ.

Once again, τ ∈ {0.3, 0.4, 0.5} and the parameters ξ and ω are chosen to maximize total
welfare in (18). The parameters ζ ensures the the government’s budget constraint is satisfied.
Panel B of table 6 shows the predicted gain in welfare when the economy moves from its cur-
rent configuration of subsidies to the optimal one. Unsurprisingly, those gains are smaller than
when subsidies are set at the city level, but follow the same pattern as panel A of the same
table: gains in welfare are caused by a higher spatial concentration of the population, which in-
creases the rate of innovation and consequently the rate of growth of the economy. At the same
time, this higher rate of growth also pushes the aggregate demand for inventors downward,
decreasing the “baseline” wage in the economy. This pattern is robust to different values of the
agglomeration and congestion elasticities, as shown by the sensitivity analyzes in appendix F.

Table 6: Gains from adopting optimal subsidies.

Panel A: City-level Subsidies
∆ Welfare ∆ Baseline Wage ∆ Creative Destruction ∆ Rate of Growth τ

2.95% −3.60% 0.97 p.p. 0.13 p.p. 0.3
5.23% −6.38% 1.70 p.p. 0.22 p.p. 0.4
6.15% −7.75% 2.00 p.p. 0.26 p.p. 0.5

Panel B: State-level Subsidies
∆ Welfare ∆ Baseline Wage ∆ Creative Destruction ∆ Rate of Growth τ

2.50% −3.65% 0.88 p.p. 0.12 p.p. 0.3
3.06% −4.36% 1.07 p.p. 0.14 p.p. 0.4
3.23% −4.71% 1.13 p.p. 0.15 p.p. 0.5

5.4 Discussion

There are a few important points to keep in mind when interpreting the results found in this
section. First, the welfare gains reported here are the product of a pure redistribution of R&D

42This is not necessarily an unrealistic assumption. Indeed, the US federal government (as well as state govern-
ments) has implemented a number of policies targeted at specific states (e.g., the Tennessee Valley Authority), cities
and even neighborhoods (e.g., Urban Enterprise Zones).
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subsidies over space. Expenditures on those subsidies are kept constant throughout all coun-
terfactual exercises, with the potential exception of endogenous changes in the government’s
revenue caused by the reallocation of the population. As such, the optimal subsidy rates com-
puted here require no changes in taxation by the government. Second, the gains reported in
table 6 are only a lower bound for the increase in welfare that can be obtained by the redistribu-
tion of R&D subsidies. This is a direct consequence of imposing a functional form to approxi-
mate the optimal subsidies, which does not necessarily describe the policy that maximizes the
government’s problem.

A third point concerns the limitations of the model used to compute the optimal policies
and aggregate welfare. The introduction of moving costs, for example, can have relevant effects
on welfare and on the the distribution of the optimal R&D tax credits. In a similar note, short-
run adjustment costs (e.g., in investments in R&D) are also ignored in the model, so the results
found here should be thought of as long-run responses to changes in policy. Finally, there are
many other issues that are relevant for policy makers and can be affected by changes in the
spatial distribution of agents in the economy (e.g., income inequality, joblessness); this paper
does not address those concerns, as they are outside of the scope its research question.

6 Conclusion

This paper assesses whether there are welfare gains from the spatial reallocation of R&D tax
credits in the US. As a framework to analyze counterfactual spatial distributions of the tax
credit, I construct an endogenous growth model with spatial heterogeneity and agglomeration
economies in the production of innovation. This framework contributes to the literature on
endogenous growth by nesting a model of growth through creative destruction into a spatial
setting. It also contributes to the literature on spatial and dynamic models by developing a
tractable model that can be easily matched to micro data. Qualitatively, I identify an important
tradeoff that must be addressed when computing the optimal spatial distribution of R&D sub-
sidies: increasing the geographical concentration innovation in highly productive cities will
increase the rate of growth of the economy, but it also increases the rate at which firms dis-
count the future due to a higher rate of creative destruction. This reduces individual firms’
investments in R&D, which puts downward pressure on the wages of inventors and decreases
aggregate welfare. Quantitatively, I find that concentrating the population of inventors in cities
with high amenities and high productivity has positive and potentially large impacts on aggre-
gate welfare. Furthermore, those gains are achieved through a pure redistribution of the R&D
subsidy over space, keeping all taxes and other government expenditures constant.
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A Figures

Figure A.1: Spatial Distribution of R&D Tax Credit Rates.

Note: figure shows the average effective R&D tax credit rate in the US. See the note in figure 1.

Figure A.2: Distributions in the Model and the Data

(a) Spatial distribution of firms (b) Distribution of patents per firm

(c) Spatial distribution of employed population (d) Distribution of patents per capita
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Figure A.3: Correlation Between Changes City Population: Model vs Data

Note: The change in city population is defined as the difference between the average population share of the city in
a given decade minus the average population share of the same city between 2000 and 2006.

Figure A.4: Results from Welfare Maximization

(a) Welfare as a function of ξ and ω. (b) Optimal R&D tax credits/subsidies.

Figure A.5: Changes in the spatial distribution of inventors and innovation

(a) Changes in the distribution of inventors (b) Changes in the distribution of innovation
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B Proofs and Derivations

Proof of Lemma 1

City 0. To derive the relationship between population and wages, it is useful to separate city
0 from cities 1, . . . , C. The non-tradable good producer in city 0 solves the problem

max
`n,0,m

pn,0n− w`0`n,0 − pm,0m s.t. n = `βn,0m
1−β,

wherew`0 is determined in equation (8) using the final good producer’s problem. The first-order
conditions are

[`n,0] : βpn,0

(
m

`n,0

)1−β
= w`0

[m] : (1− β)pn,0

(
`n,0
m

)β
= pm,0.

There are three local market clearing conditions (in the sense that they hold inside city 0).
The land market clearing condition is

m = m0

since land is a fixed factor. The labor market clearing condition is

L0 = `y,0 + `n,0,

where L0 is defined as the total population of production workers in city 0. And finally the
non-tradable good market clearing condition is

θ

[
`y,0

w`0
pn,0

+ `n,0
w`0
pn,0

]
= n

where the demand for non-tradable good from each worker is θw`0/pn,0, given the familiar
Cobb-Douglas utility function of workers.

Using the F.O.C. [`n,0] from the non-tradable good producer’s problem, the supply of the
non-tradable good is

n =
w`0
pn,0

`n,0
β
.

Plugging this into the non-tradable good market clearing condition,

θβ[`y,0 + `n,0] = `n,0 =⇒ `n,0 = θβL0 and `y,0 = (1− θβ)L0.

We can also compute the land rent in city 0 by using the F.O.C. [m] and the land market clearing
condition:

pm,0 = (1− β)pn,0

(
`n,0
m0

)β
.
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Plug in pn,0 from the F.O.C. [`n,0] to find

pm,0m0 = (1− β)θw`0L0.

Now turn to the free mobility condition u`0 = u`. A production worker’s utility is

u` =

[
α0

(
θ
w`0
pn,c

)]θ
[(1− θ)w`0]1−θ.

Once again, we can plug in the F.O.C. [`n,0] and the labor market clearing condition above to
find,

u` =

[
α0θβ

(
m0

θβL0

)1−β
]θ

[(1− θ)w`0]1−θ.

Define L̃0 = L0/m0 as the population per unit of land in city 0. Rearranging the expression
above,

w`0 =
1

1− θ

[
u`

(θβ)θβ

] 1
1−θ
(
L̃1−β

0

α0

) θ
1−θ

,

as desired.

Cities 1, . . . , C. The process for cities 1 throughC is very similar, with the exception that these
cities also have a population of inventors. In each city, the non-tradable good producer solves

max
`n,c,mc

pn,cn− w`c`n,c − pm,cmc s.t. n = `βn,cm
1−β
c .

The first-order conditions are

[`n,c] : βpn,c

(
mc

`n,c

)1−β
= w`c

[mc] : (1− β)pn,c

(
`n,c
mc

)β
= pm,c.

Again, there are three local market clearing conditions that must hold in equilibrium. For
all c ∈ {1, . . . , C}, the land market clearing condition is

mc = m̄c;

the labor market clearing condition is
`n,c = Lc;

and the goods market clearing condition is

θ

[
Lc

w`c
pn,c

+ Ic
wic
pn,c

]
= n

where Lc and Ic are, respectively, the population of production workers and the population of
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inventors in city c.
Using the F.O.C. [`n,c] and the two latter market clearing conditions, we get

Lc
m̄c

=

(
β
pn,c
w`c

) 1
1−β

and
θ

[
Lc

w`c
pn,c

+ Ic
wic
pn,c

]
=

w`c
pn,c

Lc
β
.

This second equation simplifies to

Lcw
`
c =

θβ

1− θβ
Icw

i
c. (B.1)

The utility level for production workers is therefore

u` =

[
αcθ

w`c
pn,c

]θ [
(1− θ)w`c

]1−θ

=

[
αcθβ

(
m̄c

Lc

)1−β
]θ [

(1− θ)w`c
]1−θ

.

Rearranging this expression and using the “tilde” to denote variables expressed by units of
land (L̃c = Lc/m̄c), production worker’s wages are

w`c = w`

(
L̃1−β
c

αc

) θ
1−θ

where w` =
1

1− θ

[
u`

(θβ)θ

] 1
1−θ

. (B.2)

To find wic, and rewrite equation (B.1) as (recall that “tildes” indicate variables per unit of
land, Ĩc = Ic/m̄c)

L̃c
w`c
pn,c

=
θβ

1− θβ
Ĩc
wic
pn,c

.

Using pn,c
w`c

= L̃1−β
c
β , we get

L̃c =

[
θ

1− θβ
Ĩc
wic
pn,c

] 1
β

.

Now plug this and (B.2) into (B.1) to find

wic
pn,c

=
1− θβ
θ

(
1

w`
θβ

1− θβ
wic

)β(1−θ)
1−θβ

α
θβ

1−θβ
c Ĩ

− 1−β
1−θβ

c .
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The utility of inventors is thus

ui =

[
αcθ

wic
pn,c

]θ [
(1− θ)wic

]1−θ

=

αc(1− θβ)

(
1

w`
θβ

1− θβ
wic

)β(1−θ)
1−θβ

α
θβ

1−θβ
c Ĩ

− 1−β
1−θβ

c

θ [(1− θ)wic]1−θ .
Rearranging,

wic = wi

(
Ĩ1−β
c

αc

) θ
1−θ

where wi =


ui

(1− θ)1−θ

[
(1− θβ)

(
1
w`

θβ
1−θβ

)β(1−θ)
1−θβ

]θ


1−θβ
1−θ

. (B.3)

Finally, going back to (B.1) and plugging in (B.2) and (B.3), we get

Lc =

(
θβ

1− θβ
wi

w`

) 1−θ
1−θβ

Ic

for cities c ∈ {1, . . . , C}. Summing over cities where there is innovation and using that I =
C∑
c=1

Ic and L = L0 +
C∑
c=1

Lc, it follows that

w` =

(
I

L− L0

) 1−θβ
1−θ θβ

1− θβ
wi. (B.4)

Finally, plug (B.4) into (B.3) to find

wi =
1

1− θ

[
ui

[(1− θβ)]θ

] 1
1−θ
(

I

L− L0

) θβ
1−θ

.

Also note that plugging (B.2) and (B.3) into (B.1) and summing over c ∈ {1, . . . , C} implies that
the number of inventors and production workers is proportional in those cities:

Ic
I

=
Lc

L− L0
.

Finally, we can find land rents in each city by plugging in the land market clearing condition
and the F.O.C. [`n,c] into the F.O.C. [mc]:

pm,cm̄c =
1− β
β

w`cLc.

It is convenient to write this expression in terms of the population and wage of inventors in
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each city. Using equation (B.1), we have

pm,cm̄c =
(1− β)θ

1− θβ
wicIc.

�

Proof of Lemma 2

As described in the main text, the firm’s HJB equation is

rVc(qf , Ĩc, Zc, A) = max
xf,c



∑
qj∈qf

π̄L0qj + xf,cEj [Vc(qf ∪+ {(1 + λ)qj}, Ĩc, Zc, A)− Vc(qf , Ĩc, Zc, A)]

−D
∑
qj∈qf

[Vc(qf , Ĩc, Zc, A)− Vc(qf\−{qj}, Ĩc, Zc, A)]

−(1− sc)wic(if,c + κ) +
E[dVc(qf , Ĩc, Zc, A)]

dt


s.t. xf,c = χ̄cZc(Ĩ

η
c if,c)

ψ

where I have definedZc = ezc as the local productivity shock. Since zc is an Ornstein-Uhlenbeck
process with law of motion dzc = φ(µ− zc)dt+ σWc(t), it follows that

dZc = φ

(
σ2

4φ
− ln(Zc)

)
Zcdt+ σZcdWc(t)

by application of Itô’s lemma and using µ = −σ2

4φ .
To prove lemma 2, we only need to determine dVc(qf , Ĩc, Zc, A). This can be done by ap-

plying Itô’s lemma to the the firm’s value function Vc, while taking into account that one of the
state variables – the population of inventors per land in the city Ĩc – is a function of the shock
Zc. For each city c ≥ 1, define a function hc : R+ × R2

+ × [0, 1] × [0, L] → [0, I/m̄c] such that
Ĩc = hc(Zc;A) (recall that A = (Q,wi, D, L0) ∈ R2

+ × [0, 1]× [0, L]). Itô’s lemma implies that

dhc =
∂hc
∂A

∂A

∂t
dt+

[
φ

(
σ2

4φ
− ln(Zc)

)
Zc
∂hc
∂Zc

+
(σZc)

2

2

∂2hc
∂Z2

c

]
dt+ σZc

∂hc
∂Zc

dWc(t),

where the arguments of the function are suppressed for convenience in the notation. Note that
the first term in the equation above is the regular derivative of hc w.r.t. the vector representing
the aggregate state of the economy, while the remaining two terms involve differentiating w.r.t.
the stochastic process Zc.

Given the process forhc, we use Itô’s lemma once again to differentiateVc(qf , hc(Zc;A), Zc, A)
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with respect to time:

dVc =
∂Vc
∂A

∂A

∂t
dt+

∂Vc
∂Zc

dZc +
∂Vc
∂hc

dhc +
1

2

[
∂2Vc
∂Z2

c

(dZc)
2 +

∂2Vc
∂h2

c

(dhc)
2 + 2

∂2Vc
∂Zc∂hc

dZcdhc

]

=
∂Vc
∂A

∂A

∂t
dt+

∂Vc
∂Zc

[
φ

(
σ2

4φ
− ln(Zc)

)
Zcdt+ σZcdWc(t)

]

+
∂Vc
∂hc

{[
φ

(
σ2

4φ
− ln(Zc)

)
Zc
∂hc
∂Zc

+
(σZc)

2

2

∂2hc
∂Z2

c

]
dt+ σZc

∂hc
∂Zc

dWc(t) +
∂hc
∂A

∂A

∂t
dt

}

+
1

2

[
∂2Vc
∂Z2

c

(σZc)
2 +

∂2Vc
∂h2

c

(
σZc

∂hc
∂Zc

)2

+ 2
∂2Vc
∂Zc∂hc

(σZc)
2 ∂hc
∂Zc

]
dt.

Recall that E[dW ] = 0 and note that E[∂hc∂A
∂A
∂t ] = 0 because the total number of inventors in the

economy is fixed. Thus, taking the expectation and replacing hc(Zc;A) = Ĩc,

E[dVc]

dt
=

∂Vc
∂A

∂A

∂t
+ φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Vc
∂Zc

+
∂Vc

∂Ĩc

∂Ĩc
∂Zc

]

+
(σZc)

2

2

∂2Vc
∂Z2

c

+
∂2Vc

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+
∂Vc

∂Ĩc

∂2Ĩc
∂Z2

c

+ 2
∂2Vc

∂Zc∂Ĩc

∂Ĩc
∂Zc

 .
Finally, define Rc(qf , Ĩc, Zc, A) = E[dVc]

dt − ∂Vc
∂A

∂A
∂t to be the risk that firms face due to the pro-

ductivity shock Zc. This concludes the proof.

A note on corporate income taxes The HJB equation above does not include any corporate
income taxes, even though these taxes change between locations in the data and are one of the
sources of revenue for the government (see section 2). The reason for doing this is that taxing a
firm’s profits will not change any of its decisions in this model, as long as “profits” include the
expenditure on R&D.

To see why, note that the firm’s HJB equation including corporate taxes τπc is

rvc(qf , Ĩc, Zc, A) = max
xf,c



(1− τπc )

 ∑
qj∈qf

π̄L0qj − (1− sc)wic(if,c + κ)


+xf,cEj [vc(qf ∪+ {(1 + λ)qj}, Ĩc, Zc, A)− vc(qf , Ĩc, Zc, A)]

−D
∑
qj∈qf

[vc(qf , Ĩc, Zc, A)− vc(qf\−{qj}, Ĩc, Zc, A)] +
E[dvc(qf , Ĩc, Zc, A)]

dt


s.t. xf,c = χ̄cZc(Ĩ

η
c if,c)

ψ.

For any function vc that satisfies this equation, we can define Vc = vc/(1 − τπc ), where Vc is

54



the solution to the HJB equation shown in the beginning of this proof. The firm’s decision
of xf,c will thus only depend on the value Vc, which means that firms will choose the same
amount of investment in R&D regardless of the corporate income tax rate. In addition, the
location decisions of firms will also be independent of this tax, since free entry drives the value
of entrants to zero (see the discussion preceding proposition 2).43

�

Proof of Proposition 1

I start the proof by solving for the incumbent’s value function. To do that, I use a guess ad
verify argument. The guess is

Vc(qf , Ĩc, Zc, A) = F
∑
qj∈qf

qj + EcQ,

where F and Ec are both functions of the state (Ĩc, Zc, A) and dF
dt = 0. Substituting this guess

along with the constraint into the HJB equation, we find

rF
∑
qj∈qf

qj + rEcQ−
∂Ec
∂A

∂A

∂t
Q− EcQ̇ =

max
xf,c



π̄L0

∑
qj∈qf

qj + xf,cF (1 + λ)Q−D
∑
qj∈qf

Fqj

−(1− sc)wic

 x
1
ψ

f,c

(χ̄cZc)
1
ψ Ĩηc

+ κ



+φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Ec
∂Zc

+
∂Ec

∂Ĩc

∂Ĩc
∂Zc

]
Q+

(σZc)
2

2

[
∂2Ec
∂Z2

c

]
Q

+
(σZc)

2

2

∂Ec
∂Ĩc

∂2Ĩc
∂Z2

c

+
∂2Ec

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+ 2
∂2Ec

∂Ĩc∂Zc

∂Ĩc
∂Zc

Q


The first-order condition is

[xf,c] : F (1 + λ)Q− 1

ψ

(1− sc)wicx
1−ψ
ψ

f,c

(χ̄cZc)
1
ψ Ĩηc

≤ 0.

If the optimal solution is interior,

xf,c = χ̄
1

1−ψ
c

ψF (1 + λ)
Q

wi
α

θ
1−θ
c

1− sc
Ĩ
η− (1−β)θ

1−θ
c


ψ

1−ψ

Z
1

1−ψ
c

43Note that an incumbent firm’s value will still depend on the corporate tax rate, but the entrant firm’s value
won’t (as it equals zero for all cities).
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where I have used equation (5) to substitute forwic. However, firms might prefer not to invest in
R&D at all, particularly in periods where Zc is low. In those cases, the firm can choose a corner
solution xf,c = 0, which means that if,c = 0 and it does not need to pay the fixed cost wicκ as
well. It is useful to analyze each case separately.

Interior Solution. I will start by considering an interior solution. Plugging xf,c in the HJB
equation, we find

rF
∑
qj∈qf

qj + rEcQ−
∂Ec
∂A

∂A

∂t
Q− EcQ̇ =



π̄L0

∑
qj∈qf

qj −D
∑
qj∈qf

Fqj + (1− ψ)xf,cF (1 + λ)Q− (1− sc)κwi
(
Ĩ1−β
c

αc

) θ
1−θ

+φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Ec
∂Zc

+
∂Ec

∂Ĩc

∂Ĩc
∂Zc

]
Q+

(σZc)
2

2

[
∂2Ec
∂Z2

c

]
Q

+
(σZc)

2

2

∂Ec
∂Ĩc

∂2Ĩc
∂Z2

c

+
∂2Ec

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+ 2
∂2Ec

∂Ĩc∂Zc

∂Ĩc
∂Zc

Q,


Collecting terms with and without

∑
qj∈qf qj ,

rF = π̄L0 −DF, (B.5)

and

Ec

(
r − Q̇

Q

)
− ∂Ec
∂A

∂A

∂t
= (1− ψ)xf,cF (1 + λ)− (1− sc)κ

wi

Q

(
Ĩ1−β
c

αc

) θ
1−θ

+φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Ec
∂Zc

+
∂Ec

∂Ĩc

∂Ĩc
∂Zc

]
+

(σZc)
2

2

[
∂2Ec
∂Z2

c

]

+
(σZc)

2

2

∂Ec
∂Ĩc

∂2Ĩc
∂Z2

c

+
∂2Ec

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+ 2
∂2Ec

∂Ĩc∂Zc

∂Ĩc
∂Zc

 .

(B.6)

Equation (B.5) immediately gives us

F (D,L0) =
π̄L0

r +D
. (B.5’)

To show that dF
dt = 0, it suffices to prove that L̇0 = 0 and Ḋ = 0. Going back to the final

good producer’s problem and plugging in the quantity of each intermediate good produced
(equation 4) and the number of production workers used in the production of the final good
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(`y,0 = (1− θβ)L0), we find that

Y =
1− θβ
1− ε

(
1− ε
ν

) 1−ε
ε

QL0 =⇒ Ẏ

Y
=
Q̇

Q
+
L̇0

L0
.

By definition, Y andQ grow at a constant rate in a SBGP. From the equation above, this implies
that L0 must either be constant (L̇0 = 0) or grow at a constant rate as well. However, given
that the population of production workers is fixed at L, it follows that the only possible rate
of growth for L0 is 0. This argument also implies that Y and Q grow at the same rate, so that
Ẏ /Y = Q̇/Q = g. Furthermore, it will be shown in proposition 3 that the rate of growth of
the economy in the SBGP is g = λD. Since both g and λ are constant, it follows that D must be
constant as well. In conclusion, both L0 andD are fixed over time, and therefore it follows that
the same is true for the franchise value F (D,L0).

Using Q̇/Q = g and plugging in xf,c from the F.O.C. of the incumbent’s problem, (B.6) can
be rewritten as

(r − g)Ec −
∂Ec
∂A

∂A

∂t
= (1− ψ)χ̄c[F (1 + λ)]

1
1−ψ

ψ Q
wi

α
θ

1−θ
c

1− sc
Ĩ
η(1−θ)−(1−β)θ

1−θ
c


ψ

1−ψ

Z
1

1−ψ
c

−(1− sc)κ
wi

Q

(
Ĩ1−β
c

αc

) θ
1−θ

+ φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Ec
∂Zc

+
∂Ec

∂Ĩc

∂Ĩc
∂Zc

]

+
(σZc)

2

2

∂2Ec
∂Z2

c

+
∂Ec

∂Ĩc

∂2Ĩc
∂Z2

c

+
∂2Ec

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+ 2
∂2Ec

∂Ĩc∂Zc

∂Ĩc
∂Zc

 ,
(B.6’)

which implicitly defines Ec = Ec(Ĩc, Zc, w
i/Q,D,L0). To understand the requirement that

r > g, assume for a moment that Zc = 1 for all cities and in all periods. In this case, equation
(B.6’) becomes an ordinary differential equation and has an explicit solution:

Ec(Ĩc(t), w
i(t)/Q(t), D, L0) − lim

t̂→∞
Ec(Ĩc(t̂), w

i(t̂)/Q(t̂), D, L0)e−(r−g)t̂ =∫ ∞
t

e−(r−g)(s−t)
[
Kc(s)Ĩc(s)

η(1−θ)−(1−β)θ
1−θ

ψ
1−ψ −Mc(s)Ĩc(s)

(1−β)θ
1−θ

]
ds,

where Kc and Mc are the collection of terms multiplying Ĩc on the first and second lines of
(B.6’), respectively. Since the total population of workers is fixed and wi(t)/Q(t) is stationary
(see proposition 3), the requirement that r > g is sufficient for the limit in the equation above to
be zero and for the value of the integral to be well defined. Intuitively, if g > r, firms will always
find it profitable to invest as much as possible in R&D (by, for example, borrowing capital at
rate r), as the value of doing so grows at rate g. This intuitive argument applies to the case with
local shocks as well.

Corner Solution. Now let us consider the case of a corner solution. The argument for used to
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derive the expression for F remains unchanged; however, equation (B.6) now becomes

rEc −
∂Ec
∂A

∂A

∂t
− Ec

Q̇

Q
= φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Ec
∂Zc

+
∂Ec

∂Ĩc

∂Ĩc
∂Zc

]
+

(σZc)
2

2

[
∂2Ec
∂Z2

c

]

+
(σZc)

2

2

∂Ec
∂Ĩc

∂2Ĩc
∂Z2

c

+
∂2Ec

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+ 2
∂2Ec

∂Ĩc∂Zc

∂Ĩc
∂Zc


since xf,c = 0 and the firm does not have to pay the fixed cost wicκ. Note that a trivial solution
for this equation is Ec = 0.

Summarizing both cases, we can conclude that

Vc(qf , Ĩc, Zc, A) = F (D,L0)
∑
qj∈qf

qj + max
{

0, Ec(Ĩc, Zc, w
i/Q,D,L0)Q

}
,

where F is given by equation (B.5’) and Ec is given by (B.6’).

Entrant’s Problem. The second stage of the entrant’s problem can be solved in the same way,
and in particular note that the guess V e

c (Ĩc, Zc, A) = EcQ implies

rEcQ−
∂Ec
∂A

∂A

∂t
Q− EcQ̇ =

max
xf,c



xf,cF (1 + λ)Q− (1− sc)wic

 x
1
ψ

f,c

(χ̄cZc)
1
ψ Ĩηc

+ κ



+φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Ec
∂Zc

+
∂Ec

∂Ĩc

∂Ĩc
∂Zc

]
Q+

(σZc)
2

2

[
∂2Ec
∂Z2

c

]
Q

+
(σZc)

2

2

∂Ec
∂Ĩc

∂2Ĩc
∂Z2

c

+
∂2Ec

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+ 2
∂2Ec

∂Ĩc∂Zc

∂Ĩc
∂Zc

Q


The first-order condition for this problem is exactly the same as in the incumbent’s problem,
so the arrival rates of innovation per product line of all firms is the same. Following the same
steps as above, it is straightforward to show that the entrant’s HJB equation will satisfy equa-
tion (B.6’), verifying the guess. The same holds true in case of a corner solution, where the
firm hires no inventors and again Ec = 0. Collecting both cases, we have that V e

c (Ĩc, Zc, A) =

max
{

0, Ec(Ĩc, Zc, w
i/Q,D,L0)Q

}
, with Ec defined exactly as it was for the incumbent firm. �

Proof of Proposition 2

There are several claims made in proposition 2, so I proceed in order. I start by proving that the
ratiowi/Q does not depend on any of the local shocksZc, which readily delivers the population
of inventors in each city (equation 9). Then, using those results, I derive the expressions for the
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number of inventors hired by each firm, the optimal arrival rates of innovation and the number
of active firms in each city. Finally, I demonstrate how to find the population of production
workers in city 0.

Wages and the Population of Inventors. Imposing the free entry condition (Ec = 0 ∀c, t) into
equation (B.6’) gives us

0 = (1− ψ) [χ̄cF (1 + λ)]
1

1−ψ

ψ Q
wi

α
θ

1−θ
c

1− sc
Ĩ
η(1−θ)−(1−β)θ

1−θ
c


ψ

1−ψ

Z
1

1−ψ
c − (1− sc)κ

wi

Q

(
Ĩ1−β
c

αc

) θ
1−θ

.

Define Θ = (1 − β)θ − ψη(1 − θ) to be the net elasticity of congestion. Solving for Ĩc in the
equation above yields

Ĩc =

ψψ
(

1− ψ
κ

)1−ψ χ̄c(1 + λ)π̄L0

r +D

Q

wi
α

θ
1−θ
c

1− sc
Zc


1−θ
Θ

. (B.7)

Next, I impose that labor markets clear in all periods. The population of inventors in the
economy is fixed and equal to I ; similarly, the population of production workers equalsL. Since
workers are freely mobile and supply one unit of labor inelastically, the labor market clearing
conditions are (since there are no inventors in city 0)

I =
C∑
c=1

Ic and L = L0 +
C∑
c=1

Lc.

Recall that Ĩc = Ic/m̄c and that the land mass in cities c ∈ {1, . . . , C} has been normalized to
m̄c = 1/C. Multiplying both sides of equation (B.7) by m̄c and summing over c yields (after
rearranging)

wi

Q
=

1

I
Θ

1−θ
ψψ
(

1− ψ
κ

)1−ψ (1 + λ)π̄L0

r +D

 1

C

C∑
c=1

 χ̄cα θ
1−θ
c

1− sc
Zc


1−θ
Θ


Θ

1−θ

.

Using the expression above, my goal is now to demonstrate that wi

Q is not a function of

the local shocks zc. For each t, define ξc(t) =

[
χ̄cα

θ
1−θ
c

1−sc Zc(t)

] 1−θ
Θ

. Recall that zc follows an

Ornstein-Uhlenbeck process with stationary distribution zc ∼ N
(
µ, σ

2

2φ

)
. Since Zc = ezc and

µ = −σ2/4φ, it follows thatZc is log-normally distributed with mean 1 and variance exp
(
σ2

2φ

)
−

1. As a result, {ξc(t)}Cc=1 is a sequence of independent random variables, each with finite first
and second moments, for all t ≥ 0. Applying Kolmogorov’s Strong Law of Large Numbers (see
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Shiryaev, 1996, Ch. 4, §3),
1

C

C∑
c=1

ξc −
1

C
E

[
C∑
c=1

ξc

]
a.s.−→ 0.

To compute the expectation above, note that (χ̄c, αc, sc) are fixed and Zc is independent and
identically distributed across all c. Furthermore, for any K 6= 0, we have

E
[
ZKc
]

= E
[
eKzc

]
=

1√
πσ2/φ

∫ ∞
−∞

e
Kz− 1

2
(z−µ)2/

(
σ2

2φ

)
dz = e

K
(
µ+K σ2

4φ

)
.

Plugging in K = (1− θ)/Θ and µ = −σ2/4φ, we get E
(
Z

1−θ
Θ

c

)
= exp

(
1−θ
Θ

(
1−θ
Θ − 1

)
σ2

4φ

)
.

Since C →∞, it follows that wages in each period are, with probability 1,

wi

Q
=

1

I
Θ

1−θ
ψψ
(

1− ψ
κ

)1−ψ (1 + λ)π̄L0

r +D

{
1

C

C∑
c=1

(
χ̄c

1− sc

) 1−θ
Θ

α
θ
Θ
c e

1−θ
Θ ( 1−θ

Θ
−1)σ

2

4φ

} Θ
1−θ

. (B.8)

In words, the equation above shows that wi/Q does not depend on the individual realizations
of the local shocks. It also implies equation (12) in the proposition’s statement. Plugging (B.8)
into (B.7), the population of inventors in each city is

Ĩc = I ×

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c

1
C

∑C
c=1

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c

× Z
1−θ
Θ

c

e
1−θ
Θ ( 1−θ

Θ
−1)σ

2

4φ

, (B.9)

which is equivalent to equation (9).

Firms, Inventors per Firm and the Arrival Rate of Innovation. Once wages and the popula-
tion of inventors is determined in each city, the remaining variables of the model can be readily
computed. To begin, simply plug in equation (B.8) into the expression for the optimal arrival
rate of innovation (see the proof of proposition 1) to find

xf,c =

I
(

χ̄c
1−sc

) 1−θ
Θ
α
θ
Θ
c

1
C

∑C
c=1

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c

Z
1−θ
Θ

c

e
1−θ
Θ ( 1−θ

Θ
−1)σ

2

4φ


Θ

1−θ
ψ

1−ψ

ψψ
(

κ

1− ψ

)ψ
χ̄cZcĨ

η(1−θ)−(1−β)θ
1−θ

ψ
1−ψ

c .

Now use (B.9) to get

xf,c = ψψ
(

κ

1− ψ

)ψ
χ̄cZcĨ

ψη
c .

The number of inventors hired by each firm is found by substituting the expression for xf,c
above into the production function of innovation (1):

if,c =
ψ

1− ψ
κ.
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Finally, we must also require that all inventors living in the city are employed by some firm.
Let Nc(t) be the number of firms located in city c who invest in R&D during period t. Since all
firms located in the same city will hire the same number of inventors (in case they decide to
invest in R&D), we have that

Ic = Nc(if,c + κ).

Using the expression for if,c, this expression becomes

Ic =

(
κ

1− ψ

)
Nc,

which equation proves (11) after rearranging.

Population in City 0. Finally, we can now determined the population of city 0. To find L0,
note that equation (B.8) implies

wi = QL0
1

I
Θ

1−θ
ψψ
(

1− ψ
κ

)1−ψ (1 + λ)π̄

r +D

{
1

C

C∑
c=1

(
χ̄c

1− sc

) 1−θ
Θ

α
θ
Θ
c e

1−θ
Θ ( 1−θ

Θ
−1)σ

2

4φ

} Θ
1−θ

︸ ︷︷ ︸
W
i

.

Also, recall that

w` =

(
I

L− L0

) 1−θβ
1−θ θβ

1− θβ
wi (B.4)

and

w`0 = w`

(
L̃1−β

0

α0

) θ
1−θ

(θβ)
(1−β)θ

1−θ , (7)

where w`0 =
ε

1− ε

(
1− ε
ν

) 1−ε
ε

Q from equation (8). Combining all of those results,

ε

1− ε

(
1− ε
ν

) 1−ε
ε
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1−θ w`

(
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0

α0

) θ
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(
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1−θ θβ

1− θβ
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) θ
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=
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QW

i
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) θ
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.
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Using the normalization m̄0 = 1 (so that L̃0 = L0) and rearranging this equation gives

(
L0

L−L0

) 1−θβ
1−θ

=
ε

1− ε

(
1− ε
ν

) 1−ε
ε

(1− θβ)α
θ

1−θ
0

{
(θβI)

1−θβ
1−θ W

i
}−1

=
α

θ
1−θ
0

(1− ε)ψψ
(

1− ψ
κ

)1−ψ 1 + λ

r +D
e
σ2

4φ ( 1−θ
Θ
−1)I1+ψη(θβ)

1−θβ
1−θ

[
1

C

C∑
c=1

(
χ̄c

1− sc

) 1−θ
Θ

α
θ
Θ
c

] Θ
1−θ

︸ ︷︷ ︸
≡ Λ

1−θβ
1−θ

(B.10)
and therefore

L0 =
Λ

1 + Λ
L.

Note that this equation implies that if the rate of creative destruction, D, is constant over time,
then so is Λ and therefore so is L0. Since D is constant in the Balanced Growth Path, it follows
that the population in city L0 is fixed and does not react to any of the shocks in other cities as
well.

�

Proof of Corollary 1

To prove this corollary, start with the definition of the rate of creative destruction and plug in
the expressions for Nc and xf,c found in proposition 2.

D =

C∑
c=1

Ncxf,c

=

(
1− ψ
κ

) C∑
c=1

Icxf,c

=

(
1− ψ
κ

)
1

C

C∑
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= ψψ
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1− ψ
κ

)1−ψ 1

C

C∑
c=1

χ̄cĨ
1+ψη
c Zc

= ψψ
(

1− ψ
κ

)1−ψ 1

C

C∑
c=1
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˜̄I1+ψη
c

Z
1+(1+ψη) 1−θ

Θ
c

e
(1+ψη) 1−θ

Θ ( 1−θ
Θ
−1)σ

2

4φ

where the third equality uses the fact that Ĩc/C = Ic and the last equality uses the expression
for Ĩc.

Once again, since the number of cities is large (C →∞), the Law of Large Numbers applies
and the average above converges almost surely to its expected value. Therefore, with probabil-
ity one,

D = ψψ
(

1− ψ
κ

)1−ψ
e

(1−θ)(1+ψη)
Θ

(
(1−β)θ

Θ
+1

)
σ2

4φ
1

C

C∑
c=1

χ̄c
˜̄I1+ψη
c
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where the expectation of Z1+(1+ψη) 1−θ
Θ

c is found using the relationship E
[
ZKc
]

= e
K
(
µ+K σ2

4φ

)
found in proposition 2, using K = 1 + (1 + ψη)1−θ

Θ = 1−θβ
Θ . �

Proof of Proposition 3

(1) Before I begin the proof, recall from corollary 1 that the rate of creative destruction is fixed
over time. As a result, L0 = LΛ/(1 + Λ) is also constant, since Λ does not change between
periods (see proposition 2).

The total production of final goods is given by

Y =
`εy,0

1− ε

∫
J
qεjk

1−ε
j dj

where `y,0 = (1− θβ)L0. By plugging in kj from equation (4) and doing some algebra,

Y =
1− θβ
1− ε

(
1− ε
ν

) 1−ε
ε

L0Q.

Thus,
Ẏ

Y
=
Q̇

Q
.

Since, by definition, Ẏ /Y = g, it follows that Q̇/Q = g.

To prove thatQ andwi grow at the same rate, it suffices to look at equation (B.8) and realize
that the RHS of that equation is fixed over time. Thus

d

(
wi

Q

)
/dt = 0 =⇒ ẇi

wi
=
Q̇

Q
.

Furthermore, from equation (B.4) it is evident that w` is proportional to wi, which means
that w` must also grow at rate g. Finally, equations (6) and (5) show that u` ∝ (w`)1−θ and
ui ∝ (wi)1−θ. From the results above, it follows that both u` and ui grow at rate (1− θ)g.

(2) To show that g = λD, one can analyze the dynamics of Q. For a small interval of time ∆,

Q(t+ ∆) = Q(t) +

C∑
c=1

Nc(t)(∆xf,c(t))× λQ(t)

where ∆xf,c(t) is the probability that an innovation will be produced by firm f in city c
between t and t+ ∆ and λQ(t) is the aggregate expected quality gain from that innovation.
Rearranging and taking the limit as ∆→ 0, we get

lim
∆→0

Q(t+ ∆)−Q(t)

∆
= λQ(t)

C∑
c=1

Nc(t)xf,c(t)
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Q̇

Q
= λ

C∑
c=1

Ncxf,c.

Since Q̇/Q = g and
∑C

c=1Ncxf,c = D, the result follows. Note that because D and λ are
constant, the rate of growth g must also be constant over time.

(3) Once again, this claim can be proved by analyzing the dynamics ofQc. For a small interval
of time ∆,

Qc(t+ ∆) = Qc(t) +Nc(t)(∆xf,c(t))× (1 + λ)Q− (∆D)Qc(t).

Taking the limit as ∆→ 0,

Q̇c = (1 + λ)QNcxf,c −DQc.

Rearranging this expression and multiplying both sides by eDt, we have that

d

dt
eDtQc = (1 + λ)eDtQNcxf,c.

Integrating both sides in t ∈ [0, T ],

eDTQc(T )−Qc(0) = (1 + λ)

∫ T

0
eDtQ(t)Nc(t)xf,c(t)dt

for a given initial condition Qc(0).

Under the SBGP equilibrium,Q grows at a constant rate so thatQ(t) = Q(0)egt. In addition,
Nc(t)xf,c(t) has a stationary distribution so its mean is constant over time. Therefore, taking
the expectation on both sides results in

eDTE[Qc(T )]−Qc(0) = (1 + λ)Q(0)E [Ncxf,c]
1

D + g

[
e(D+g)T − 1

]
.

Now divide both sides by eDT and take the limit as T →∞ to find44

lim
t→∞

E[Qc(t)] = lim
t→∞

(1 + λ)

D + g
E [Ncxf,c]Q(t).

Finally, using g = λD we have that

lim
t→∞

E[Qc(t)] = lim
t→∞

E [Ncxf,c]

D
Q(t). (B.11)

Moving back to the law of motion for Qc, take the expectation on both sides to find

E[Q̇c(t)] = (1 + λ)Q(t)E [Ncxf,c]−DE[Qc(t)].

44Alternatively, one can impose Qc(0) = (1+λ)Q(0)
D+g

E [Ncxf,c] to find the same result for all t.
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Once again take the limit as t→∞ and use equation (B.11) to find

lim
t→∞

E[Q̇c(t)] = (1 + λ)D lim
t→∞

E[Qc(t)]−D lim
t→∞

E[Qc(t)]

or
lim
t→∞

E[Q̇c(t)] = g lim
t→∞

E[Qc(t)].

To avoid carrying limits in the notation, let T be a time period such that ∀t > T the relation-
ship above is approximately true. Define the rate of growth ofQc(t) as gc(t) = Q̇c(t)/Qc(t).
Then, for t > T

E[gc(t)Qc(t)] = gE[Qc(t)]

E[gc(t)]E[Qc(t)] + Cov(gc(t), Qc(t)) = gE[Qc(t)]

E[gc(t)] = g − Cov(gc(t), Qc(t))

E[Qc(t)]
.

�

C Linear Regressions

C.1 Data

The main dataset I use to derive the empirical results in section 4.2 is the patent data pub-
lished by the United States Patent and Trademark Office (USPTO). Through the PatentsView
platform,45 the USPTO provides data on the universe of patents registered in the US, including
citations made and received by each patent, their industry classification, who are their inven-
tors and who those patents were assigned to (i.e., who owns the patent). I assume the year
in which each patent was “produced” is the year when the patent application was filed. As a
baseline quality cutoff, I drop all patents who were never granted.

The focus of this paper is on innovation led by firms, so I drop any patent assignee who
is not labeled as a corporation from the data. Throughout the text, I use the words assignee
and firm interchangeably to refer to the owner of a patent. I attribute a location to each patent
by matching it to its assigned owner and assume that the patent was “produced” at the CBSA
where the assignee is located. In case a patent has multiple owners, I split that patent into equal
shares between each of them. To minimize double counting when an assignee has multiple
addresses, I use the patent’s inventors locations to select which address is currently used by
that firm.

I also adjust the data for the fact that I only observe inventors and firms when they are
successful in producing patents. For example, if a firm files a patent 2009 and in 2011 – but not
in 2010 – this firm will not be included in the data in 2010. To deal with this selection problem, I
“complete” the dataset by adding back the missing inventors and firms in each year. In the case
of firms, I do that by determining an entry and exit year for each firm in every CBSA that they

45See http://www.patentsview.org/download/.
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appear in the data. Then I create a new observation whenever a year is missing between entry
and exit for each CBSA. In this new observation, the firm is assigned zero patents. In the case
of inventors, the procedure is similar, but I also match them to the firms they are “working for”
(i.e., the assignees of the patents created by that inventor). As was the case for firms, whenever
an inventor has multiple addresses, I use the location of the assignee of the most recent patents
he or she created to determine which address is currently used. If this process still results in
multiple addresses, I assume that the inventor spends an equal fraction of his or her time in
each of those places. As a result, the number of inventors hired by a firm and the population
of inventors in a city can be non-integer.

The USPTO data also classifies each patent in one of 6 broad categories and 37 subcate-
gories. For each firm and each inventor, I identify the most common subcategory among all
patents produced and assign this subcategory as the firm/inventor’s industry. In cases when
the mode is not unique, I assign that inventor or firm into a separate industry subcategory, “in-
dustry 0.” This happens for about 10% of all inventors and firms, but this effect is concentrated
on inventors/firms who have produced a small number of patents (for example, an inventor
who produces a total of two patents, but in different subcategories, will by definition not have
a unique subcategory mode). Weighting by patents produced, only approximately 7% of in-
ventors and 2% of firms are assigned to “industry 0.”

I also employ the County Business Patterns (CBP) data, published by the Census Bureau. It
contains information on the demography and economic activity (employed population, num-
ber of establishments, industry classification, etc.) inside every county in the US. Similarly, I
use the Zillow Rent Index (ZRI) and the Zillow Home Value Index (ZHVI), both published by
Zillow Research, for data on the median rental value and housing price by square foot in each
county (respectively).46 I aggregate this information to the CBSA level using NBER’s county to
CBSA crosswalk.47 In the data used for estimation, I focus on the years after 1998, when the
CBP switched its industry classification system from SIC to NAICS. However, I occasionally use
data that goes further back in time as well – for example in the construction of the instrument
in section 4.2.1, which involves lags of employment shares. The two datasets combined contain
information on 2,217,577 patents, 1,191,418 inventors and 136,124 firms (assignees), spread out
over 860 CBSAs (not all CBSAs include firms/inventors who produced patents) between the
years of 1998 and 2016.

C.2 Going From the Model to the Data

The procedure to transform the continuous time flow variables in the model to quantities that
are observed in the data is exactly the same in all cases. Here, I detail how to perform this trans-
formation using the production function of innovation, given by equation (1). Normalizing one
year to be equal to a time interval with measure one, the expected number of innovations pro-
duced by a firm f located in city c during year T , given the sequence of shocks {Zc(t)}TT−1,

46See https://www.zillow.com/research/data/ for more details on the Zillow datasets.
47See https://www.nber.org/data/cbsa-fips-county-crosswalk.html. Out of the 929 CBSAs in the US, 917

can be merged with the CBP data. The remaining 12 are in Puerto Rico, which is not included in the CBP.
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is ∫ T

T−1
xf,c(t)dt = χ̄c

∫ T

T−1

[(
Ic(t)

m̄c

)η
if,c(t)

]ψ
Zc(t)dt.

Taking logs

log
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)
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m̄ψηc
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+ log
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2

4φ

)ψη
Zc(t)dt,

where I have used that if,c(t) = κ ψ
1−ψ in the periods when firm f decides to invest in R&D

(indicated by 1{if,c(t) > 0|Zc(t)}) and defined Īc as in corollary 1. Once again using those
results, we find that

log
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ψ
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)
+ log
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Θ

e
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dt.

As a result,

log
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xf,c(t)dt = ψ log
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if,c(t)dt+ ψη log
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m̄ψη
c
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e
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Θ
−1)σ
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4φ

dt.

This last equation leads to the regression model

log(xf,c,t) = ψ log(if,c,t) + ψη log(Ic,t) + δc + zf,c,t,

where, slightly abusing notation so that t now represents a year instead of an infinitesimal pe-
riod, xf,c,t is the number of innovations produced by a firm f located in city c during year t;
if,c,t is the number of inventors hired by firm f during year t (i.e., the average number of inven-
tors hired per period); Ic,t is the population of inventors in city c during year t (i.e., the average
population of inventors in city c per period); δc is a city fixed-effect that captures variation in
χ̄c and m̄c; and zf,c,t is a shock aggregating the two bottom lines in the previous equation.
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C.3 Details on the Estimation of the Elasticity of Agglomeration

C.3.1 Shift-Share Research Designs

This section provides a brief comparison between the “traditional” shift-share research design
and the instrument proposed in section 4.2.1. Following the more common shifft-share ap-
proach, one can take difference between variables in (15) relative to their values in period t0 to
find

yc,t − yc,t0 = ψη[log(Ic,t)− log(Ic,t0)] + (X ′c,t −X ′c,t0)Γ + (δt − δt0) + (zc,t − zc,t0),

where yc,t is the outcome variable in the regression and t0 is some pre-period, usually many
years before year t so that there is no correlation between zc,t and Ic,t0 . An instrument for
[log(Ic,t)− log(Ic,t0)] could then be defined as

log(Idiffc,t,t0
) = log

K∑
k=1

Ik,c,t0
Ic,t0

(1 + γk,t0→t).

Recall from the definition of Ic,t,l in equation (16) that this is exactly what we would get if we
computed the difference log(Ic,t,l)

∣∣
l=t−t0 − log(Ic,t0).

Alternatively, the fixed-effects regression model I run is equivalent to de-meaning the vari-
ables in (15):

yc,t − yc = ψη[log(Ic,t)− log(Ic)] + (X ′c,t −X ′c)Γ + (δt − δ) + (zc,t − zc),

where the overlines indicate averages over time. Given the definition of Ic,t,l (eq. 16), the in-
strument for [log(Ic,t)− log(Ic)] is

log(Ic,t,l)
∣∣
l=t−t0 − log(Ic) = log

K∑
k=1

Ik,c,t0

Îc
(1 + γk,t0→t),

where log(Îc) = log(Ic). The difference between the shift-share design and the fixed effects
specification therefore resides only on the denominator used to compute the “share.” As shown
by Adão et al. (2018) and Borusyak et al. (2018), the econometric properties of the estimators
using this type of instrument do not depend on the exact definition of these shares. Further-
more, by using the fixed-effects specification, data on the outcome yc,t and the control variables
Xc,t during period t0 is not required to estimate the parameters in the regression.

C.3.2 Threats to Identification

The exogeneity condition for the instrument defined in section 4.2.1 is Ec [Ic,t,lzc,t] = 0. Follow-
ing the argument made by Borusyak et al. (2018), this condition can be written as

K∑
k=1

Ik,t−lωk,t(1 + γk,t−l→t) = 0,
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where Ik,t−l = Ec[Ik,c,t−l] and ωk,t = Ec[Ik,c,t−lzc,t]/Ec[Ik,c,t−l]. This equation provides two dif-
ferent interpretations for the conditions that are required for instrument exogeneity. The first
one is that the lagged industry employment levels Ik,c,t−l are uncorrelated with the current
shock, so ωk,t = 0. As mentioned in the main text, this condition is unlikely to hold for con-
temporary shares/shocks. However, even is shocks are serially correlated, this condition will
hold if lags are long enough. The estimates shown in table 2 cover this case, showing the results
when the instrument is lagged for up to 10 years and when industry employment is fixed at its
average level between 1990 and 1995.

The second interpretation for instrument endogeneity requires that

K∑
k=1

Ik,t−lωk,t(1 + γk,t−l→t) −→ 0

as the number of industries increases. In words, the industry-specific growth rate of employ-
ment in countries other than the US, γk,t−l→t, is asymptotically uncorrelated with the industry-
specific average of unobserved factors affecting the employment level in locations specializing
in each industry, ωk,t. One concern that arises in this case are industries that are simultane-
ously highly concentrated in specific cities and large enough to drive international trends in
employment shares. To avoid this issue, I slightly modify the instrument to exclude any indus-
try whose employment share in any single city exceeds 15% at any point in time.48 This excludes
6 of the original 38 industries (information storage, drugs, semiconductor devices, motors and
engines/parts, apparel and textile, earth working and wells). The estimation results can be seen
in table C.1. While 32 industries might be a low number to claim asymptotic lack of correlation,
the fact that the estimates below are similar to the ones found before indicates that no city is
likely to be driving γk,t−l→t on its own.

C.3.3 Robustness Checks

Including Cities with Zero Patents. Recall from equation (14) that the theoretical model pre-
sented in this paper implies the following relationship in the data:

log(patentsf,c,t)− ψ log(if,c,t) = ψη log(Ic,t) +X ′f,c,tΓ + δc + δt + zf,c,t.

One issue with this equation is that many firms, especially those in smaller cities, do not pro-
duce any patents over the course of one year. If this is the case, running the log-log regres-
sion above simply discards those observations, potentially biasing the estimation. To avoid this
problem, we can instead run this regression in the form

Yf,c,t = exp
(
ψη log(Ic,t) +X ′f,c,tΓ + δc + δt + zf,c,t

)
,

48The value of the threshold is arbitrary, but variations around it (e.g., 10, 20 or 25%) generate comparable results.
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Table C.1: Estimation of the elasticity of agglomeration – excludes spatially concentrated in-
dustries.

First Stage
(1) (2) (3) (4)

log(Iinstc,t,l ) 0.532d 0.467d 0.389d 0.260d
(0.038) (0.040) (0.039) (0.041)

F-stat. excluded inst. 196.20 137.93 97.70 40.71

Second Stage
log(Inventors in City) 0.109d 0.103d 0.092d 0.090

(0.021) (0.022) (0.026) (0.057)

Method IV (l = 5) IV (l = 7) IV (l = 10) IV (l = t− t90−95)
Observations 11184 11165 11119 11162

Implied η 0.218 0.206 0.184 0.180

Standard errors are clustered at the CBSA level and shown in parenthesis. a, b, c and d indicate that the coefficient
is statistically different from 0 at the 10%, 5%, 1% and 0.1% levels, respectively. All specifications control for patent
quality and city industry composition, as well as CBSA and year fixed effects.

where

Yf,c,t =

{
patentsf,c,t/i

ψ
f,c,t, if if,c,t > 0

0, otherwise.

Once again, the goal is to estimate the elasticity of agglomeration ψη, so we can aggregate
the data by taking averages over cities.

Yc,t = exp
(
ψη log(Ic,t) +X ′c,tΓ + δc + δt + zc,t

)
where Yc,t =

1

Nc,t

Nc,t∑
f=1

Yf,c,t is the average of outcomes Yf,c,t and exp(zc,t) =
1

Nc,t

Nc,t∑
f=1

exp(zf,c,t)

aggregates the residuals. For consistency with the other empirical models run so far, Xc,t in-
cludes the average number of citations that all firms in city c receive in year t and the industry
employment shares in city c during year t.

I control for the endogeneity of log(Ic,t), by following the method proposed by Wooldridge
(2010, Ch.19), which approaches the endogeneity problem from an omitted variables perspec-
tive. Specifically, let

log(Ic,t) = [log(Ic,t,l), X ′c,t, δc, δt] ·Π + vc,t (C.1)

where Π is vector of reduced-form parameters and vc,t is a residual. Furthermore, I assume
that (zc,t, vc,t) are independent of [log(Ic,t.l), X ′c,t, δc, δt] and that

zc,t = ρvc,t + ec,t

where ec,t is independent of vc,t.
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Under those conditions, and assuming that Yc,t has a Poisson distribution, it follows that
(slightly abusing notation so that the fixed effects absorb constant terms)

log
(
E
[
Yc,t
∣∣Ic,t, Xc,t, δc, δt, vc,t

])
= ψη log(Ic,t) +X ′c,tΓ + δc + δt + ρvc,t. (C.2)

Intuitively, the term ρvc,t controls for the endogeneity of log(Ic,t). The residuals vc,t can be
obtained from the first-stage regression (C.1) and the model (C.2) is estimated via pseudo-
maximum likelihood with the help the ppmlhdfe command in Stata, developed by Correia et al.
(2019). Once again, each observation is weighted by the number of firms in each city to reflect
the fact that the aggregated data is comprised of means over these firms.

The estimated coefficients are in table C.2. Column (1) shows the coefficient estimate with-
out the use of an instrument (ρ = 0), columns (2) - (4) show the estimates obtained when using
different lags l to compute the instrument and column (5) fixes Ik,c,t90−95 at its average value
between 1990 and 1995. The Poisson model produces larger point estimates than the linear
model, potentially because the effect of spillovers at the extensive margin (and on firms who
do not continuously innovate) is larger than for other incumbents. However, the standard er-
rors are also quite big, leading values that are not statistically different from zero in columns
(4) and (5).

Table C.2: Estimation of the elasticity of agglomeration – Poisson regression.

First Stage
(1) (2) (3) (4) (5)

log(Ic,t,l) 0.536d 0.469d 0.388d 0.248d
(0.031) (0.033) (0.034) (0.039)

F-stat. excluded inst. 308.28 206.71 129.93 40.02

Second Stage
log(Inventors in City) 0.197d 0.122c 0.095b 0.029 -0.001

(0.030) (0.039) (0.043) (0.052) (0.120)

Method OLS IV (l = 5) IV (l = 7) IV (l = 10) IV (l = t− t90−95)
Observations 12889 12827 12808 12766 12792

Implied η 0.394 0.244 0.190 0.058 -0.002

Standard errors are clustered at the CBSA level and shown in parenthesis. a, b, c and d indicate that the coefficient
is statistically different from 0 at the 10%, 5%, 1% and 0.1% levels, respectively. All specifications control for patent
quality and city industry composition, as well as CBSA and year fixed effects.

Other Sources of Externality. The population of inventors in a city might not be the only
source of agglomeration for firms investing in innovation. For example, an individual firm
might benefit from locating near other companies, as this provides opportunities for the firm
to learn from its competitors and improve the quality of its own investments. Similarly, the
agglomeration spillover, as assumed by a number of papers in the literature, might be related
to overall population density instead of the density of inventors.
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To test these hypotheses, I include various sources of agglomeration into the regression
equation (15): the total population of inventors, the total number of firms who invest in R&D,
the total employed population and the total number of (overall) establishments in each city. I
focus on simple correlations in this case, so no instrumental variable specification is shown in
table C.3 below. Column (1) shows the coefficients from the log-linear model, and column (2)
shows the coefficients from the Poisson counting model. As shown in the table, only the num-
ber of inventors in the city has a positive (and significant) effect over the average production
of patents in each city. This result also holds in the disaggregated model (14), in different geo-
graphic levels of aggregation (e.g., counties), and after including non-linear functions of each
of the potential sources of agglomeration into the regression model.

Table C.3: Estimation of the elasticity of agglomeration – multiple sources of agglomeration.

(1) (2)

log(Inventors in City) 0.064d 0.203d
(0.017) (0.034)

log(Innov. Firms in City) 0.007 -0.002
(0.014) (0.029)

log(Employment in City) -0.078 -0.124
(0.076) (0.146)

log(Establishments in City) 0.106a -0.004
(0.062) (0.151)

Model Log-linear (OLS) Poisson
Observations 11279 12889

Standard errors are clustered at the CBSA level and shown in parenthesis. a, b, c and d indicate that the coefficient
is statistically different from 0 at the 10%, 5%, 1% and 0.1% levels, respectively. All specifications control for patent
quality and city industry composition, as well as CBSA and year fixed effects.

C.4 Details on the Estimation of the Elasticity of Congestion

To arrive at the regression model (17) from the equations in the model, I basically follow the ar-
gument described in section C.2 of this appendix. Plugging in the value of production workers’
wages (eq. 6) into to intermediate good producer’s FOC, we find

pn,c =
w`

βα
θ

1−θ
c

(
Lc
m̄c

) 1−β
1−θ

for cities c ≥ 1. In city 0, a similar equation holds, but the RHS is multiplied by (θβ)
(1−β)θ

1−θ . The
equation above reflects the flows of continuous variables. To match them to the data, I integrate
them over the period of one year:

∫ T

T−1
pn,c(t)dt =

[
βα

θ
1−θ
c m̄

1−β
1−θ
c

]−1 ∫ T

T−1
w`(t)Lc(t)

1−β
1−θ dt.

72



In city 0, the population of inventors is constant, so the integral reduces to
∫ T
T−1w

`(t)dt. In
cities c ∈ {1, . . . , C}, the population of production workers is proportional to the population of
inventors (see lemma 1). As a result,

Lc(t) =
L− L0

I
Ic(t) =

L− L0

I
Īc

Zc(t)
1−θ
Θ

e
1−θ
Θ ( 1−θ

Θ
−1)σ

2

4φ

,

where Īc is constant over time. Define L̄c = L−L0
I Īc so that

∫ T

T−1
pn,c(t)dt =

[
βα

θ
1−θ
c m̄

1−β
1−θ
c

]−1

L̄
1−β
1−θ
c

∫ T

T−1
w`(t)

Zc(t)
1−β
Θ

e
1−β
Θ ( 1−θ

Θ
−1)σ

2

4φ

dt.

Take logs to find

log

∫ T

T−1
pn,c(t)dt =

(
1− β
1− θ

)
log(L̄c)− log

(
βα

θ
1−θ
c m̄

1−β
1−θ
c

)
+ log

∫ T

T−1
w`(t)

Zc(t)
1−β
Θ

e
1−β
Θ ( 1−θ

Θ
−1)σ

2

4φ

dt.

Finally, use the fact that
∫ T
T−1 Lc(t)dt = L̄c

∫ T
T−1

Zc(t)
1−θ
Θ

e
1−θ
Θ ( 1−θ

Θ
−1)σ2

4φ

dt to replace L̄c in the equation

above:

log

∫ T

T−1
pn,c(t)dt =

(
1− β
1− θ

)
log

∫ T

T−1
Lc(t)dt− log

(
βα

θ
1−θ
c m̄

1−β
1−θ
c

)

+ log

∫ T

T−1
w`(t)

Zc(t)
1−β
Θ

e
1−β
Θ ( 1−θ

Θ
−1)σ

2

4φ

dt−
(

1− β
1− θ

)
log

∫ T

T−1

Zc(t)
1−θ
Θ

e
1−θ
Θ ( 1−θ

Θ
−1)σ

2

4φ

dt,

Inn the expression above,
∫ T
T−1 pn,c(t)dt is the average price charged for the non-tradable

good in city c during year T , which I approximate by the median rent value per square foot
of housing units in city c, phc,t. Similarly,

∫ T
T−1 Lc(t)dt is the average population of production

workers living in city c during year T . This is matched to the total employed population minus
the number of inventors in each CBSA in the data. The other terms in the equation are captured
by a city fixed effect, which accounts for differences in land mass and amenities in each city; a
year fixed effect, controlling for growth in wages w`(t); and a local shock zhc,t that combines the
variation in the integrals containing Zc(t). This produces the model (17),

log(phc,t) =

(
1− β
1− θ

)
log(Lc,t) + δc + δt + zhc,t.

Note that Lc,t is correlated with the shock zhc,t, since Lc(t) varies with the shock zc(t).

C.4.1 Threats to Identification

Following the discussion in sections 4.2.2 and C.3.2, table C.4 shows the estimated elasticity of
rental prices with respect to the city’s population of production workers. For the estimation of
those elasticities, the instrument Ic,t,l is computed after excluding industries whose employ-
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ment share in any single city exceeds 15% in any point in time. The implied value of β does not
show any significant change when compared to table 3.

C.4.2 Alternative Specification

Rental value data is only available in the Zillow Rent Index starting late in 2010. To take ad-
vantage of a larger dataset, I run an alternative regression that approximates the price of the
non-tradable good in each city by the median price per square foot of housing units. This series
is available since 1996 in the Zillow Home Value Index database. The main issue with using
housing prices as an approximation for the price of non-tradable goods (whose consumption
is modeled as a flow) is that houses are long-term assets, and therefore their prices could be
influenced by agents’ expectations about the future. Having that in mind, housing prices can
still provide useful information on congestion costs in each city.

Table C.4: Estimation of the elasticity of congestion – excludes spatially concentrated industries.

First Stage
(1) (2) (3) (4)

log(Ic,t,l) 0.013c 0.017c 0.013c 0.022c
(0.004) (0.007) (0.005) (0.007)

F-stat. excluded inst. 11.20 5.67 8.31 9.56

Second Stage
log(Prod. Workers in City) 1.336c 1.063b 1.384c 1.033c

(0.413) (0.459) (0.479) (0.368)

Method IV (l = 5) IV (l = 7) IV (l = 10) IV (l = t− t90−95)
Observations 2843 2833 2822 2825

Implied β 0.466 0.575 0.446 0.587

Standard errors are clustered at the CBSA level and shown in parenthesis. a, b, c and d indicate that the coefficient
is statistically different from 0 at the 10%, 5%, 1% and 0.1% levels, respectively. All specifications control for CBSA
and year fixed effects.

Table C.5 displays the estimates elasticity of housing prices with respect to the city’s pop-
ulation of production workers. The estimated coefficients are quite smaller than in table 3,
and imply a value of β closer to 0.8. These numbers reflect a lower elasticity of housing prices
(relative to rental prices) to the city’s population, most likely because those prices only reflect
permanent changes in congestion costs in each city. The value of β found using this alternative
specification is used as an upper bound in sensitivity analyses of the counterfactual results in
this paper.
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Table C.5: Estimation of the elasticity of congestion – housing prices.

First Stage
(1) (2) (3) (4)

log(Ic,t,l) 0.039d 0.037d 0.035d 0.032d
(0.006) (0.006) (0.006) (0.007)

F-stat. excluded inst. 42.94 36.00 40.04 22.42

Second Stage
log(Prod. Workers in City) 0.335a 0.322a 0.418b 0.426b

(0.183) (0.179) (0.166) (0.208)

Method IV (l = 5) IV (l = 7) IV (l = 10) IV (l = t− t90−95)
Observations 9900 9891 9874 9876

Implied β 0.866 0.871 0.833 0.830

Standard errors are clustered at the CBSA level and shown in parenthesis. a, b, c and d indicate that the coefficient
is statistically different from 0 at the 10%, 5%, 1% and 0.1% levels, respectively. All specifications control for CBSA
and year fixed effects.

D Matching Moments

D.1 Identifying α0 and the Scale of χc

Identifying the scale of the mean productivity in each city and the amenity level in city 0 is
straightforward once σ2/4φ (along with the remaining parameters in the model) is known. For
now, assume that this is the case. Define the scale of productivity as χs, where χ̄c = χsχ̂c and
E[χ̂c] = 1. Then, from corollary 1, we have that

D = χsψψ
(

1− ψ
κ

)1−ψ
e

(1−θ)(1+ψη)
Θ

(
(1−β)θ

Θ
+1

)
σ2

4φ
1

C

C∑
c=1

χ̂c
˜̄I1+ψη
c .

Given that g = λD, it follows that

χs =
g

λ

{
ψψ
(

1− ψ
κ

)1−ψ
e

(1−θ)(1+ψη)
Θ

(
(1−β)θ

Θ
+1

)
σ2

4φ
1

C

C∑
c=1

χ̂c
˜̄I1+ψη
c

}−1

.

To identify α0, recall from the proof of proposition 2 that

(
L0

L− L0

) 1−θβ
1−θ

=
α

θ
1−θ
0

(1− ε)ψψ
(

1− ψ
κ

)1−ψ 1 + λ

r +D
e
σ2

4φ ( 1−θ
Θ
−1)I1+ψη(θβ)

1−θβ
1−θ

[
1

C

C∑
c=1

(
χ̄c

1− sc

) 1−θ
Θ

α
θ
Θ
c

] Θ
1−θ

.

The LHS of the equation above can be constructed using the data and values of the parameters
already estimated. The same is true for the denominator in the RHS, since χ̄c is now fully de-
termined. The equation above therefore identifies α0, given the values of parameters estimated
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in the previous steps.

D.2 Law of Motion of the Productivity Shock

Finally, in this section I describe the identification of the parameters in the stochastic process
of the productivity shock, Zc. As mentioned in the main text, only the ratio σ2/ψ influences
the values of the variables of interest in the SBGP equilibrium, so I set φ = 1. The remaining
parameter, σ, is then identified by the cross-sectional variance of the population of inventors
across cities. Recall that quantities in the model must be integrated over time to match the
same frequency as the data. The variance of the population of inventors across cities in year T
is therefore

Var(Ic,T ) =
1

C

C∑
c=1

E

[(∫ T

T−1
Ic(t)dt

)2
]
− E

[∫ T

T−1
Ic(t)dt

]2

=
1

C

C∑
c=1

E
[∫ T

T−1
Ic(t)dt

∫ T

T−1
Ic(s)ds

]
− E

[∫ T

T−1
Ic(t)dt

]
E
[∫ T

T−1
Ic(s)ds

]

=
1

C

C∑
c=1

∫ T

T−1

∫ T

T−1
{E[Ic(t)Ic(s)]− E[Ic(t)]E[Ic(s)]} dtds

=
1

C

C∑
c=1

 Īc

exp
(

1−θ
Θ

(
1−θ
Θ − 1

)
σ2

4φ

)
2 ∫ T

T−1

∫ T

T−1
Cov

(
Zc(t)

1−θ
Θ , Zc(s)

1−θ
Θ

)
dtds

To compute this covariance, I start by noting that the limiting (stationary) distribution of the
Ornstein-Uhlenbeck process is such that Cov(zc(t), zc(s)) = σ2

2φe
−φ|t−s|. Using the proper-

ties of the multi-variate log-normal distribution, it follows that Cov
(
Zc(t)

1−θ
Θ , Zc(s)

1−θ
Θ

)
=

exp
(

1−θ
Θ

(
1−θ
Θ − 1

)
σ2

2φ

) [
exp

(
1−θ
Θ

σ2

2φ exp(−φ|s− t|)
)
− 1
]
. Plugging into the equation above,

Var(Ic,T ) =
1

C

C∑
c=1

Ī2
c

[∫ 1

0

∫ 1

0
exp

(
1− θ

Θ

σ2

2φ
exp(−φ|s− t|)

)
dtds− 1

]
,

where a simple change in variables switches the region of integration to [0, 1].49 The LHS of
the equation above is the average cross-sectional variance of the population of inventors across
cities, which can be computed in the data. Given φ = 1 and the values of the other parameters
already identified, this equation identifies σ.

49The integral in this equation does not have a closed form solution, but it can be simplified to
2
∫ 1

e−φ

∫ 1/y

1
exp

(
1−θ
Θ

σ2

2φ
xy
)

1
φ2xy

dxdy, which makes the numerical integration easier.
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E The Government’s Problem

The government’s problem, as stated in section 5, is

max
{sc}Cc=1

∫ ∞
0

e−ρt

{
C∑
c=0

[
Lc(t)u

`(t) + Ic(t)u
i(t)
]}

G(t)dt

s.t.
∫ ∞

0
e−rt

[
C∑
c=1

scw
i
c(t)Ic(t) + γ(G(t))

]
dt =

∫ ∞
0

e−rt

[
pm,0m̄0 +

C∑
c=1

pm,c(t)m̄c + Π(t)

]
dt

The sum in the objective function reduces to Lu`(t) + Iui(t) because market clearing must hold
in all periods. Using equations (5), (6) and (B.4), this term can be rewritten as

(L− L0)θβI1−θβ
(

1 + θβ
L0

L− L0

)(
1− θ

1− θβ
wi(t)

)1−θ
.

Using the results in lemma 1, the term pm,0m̄0 +
∑C

c=1 pm,c(t)m̄c in the budget constraint is

pm,0m̄0 +

C∑
c=1

pm,c(t)m̄c = (1− β)θw`0(t)L0 +

C∑
c=1

(1− β)θ

1− θβ
wic(t)Ic(t).

From equations (7) and (B.4), the first part of the expression above is

(1− β)θw`0(t)L0
(7)
= (1− β)β

(1−β)θ
1−θ

(
1

α0

) θ
1−θ

(θL0)
1−θβ
1−θ w`(t)

(B.4)
=

(1− β)θ

1− θβ

(
1

α0

) θ
1−θ
(
θβ

L0

L− L0

) 1−θβ
1−θ

I
1−θβ
1−θ wi(t).

Equation (5) and the definition Ic = Ĩc/C yield

C∑
c=1

(1− β)θ

1− θβ
wic(t)Ic(t) =

(1− β)θ

1− θβ
wi(t)

1

C

C∑
c=1

(
1

αc

) θ
1−θ

Ĩc(t)
1−θβ
1−θ .

The last term in the government’s budget constraint is the integral
∫∞

0 e−rtΠ(t)dt. Recall
that Π(t) is defined as the aggregate flow of income net of costs for all firms in the economy
in period t. For any individual firm, the discounted present value of this flow is equal to the
firm’s value at t = 0. Furthermore, since neither the final or non-tradable good producers make
profits, the discounted present value of Π(t) starting in t = 0 must be equal to∫ ∞

0
e−rtΠ(t)dt = F (D,L0)Q(0).

Collecting the results above and using thatG(t) = Ḡ for all t, the government’s problem can be
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reduced to

max
{sc}Cc=1

∫ ∞
0

e−ρt

{
(L− L0)θβI1−θβ

(
1 + θβ

L0

L− L0

)(
1− θ

1− θβ
wi(t)

)1−θ
}
dt

s.t.
∫ ∞

0
e−rt

{
wi(t)

1

C

C∑
c=1

sc

(
1

αc

) θ
1−θ

Ĩc(t)
1−θβ
1−θ + γ(Ḡ)

}
dt = F (D,L0)Q(0)

+
(1− β)θ

1− θβ

∫ ∞
0

e−rtwi(t)

{(
1

α0

) θ
1−θ
(
θβI
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) 1−θβ
1−θ

+
1

C

C∑
c=1

(
1

αc

) θ
1−θ

Ĩc(t)
1−θβ
1−θ

}
dt.

This expression can be further simplified by using the expression for ˜̄Ic, which gives

1

C

C∑
c=1

kc

(
1

αc

) θ
1−θ

Ĩc(t)
1−θβ
1−θ =

1

C

C∑
c=1

kc

(
1

αc

) θ
1−θ ˜̄I

1−θβ
1−θ
c × Zc(t)

1−θβ
Θ

e
1−θβ

Θ ( 1−θ
Θ
−1)σ

2

4φ

where kc equals sc for the first term in the budget constraint and equals 1 in the last. Given that
C →∞, we can once again apply the law of large numbers to find

1

C

C∑
c=1

kc

(
1

αc

) θ
1−θ

Ĩc(t)
1−θβ
1−θ = e

1−θβ
Θ

(1−β)θ
Θ

σ2

4φ
1

C

C∑
c=1

kc

(
1

αc

) θ
1−θ ˜̄I

1−θβ
1−θ
c .

For convenience, define the public good production cost as γ(Ḡ) = π̄ḠQ(t) and let

w̄i =
1

π̄

wi(t)

Q(t)
=

1

I
Θ

1−θ
ψψ
(

1− ψ
κ

)1−ψ (1 + λ)L0

r +D
e(

1−θ
Θ
−1)σ

2

4φ

{
1

C

C∑
c=1

(
χ̄c

1− sc

) 1−θ
Θ

α
θ
Θ
c

} Θ
1−θ

.

Note that w̄i does not vary with time, which reduces the government’s problem to

max
{sc}Cc=1

(L− L0)θβ
(

1 + θβ
L0

L− L0

)(
1− θ

1− θβ
w̄i
)1−θ ∫ ∞

0
e−ρtQ(t)1−θdt

s.t. e
1−θβ

Θ
(1−β)θ

Θ
σ2

4φ
1

C

C∑
c=1

sc

(
1

αc

) θ
1−θ ˜̄I

1−θβ
1−θ
c +

Ḡ

w̄i
=

L0

w̄i(r +D)

Q(0)∫∞
0 e−rtQ(t)dt

+
(1− β)θ

1− θβ

{(
1

α0

) θ
1−θ
(
θβI

L0

L− L0

) 1−θβ
1−θ

+ e
1−θβ

Θ
(1−β)θ

Θ
σ2

4φ
1

C

C∑
c=1

(
1

αc

) θ
1−θ ˜̄I

1−θβ
1−θ
c

}
.

Since Q(t) grows at a constant rate g, we can write Q(t) = Q(0)egt for a given initial condition
Q(0). Assuming that ρ > (1− θ)g (otherwise the welfare function is not well defined),∫ ∞

0
e−ρtQ(t)1−θdt = Q(0)1−θ

∫ ∞
0

e((1−θ)g−ρ)tdt =
Q(0)1−θ

r − (1− θ)g
.
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After plugging in this result into the government’s objective function, equation (18) follows.

F Sensitivity Analyzes

The different specifications used to estimate the elasticities of agglomeration and congestion
in section 4 produced different point estimates, sometimes significantly different from one an-
other. To account for this variation, I redo step three of the model’s estimation procedure (sec-
tion 4.3) and re-run the counterfactual experiments (section 5) using different values for these
elasticities. To span the full range of estimated elasticities, I consider all possible combinations
of η ∈ {0.15, 0.20, 0.25} and β ∈ {0.5, 0.6, 0.8}. The counterfactual results are shown in table
F.6, which fixes the subsidy cap at 50%.

Note from table F.6 that, despite the wide variation in the values of those two parameters,
the optimal subsidies all follow the same pattern: they increase the spatial concentration of
the population, increasing the rate of creative destruction/growth, but decreasing the baseline
wage of workers. Intuitively, higher values of η and β increase the gains from spatially concen-
trating the population: a high η means a high elasticity of agglomeration and a high β means a
low elasticity of congestion.

Table F.6: Gains from adopting optimal subsidies, τ = 0.5.

City-level Subsidies
η β ∆ Welfare ∆ Baseline Wage ∆ Creative Destruction ∆ Rate of Growth

0.15 0.5 3.97% −7.29% 1.33 p.p. 0.18 p.p.
0.15 0.6 5.45% −7.13% 1.80 p.p. 0.24 p.p.
0.15 0.8 15.23% −6.56% 3.53 p.p. 0.47 p.p.
0.20 0.5 4.12% −7.20% 1.54 p.p. 0.20 p.p.
0.20 0.6 6.15% −7.75% 2.00 p.p. 0.26 p.p.
0.20 0.8 18.42% −7.05% 4.09 p.p. 0.54 p.p.
0.25 0.5 4.61% −7.60% 1.68 p.p. 0.22 p.p.
0.25 0.6 6.97% −8.05% 2.18 p.p. 0.29 p.p.
0.25 0.8 22.58% −7.59% 4.76 p.p. 0.63 p.p.

State-level Subsidies
η β ∆ Welfare ∆ Baseline Wage ∆ Creative Destruction ∆ Rate of Growth

0.15 0.5 1.91% −4.34% 0.82 p.p. 0.11 p.p.
0.15 0.6 2.86% −4.48% 1.03 p.p. 0.14 p.p.
0.15 0.8 8.67% −5.01% 2.24 p.p. 0.30 p.p.
0.20 0.5 2.14% −4.50% 0.88 p.p. 0.12 p.p.
0.20 0.6 3.23% −4.71% 1.13 p.p. 0.15 p.p.
0.20 0.8 10.68% −5.83% 2.68 p.p. 0.35 p.p.
0.25 0.5 2.39% −4.66% 0.95 p.p. 0.13 p.p.
0.25 0.6 3.65% −4.83% 1.23 p.p. 0.16 p.p.
0.25 0.8 13.79% −6.70% 3.30 p.p. 0.44 p.p.
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G Extensions of the Model

The model presented in sections 2 and 3 predicts that all firms located in the same city, regard-
less of their size, will have the same arrival rate of innovation. Translating to the data, this
means that big and small firms produce the same expected number of patents over any given
year, which is course not true. In this section, I extend the model to allow the production of
innovation to scale with firm size in the spirit of Klette and Kortum (2004). Keeping with the
interpretation of maintenance and managerial costs, I assume that each firm’s fixed costs also
scale up with their size.

In this extended model, firms that own more product lines will also hire more inventors
and produce more patents, but the innovation intensity of firms (patents per worker) will be
constant within a city. I will show that the predictions of this extended model concerning the
spatial distribution of inventors and innovation and its relationship with economic growth are
the exactly the same as the simplified model shown in the main text.

G.1 The Extended Model

I start by redefining the innovation production function for a firm f located in city c as

xf,c(t) = χc(t)
(
Ĩc(t)

ηif,c(t)
)ψ

pf (t)1−ψ (G.1)

where pf (t) = 1 + |qf (t)| and qf (t) is the set of product lines owned by the firm. I define pf as
the number of product lines plus one to maintain symmetry between entrant and incumbent
firms (note that entrant firms do not own any product lines, so qf = ∅). I also assume that the
fixed cost of innovation scales in the same way, so that firms must hire κpf inventors to cover
their fixed costs of innovation.

All of the remaining assumptions of the model in section 2 are kept, and any results not ex-
plicitly shown to be different will still apply to this extension (e.g., lemma 1). The HJB equation
for an incumbent is thus given in lemma G.1, which is stated without proof (the proof is exactly
analogous to lemma 2.

Lemma G.1. The HJB equation that describes the problem faced by an incumbent firm located in city
c ∈ {1, . . . , C} is

rVc(qf , Ĩc, Zc, A)−
∂Vc(qf , Ĩc, Zc, A)

∂A

∂A

∂t
=

max
xf,c



∑
qj∈qf

π̄L0qj + xf,cEj [Vc(qf ∪+ {(1 + λ)qj}, Ĩc, Zc, A)− Vc(qf , Ĩc, Zc, A)]

−(1− sc)wic(if,c + κpf )−D
∑
qj∈qf

[Vc(qf , Ĩc, Zc, A)− Vc(qf\−{qj}, Ĩc, Zc, A)] +Rc(qf , Ĩc, Zc, A)


xf,c = χ̄cZc(Ĩ

η
c if,c)

ψp1−ψ
f
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The HJB function of an entrant firm will be exactly analogous, with the exception that it
own no product lines of its own. Building on lemma G.1, proposition G.1 presents the solution
of the firm’s problem.

Proposition G.1. In a Stationary Balanced Growth Path Equilibrium where the total production of final
goods Y grows at rate g < r, the value function of an incumbent firm located in city c ≥ 1 and whose
portfolio of products is qf is

Vc(qf , Ĩc, Zc, A) = F (D,L0)
∑
qj∈qf

qj + max
{

0, Ec(Ĩc, Zc, w
i/Q,D,L0)pfQ

}
,

where F (D,L0) = π̄L0/(r + D) is the “franchise value” of adding a new product to the portfolio and
Ec is the entry value for firms city c (see the proof for a complete characterization).

In addition, the second stage value function of an entrant firm who is located in city c is

V e
c (Ĩc, Zc, A) = max

{
0, Ec(Ĩc, Zc, w

i/Q,D,L0)Q
}
.

Proof. The proof of this proposition mimics the proof of proposition 1. I start by guessing the
solution

Vc(qf , Ĩc, Zc, A) = F
∑
qj∈qf

qj + EcpfQ.

Substitute this into the firm’s HJB to find

rF
∑
qj∈qf

qj + rEcpfQ−
∂Ec
∂A

∂A

∂t
pfQ− Ecpf Q̇ =

max
xf,c



π̄L0

∑
qj∈qf

qj + xf,c[F (1 + λ)Q+ EcQ]−D
∑
qj∈qf

Fqj

−(1− sc)wic

 x
1
ψ

f,c

(χ̄cZc)
1
ψ Ĩηc p

1−ψ
ψ

f

+ κpf



+φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Ec
∂Zc

+
∂Ec

∂Ĩc

∂Ĩc
∂Zc

]
pfQ+

(σZc)
2

2

[
∂2Ec
∂Z2

c

]
pfQ

+
(σZc)

2

2

∂Ec
∂Ĩc

∂2Ĩc
∂Z2

c

+
∂2Ec

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+ 2
∂2Ec

∂Ĩc∂Zc

∂Ĩc
∂Zc

 pfQ


The first-order condition is

[xf,c] : F (1 + λ)Q+ EcQ−
1

ψ

(1− sc)wicx
1−ψ
ψ

f,c

(χ̄cZc)
1
ψ Ĩηc p

1−ψ
ψ

f

≤ 0.
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If the optimal solution is interior, the arrival rate of an innovation is given by

xf,c = pf χ̄
1

1−ψ
c

ψ[F (1 + λ) + Ec]
Q

wi
α

θ
1−θ
c

1− sc
Ĩ
η− (1−β)θ

1−θ
c


ψ

1−ψ

Z
1

1−ψ
c .

Plugging xf,c into the HJB equation and collecting terms with and without
∑

qj∈qf qj gives

F (D,L0) =
π̄L0

r +D
, (G.2)

where the same argument made in the proof of proposition 1 applies to show that F is constant
over time. In addition, using that Q̇/Q = g,

(r − g)Ec −
∂Ec
∂A

∂A

∂t
= (1− ψ)

{
χ̄c[F (1 + λ) + Ec]

} 1
1−ψ

ψ Q
wi

α
θ

1−θ
c

1− sc
Ĩ
η(1−θ)−(1−β)θ

1−θ
c


ψ

1−ψ

Z
1

1−ψ
c

−(1− sc)κ
wi

Q

(
Ĩ1−β
c

αc

) θ
1−θ

+ φ

(
σ2

4φ
− ln(Zc)

)
Zc

[
∂Ec
∂Zc

+
∂Ec

∂Ĩc

∂Ĩc
∂Zc

]

+
(σZc)

2

2

∂2Ec
∂Z2

c

+
∂Ec

∂Ĩc

∂2Ĩc
∂Z2

c

+
∂2Ec

∂Ĩ2
c

(
∂Ĩc
∂Zc

)2

+ 2
∂2Ec

∂Ĩc∂Zc

∂Ĩc
∂Zc

 ,
(G.3)

which implicitly defines Ec = Ec(Ĩc, Zc, w
i/Q,D,L0).

If the optimal solution is a corner, then both the number of inventors hired and the fixed
cost are zero. In this case it is straightforward to show that F , as defined in equation (G.2), and
Ec = 0 solve the firm’s HJB. Summarizing both cases, we can conclude that

Vc(qf , Ĩc, Zc, A) = F (D,L0)
∑
qj∈qf

qj + max
{

0, Ec(Ĩc, Zc, w
i/Q,D,L0)Q

}
.

Entrant’s Problem. The entrant’s problem is solved in exactly the same way. Repeating the
argument made in the proof of proposition 1 shows that

V e
c (Ĩc, Zc, A) = max

{
0, Ec(Ĩc, Zc, w

i/Q,D,L0)Q
}
.

I now impose free entry into all cities, which drives the value of entry to zero. SettingEc = 0

in equation (G.3) determines the population of inventors in each city. Proposition G.2 shows
how the economy is spatially distributed in this model.

Proposition G.2. Imposing (1) free entry, (2) labor market clearing for both inventors and production
workers, and (3) assuming a large number of cities C → ∞ (so that the Law of Large Number applies
and the average of city-specific shocks converges to its mean), the population of inventors in each city is
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given by

Ic = I ×

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c∑C

c=1

(
χ̄c

1−sc

) 1−θ
Θ
α
θ
Θ
c

× Z
1−θ
Θ

c

e
1−θ
Θ ( 1−θ

Θ
−1)σ

2

4φ

(G.4)

where Θ = (1−β)θ−ψη(1− θ). Moreover, the arrival rate of an innovation for a firm f located in city
c is

xf,c = pf

(
κ

ψ

1− ψ

)ψ
χ̄cĨ

ψη
c Zc (G.5)

and the number of inventors hired by each firm in city c is if,c = ψ
1−ψκpf . Now let Nc be the number of

firms investing in R&D and located in city c, and Jc be the total number of products produced by those
firms. Then,

Nc + Jc =

(
1− ψ
κ

)
Ic (G.6)

Finally, it can also be shown that the population of production workers in city 0 is proportional to L
(i.e., L0 does not vary over time), and that wi is not affected by the city-specific productivity shocks

wi

Q
∝ π̄L0

r +D

{
1

C

C∑
c=1

(
χ̄c

1− sc

) 1−θ
Θ

α
θ
Θ
c

} Θ
1−θ

. (G.7)

Again, those results are stated without proof since they are exactly analogous to the ones
in proposition 2. The only difference in this case is when finding the number of active firms in
each city in the equilibrium. This is done by requiring that all inventors living in the city are
employed by some firm. Let Fc be the set of firms f located in city c. Then

Ic =

∫
Fc

(if,c + κpf )df,

where we integrate over the set of firms f located in city c. Using the expression for if,c and
recalling that pf = 1 + |qf |, this expression becomes

Ic =
κ

1− ψ

∫
Fc

(1 + |qf |)df.

Let Nc be the number of firms located in city c and Jc the total number products that are pro-
duced by those firms. Then

Ic =

(
κ

1− ψ

)
(Nc + Jc),

which gives equation (G.6) after rearranging.
Finally, corollary G.1 determines the aggregate rate of creative destruction in this economy.

Corollary G.1. The aggregate rate of creative destruction in this economy is

D ∝ 1

C

C∑
c=1

χ̄c
˜̄I1+ψη
c , (G.8)
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Proof. The aggregate rate of creative destruction in this economy is given by

D =
C∑
c=1

∫
Fc
xf,cdf

=

(
κ

ψ

1− ψ

)ψ C∑
c=1

χ̄cĨ
ψη
c Zc

∫
Fc
pfdf

=

(
κ

ψ

1− ψ

)ψ C∑
c=1

χ̄cĨ
ψη
c Zc(Nc + Jc)

= ψψ
(

1− ψ
κ

)1−ψ 1

C

C∑
c=1

χ̄cĨ
1+ψη
c Zc.

Note that this is exactly the same expression found in the proof of corollary 1. Since there is
no change in how the local shock is defined and the population of inventors is allocated in the
same way (proposition G.2), it follows that the rate of creative of creative destruction will also
have the same structure as the one shown in corollary 1.

G.2 Estimation

The main challenge with this extended version of the model is estimating its parameters. In
particular, equation (G.6) relates the number of firms, products and the population of inventors
in each city. Because Jc is included in that expression, I can no longer normalize the measure
of products in the economy to 1 without affecting the scale of Nc and Ic.

To determine the relative scale ofNc and Jc, one could solve for the firm size distribution in
each city. Let µc(q, t) be the measures of firms with q products located city c in period t. Since
firms gain products at rate xf,c and loose them at rate D, it follows that

∂µc(q, t)

∂t
= xf(q−1),cµc(q − 1, t) + (q + 1)Dµc(q + 1, t)− xf(q),cµc(q, t)− qDµc(q, t)

where xf(q),c is the arrival rate of innovation for a firm with q products. The first and second
terms in the RHS of the equality account for the inflow of firms into size q: firms with q − 1

products who gain a new product line and firms with q + 1 products who loose one; the third
and fourth terms account for the outflow: firms with q product lines who gain one extra product
and those who loose one product. Note from this differential equation that the measure of firms
who own q products in city c is not stationary, as it depends on the realization of the local sock
through the arrival rate xf,c. As a result, the average number of products per firm in each city
is also going to vary over time, making the relationship between Nc and Jc hard to pin down.

The simplified model in the main text will also have a non-stationary firm size distribution
in each city. However, that model does not require the average number of products per firm to
be determined before it is taken to the data (since the number of products does not affect the
number of inventors hired). In addition, both the simplified and extended models make the
same predictions about how R&D subsidies affect the distribution of the population and the
aggregate rate of growth of the economy. For those reasons, the model introduced in section 2
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is chosen for performing the counterfactual policy exercises in this paper.
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