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Abstract

Since Bartik (1991), it has become popular in empirical studies to estimate regressions in which
the variable of interest is a shift-share, such as when a regional labor market outcome is regressed
on a weighted average of observed sectoral shocks, using the regional sector shares as weights.
In this paper, we discuss inference in these regressions. We show that standard economic models
imply that the regression residuals are likely to be correlated across regions with similar sector
shares, independently of their geographic location. These correlations are ignored by inference
procedures commonly used in these regressions, which can lead to severe undercoverage. In
regressions studying the effect of randomly generated placebo sectoral shocks on actual labor mar-
ket outcomes in U.S. commuting zones, we find that a 5% level significance test based on standard
errors clustered at the state level rejects the null of no effect in up to 45% of the placebo interven-
tions. We derive novel confidence intervals that correctly account for the potential correlation in
the regression residuals.
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1 Introduction

We study inference in shift-share designs—regression designs in which one studies the impact of a
set of shocks, or “shifters”, on units differentially exposed to them, and whose differential exposure
depends on a set of weights, or “shares”. More precisely, shift-share designs are regressions that have
the form

Yi = βXi + Z′i δ + εi, where Xi ≡
S

∑
s=1

wisXs, and
S

∑
s=1

wis = 1. (1)

For example, in an investigation of the impact of sectoral demand shifters on regional employment
changes, Yi corresponds to the change in employment in region i, the shifter Xs is a measure of the
change in demand for the good produced by sector s, and the share wis may be measured as the initial
share of region i’s employment in sector s. Other observed characteristics of region i are captured by
the vector Zi, which includes the intercept, and εi is the regression residual.1

Shift-share specifications can be very appealing in many contexts: they are simple to apply and
have the potential to both circumvent complicated endogeneity issues, and to provide estimates of
treatment effects that are robust to different microfoundations. As a result, numerous influential
studies, including Bartik (1991), Card (2001), Autor and Dorn (2013) and Autor, Dorn and Hanson
(2013) have exploited these designs as their main specifications. At the same time, two types of
concerns have been raised: first, the designs may not be appropriate in the presence of cross-regional
general equilibrium effects, and second, it is unclear whether the estimand is interesting when the
effects of the shifters Xs are heterogeneous across sectors and regions.2 In this paper, we put these
two concerns aside—we assume no cross-regional spillover effects, and, while we allow for shifter-
effect heterogeneity and clarify the definition of the regression estimand in this case, we are agnostic
about its policy relevance. We do this to focus on a different question: how to perform inference in
shift-share regressions.

We find that usual standard error formulas may substantially understate the true variability of
the estimates in shift-share regressions. We highlight this problem in two steps. First, we show that
a simple multi-sector gravity trade model implies that the residuals εi in the shift-share specification
in eq. (1) will have a shift-share structure similar to that of the regressor Xi, because, in addition to
the shifter Xs, regions are subject to other sector-level shocks, not all of which are observable. Conse-
quently, the regression residuals for two regions with similar shares will be correlated, even if they are
far apart geographically, because they will be exposed to similar combinations of unobserved shifters.
In practice, researchers are typically careful to allow for correlations of residuals among regions that
are geographically close to each other by reporting clustered standard errors, with clusters defined as

1For simplicity of exposition, we refer to the unit of observation i at which the outcome variable Yi is measured as a
region, and the unit of observation s at which the shifter Xs is measured as a sector. However, the setup applies to any
setting in which the regressor Xi of interest admits the representation in eq. (1).

2These concerns are an instance of a broader discussion about whether regression analysis is useful to estimate policy-
relevant parameters; see Heckman, Lance and Taber (1998), and Heckman and Vytlacil (2007a,b). For a discussion in the
context of regional shift-share regressions, see Redding and Rossi-Hansberg (2017), Monte, Redding and Rossi-Hansberg
(2018) and Adão, Arkolakis and Esposito (2018). Shift-share regressions have however also been used to estimate structural
model parameters, see Diamond (2016), Adão (2016), Galle, Rodríguez-Clare and Yi (2017), Burstein et al. (2018b) and
Bartelme (2018).
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groups of regions that belong to the same administrative entity (e.g. clustering U.S. commuting zones
by states). However, geographic clustering does not properly account for the shift-share correlation
structure, and, as a result, generates standard errors that are too small.

Second, to illustrate the empirical importance of this problem, we conduct a placebo exercise.
As outcomes, we use 2000–2007 changes in labor market outcomes for 722 commuting zones in
the United States. We then build a shift-share regressor by combining actual sectoral employment
shares in 1990 for each of 398 sectors that correspond to 4-digit SIC manufacturing industries with
sector-level shifters that are randomly generated. We repeat this many times to construct many
placebo samples. Since the shifters are randomly generated, their true effect is zero. Valid 5% level
significance tests should therefore reject the null of no effect for at most 5% of the samples. We find
that traditional standard errors—clustering on state as well as heteroscedasticity-robust, unclustered
errors—are much smaller than the true standard deviation of the OLS estimator, and, as a result, lead
to severe overrejection. Depending on the labor market outcome, the rejection rate can be as high
as 55% for heteroscedasticity-robust and 45% for standard errors clustered on state, and it is never
below 17%. In other words, suppose that instead of using real shifters, 100 researchers used randomly
generated shocks and mistakenly thought that these are, for example, actual changes in trade flows,
tariffs or the number of foreign workers employed in an industry. If these researchers were to use
standard inference procedures, up to 55 of them would find a statistically significant effect of the
randomly generated shocks on U.S. labor market outcomes between 2000 and 2007. The overrejection
is even more severe when 2- and 3-digit SIC codes are used to define the sectors, so that the total
number of sectors is smaller.

To correctly account for the correlations between residuals for regions with similar shares, we
derive novel confidence intervals that are easy to construct, and remain valid under an arbitrary cor-
relation structure of the residuals. The key assumption underlying their validity is that, conditionally
on the covariates Zi, the shifters are as good as randomly assigned and independent across sectors.3

In the special case in which each region is fully specialized in one sector (i.e. for every i, wis = 1 for
some sector s), the procedure is identical to using the usual clustered standard error formula, with
clusters defined as groups of regions specialized in the same sector.4 Using our novel confidence
intervals, we revisit two seminal papers that have employed shift-share specifications to reach their
main conclusions, Bartik (1991) and Autor et al. (2013), and, as we describe in more detail below, find
that, in some specifications, our confidence intervals are up to over twice as long as those based on
the usual standard errors.

The starting point for our analysis is a simple multi-sector model, in which labor is the sole factor
of production. Our model is a simplified version of that in Adão, Arkolakis and Esposito (2018) and
its purpose is threefold. First, it helps us characterize the estimand β of the shift-share regression
design in eq. (1) when the shifter effects are heterogeneous across sectors and regions. Second, we
use it to guide the specification of the statistical model used to determine the properties of different

3This result is similar to that in Barrios et al. (2012), who consider cross-section regressions estimated at an individual
level, with a variable of interest that varies at a state level. They show that standard errors clustered on state are valid
when the variable of interest is as good as randomly assigned, and independent across states, even when the residuals are
correlated across states.

4For an application that falls within this special case of our inference procedure, see Amiti and Weinstein (2011).
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inference procedures in the context of shift-share regressions. Third, and most important, we use it
to characterize the likely correlation structure of the residuals εi in eq. (1).

With these goals in mind, we shut down in our model cross-regional spillovers by assuming that
individuals cannot move across regions, and account for cross-sector spillovers within each region
by allowing individuals to freely choose between employment in any sector of the economy and
being out of the labor force. We then characterize the general equilibrium impact of different sector-
level shocks, which, in the model, correspond to changes in productivity, final demand, and foreign
competition. We establish that the general equilibrium impact of sector-level shocks on changes in
employment and wages may be written, to a first-order approximation around the initial equilibrium,
as an additive function of multiple shift-share structures, where the shares correspond to sectoral
employment shares in the initial equilibrium and the shifters correspond to the different sources of
sector-level shocks in the model.5

We then focus on a set of small open regional economies and consider the problem of recovering
the effect of one particular source of sector-level shocks—foreign competition, as measured by changes
in world sectoral prices—on regional labor market outcomes. To make precise what we mean by “the
effect on an outcome” and to help us express in general terms the implications of our economic
model, we use a potential outcome framework. Let Yi(x1, . . . ,xS) denote the potential outcome in
region i if the shifters were exogenously set to x1, . . . ,xS, so that the observed outcome would be
Yi = Yi(X1, . . . ,XS). Our economic model implies that the potential outcomes have the structure

Yi(x1, . . . ,xS) = Yi(0) +
S

∑
i=1

wisxsβis, (2)

where Yi(0) = Yi(0, . . . , 0) indicates region i’s outcome if all the sector-level shocks of interest were
set to zero, and the shares wis correspond to sectoral employment shares in the initial equilibrium.

Our economic model has two other important implications. First, even after conditioning on the
observable measure of exposure of region i to a sector s (i.e. the share wis), the general equilibrium
impact of sectoral shocks on regional outcomes is a function of structural parameters that takes differ-
ent values across sectors and regions; i.e. the parameters βis vary across i and s. Second, the potential
outcome Yi(0) accounts for the impact of sectoral shocks other than the shifters Xs of interest, and
consequently, includes terms that also have a shift-share structure. In terms of the elements of the
regression (1), our economic model thus implies that the regression residual generally has the struc-
ture εi = ∑S

s=1 wisEs + ηi, where wis is the same share entering the construction of the regressor Xi,
Es is an unobserved shifter that varies at the same level as the shifter of interest Xs, and ηi captures
other unobserved determinants of the outcome Yi. Consequently, whenever two regions have similar
exposure to the observed shifters, they will also tend to have similar values of the residuals εi.

In the second part of the paper, we establish the asymptotic properties of the OLS estimator of

5We show in Appendix A.4 that this conclusion is robust to additionally allowing for sector-specific factors of production,
as in the seminal paper by Jones (1971) and in the recent application in Kovak (2013). We show in Appendix A.5 that the
expression for changes in regional employment is analogous to that generated by models with Roy-Fréchet workers with
idiosyncratic sectoral productivities, as in Galle, Rodríguez-Clare and Yi (2017), Lee (2017) and Burstein, Morales and Vogel
(2018a). We discuss in Appendix A.3 the differences in predictions that arise from allowing for labor mobility across regions
as in Allen and Arkolakis (2016) and Redding (2016) (see Redding and Rossi-Hansberg (2017) for a review of this literature).
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β in eq. (1). We show that the estimand β corresponds to a weighted average of the heterogeneous
parameters βis, and that the OLS estimator is consistent as the number of sectors and regions goes
to infinity. As we discuss in more detail in Section 4.1.1 below, the estimand β does not in general
equal a weighted average of the shifter effects wisβis. We also show that the distribution of the OLS
estimator converges to a normal distribution with variance that depends on the cross-regional corre-
lation of εi. When this correlation is zero, this asymptotic variance is identical to the usual asymptotic
variance formula under independent, heteroscedastic errors εi. However, the asymptotic variance can
be substantially larger if εi incorporates a shift-share aggregator of unobserved sectoral shocks, as
in our economic model. We show that our new standard error formula consistently estimates this
asymptotic variance. In our placebo exercise, we show that it correctly accounts for the correlations
between the regression residuals, and therefore, unlike existing methods, yields tests with correct
size.

To illustrate the practical application of our new standard errors, we revisit two applications of
shift-share regressions that are popular in the literature. First, we revisit the empirical analysis in
Autor, Dorn and Hanson (2013). We find that although the 95% confidence intervals that we propose
are between 30% and over 100% larger than those computed using standard inference procedures, the
effect of import flows from China on the reduction in employment and wages in the U.S. during the
period 1999 to 2007 remains statistically significant. Our results indicate that, given the identification
assumptions in Autor, Dorn and Hanson (2013), the negative effect of import flows from China on U.S.
regional labor market outcomes could have been much larger than implied by the usual confidence
intervals.

Second, we estimate the elasticity of average regional wages with respect to regional employment
using the instrumental variables approach in Bartik (1991). Our confidence intervals are in this case
virtually identical to those constructed using standard approaches. Intuitively, the sectoral shifter
used in this empirical approach—the change in national employment by sector—soaks up all sectoral
shocks affecting the labor market outcome of interest and, consequently, there is in this case no shift-
share structure left in the regression residuals. To illustrate this point, we additionally estimate the
same labor supply elasticity using the instrumental variable introduced in Autor, Dorn and Hanson
(2013). The sector shifter in this case—changes in trade flows from China to developed countries
other than the U.S.—leaves other sectoral shocks affecting U.S. commuting zones in the residual and,
consequently, standard inference procedures generate confidence intervals that are too small.

Shift-share designs have been applied with great success to estimate the consequences of a variety
of shocks to economic fundamentals. In seminal papers, Bartik (1991) and Blanchard and Katz (1992)
explore shift-share strategies to analyze the impact on local labor markets of sector-level demand
shocks measured as changes in national sectoral employment. More recently, this strategy has been
applied to investigate the local labor market consequences of exposure to observable shocks of various
sources, including international trade competition (Topalova, 2007, 2010; Kovak, 2013; Autor, Dorn
and Hanson, 2013; Dix-Carneiro and Kovak, 2017; Pierce and Schott, 2017), credit supply (Greenstone,
Mas and Nguyen, 2015), technological change (Acemoglu and Restrepo, 2017, 2018), and industry
reallocation (Chodorow-Reich and Wieland, 2018). Shift-share regressors have been used to study
the impact of sectoral shocks on alternative outcomes, such as political preferences (Autor et al.,

4



2017a; Che et al., 2017; Colantone and Stanig, 2018), marriage patterns (Autor, Dorn and Hanson,
2018), crime levels (Dix-Carneiro, Soares and Ulyssea, 2017), innovation (Acemoglu and Linn, 2004;
Autor et al., 2017b). Shift-share regressors also have been extensively used to estimate the impact of
immigration on local labor markets, as in Card (2001) and many other papers following his approach;
see reviews of this literature in Lewis and Peri (2015) and Dustmann, Schönberg and Stuhler (2016).
Finally, recent papers have explored versions of shift-share strategies to estimate the effect on firms
of shocks to outsourcing costs and foreign demand (Hummels et al., 2014; Aghion et al., 2018).6

Our paper is related to three other recent papers that study the statistical properties of shift-share
specifications. First, Goldsmith-Pinkham, Sorkin and Swift (2018) focus on the case in which the shift-
share regressor is used as an instrument in an instrumental variables regression. Within this setting,
these authors argue that the full vector of shares (wi1, . . . , wiS) can be used as an instrument for the
endogenous treatment. This approach thus requires that the vector of shares be as good as randomly
assigned conditional on the shifters, and independent across regions, or clusters of regions. Given our
interest in exploring the impact of a set of shifters on an outcome of interest, rather than the impact of
a set of shares, this approach is not attractive in our setting. That said, there may be otter settings in
which this approach is more appealing. Second, Borusyak, Hull and Jaravel (2018), also focusing on
the use of shift-share regressor as an instrumental variable, show that it is a valid instrument if the set
of shifters is as good as randomly assigned conditional on the shares, and discuss consistency of the
IV estimator as the number of sectors goes to infinity. Our approach to inference and the way we set
up the potential outcomes framework follows their identification insight; this way of thinking about
the shift-share design validity is also natural given our economic model. Third, Jaeger, Ruist and
Stuhler (2018) study complications with this instrument when the shift-share regressor is correlated
over time and there is a sluggish adjustment of the outcome variable of interest to changes in this
regressor.

The rest of this paper is organized as follows. Section 2 introduces our economic model, and
Section 3 maps the model implications into a potential outcomes framework. Section 4 establishes
the asymptotic properties of the OLS estimator of β in eq. (1), and provides a consistent estimator of
its standard error; we also show how the results extend to an instrumental variables setting. Section 5
presents the results of a placebo exercise in which we compare our novel inference procedures to
those previously used in the literature on shift-share specifications. Section 6 revisits the conclusions
from several prior applications of shift-share regression analysis, and Section 7 concludes. Proofs as
well as additional results are collected in Appendices A to D.

2 Model

This section presents a stylized economic model featuring local labor markets, and discusses two
key implications. Specifically, we illustrate that the general equilibrium impact of sectoral shifters

6There is also a large literature using a shift-share approach that treats the shifters as unobserved, and for this reason
uses the shares directly as regressors. This approach has been applied to investigate the impact of technological shifters
(Autor and Dorn, 2013; Bustos, Caprettini and Ponticelli, 2016), credit supply shifters (Huber, 2018), and immigration
shifters (Card and Dinardo, 2000; Dustmann, Frattini and Preston, 2013; Monras, 2015). We treat the sectoral shares Xs in
eq. (1) as observed and, leave the extension to the unobserved case to future work.
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on regional labor market outcomes: (a) has a shift-share structure; and (b) is heterogeneous across
regions and sectors, even conditional on the shares.

2.1 Environment

We consider a model with multiple sectors s = 1, . . . , S and multiple regions i, j = 1, . . . , J. Regions
are partitioned into c = 1, . . . , C countries, and we denote the set of regions located in a country c by
Jc. Region i has a population of Mi individuals who cannot move across regions.

Production. Each sector s in region i has a representative firm that produces a differentiated good.
We assume that the quantity Qis produced by sector s in region i is produced using labor with a linear
technology Ais,

Qis = AisLis, (3)

where Lis denotes the number of workers employed by the representative firm in this sector-region
pair. Regions thus differ in terms of their sector-specific productivity Ais.

Preferences for consumption goods. Every individual has identical nested preferences over the
sector-region pair specific differentiated goods. Specifically, we assume that individuals have Cobb-
Douglas preferences over sectoral composite goods,

Cj =
S

∏
s=1

(
Cjs
)γs , (4)

where Cj denotes the utility level of a worker located in region j that obtains utility Cjs from con-
suming goods in sector s, and Cjs is a constant elasticity of substitution (CES) index of the sector s
differentiated goods produced in different regions; i.e.

Cjs =

[
J

∑
i=1

(
cijs
) σs−1

σs

] σs
σs−1

, σs ∈ (1, ∞), (5)

where cijs denotes the consumption in region j of the sector s good produced in region i. This
preference structure has been previously used in Armington (1969), Anderson (1979) and multiple
papers since (e.g. Anderson and van Wincoop, 2003; Arkolakis, Costinot and Rodríguez-Clare, 2012).

Preferences for sectors and non-employment. Workers located in a region i have the choice of be-
ing employed in one of the sectors s = 1, . . . , S of the economy or opting for non-employment, which
we index as s = 0. Conditional on being employed, all workers have identical homogeneous prefer-
ences over their sector of employment, but workers differ in their preferences for non-employment.
Specifically, conditional on obtaining utility Cj from the consumption of goods, the utility of a worker
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ι living in region j is

U(ι | Cj) =

u(ι)Cj if employed in any sector s = 1, . . . , S,

Cj if not employed (s = 0).
(6)

We assume that u(ι) is distributed independently and identically across individuals ι according to a
Pareto distribution with scale νi and shape φ, so that the cumulative distribution function of u(ι) is
given by

Fu(u) = 1−
(

u
νi

)−φ

, u ∈ [νi, ∞), φ > 1. (7)

If a worker living in region j chooses to be employed, she will earn wage ωj (as workers are indifferent
about the sector of employment and can move freely across sectors, region-specific wages must be
equalized across sectors in equilibrium). If a worker chooses to not be employed, she receives a
benefit bj.7 We denote the total number of employed workers in region j by Lj, and the employment
rate in j as ej ≡ Lj/Mj.

Market structure. Goods and labor markets are perfectly competitive.

Trade costs. For simplicity, we assume that there are no trade costs, which implies that the equilib-
rium price of the good produced in region i is the same in every other region j of the world economy;
i.e. pijs = pis for j = 1, . . . , J. Consequently, for every sector s there is a composite sectoral good that
has identical price Ps in all regions; i.e.

(Ps)
1−σs =

S

∑
s=1

(pis)
1−σs , (8)

and the final good’s price is P = ∏S
s=1(Ps)γs .

2.2 Equilibrium

We now characterize the equilibrium wage ωj and total employment Lj of all regions j = 1, . . . , J.

Consumption. We first solve the expenditure minimization problem of an individual residing in
region j. Given the sector-level utility in eq. (5) and the condition that pijs = pis for j = 1, . . . , J, all
regions j have identical spending shares xis on goods from region i, given by

xis =

(
pis

Ps

)1−σs

. (9)

7We assume that these benefits are paid by a national government that imposes a flat tax equal to χc on all income earners
in a country c. The budget constraint of the government is thus ∑j∈Jc

{χc(ωjej + bj(1− ej))Mj} = ∑j∈Jc
{bj(1− ej)Mj}.

Alternatively, we could think of the option s = 0 as home production and assume that workers that opt for home production
in region j obtain bj units of the final good, which they consume. This alternative model is isomorphic to that described in
the main text.
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Labor supply. Every worker maximizes the utility function in eq. (6) in order to decide whether
to be employed. Consequently, conditional on the wage ωi and the non-employment benefit bi, the
employment rate in region i is ei = Pr [ui(ι)ωi > bi] = 1− Pr [ui(ι) < bi/ωi]. It therefore follows from
eq. (7) that

ei = viω
φ
i , vi ≡ (νi/bi)

φ . (10)

Producer’s problem. In perfect competition, firms must earn zero profits and, therefore,

pis =
ωi

Ais
. (11)

Goods market clearing. Given that labor is the only factor of production and firms earn no profits,
the income of all individuals living in region i is Wi ≡ ∑s ωiLis, and world income is W ≡ ∑i Wi.
Given preferences in eq. (4), all individuals spend a share γs of their income on sector s, so that
world demand for the differentiated good s produced in region i is xisγsW. Goods market clearing
requires world demand for good s produced in region i to equal total revenue of the representative
firm operating in sector s in region i, ωiLis. Thus, using the expression in eq. (9)

Lis = (ωi)
−σs (AisPs)

σs−1 γsW, (12)

and total labor demand in region i is

Li =
S

∑
s=1

(ωi)
−σs (AisPs)

σs−1 γsW. (13)

Labor market clearing. Labor market clearing requires labor supply in eq. (10) to equal labor de-
mand in eq. (13):

Mivi(ωi)
φ =

S

∑
s=1

(ωi)
−σs (AisPs)

σs−1 γsW. (14)

Equilibrium. Given technology parameters {Ais}J,S
i=1,s=1, preference parameters {(σs, γs)}S

s=1, total
employment and labor supply parameters {(Mi, vi)}J

i=1, and normalizing world income to equal 1,
W = 1, we can use eqs. (8), (11) and (14) to solve for the equilibrium wage in every world region,
{ωi}J

i=1, the equilibrium price of every sector-region specific good {pis}J,S
i=1,s=1, and the sectoral price

indices {Ps}S
s=1. Given these equilibrium wages and sectoral price indices, we can use eq. (13) to solve

for the equilibrium level of employment in every region, {Li}J
i=J .

2.3 Labor market impact of economic shocks in a small open economy

We assume that, in every period, our model characterizes the labor market equilibrium in every re-
gion of the world economy. Across periods, we assume that the parameters {σs}S

s=1, φ, and {Mi}J
i=1

are fixed and that all changes in the labor market outcomes {(ωi, Li)}J
i=1 are generated by changes
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in technology {Ais}J,S
i=1,s=1, sectoral preferences {γs}S

s=1 and labor supply parameters {vi}J
i=1. Specif-

ically, in every period, the values of these exogenous parameters correspond to realizations from an
unknown joint distribution F(·):8

({Ais}J,S
i=1,s=1, {γs}S

s=1, {vi}J
i=1) ∼ F(·). (15)

We focus in this section on understanding how changes in these exogenous parameters affect the
labor market equilibrium in a set of “small” regions whose share in world output is approximately
zero for all sectors, i.e., xis ≈ 0 for s = 1, . . . , S, with xis defined in eq. (9). Without loss of generality,
we assume that all small regions of interest belong to the same country c. Thus, the sectoral price
index Ps of every sector s will not depend on the technology and labor supply parameters of the
regions in c (i.e., {Ps}S

s=1 does not depend on {Ais}S
s=1,i∈Jc

and {vi}i∈Jc ) and, from the perspective of
any one of these regions, changes in sectoral prices operate as exogenous shocks. Furthermore, as
illustrated in eqs. (13) and (14) these sectoral prices mediate the impact of all foreign technology and
labor supply parameters on the labor market equilibrium of every region in country c.

We use ẑ = ln(zt/z0) to denote log-changes in a variable z between some initial period t = 0
and any other period t. Therefore, to a first-order approximation around the initial equilibrium, the
equilibrium conditions in eqs. (12) to (14) imply that, for every region i in country c,

L̂is = γ̂s + (σs − 1)
(

Âis + P̂s
)
− σsω̂i, (16)

ω̂i = λi

S

∑
s=1

l0
is
[
γ̂s + (σs − 1)

(
Âis + P̂s

)]
− λiv̂i, (17)

L̂i = φλi

S

∑
s=1

l0
is
[
γ̂s + (σs − 1)

(
Âis + P̂s

)]
+ (1− φλi) v̂i, (18)

where l0
is is the initial employment share of sector s in region i, l0

is ≡ L0
is/Li, and λi ≡

[
φ + ∑s l0

isσs
]−1.

Equations (16) and (17) illustrate that, for any region i, the change in employment in a particular
sector s, L̂is, depends: (a) directly on sector s preferences, technology and price shocks, γ̂s, Âis, and
P̂s; and, (b) through changes in equilibrium wages, ω̂i, on region i labor supply shocks, v̂i, and
on preferences, technology and price shocks to any sector, {γ̂s, Âis, P̂s}S

s=1. The model described in
Section 2.1 thus features cross-sectoral spillovers within each region: exogenous shocks to region i’s
labor demand in a sector k affect equilibrium wages and, consequently, also affect region i’s labor
demand in every other sector s. Importantly, as reflected in eq. (17), the impact of a sectoral shock on
equilibrium wages in a region i increases in the initial share of region i’s employment in sector s, l0

is.
Consequently, the expression for the total change in wages in eq. (17) includes several terms that have
a shift-share structure: the “share” term is always the initial employment share in a sector l0

is, and
the “shift” term is either a preference, a technological, or a price shock in the corresponding sector:
γ̂s, Âis, or P̂s. Furthermore, as eq. (18) shows, the expression for the change in total employment in
a region i inherits the same shift-share structure featuring in the expression for the total change in

8Since the labor market equilibrium depends on bi and νi only through vi, it suffices to specify a distribution for νi
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wages in eq. (17).9 We summarize the content of this paragraph in the following remark:

Remark 1. According to the model in Section 2.1, the general equilibrium impact of sectoral shocks on regional
labor market outcomes have a shift-share structure.

For concreteness, we focus in the remainder of this section on the impact of changes in the price
in a sector s on changes in wages and employment across regions in the country of interest c. Similar
points would also apply if we were interested in the effect of sectoral shocks that affect the technology
parameters Ais symmetrically in all regions i of country c. Specifically, without loss of generality, we
can rewrite Âis = Âs +

ˆ̃Ais and, according to eqs. (17) and (18), dω̂i/dP̂s = dω̂i/dÂs and dL̂i/dP̂s =

dL̂i/dÂs.
As the expressions in eqs. (17) and (18) show, the response of regional wages and total employment

to a particular change in the world price of a sector s is

dL̂i/dP̂s = l0
isβL,is, with βL,is ≡ φλi(σs − 1); (19)

dω̂i/dP̂s = l0
isβω,is, with βω,is ≡ λi(σs − 1). (20)

The general equilibrium impact of the world price of a sector s on both region-i’s total employment
and wages is thus heterogeneous across sectors and regions. This heterogeneity is not exclusively due
to differences in the initial employment share l0

is, as the parameters βL,is and βω,is will also generally
vary across regions and sectors.10 This is relevant as, while standard datasets will usually contain
information on the initial employment shares for every sector and region, the parameters βL,is and
βω,is are not generally known or directly observed and, thus, need to be estimated.

Remark 2. Even conditional on the shares, the general equilibrium impact of sectoral shifters on regional labor
market outcomes will generally be heterogeneous across regions and sectors.

Remarks 1 and 2 are not specific to the model described in Section 2.1. The property that, for some
given functions of structural parameters βL,is and βω,is, one can write the impact of P̂s on ω̂i and L̂i

as l0
isβL,is and l0

isβω,is, respectively, also holds for models other than that described in Section 2.1.
Specifically, we consider in Appendix A.4 a model à la Jones (1971) in which the production function
in eq. (3) is generalized to be Cobb-Douglas in labor Lis and a sector-specific input Kis that is in fixed
supply every region i. In Appendix A.5, we consider a Roy (1951) model in which workers have
heterogeneous preferences for being employed in the different s = 1, . . . , S sectors. Both models are
isomorphic to that described in Section 2.1, with the only difference being the mapping of βL,is and
βω,is to structural parameters of the corresponding model.11, 12

9As illustrated in Appendix A.2, once we substitute the expression for wage changes in eq. (17) into eq. (16), the
expression for the change in employment in a specific region i and sector s also has a term with a shift-share structure.

10The parameters βL,is and βω,is will vary neither across regions nor sectors if and only if all sectors share the same
elasticity of substitution, i.e. σs = σs′ for all s, s′.

11According to the models described in Appendices A.4 and A.5, the assumptions on structural parameters needed so
that the corresponding model predicts βL,is and βω,is to be constant across regions and sectors are even stronger than those
required by the model described in Section 2.1. See Appendices A.4 and A.5 for details.

12The model in Appendix A.4 is very similar to that Kovak (2013). See Autor, Dorn and Hanson (2013, 2016) for an
alternative modeling approach that generates predictions similar to those in eqs. (16), (17), (18), (19) and (20).
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The model described in Section 2.1 assumes that each region’s population Mi is fixed. We extend
this framework in Appendix A.3 to allow for migration across regions within each country, and show
that the elasticity of regional labor market outcomes with respect to P̂s will depend not only on the
elasticities described in eqs. (19) and (20) but also on how P̂s impacts labor market outcomes in other
regions within the same country. In the context of this model with migration, the elasticities described
in eqs. (19) and (20) thus capture only partial effects that do not account for cross-regional spillovers.

3 From theory to inference

In Section 2.3, we focused on the impact of sectoral price shocks on labor market outcomes across the
regions of a small open economy. More generally, we are interested in estimating the effect of sectoral
shocks or shifters on an outcome of interest that varies at the regional level. To make precise what
we mean by “the effect on an outcome”, we use the potential outcome notation, writing Yi(x1, . . . , xS)

to denote the potential (counterfactual) outcome that would occur in a region i if the shocks to the
S sectors were exogenously set to {xs}S

s=1. We assume that the potential outcomes are linear in the
shocks,

Yi(x1, . . . ,xS) = Yi(0) +
S

∑
i=1

wisxsβis, where
S

∑
s=1

wis = 1, (21)

and Yi(0) ≡ Yi(0, . . . , 0) denotes the potential outcome in region i when all shocks {xs}S
s=1 are set to

zero. The equilibrium relationships in eqs. (17) and (18) are both examples of eq. (21). For instance,
eq. (17) maps into eq. (21) if, for every region i and sector s, we define

Yi = ω̂i, wis = l0
is, xs = P̂s, βis = βω,is, Yi(0) = λi

S

∑
s=1

l0
is
[
γ̂s + (σs − 1)Âis

]
− λiv̂i. (22)

According to eq. (21), increasing xs by one unit, and holding the shocks to the other sectors con-
stant, leads to an increase in region i’s outcome by wisβis units. This is the treatment effect of xs

on Yi(x1, . . . ,xS). The actual (observed) outcome is given by Yi = Yi(X1, . . . ,XS), where X1, . . . ,XS

denote the realized values of these sectoral shifters.
We assume that we observe data for N regions and S sectors on sectoral shocks Xs, regional

outcomes Yi, region- and sector-specific shares wis, and a vector of regional controls Zi. For example,
we may think of the N regions in our data as the set Jc of regions included in the country c defined in
Section 2.3. We are interested in the properties of the OLS estimator β̂ of the coefficient on the shift-
share regressor Xi = ∑S

s=1 wisXs in a regression of Yi onto Xi and an additional vector of covariates Zi

(we henceforth use the convention that the sector-level shocks Xs are written in script font style, and
the region-level aggregates Xi are written in normal style). To help us focus on the key conceptual
issues, we abstract away from the covariates in Zi for now, and assume that Xs and Yi have been
demeaned, so that we can omit the intercept in a regression of Yi on Xi. The OLS estimator of the
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coefficient on Xi in this simplified setting is given by

β̂ =
∑N

i=1 XiYi

∑N
i=1 X2

i

, (23)

and we can write the regression equation as

Yi = βXi + εi, where Xi ≡
S

∑
s=1

wisXs,
S

∑
s=1

wis = 1, (24)

and β denotes the population analog of β̂.
The definition of the estimand β and the properties of the estimator β̂ will depend on: (a) what

the population of interest is; (b) how we think about repeated sampling; and (c) which restrictions
we impose on the data-generating process (DGP).

For (a), we define the population of interest to be the observed set of N regions, as opposed
to modeling the regions as drawn from a large superpopulation of regions. Consequently, we are
interested in the parameters {βis}N,S

i=1,s=1 and the treatment effects {wisβis}N,S
i=1,s=1 themselves, rather

than the distributions from which they are drawn, which would be the case if we were interested in a
superpopulation of regions.13 For (b), given our interest on estimating the ceteris paribus impact of a
specific set of shocks X1, . . . ,XS, we consider repeated sampling of these shocks, holding the shares
wis, the parameters βis, and the potential outcomes Yi(0) fixed. Finally, for (c), as we describe in detail
in Section 4 below, we characterize the DGP by imposing restrictions on the joint distribution of the
shifters Xs, zero-shock potential outcomes Yi(0), and parameters βis, conditional on the shares wis.
In particular, we follow Borusyak, Hull and Jaravel (2018) in assuming that the shifters {Xs}S

s=1 are
good as randomly assigned conditional on the shares {wis}S,N

s=1,i=1.
Given our assumptions on the population of interest and on the type of repeated sampling, the

estimand of interest β is defined as

β =
∑N

i=1 E[XiYi | F0]

∑N
i=1 E[X2

i | F0]
, with F0 = {Yi(0), βis, wis}N,S

i=1,s=1, (25)

and the regression error εi is then defined as the residual

εi = Yi − Xiβ = Yi(0) +
S

∑
i=1

wisXs(βis − β), (26)

where the second equality uses eq. (21). Thus, the statistical properties of the regression residual
εi will depend on the properties of the potential outcome Yi(0), the shifters {Xs}S

s=1 and the shares
{wis}N,S

i=1,s=1. A key implication of the model in Section 2.1 is that the zero-shock potential outcome

13Our definition of the population is consistent with the question of interest outlined in Section 2.3, in which we focus on
a specific set of regions included in a particular country c. It is also consistent with several seminal papers that use a shift-
share approach. For example, the first sentence in the abstract of Autor, Dorn and Hanson (2013) reads: “We analyze the
effect of rising Chinese import competition between 1990 and 2007 on U.S. local labor markets”. Similarly, the first sentence
in the abstract of Dix-Carneiro and Kovak (2017) reads: “We study the evolution of trade liberalization’s effects on Brazilian
local labor markets” (emphases added).
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Yi(0) in eq. (21) will generally incorporate unobserved covariates that have a shift-share structure
analogous to that of the regressor of interest, Xi. Specifically, as illustrated in eq. (22), Yi(0) incor-
porates weighted averages of unobserved sectoral shocks (i.e. preference shocks γ̂s and any sectoral
component of the technology shocks Âis), with weights l0

is identical to those used to aggregate the
sectoral shock of interest P̂s into the regressor Xi. Consequently, if two regions i and i′ have similar
shares, they will tend to have similar shift-shares Xi and Xi′ as well as similar potential outcomes
Yi(0) and Yi′(0). It then follows from eq. (26), that the residuals εi and εi′ will also tend to be corre-
lated.14 As we discuss in all remaining sections of the paper, this has important implications for the
variance of β̂. We summarize this discussion in the following remark.

Remark 3. Correctly performing inference for the OLS estimator β̂ of the coefficient on a shift-share regressor
requires taking into account that the regression residuals will generally inherit the same shift-share structure.

4 Asymptotic properties of shift-share regressions

In this section, we formulate the statistical assumptions that we impose on the DGP, present the
asymptotic results that we derive using these assumptions, and use the model in Section 2 to provide
an economic interpretation for these assumptions. To convey the main issues that arise in these
regressions, we first consider in Section 4.1 the simple case in which there is a single regressor with a
shift-share structure, and no other covariates, as in Section 3. We introduce covariates in Section 4.2.
Section 4.3 considers further extensions of the basic setup. All proofs are relegated to Appendix B.

We use the notation introduced in Sections 2 and 3. To compactly state our assumptions and
results, we use standard matrix and vector notation. In particular, for a (column) L-vector Ai that
varies at the regional level, A denotes the N × L matrix with the ith row given by A′i. For a vector As

that varies at the sectoral level, A denotes the S× L matrix with the sth row given by A ′s. If L = 1,
then A and A are an N-vector, and an S-vector, respectively. Let W denote the N× S matrix of shares,
so that its (i, s) element is given by wis, and let B denote the N × S matrix with (i, s) element given
by βis.

4.1 No additional covariates

We study here the statistical properties of the OLS estimator in eq. (23). We assume that, conditionally
on the matrix of shares W, the shocks are as good as randomly assigned in that they are independent
of the potential outcomes Yi(x1, . . . ,xS):

(Y(0), B) ⊥⊥X |W. (27)

In the next subsection, we weaken this assumption by assuming that the shocks are as good as
randomly assigned conditionally on some covariates.

14As we discuss in Section 4.2, when controls Zi are included, this conclusion remains to hold unless the controls account
for the impact on the outcome of all sectoral shocks other than {Xs}S

s=1 that affect the outcome.
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As in the literature on inference in randomized controlled trials (see Imbens and Rubin, 2015, for
a review), we will consider the statistical properties of β̂ under randomization-style inference: we
will condition on the realized values of the shares, and on the potential outcomes, and consider the
properties of β̂ under repeated sampling of the shocks X. This approach leverages the random as-
signment assumption in eq. (27), and ensures that the standard errors that we derive will remain valid
under any dependence structure between the potential outcomes, or the shares wis, across regions.

We impose some regularity conditions on the DGP for (Y(0), B, W,X) that generate the observed
data (Y, X, W). We consider asymptotics with the number of sectors going to infinity, S → ∞. For-
mally, the number of regions N = NS depends on S, but we typically drop the S subscript and keep
the conditioning implicit. Unless stated otherwise, all limits are taken as S→ ∞.

Assumption 1.

(i) {(Y(0), B, W,X) ∈ RNS ×RNS×S ×RNS×S ×RS}∞
S=1 is a triangular array of random variables

with N = NS → ∞ as S → ∞ that satisfies eq. (27), and E[Yi(0) | W] = 0. The observed data
consists of the tuple (Y, X, W), with Yi = Yi(X1, . . . ,XS), such that eq. (21) holds.

(ii) Conditional on W, the shocks X1, . . . ,XS are mean zero, independent across s, with fourth
moments that exist and are bounded uniformly over s.

(iii) 1
N ∑N

i=1 E[X2
i | W] = 1

N ∑N
i=1 ∑S

s=1 var(Xs | W)w2
is converges in probability to a strictly positive

non-random limit.

Assumption 2.

(i) Conditional on W, the second moments of Yi(0) exist, and are bounded uniformly over i. The
support of βis is bounded.

(ii) maxs ns/N → 0, where ns = ∑S
s=1 wis denotes the total share of sector s.

By modeling the data as a triangular array, Assumption 1(i) allows the distribution of the data
to change with the sample size.15 The assumption that Yi(0) and Xs are mean zero is made to
simplify the exposition in this section by allowing us to drop the intercept from the regression of Yi

on Xi, and will be relaxed in Section 4.2. The key assumption underlying our approach to inference
is Assumption 1(ii). This is the only independence assumption that we need; Yi(0) and the shares
wis can be correlated in an arbitrary manner across i. Consequently, the residuals εi (defined in
eq. (26)) are allowed to be correlated in an arbitrary manner, which in particular allows them to have
a shift-share structure. Furthermore, we do not require X, or any other variables, to be identically
distributed—the sectors and regions may be heterogeneous. Assumption 1(iii) is a standard regularity
condition ensuring that the shocks X have sufficient variation so that the denominator of β̂, scaled
by N, does not converge to zero. The bounded support condition on βis in part (i) of Assumption 2
is made to keep the proofs simple and can be relaxed.

15In other words, to allow the distribution of the data to change with the sample size S, we implicitly index the data by
S. Making this index explicit, for each S, the data is thus given by the array {(YiS(0), βisS, wisS,XsS) : i = 1, . . . , NS, s =
1, . . . , S}.
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Finally, Assumption 2(ii) is a key regularity condition ensuring that the share of each sector is
asymptotically negligible. It generalizes the standard consistency condition in the clustering literature
that the largest cluster be asymptotically negligible. To see the connection, consider the special case
with “concentrated sectors”, in which each region i specializes in one sector; denote it by s(i). Then
wis = 1 if s = s(i) and wis = 0 otherwise, and ns denotes the number of regions that specialize in
sector s. In this case, Xi = Xs(i), so that if eq. (27) holds, β̂ is equivalent to an OLS estimator in
a randomized controlled trial in which the treatment varies at a cluster level; here the sth cluster
consists of regions that specialize in sector s. The condition maxs ns/N → 0 then reduces to the
assumption that the largest cluster be asymptotically negligible.

Proposition 1. Suppose Assumptions 1 and 2 hold. Then

β =
∑N

i=1 ∑S
s=1 πisβis

∑N
i=1 ∑S

s=1 πis
, and β̂ = β + oP(1), (28)

where πis = w2
is var(Xs |W).

The proposition gives two results. First, it uses eq. (27) to show that the estimand in eq. (25) can
be expressed as a weighted average of the region- and sector-specific parameters βis, with weights
that are increasing in the variance of the shock and the share wis. Second, it uses the remaining
assumptions to show that the OLS estimator β̂ converges to this estimand as S → ∞. In the special
case with concentrated sectors, ∑S

s=1 πisβis = var(Xs(i) |W)βi,s(i), so that Proposition 1 reduces to the
standard result from the randomized control trials literature with cluster-level randomization (here
the “cluster” consists of all regions that specialize in the same sector) that the weights are proportional
to the variance of the shock.

For the estimator in eq. (23) to be asymptotically normal, we need to strengthen Assumption 1(ii)
and Assumption 2 slightly:

Assumption 3.

(i) maxs n2
s / ∑S

t=1 n2
t → 0.

(ii) Conditional on W, the eighth moments of Xs are bounded uniformly over s, and the fourth
moments of Yi(0) are bounded uniformly over i.

Part (i) ensures that the contribution of each sector to the asymptotic variance, which, according
to the standard error formula below, is of the order O(n2

s ), is asymptotically negligible. For instance,
while the estimator β̂ is consistent for β when the largest sector share is of the order O(N/

√
S) and

the remaining sector shares are of the order O(N/S), Assumption 3 rules this case out; β̂ will not
generally be asymptotically normal in this case due to failure of the Lindeberg condition.

Proposition 2. Suppose Assumptions 1, 2 and 3 hold, and suppose that

VN =
1

∑S
s=1 n2

s
var

(
N

∑
i=1

Xiεi | Y(0), B, W

)
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converges in probability to a non-random limit. Then

N√
∑S

s=1 n2
s

(β̂− β) = N

0,
VN(

1
N ∑N

i=1 X2
i

)2

+ oP(1).

The proposition shows that β̂ is asymptotically normal, with a rate of convergence equal to

N/
√

∑S
s=1 n2

s . If the sector sizes ns are all of the same order, equal to N/S, then the rate of con-
vergence is equal to

√
S. However, if the cluster sizes are unequal, the rate may be slower. The

asymptotic variance formula has the usual “sandwich” form.
Since Xi is directly observed, to construct a consistent standard error estimate, it suffices to con-

struct a consistent estimate of VN , the middle part of the sandwich. Suppose that the effects of the
shocks are homogeneous across regions and sectors, so that βis = β for all i, s, and εi = Yi(0).16 Then
it follows from eq. (27) and Assumption 1(ii) that

VN =
∑S

s=1 var(Xs |W)R2
s

∑S
s=1 n2

s
, Rs =

N

∑
i=1

wisεi. (29)

The contribution of sector s to VN is given by R2
s , which is of the order n2

s . Replacing var(Xs | W) by
X2

s , and εi by the regression residual ε̂i = Yi − Xi β̂, we obtain to the standard error estimate

ŝe(β̂) =

√
∑S

s=1 X
2
s R̂2

s

∑N
i=1 X2

i

, R̂s =
N

∑
i=1

wisε̂i. (30)

In the case with concentrated sectors, ∑S
s=1 X

2
s R̂2

s = ∑S
s=1(∑

N
i=1 I{s(i) = s}Xi ε̂i)

2, so that the standard
error formula in the preceding display reduces to the usual cluster-robust standard error, clustered
on the sectors. In the general case, the standard error accounts for the fact that regions with similar
sectoral composition will have similar errors—unless the regression error εi = Yi(0) has no sectoral
component (so there are no unobserved sector-level shocks), it will generally not be the case that
cov(Xiεi, Xjεj) = 0 for i 6= j. In contrast, the usual heteroscedasticity-robust standard error fails to
account for this correlation. Furthermore, standard errors clustered by groups of regions defined
by their geographical proximity to each other will also fail to account for this correlation unless all
regions are fully specialized in a single sector and the sector of specialization is the same for regions
belonging to the same geographically defined cluster.

Remark 4. In the expression for VN in eq. (29), the only expectation is taken over Xs, we do not take any
expectation over the shares wis or the residuals εi. This is because, as mentioned earlier, our inference is
conditional on the realized values of the shares and on the potential outcomes. In terms of the linear regression
equation Yi = Xiβ + εi, this effectively means that we consider the properties of β̂ under repeated sampling of
Xi = ∑s wisXs conditional on the shares wis and conditional on the residuals εi (as opposed to, say, considering
properties of β̂ under repeated sampling of the residuals εi conditional on the realized values of Xi). As a result,

16The standard error formula that we provide remains valid under heterogeneous effects as long as some mild restrictions
on the form of heterogeneity apply; see Appendix B.5 for discussion.
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our standard errors allow for arbitrary dependence structure between the residuals εi.

4.1.1 Economic interpretation of assumptions and results

We now interpret the assumptions described in Section 4.1 in terms of the economic model described
in Section 2. To fix ideas, we consider the case in which the outcome of interest is the change in
average wages between any two periods (Yi = ω̂i), the sectoral shocks of interest are changes in
sectoral prices (Xs = P̂s), and all N regions in the sample are “small” (the spending shares xis in
eq. (9) are close to zero for all s and i). As discussed in eq. (22), the shares then correspond to
initial employment shares (wis = l0

is), the parameter βis corresponds to the combination of structural
parameters βL,is defined in eq. (19), and the potential outcome Yi(0) is a sum of shift-share variables.

In terms of our economic model, Assumption 1(i) imposes that the potential outcomes Y(0) are
independent of the sectoral price changes {P̂s}S

s=1. As illustrated in eq. (22), the potential outcomes
Y(0) depend, among other variables, on the changes in sectoral preferences {γ̂s}S

s=1 and the changes
in technology, {Âis}N,S

i=1,s=1. As illustrated in Appendix A.1, the sectoral price changes depend on the
changes in: (a) sectoral preferences; and (b) technology parameters of all world regions that are large
(i.e. affect the sectoral world prices). Consequently, the independence assumption in eq. (27) imposes
that: (a) there are no shocks to sectoral preferences, γ̂s = 0 for all s; (b) the technological shocks in the
N regions in the population of interest are independent of those in every large region. As we discuss
in Section 4.2, adding controls to the regression equation allows us to relax these assumptions.

Assumption 1(ii) imposes that the sectoral price changes {P̂s}S
s=1 are independent across sectors.

However, according to the model described in Section 2, any sector s price change, P̂s, will respond
to changes in preferences and technology not only for sector s but also for any other sector s′ 6= s
(see Appendix A.1). Our model thus predicts that sectoral price changes are not independent across
sectors. In Section 5.2, we perform several simulations to study the importance of violations of the
assumed sectoral independence of shocks imposed in Assumption 1(ii). In Section 4.3.1, we relax the
independence restriction in Assumption 1(ii) and allow the shocks X to be correlated within groups
of sectors, maintaining its independence across sectors belonging to different groups.17

Intuitively, Assumption 2(ii) imposes that no one sector dominates the others in terms of initial
employment at the national level; i.e. ∑N

i=1 L0
is/ ∑i=1 Lis is not too large for any one sector. As we

illustrate in Section 5.2, this condition is satisfied for the U.S. when only manufacturing sectors are
taken into account; it would not hold if the non-manufacturing sector is included as one of the S
sectors incorporated into the analysis (unless the distribution of Xs for the non-manufacturing sector
is degenerate at zero).18

17The assumption that the shifters Xs are independent across sectors or groups of sectors may be more accurate in settings
in which the shifters Xs are not market equilibrium outcomes, such as tariffs and non-tariff trade barriers (Topalova, 2007,
2010; Kovak, 2013; Hakobyan and McLaren, 2016; Dix-Carneiro and Kovak, 2017, 2018), productivity (Table 10 in Autor,
Dorn and Hanson, 2013), or tax rates (Zidar, 2018). In the context of the model in Section 2, the independence assumption
would hold if the sectoral shocks of interest were sectoral technology shocks affecting equally all technology parameters
Ais of the N regions in the population of interest.

18When analyzing the impact of international trade shocks on regional labor market outcomes, it is standard to either
set the shock to the non-manufacturing sector to zero (Topalova, 2007, 2010; Autor, Dorn and Hanson, 2013; Hakobyan and
McLaren, 2016) or to remove the non-manufacturing sector from the analysis and rescale the shares of all manufacturing
sectors so that they add up to one (Kovak, 2013). Either of these approaches will satisfy the restriction in Assumption 2(ii).
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Concerning the result in Proposition 1, it is important to remark that the estimand β does not
equal a weighted average of the heterogeneous treatment effects: as discussed earlier, the effect of
increasing the value of the sector s shock in one unit on the outcome variable is heterogeneous
and equal to wisβis. Consider a set of region- and sector-specific weights {ξis}N,S

i=1,s=1 chosen by the
researcher (the weights may depend, for instance, on the policy that the researcher is interested in
evaluating), and define the corresponding weighted average of the treatment effects as

τξ ≡
∑N

i=1 ∑S
s=1 ξiswisβis

∑N
i=1 ∑S

s=1 ξis
.

If βis is constant across i and s, then τξ = βwξ , with wξ ≡ ∑N
i=1 ∑S

s=1 ξiswis/ ∑N
i=1 ∑S

s=1 ξis. Given that
wξ is a function of the observed shares in W and the weights {ξis}N,S

i=1,s=1, the researcher can use β̂

to compute a consistent estimate of τξ as β̂wξ . Furthermore, in this case, the common parameter β

such that βis = β for all i and s has the interpretation that it measures the total effect of increasing
the shifters simultaneously in every sector by one unit. Conversely, when βis varies across regions
and sectors, then it is not clear how to exploit knowledge of the estimand β defined in eq. (28) to
learn something about τξ . This point has been made before in Monte, Redding and Rossi-Hansberg
(2018).19

Finally, as Assumptions 1 and 2 impose no restriction on the cross-regional correlation of the po-
tential outcomes Y(0), the standard error estimate introduced in eq. (30) is consistent for the standard
deviation of β̂ no matter what the correlation in the labor supply shocks vi (defined in eq. (10)) is: it
remains consistent even if labor supply conditions are similar across regions that are geographically
close to each other (e.g. due to labor market policies defined by a supra-regional entity).

4.2 Adding covariates

In many applications, assuming that the shocks X are as good as randomly assigned is unrealistic.
However, they may be as good as randomly assigned conditional on a vector of covariates. In par-
ticular, we assume that there is a latent K-vector of covariates, Zs, measured at a sectoral level, such
that conditional on {Zs}S

s=1, the shocks Xs are as good as randomly assigned. We do not necessarily
observe these covariates directly, but we do observe a region-level proxy

Zi =
S

∑
s=1

wisZs + Ui, (31)

for each region i (as with the shocks X, we use the notational convention that the sector-level variable
Zs is written in script font style, while the region-level variable Zi is written in standard style). With

19An alternative estimation approach is to use the mapping between βis and structural parameters implied by an eco-
nomic model; e.g. eq. (20) expresses βω,is as a function of the demand elasticities {σs}S

s=1 and the labor supply elasticity
φ. By imposing this mapping and obtaining consistent estimates of these structural parameters, researchers may obtain
consistent estimates of βis for every i and s. This approach is however less robust to alternative modeling assumptions;
e.g. the model in Appendix A.4 is isomorphic to that in Section 2.1 up to the mapping from βL,is and βω,is to structural
parameters. Thus, both models are consistent with the potential outcomes framework in eq. (21), and consequently, both
models justify an estimation approach based on a regression of the type in eq. (24). Conversely, they will imply different
estimates if the mapping from βis to structural parameters is exploited for identification.
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this setup, we replace eq. (27) with the assumption that

(U, Y(0), B) ⊥⊥X | Z, W. (32)

where Z denotes the S× K matrix with sth row given by Z′s, and U denotes the N-vector with ith
element given by Ui.

The condition in eq. (32) may be difficult to interpret directly because different variables are mea-
sured at different levels: the potential outcomes are measured at a regional level, and the covariates
and shocks are measured at a sectoral level. It is therefore useful to consider a projection of the poten-
tial outcomes onto the sectoral space. For simplicity, consider the case with constant effects, βis = β,
and project Yi(0) onto the sector-level controls Zs, so that we can write Yi(0) = ∑S

s=1 wisZ
′
sκ + ηi.

Then eq. (32) holds if the residuals ηi in this projection are independent of X—if there are any other
unobserved sector-level shocks that affect the outcomes (and are therefore in ηi), these must be unre-
lated to (Xs,Zs). The variable Ui in eq. (31) can be thought of in two ways. First, one can think of it
as measurement error in Z when controlling for Z: Uik = 0 if the proxy Zik is perfect (it controls for
Z1k, . . . ,ZSk without error). Alternatively, the kth covariate Zik may be included in the regression to
increase precision—in this case Zsk = 0 for all s, and Zik is included because ηi and Uik are correlated.

To ensure that it suffices to include the covariates in the regression linearly (instead of having
to control for them non-parametrically), we assume that the expectation of Xs conditional on Zs is
linear in Zs,

E[Xs | Z] = Z′sγ, (33)

where γ is a K-vector that equals 0 if and only if the scalar Xs is mean independent of the K-vector Zs.
We now study the properties of the OLS estimator β̂, the coefficient on Xi in a regression of Yi onto
Xi and Zi. Let Z denote the N × K matrix with ith row given by Z′i , and let Ẍ = X − Z(Z′Z)−1Z′X
denote an N-vector whose ith element is equal to the regressor Xi with the covariates in the vector
Zi partialled out (i.e. the residuals from regressing X onto Z). Then by the Frisch–Waugh–Lovell
theorem, β̂ can be written as

β̂ =
∑N

i=1 ẌiYi

∑N
i=1 Ẍ2

i

=
Ẍ′Y
Ẍ′Ẍ

, (34)

and the OLS estimator of the coefficient on Zi can be written as

δ̂ = (Z′Z)−1Z′(Y− Xβ̂).

To state the consistency result, we first need to generalize Assumption 1 to allow for covariates:

Assumption 4.

(i) {(Y(0), B, W, U,X,Z) ∈ RNS ×RNS×S ×RNS×S ×RNS×K ×RS ×RS×K}∞
S=1 is a triangular array

of random variables with N = NS → ∞ as S→ ∞ that satisfies eqs. (32) and (33). The observed
data consists of the tuple (Y, X, Z, W), with Yi = Yi(X1, . . . ,XS), such that eqs. (21) and (31)
hold.
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(ii) Conditional on W and Z, the shocks X1, . . . ,XS are independent across s, with fourth moments
that exist and are bounded uniformly over s.

(iii) 1
N ∑N

i=1 ∑S
s=1 var(Xs | W,Z)w2

is converges in probability to a strictly positive non-random limit,
and Z′Z/N converges in probability to a positive definite non-random limit.

(iv) Conditional on W, the second moments of Ui and Zs exist and are bounded uniformly over i
and s.

Parts (i), (ii) and (iii) are straightforward generalizations of parts (i), (ii) and (iii) of Assumption 1.
Part (iv) imposes very mild restrictions on U and Z.

Proposition 3. Suppose Assumptions 2 and 4 hold, and that U′i γ = 0 for i = 1, . . . , N. Then

β̂ = β + oP(1), β =
∑N

i=1 ∑S
s=1 πisβis

∑N
i=1 ∑S

s=1 πis
, (35)

where πis = w2
is var(Xs |W,Z).

The result is very similar to Proposition 1; the only difference is that the weights πis now reflect
the variance of Xs that is conditional on Z and W, rather than just conditional on W. An important
additional assumption is that U′i γ = 0 for i = 1, . . . , N. Effectively, this requires that, for each covariate
k, either Uik = 0 for all i, so that Zik is a perfect proxy for the sector-level variables Z1k, . . . ,ZSk, or
else γk = 0, so that the Zsk is unrelated to the shock Xs—in this case the proxy need not be perfect,
since it is not necessary to control for Zsk in the first place. If U′i γ 6= 0, then there will be omitted
variable bias due to inadequately controlling for the confounders Z.

To state the asymptotic normality result, let

δ = E[Z′Z]−1E[Z′(Y− Xβ)]

denote the population regression coefficient on Zi, so that we can write the regression model as

Yi = Xiβ + Z′i δ + εi,

where the regression residual εi is defined as εi = Yi − Xiβ− Z′i δ. Let δ̌ = (Z′Z)−1Z′(Y− Xβ) denote
the regression coefficient in a regression of Y − Xβ on Z, that is, the regression coefficient on Zi in a
regression in which β̂ is restricted to equal to the true value β.

Assumption 5.

(i) Conditional on W, the fourth moments of Zs, and Ui exist and are bounded uniformly over s
and i.

(ii) N√
∑s n2

s
(δ̌− δ) = OP(1)

Part (i) strengthens Assumption 4(iv). Part (ii) is a high-level assumption that implies δ̂ converges
at least as fast as β̂; otherwise the error in estimating δ could dominate the asymptotic variance of β.
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Proposition 4. Suppose Assumptions 2, 3, 4 and 5 hold, and that U′i γ = 0. Suppose also that

VN =
1

∑S
s=1 n2

s
var

(
∑

i
(Xi − Z′i γ)εi | Y(0), B, U,Z, W

)

converges in probability to a non-random limit. Then

N√
∑S

s=1 n2
s

(β̂− β) = N

(
0,

VN( 1
N ∑i Ẍ2

i

)2

)
+ oP(1).

The result is very similar to that in Proposition 2; the only difference is that Xi in the definition of
VN is replaced by Xi − Z′i γ, and that Xi is replaced by Ẍi in the outer part of the “sandwich”.

To construct a consistent standard error estimate, similarly to the case without covariates, it suf-
fices to construct a consistent estimate of VN , the middle part of the sandwich. We derive the standard
error formula under the assumption that βis = β for all i, s; in Appendix B.5, we discuss the restric-
tions under which it remains valid when the effects are heterogeneous. Under this assumption,
εi = Yi(0)− Z′i δ, and it follows from eq. (32) and Assumption 4(ii) that, analogously to eq. (29),

VN =
∑S

s=1 var(X̃s |W,Z)R2
s

∑S
s=1 n2

s
, Rs =

N

∑
i=1

wisεi, X̃s = Xs −Z′sγ.

A plug-in estimate of Rs can be constructed by replacing εi with the estimated regression residuals
ε̂i = Yi − Xi β̂ − Zi δ̂. To construct an estimate of the variance var(X̃s | W,Z), note that, under the
assumption that U′i γ = 0 for i = 1, . . . , N and the assumption that W has full column rank—this
requires that N > S, i.e. there are more regions than sectors—the sector-level variable X̃s can be
backed out from the region-level variable Xi − Z′i γ as the coefficients from the regression of Xi − Z′i γ
onto the shares Wi,

X̃ = (W ′W)−1W ′(X− Z′γ).

Therefore, if γ was known, we could estimate var(X̃s |W,Z) = E[X̃2
s |W,Z] as the square of the sth

element of the vector (W ′W)−1W ′(X−Z′γ). Since γ is unknown, this estimate is infeasible. However,
it follows from the proof of Proposition 3 that γ̂ = (Z′Z)−1Z′X = γ + oP(1), so that Ẍi = Xi − Z′i γ̂ is
a consistent estimate of Xi − Z′i γ, which suggests the feasible estimate

X̂ = (W ′W)−1W ′Ẍ, (36)

of X̃, and the standard error estimate

ŝe(β̂) =

√
∑S

s=1 X̂
2
s R̂2

s

∑N
i=1 Ẍ2

i

, R̂s =
N

∑
i=1

wisε̂i. (37)

The next remark summarizes these steps:

Remark 5. To construct the standard error estimate in eq. (37):
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1. Obtain the estimates β̂ and δ̂ by regressing Yi onto Xi = ∑s wisXs and the controls Zi. The estimate ε̂i

corresponds to the estimated regression residuals.

2. Construct Ẍi, the residuals from regressing Xi onto Zi. Compute X̂s, the regression coefficients from
regressing Ẍ onto W.

Plug the estimates ε̂i, Ẍi, and p X̂s into the standard error formula in eq. (37).

Consider again the case with concentrated sectors. Suppose that Ui = 0 for all i, so that the
regression of Yi onto Xi and Zi is identical to the regression of Yi onto Xs(i) and Zs(i). Then X̂s =

Xs −Z′sγ̂, and the standard error formula in eq. (37) reduces to the usual cluster-robust standard
error, with clustering on the sectors s(i).

In the clustering literature, it has been shown that the cluster-robust standard error is generally
biased due to estimation noise in estimating εi, which can lead to undercoverage, especially in cases
with a few clusters (see, for example, Cameron and Miller, 2014 for a survey). Since the standard
error in eq. (37) can be viewed as generalizing the cluster-robust formula, similar concerns arise
in our setting. We therefore also consider a modification ŝeβ0(β̂) of ŝe(β̂) that imposes the null
hypothesis when estimating the regression residuals to reduce the estimation noise in estimating εi.
In particular, to calculate the standard error ŝeβ0(β̂) for testing the hypothesis H0 : β = β0 against a
two-sided alternative at significance level α, one replaces ε̂i with ε̂β0,i, the residual from regressing
Yi − Xiβ0 onto Zi (that is, ε̂β0,i is an estimate of the residuals with the null imposed). The null is
rejected if the absolute value of the t-statistic (β̂− β0)/ŝeβ0(β̂) exceeds z1−α/2, the 1− α/2 quantile
of a standard normal distribution (1.96 for α = 0.05). To construct a confidence interval (CI) with
coverage 1− α, one collects all hypotheses β0 that were not rejected. It follows from simple algebra
that the endpoints of this CI are a solution to a quadratic equation, so that they are available in closed
form—one doesn’t numerically have to search for all the hypotheses that were not rejected. The next
remark summarizes this procedure.

Remark 6 (Confidence interval with null imposed). To test the hypothesis H0 : β = β0, or equivalently, to
check whether β0 lies in the confidence interval:

1. Obtain the estimate β̂ by regressing Yi onto Xi = ∑s wisXs and the controls Zi. Obtain the restricted
regression residuals ε̂β0,i as the residuals from regressing Yi − Xiβ0 onto Zi.

2. Construct Ẍi, the residuals from regressing Xi onto Zi. Compute X̂s, the regression coefficients from
regressing Ẍ onto W (this step is identical to step 2 in Remark 5).

Compute the standard error as

ŝeβ0(β̂) =

√
∑S

s=1 X̂
2
s R̂2

β0,s

∑N
i=1 Ẍ2

i

, R̂β0,s =
N

∑
i=1

wisε̂β0,i. (38)

Reject the null if |(β̂− β0)/ŝeβ0(β̂)| > z1−α/2. A confidence set with coverage 1− α is given by all nulls that
were not rejected, CI1−α = {β0 : |(β̂− β0)/ŝeβ0(β̂)| < z1−α/2}. This set is an interval with endpoints given
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by

β̂− A±

√
A2 +

ŝe(β̂)2

Q/(Ẍ′Ẍ)2
, A =

∑S
s=1 X̂

2
s R̂s ∑i wisẌi

Q
,

where Q = (Ẍ′Ẍ)2/z2
1−α/2 −∑S

s=1 X̂
2
s (∑i wisẌi)

2 and ŝe(β̂) and R̂s are given in eq. (37).

Since in both ε̂i and ε̂β0,i are consistent estimates of the residuals, both ŝeβ0(β̂) and ŝe(β̂) are
consistent estimates of the standard error and, consequently, yield tests and confidence intervals that
are asymptotically valid. The next proposition formalizes this result.

Proposition 5. Suppose that the assumptions of Proposition 4 hold, and that βis = β. Suppose also that either
maxs ∑i|((W ′W)−1W ′)si| is bounded, or else that Ui = 0 for i = 1, . . . , N. Define X̂ as in eq. (36), and let
R̂s = ∑N

i=1 wisε̃i, where ε̃i = Yi − Xi β̃− Z′i δ̃, and β̃ and δ̃ are consistent estimators of δ and β. Then

∑S
s=1 X̂

2
s R̂2

s

∑S
s=1 n2

s
= VN + oP(1). (39)

The additional assumption of Proposition 5 is that either maxs ∑i|((W ′W)−1W ′)si| is bounded,
or else Ui = 0 for all i. This assumption ensures that the estimation error in X̂s that arises from
having to back out the sector-level shocks Zs from the covariates Zi is not too large. If the sectors are
concentrated, then ((W ′W)−1W ′)si = I{s(i) = s}/ns, so that maxs ∑i|((W ′W)−1W ′)si| = 1, and the
assumption always holds.

4.2.1 Economic interpretation of assumptions and results

The role that the vector of covariates Zi plays in our framework is twofold. First, the kth element of
the vector Zi may proxy for the impact on region i of an unobserved sectoral shock (Z1k, . . . ,ZSk).
In the context of the model in Section 2, regional labor market outcomes are potentially affected by
several sectoral shocks: price shocks P̂s, preference shocks γ̂s, and any sectoral component of the
region- and sector-specific technology shocks Âis. As in Section 2.3, let us consider again the case
in which the economic shock of interest is the price shock P̂s. Then, as discussed in Section 4.1.1,
when the regression of Yi on Xi does not include a vector of covariates Zi, consistent estimation of
the weighted average of the parameters {βis}N,S

i=1,s=1 described in eq. (35) requires assuming away the
presence of preference shocks (γ̂s = 0 for all s), and imposing an independence restriction between
the technology shocks Âis of the regions i = 1, . . . , N included in the analysis and those of the regions
impacting the sectoral prices. These restrictions can be relaxed once we allow for additional covariates
in the shift-share regression of interest. As an example, if we can construct measures of changes in
sectoral preferences (or perfect proxies for their impact in every region i = 1, . . . , N in the sample),
we can control for them in our regression and, thus, Proposition 3 holds even in the presence of
sectoral preference shocks. Similarly, if we can build a proxy for the changes in technology in the N
regions included in the sample, {Âis}N,S

i=1,s=1, then we can include them in the regression equation as
part of the vector Zi and, in this case, Proposition 3 holds even if these technology shocks are not
independent of the sectoral price shocks of interest.
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Second, each element of the vector Zi may proxy for regional covariates that, although indepen-
dent of the sectoral shocks of interest X, have an effect on the outcome variable and, thus, enter
the regression residual εi in eq. (24). Controlling for these covariates is not necessary for Proposi-
tion 3 to hold, but including them would increase the precision of β̂. In the context of the model
described in Section 2, the region-specific labor supply shock v̂i is an example of these covariates,
as long as {v̂i}N

i=1 are independent of the analogous labor supply shocks impacting regions that are
large enough to affect the sectoral price indices {P̂s}S

s=1. If this independence condition does not hold,
then it is important, as discussed above, to always control for these labor supply shocks in order to
ensure consistency of β̂.

4.3 Extensions

We now discuss two extensions of the basic setup: first, we weaken Assumption 4(ii), and allow Xs

to be correlated with Xk if s and k are in the same “cluster” of sectors. Second, we consider using the
shift-share regressor Xi as an instrument in an instrumental variables regression.

4.3.1 Clusters of sectors

Suppose that the sectors s = 1, . . . , S can be grouped into larger units, which we will refer to as
“clusters”, with c(s) ∈ {1, . . . , C} denoting the cluster that sector s belongs to. For instance, s may
be a four-digit industry code, while c(s) is a three-digit or a two-digit code. With this structure, we
replace Assumption 4(ii) with the assumption that, conditional on Z and W, the shocks Xs and Xt

are independent if c(s) 6= c(t).20 Replace Assumption 2(ii) with the assumption that as C → ∞, the
largest cluster makes an asymptotically negligible contribution to the asymptotic variance,

max
c

ñ2
c /

C

∑
d=1

ñ2
d → 0,

where ñc = ∑s I{c(s) = c}ns is the total share of cluster c. Then, generalizing the arguments in
Section 4.2, one can show that as C → ∞, β̂ remains asymptotically normal,

N√
∑C

c=1 ñ2
c

(β̂− β) = N

(
0,

VN( 1
N ∑i Ẍ2

i

)2

)
+ oP(1),

and, assuming that βis = β, the term VN is now given by

VN =
∑C

c=1 ∑s,t I{c(s) = c(t) = c}E[X̃sX̃t |W,Z]RsRt

∑C
c=1 ñ2

c
, Rs =

N

∑
i=1

wisεi, X̃s = Xs −Z′sγ.

20Using the tools described in this section, one may also weaken Assumption 1(ii) in the context of a shift-share regression
without covariates. We limit however the exposition to the more general case of the shift-share regression with covariates.
Adjusting the standard error formulas to the setting without covariates requires only setting the K-vector Zs to equal a
vector of 1s for every sector s.
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In other words, instead of treating X̃sRs as independent across s, the asymptotic variance formula
clusters them. As a result, we replace the standard error estimate in eq. (37) with

ŝe(β̂) =

√
∑C

c=1 ∑s,t I{c(s) = c(t) = c}X̂sR̂sX̂tR̂t

∑N
i=1 Ẍ2

i

, R̂s =
N

∑
i=1

wisε̂i, (40)

with X̂s defined as in Remark 5. Confidence intervals with the null imposed can be constructed as in
Remark 6, replacing ε̂i with ε̂β0,i in the formula in eq. (40), and using this formula instead of that in
eq. (38).

4.3.2 Instrumental variables regression

Consider the problem of estimating the effect of a regional variable Y2i, that we refer to as a treatment
variable, on an outcome variable Y1i, using an instrumental variables (IV) regression, with the shift-
share regressor Xi = ∑s wisXs as an instrument, and a vector Zi of regional controls. We assume there
is a K-vector of latent covariates Zs, measured at a sectoral level, such that the regional controls Zi

have the structure in eq. (31) and that eq. (33) holds.
We assume that the effect of Y2i onto Y1i is linear and constant across regions, so that the potential

outcome when Y2i is exogenously set to y2 is given by

Yi1(y2) = Yi1(0) + y2α,

where α is the treatment effect of Y2i onto Y1i for every region i. The observed outcome is thus given
by Y1i = Y1i(Y2i). The observed treatment level Y2i may be correlated with the potential outcomes (i.e.
endogenous), even when conditioning on a vector of covariates Zi. In analogy with eq. (21), let

Y2i(x1, . . . ,xS) = Y2i(0) +
S

∑
i=1

wisxsβFS (41)

denote the potential treatment levels in region i that would occur if the region received shocks
x1, . . . ,xS. The observed treatment level is given by Y2i = Y2i(X1, . . . ,XS). For simplicity, we as-
sume that βFS does not vary across sectors or regions. Finally, we assume that conditional on Z, the
shocks X are as good as randomly assigned and satisfy the exclusion restriction, so that the following
independence restriction holds:

(U, Y1(0), Y2(0)) ⊥⊥X | Z, W. (42)

Under this setup, both the reduced-form regression of Yi1 onto Xi and Zi, and the first-stage regression
of Y2i onto Xi and Zi fit into the setup of Section 4.2. Therefore, by generalizing the arguments in
Section 4.2, it is straightforward to derive the joint asymptotic distribution of the OLS estimates

β̂RF =
∑N

i=1 ẌiY1i

∑N
i=1 Ẍ2

i

, and β̂FS =
∑N

i=1 ẌiY2i

∑N
i=1 Ẍ2

i

,
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of the reduced-form and first-stage coefficients on Xi, respectively. To state the result, define the
reduced-form and first-stage regression errors

ε1i = Y1i − Z′i δRF − XiβRF, ε2i = Y2i − Z′i δFS − XiβFS,

where δRF = E[Z′Z]−1E[Z′(Y1 − XβRF)] and δFS = E[Z′Z]−1E[Z′(Y2 − XβFS)], and it follows from
eq. (42) that the population reduced-form coefficient on Xi is given by βRF = βFSα. Then, under
appropriate regularity conditions,

N√
∑S

s=1 n2
s

((
β̂RF

β̂FS

)
−
(

βRF

βFS

))
= N

(
0,

1
( 1

N ∑i Ẍ2
i )

2
VIV,N

)
+ oP(1),

where

VIV,N =
1

∑S
s=1 n2

s

S

∑
s=1

var(X̃s | Z, W)RIV,sR′IV,s, RIV,s =
N

∑
i=1

wisεi, X̃s = Xs −Z′sγ,

and εi = (ε1i, ε2i)
′. Since the IV estimate of α is given by the ratio of the reduced form estimates,

α̂ =
∑N

i=1 ẌiY1i

∑N
i=1 ẌiY2i

=
β̂RF

β̂FS
, (43)

it follows by the delta method that, so long as βFS 6= 0, so that the shift-share instrument is relevant,

N√
∑S

s=1 n2
s

(α̂− α) = N

0,
1

∑S
s=1 n2

s
∑S

s=1 var(X̃s | Z, W)R2
s

( 1
N ∑i Ẍ2

i )
2β2

FS

+ oP(1), Rs =
N

∑
i=1

wis(ε1i − ε2iα).

This suggests the standard error estimate

ŝe(α̂) =

√
∑S

s=1 X̂
2
s R̂2

s

|β̂FS|∑N
i=1 Ẍ2

i

=

√
∑S

s=1 X̂
2
s R̂2

s

|∑N
i=1 ẌiY2i|

, R̂s =
N

∑
i=1

wisε̂∆,i, (44)

with X̂s constructed as in Remark 5, and ε̂∆ = Y1 − Y2α̂ − Z′(Z′Z)−1Z′(Y1 − Y2α̂) corresponds to
the estimate of the residual in the structural equation, ε1i − ε2iα.21 The difference between the IV
standard error formula in eq. (44) and the OLS version in eq. (37) is analogous to the difference
between IV and OLS heteroscedasticity-robust standard errors: ε̂i is replaced in the numerator by the
estimate of the structural residuals ε̂∆,i, and the denominator is scaled by the first-stage coefficient.
The IV analog of the standard error estimate with the null H0 : α = α0 imposed instead estimates
the residual as (I− Z′(Z′Z)−1Z′)(Y1−Y2α0), and the resulting confidence interval is a generalization
of the Anderson and Rubin (1949) confidence interval (which assumes that the structural errors are
independent). As a result, this confidence interval will remain valid even if the shift-share instrument

21Since the IV regression uses a single constructed instrument, ε̂∆ is numerically equivalent to ε̂1i − ε̂2i α̂, where ε̂1 and
ε̂2 are the reduced-form and first-stage residuals.

26



is weak.
Faced with the problem of estimating the treatment effect α in a setting in which the instrument

has a shift-share structure, our approach to identification follows Borusyak, Hull and Jaravel (2018),
who impose an assumption analogous to that in eq. (42), and also discuss the extension to a setting
in which βFS is allowed to vary across sectors and regions, and α is allowed to vary across regions. In
contrast, Goldsmith-Pinkham, Sorkin and Swift (2018) suggest replacing the shift-share instrument
Xi with the full vector of shares (wi1, . . . , wiS). As pointed out by Tim Bartik in an online discussion,
there are settings in which the shift-share instrument Xi satisfies the exclusion restriction, but the full
vectors of shares (wi1, . . . , wiS) does not, and is thus not a valid instrument.22 Intuitively, this will be
the case when the residual ε∆ in the structural equation has a shift-share structure. Our independence
restriction in eq. (42) allows for this possibility and, consequently, we adopt here the approach that
has been standard since Bartik (1991), and use the the shift-share Xi as an instrumental variable.

5 Placebo exercise

In this section, we implement a placebo exercise to illustrate the finite-sample properties of the stan-
dard error estimators introduced in Section 4, and compare their behavior to that of standard error
estimators typically used in applications of shift-share regressions. To this end, we use data on
initial sectoral employment shares and changes in labor market outcomes observed for regional mar-
kets in the United States, and explore the properties of the OLS estimator of the coefficient on the
shift-share covariate built from the combination of the actual employment shares with randomly
generated sector-level shocks. Thus, consistently with the conceptualization of shift-share regres-
sions in Section 4, we condition on observed data, Y and W, and combine it with randomly drawn
shocks X. We use this placebo analysis to explore the properties of: (a) the standard error estimates
described in Section 4; (b) the Eicker-Hubert-White—or heteroskedasticity-robust—standard errors;
and (c) cluster-robust standard errors with clusters defined as groups of regions geographically close
to each other.

5.1 Data

In our baseline specification, we identify each region i with a U.S. Commuting Zone (CZ) and each
sector s with either a 4-digit SIC manufacturing industry and an aggregated non-manufacturing
sector. Specifically, the “shares” wis correspond to employment shares in 1990 and the outcomes Yi

correspond to changes in employment rates and wages for different subsets of the population between
2000 and 2007. We index all manufacturing industries as s = 1, . . . , S− 1 and reserve the index s = S
for the non-manufacturing sector. To build this data, we follow the procedure described in the Online
Appendix to Autor, Dorn and Hanson (2013). The County Business Patterns (CBP) is our main source
of data on employment shares by sector and county in 1990. Our measures of changes in employment
rates and average wages are based on data from the Census Integrated Public Use Micro Samples in

22See https://blogs.worldbank.org/impactevaluations/comment/5042#comment-5042. See also Borusyak, Hull and
Jaravel (2018) for a discussion of different identification assumptions in this setting.
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2000 and the American Community Survey for 2006 through 2008, which provide information at the
Public Use Micro Area (PUMA) level.23 We refer the reader to this Online Appendix to Autor et al.
(2013) for details of the data construction.

The resulting baseline sample contains N = 722 regions and S = 399 sectors. To explore the
robustness of our conclusions to the definition of regions and sectors in the data, we also perform our
analysis using counties to define regions, and 3-digit and 2-digit SIC codes to define sectors.

5.2 Placebo exercise: impact of sector-level shocks on labor market outcomes

We consider a placebo exercise in which in each simulation draw m = 1, . . . , 1000, we generate a
random vector of sector-level shocks,

(Xm
1 , . . . ,Xm

S ) ∼ N (0, Σ) , (45)

where 0 denotes an S-vector of zeros and Σ is an S× S variance-covariance matrix given below. For
each simulation draw m, we use the vector of generated sector-level “shifters” (Xm

1 , . . . ,Xm
S ) and the

data on the employment “shares” {wis}N,S
i=1,s=1 to construct a shift-share covariate Xm

i = ∑S
s=1 wisX

m
s

for every CZ i. Notice that in every simulation draw m, our computer-generated shocks {Xm
s }S

s=1

have no effect on the actual changes in labor market outcomes observed in U.S. CZs between 2000
and 2007. Thus, for the parameters {βis}N,S

i=1,s=1 introduced in eq. (21) we have βis = 0 for all CZs i
and sectors s. Consequently, the value of the parameter β defined in eq. (35) is also zero.

5.2.1 Baseline specification

Given data on the observed outcome Yi and the generated shift-share covariate Xm
i , we compute for

each simulation draw m the OLS estimate in eq. (34), the heteroskedasticity-robust standard error
(which we label as Robust in our tables below), the standard error that clusters CZs in the same state
(with label St-cluster), the standard error in eq. (37) (with label AKM), and the confidence interval and
standard error in Remark 6 (with label AKM0). As this baseline specification includes no controls, we
fix the matrix Z to be a column of ones when implementing the formulas in eqs. (34), (37) and (38).

In our baseline placebo specification, we impose two sets of restrictions on the variance-covariance
matrix Σ. First, we set to 0 all elements in the Sth row and column of Σ; i.e. we assign to the aggregate
non-manufacturing sector a shock of 0 in all the simulations.24 Second, for all remaining elements of
the matrix Σ, we set the element sk of Σ equal to σ I{s = k}, with σ = 5.

23We download the CBP source data from the ICPSR website (https://www.icpsr.umich.edu/icpsrweb/), and apply the
procedure in Autor, Dorn and Hanson (2013) to obtain employment by county and sector. The employment numbers in the
CBP are often reported as an interval instead of an exact count; we use the cleaner files from Autor, Dorn and Hanson (2013)
to estimate employment numbers within the indicated intervals. We also impose the sampling restrictions in Autor, Dorn
and Hanson (2013) to construct our measures of employment rates and average wages. We match the resulting county- and
PUMA-level information into CZs using the matching strategy in Dorn (2009), which has been previously applied, among
others, in Autor and Dorn (2011, 2013). We thank the authors for making all codes publicly available through David Dorn’s
website: https://www.ddorn.net/data.htm.

24As discussed in footnote 18, this is standard practice in the literature that employs shift-share regressions with sectoral
shocks. We explore the implications of this assumption in Section 5.2.2.
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Table 1: Magnitude of standard errors.

Estimates Median effective std. error

Average Std. dev Robust St-cluster AKM AKM0
(1) (2) (3) (4) (5) (6)

Panel A: Change in the share of working-age population
employed −0.03 1.95 0.73 0.92 1.87 2.17
employed in manufacturing −0.05 1.83 0.60 0.76 1.76 2.04
employed in non-manufacturing 0.03 0.94 0.58 0.67 0.88 1.02

Panel B: Change in average log weekly wage
employed −0.03 2.60 1.00 1.32 2.52 2.93
employed in manufacturing −0.02 2.94 1.67 2.09 2.71 3.16
employed in non-manufacturing −0.05 2.57 1.04 1.31 2.50 2.91

Notes: For the outcome variable indicated in the first column and the inference procedure indicated in the first row, “median
effective std. error” refers to the median length of the 95% confidence interval across the 1000 simulated datasets divided by
2× 1.96. Robust is the Eicker-Huber-White standard error; St-cluster is the standard error that clusters CZs in the same state;
AKM is the standard error in Remark 5; and AKM0 is the confidence interval in Remark 6.

Table 1 presents the moments of the empirical distribution of the OLS estimates obtained with
eq. (34), along with the median length of standard errors for different inference procedures. Since
for AKM0, the standard error depends on the null being tested, the table reports “median effective
standard error”—the median length of the 95% confidence interval divided by 2× 1.96. For Robust,
St-Cluster, and AKM, the “effective standard error” is the same as the actual standard error.

In line with our theoretical results, across simulations, the average of the estimated coefficient
is approximately zero for all outcomes. Column (2) reports the standard deviation of the estimated
coefficients. This dispersion is the target of our estimators of the standard error of the OLS estimator.25

Columns (3)–(6) of Table 1 report the median effective standard error for Robust, St-cluster, AKM,
and AKM0, respectively. Columns (3) and (4) show that Robust and St-cluster are downward biased
relative to the standard deviation of the OLS estimator. On average across all outcomes, the median
magnitude of the heteroskedasticity-robust and state-clustered standard errors are respectively 55%
and 45% lower than its true value. In contrast, columns (5) and (6) show that our proposed methods
perform much better. On average across all outcomes, the median standard error based on AKM is
5% lower than the true value. The median effective standard error of AKM0 is slightly larger than the
standard deviation of β̂, by about 10% on average.26

Traditional inference methods assume that the regression residuals are independent across all
regions, as in robust standard errors, or between geographically defined region groups, as in state-
clustered standard errors. Given that shift-share regressors are correlated across regions with similar
shares wis (similar sector employment composition in our application), these methods generally lead

25Figure C.1 in Appendix C.2 reports the empirical distribution of the estimated coefficients when the dependent variable
is the change in each CZ’s employment rate. It distribution resembles a normal distribution centered around β = 0.

26Figure C.2 in Appendix C.2 presents histograms representing the empirical distribution of the effective standard errors,
its mean and, for comparison, the standard deviation of the distribution of the OLS estimates {β̂m}1000

m=1 for the placebo
exercise based on change in the CZ’s employment rate. Our new standard error estimators have a larger dispersion than
the traditional ones, but are centered around the standard deviation of estimated parameters.
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to a downward bias in the standard error estimate whenever the cross-region correlation in the regres-
sion residuals depends on the same shares used to construct the shift-share covariate; i.e. if regions
with similar sector employment composition also tend to have similar regression residuals. Our pro-
posed estimators allow for such a correlation and, for this reason, properly reflect the variability of
the OLS estimator whether such correlation is present or not.

The difference between the confidence intervals based on the AKM and AKM0 procedures and
those based on either heteroskedasticity-robust or state-clustered standard errors indicates that the
outcome variables used in the placebo have an important sectoral component. Consequently, when-
ever a researcher is running a shift-share regression in which the shifts are sectoral shocks, such as
import, tariffs or technology shocks, both heteroskedasticity-robust and state-clustered standard er-
rors will generally be biased downward. The only exception is the case in which either the shifters X

or the controls Z fully account for all sectoral shocks affecting the outcome variable: only in this case
the regression residual will have no remaining sectoral component. In contrast, the AKM and AKM0
procedures will be valid, whether there is a sectoral component in the residual or not. We illustrate
these points in Section 6.2, where we use different shift-share instruments to estimate the elasticity of
regional employment to average wages.

The downward bias in the Robust and St-cluster standard errors translates into severe overrejection
of the null hypothesis H0 : β = 0. To show this, we report in Table 2 rejection rates for 5% significance
level tests of this null hypothesis. Since the true value of β equals 0 by construction, a correctly
behaved test statistic should generate a rejection rate of 5%. The results in Table 2 show that traditional
standard error estimators yield much higher rejection rates. For example, when the outcome variable
is the CZ’s employment rate, the rejection rate for a 5% significance level for the null hypothesis
H0 : β = 0 is 48.8% and 37.2% when robust and state cluster standard errors are used, respectively.
These rejection rates are very similar when the dependent variable is instead the change in the average
log weekly wage.

The results in Table 2 thus indicate that, if we were to provide our 1000 simulated samples to 1000
researchers without disclosing to them the origin of the data (e.g. telling them instead that the sectoral
shocks we provide to them are changes in trade flows, tariffs, or the number of foreign workers
employed in an industry) and each of these researchers were to use standard inference procedures to
perform a 5% significance level test for the null hypothesis H0 : β = 0, at least a third of them would
conclude that our computer generated shocks had a statistically significant effect on the evolution of
employment rates in the United States between 2000 and 2007.

In contrast to the clear overrejection implied by traditional standard error estimators, our proposed
inference procedures perform well. The AKM standard error has a rejection rate that is between 7.1%
and 10.5% and the AKM0 procedure has a rejection rate that is always between 4.1% and 5.5%. As
discussed in Proposition 5 in Section 4.2, the standard error estimates in eqs. (37) and (38) are both
consistent estimates of the true standard error of the OLS estimator of the coefficient on the shift-
share covariate and, consequently, tests and confidence intervals that use either the AKM or the
AKM0 approach are asymptotically valid. The differences in rejection rates between AKM and AKM0
in Table 2 are thus due to differences in finite-sample performance. In this context, the improved
performance of the AKM0 procedure, with rejection rates close to 5%, is not surprising. The improved
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Table 2: Rejection rate of H0 : β = 0 at 5% significance level.

Robust St-cluster AKM AKM0

Panel A: Change in the share of working-age population
Employed 48.8% 37.2% 7.2% 4.1%
Employed in manufacturing 55.8% 44.7% 7.1% 4.0%
Employed in non-manufacturing 23.0% 17.0% 8.9% 5.5%

Panel B: Change in average log weekly wage
Employed 46.6% 32.8% 8.2% 4.5%
Employed in manufacturing 27.4% 18.1% 10.5% 4.6%
Employed in non-manufacturing 44.1% 32.3% 7.7% 5.0%

Notes: For the outcome variable indicated in the first column and the inference procedure
indicated in the first row, this table indicates the percentage of the 1000 simulated datasets for
which we reject the null hypothesis H0 : β = 0 using a 5% significance level test. Robust is
the Eicker-Huber-White standard error; St-cluster is the standard error that clusters CZs in the
same state; AKM is the standard error in Remark 5; and AKM0 is the test in Remark 6.

performance in small samples of standard errors computed under the null has been noted in other
contexts; e.g., see Lazarus et al. (2018). Intuitively, imposing the null helps to reduce the finite-sample
estimation noise when estimating the regression residuals.27

We summarize the conclusions from Table 1 and Table 2 in the following remark:

Remark 7. In shift-share regressions, traditional inference methods suffer from a severe overrejection problem
and yield confidence intervals that are too short and undercover; the inference procedures described in Remarks 5
and 6 yield tests with correct size and confidence intervals with the right coverage.

Our placebo exercise follows closely our conceptualization of the shift-share regressions and,
specifically, the notion that the sampling noise affecting the OLS estimator of the coefficient on the
shift-share covariate arises from the fact that we only observe a particular realization of the “shifts”
(X1, . . . ,XS) and, thus, we do not observe the potential outcome for each region i from every pos-
sible realizations of these shocks (see Remark 4). As discussed in Section 4.3.2, this conceptualiza-
tion differs from that in Goldsmith-Pinkham, Sorkin and Swift (2018), who instead treat the shares
(wi1, . . . , wiS) as independent across i and as good as randomly assigned. To explore the robustness of
our inference procedures to this alternative characterization, we perform also an alternative placebo
exercise in which we construct the shift-share covariate Xm

i for each simulation m by randomizing
the vector of sectoral shares {wis}S

s=1 while holding constant across simulations the vector of sectoral
shocks (X1, . . . ,XS); i.e. Xm

i = ∑S
s=1 wm

isXs.28 Under this randomization scheme, all inference pro-
cedures considered in Table 2 have rejection rates close to 5%. Thus, while the consistency of the

27Appendix C investigates the sensitivity of our results to the definitions of geographic and exposure units. When we use
counties (instead of CZs) as the regional unit of analysis, Table C.3 shows that rejection rates for all inference procedures
are very similar to those in Table 2. We also investigate the performance of different inference procedures in an analogous
placebo exercise using actual occupation employment shares in 1990 and randomly drawn shocks to 331 occupations.
Table C.4 shows that the overrejection of traditional inference methods is more severe with shift-share regressors based on
occupations; in this case, our inference procedure under the null yields the correct test size.

28Specifically, we generate a single random draw of (X1, . . . ,XS) from the distribution in eq. (45) and we keep this draw
constant across the 1000 simulated samples. Then, in each simulation draw m, we assign to each CZ i a vector of shares
(wm

i1, . . . , wm
iS) drawn from the empirical distribution of the CZ shares {(wi1, . . . , wiS)}N

i=1.
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Table 3: Rejection rate of H0 : β = 0 at 5% significance level. Sectoral composition.

Robust St-cluster AKM AKM0 AKM AKM0

Sector Shock Correlation: Independent 3-digit cluster

Panel A: Number of sectors
2-digit (S = 20) 72.5% 59.2% 12.8% 6.1% — —
3-digit (S = 136) 53.6% 42.9% 7.1% 4.7% — —
4-digit (S = 398) 46.8% 36.8% 7.7% 4.6% — —

Panel B: Simulated shocks to non-manufacturing sector
93.0% 90.2% 78.0% 77.4% — —

Panel C: Simulated shocks with correlation within 3-digit SIC sectors
ρ = 0.00 47.6% 36.6% 6.6% 4.2% 6.9% 4.1%
ρ = 0.25 48.5% 32.3% 7.0% 6.3% 5.0% 4.7%
ρ = 0.50 47.9% 31.8% 7.2% 8.1% 4.8% 5.5%
ρ = 0.75 53.7% 37.3% 9.3% 10.1% 4.9% 5.2%
ρ = 1.00 52.0% 36.5% 11.6% 13.2% 5.3% 5.3%

Notes: All estimates in this table use the total employment share in each CZ as the outcome variable Yi . The inference
procedure employed to compute the rejection rate in each of the columns is indicated in the first row. This rejection rate
indicates the percentage of the 1000 simulated datasets for which we reject the null hypothesis H0 : β = 0 using a 5%
significance level test. Robust is the Eicker-Huber-White standard error; St-cluster is the standard error that clusters CZs in
the same state; AKM (Independent) is the standard error in Remark 5; AKM0 (Independent) is the test in Remark 6; AKM
(3-digit cluster) is the standard error in eq. (40); and AKM0 (3-digit cluster) is the confidence interval described in the last
sentence of Section 4.3.1.

heteroskedasticity-robust and state-clustered standard error estimates depends crucially on the con-
ceptualization of the shift-share regression, the inference procedures that we provide in Remarks 5
and 6 generate the right rejection rates when either the “shifts” or the “shares” are as good as ran-
domly assigned.

5.2.2 Alternative number of sectors and correlated sectoral shocks

The inference procedures described in Remarks 5 and 6 generate tests and confidence intervals that
are valid only if: (a) the number of sectors goes to infinity (see Assumption 4(i)); (b) all sectors are
asymptotically “small” (see Assumption 3(i)); (c) all sectoral shocks are independent of each other
conditional on the matrix of shares W and other sectoral shocks Z that we proxy for in the regression
(see Assumption 4(ii)). We test how sensitive different inference procedures are to the number of
sectors, the size of the largest sector and the correlation structure of the sectoral shocks in panels A,
B, and C, respectively, of Table 3.

In Panel A, we perform the placebo exercise described in Section 5.2.1 with different sector def-
initions used to build the region- and sector-specific shares. The results in Panel A of Table 3 show
that the overrejection problem affecting standard inference procedures is worse when the number of
sectors decreases: the rejection rates for Robust and St-cluster standard errors reach 72.5% and 59.2%,
respectively, when only the 20 2-digit SIC sectors are considered in the analysis. The rejection rates
for AKM also increase to 12.8%, but those for AKM0 remain quite close to the 5% significance level.

In Panel B, we redo the placebo exercise assigning a randomly generated sectoral shock also to
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the aggregate non-manufacturing sector. Across the CZs in our analysis, the non-manufacturing
sector accounts on average for 78% of employment, with a minimum employment share of 38%. Our
simulation indicates that all methods perform poorly in this case. So, in practice, it is important to
have small sectors.

In Panel C, we allow the shocks Xs corresponding to industries that belong to the same 3-digit
sector to be correlated. Specifically, we set again all elements in the Sth row and column of Σ to 0
and, for all remaining elements of Σ, we set the element sk of the matrix Σ equal to (1− ρ)σ I{s =

k} + ρσ I{c(s) = c(k)}, where, for every s, c(s) indicates the 3-digit sector that industry s belongs
to. When implementing either the standard inference procedures Robust and St-cluster or the version
of the AKM and AKM0 confidence intervals that assume no correlation across the sectoral shocks,
we observe that within-cluster correlation in sectoral shocks has a small impact on the rejection rate.
However, the inference procedures described in Section 4.3.1, which generalize AKM and AKM0 to
allow for correlation in sectoral shocks X1, . . . ,XS across sectors belonging to the same cluster, yield
the right rejection rate.

We summarize the conclusions from Table 3 in the following remark.

Remark 8. In shift-share regressions, overrejection is more severe when there is a small number of large sectors.
In this case, our methods significantly reduce the rejection rate, although they may still overreject relative to the
nominal significance level when the number of sectors is very small.

5.2.3 Confounding sector-level shocks: omitted variable bias and solutions

In Appendix C.1, we investigate the consequences of violations of Assumption 1(i) that requires
observed sectoral shocks of interest X1, . . . ,XS to be independent from other sectoral shocks affecting
the outcome variable of interest. In particular, we study the impact that violations of this assumption
have on the properties of the OLS estimator of the coefficient on the shift-share regressor of interest.
We also consider the properties of two solutions to this problem: (i) the inclusion of regional controls
as a proxy for sector-level unobserved shocks (discussed in Section 4.2), and (ii) the use of a shift-share
instrumental variable constructed as a weighted average of exogenous sector-level shocks (discussed
in Section 4.3.2).

Our simulations confirm that confounding sector-level shocks introduce bias in the OLS estimator
of the coefficient on the shift-share regressor of interest. In such cases, region-level controls eliminate
the bias only if they are a perfect proxy for the sector-level confounding shock. Otherwise, an IV
approach is needed. We also verify that, whenever the corresponding estimator is consistent, the
patterns discussed in Remark 7 apply to both OLS and IV estimators: traditional inference methods
suffer from a severe overrejection problem and yield confidence intervals that undercover; the infer-
ence procedures described in Remarks 5 and 6 yield the correct test size and confidence intervals
with the right coverage.
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6 Empirical applications

We now apply our methodology to two empirical applications. First, the study of the effect of Chinese
competition on labor market outcomes across U.S. Commuting Zones, as in Autor, Dorn and Hanson
(2013). Second, the estimation of the elasticity of labor supply, as in Bartik (1991). In both of these
applications, we use the data sources described in Section 5.1.

6.1 Effect of chinese exports on U.S. labor market outcomes

Autor, Dorn and Hanson (2013), henceforth referred to as ADH, explore the impact of exports from
China on labor market outcomes across U.S. Commuting Zones. Specifically, they present estimates
such as those in eq. (43) where Yi1 is the ten-year equivalent change in a labor-market outcome in
CZ i in 1990–2000 and 2000–2007, wis is the CZ i employment share in the 4-digit SIC sector s in the
initial year of the corresponding period (either 1990 or 2000), Yi2 is a weighted average of the change
in sectoral U.S. imports from China normalized by U.S. total employment in the corresponding sector,
and Xi is analogous to Yi2 with the only difference that, instead of using U.S. imports from China as
shifters, it uses imports from China to other high-income countries. As the K-vector of covariates Zi,
we will include the largest set of controls accounted for in ADH; see, e.g., column (6) of Table 3 of
ADH.

Table 4 reports our replication of results presented in Tables 5 to 7 of ADH, along with 95%
confidence intervals computed with different methodologies. Panel A presents the IV estimates; Panel
B presents reduced-form estimates, and Panel C presents the first stage estimates. These corresponds
to α̂, β̂RF and β̂FS, respectively, in the notation introduced in Section 4.3.2. Our estimates closely
replicate those in ADH.29

We focus on the comparison between confidence intervals obtained with different inference pro-
cedures. In all panels, state-clustered confidence intervals are very similar to the heteroskedasticity-
robust ones. This suggests that there is not much correlation in residuals within states. In contrast,
our proposed confidence intervals are wider than those implied by state-clustered standard errors. In
the IV regression reported in Panel A, across all outcomes, the average increase in the length of the
95% confidence interval is 25% with the AKM procedure and 100% with the AKM0 procedure. When
the outcome variable is the change in the manufacturing employment rate, the length of the 95% con-
fidence interval increases by 36% with the AKM procedure and by 136% with the AKM0 procedure.30

In light of the lack of impact of state-clustering on the 95% confidence interval, the wider intervals
implied by our inference procedures indicate that cross-region residual correlation is mostly driven

29The slight difference between our estimates and those reported in ADH for both the point estimates α̂, β̂RF and β̂FS
and the Robust and Cluster standard errors is due to differences in the measures of employment shares wis and total
U.S. employment by sector, which are not directly reported in the replication package shared by the authors. Note that
information on these variables is generally not needed to replicate ADH once information on the shift-share variables Yi2
and Xi is provided (what the authors certainly do), but it is need in order to compute the confidence interval estimates
introduced in Section 4.

30The AKM and AKM0 estimates reported in Table 4 account for correlation in the sectoral shifters across periods and
across 4-digit SIC sectors included in the same 3-digit SIC sector. Table D.2 shows that similar increases in the length of
the 95% confidence intervals are implied by AKM and AKM0 when we assume that sectoral shifters are: (a) independent
across 4-digit SIC sectors and periods; (b) independent across 4-digit SIC sectors but possibly correlated across periods.
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Table 4: Effect of Chinese exports on U.S. commuting zones—Autor et al. (2013).

Change in the employment share Change in avg. log weekly wage

All Manuf. Non-Manuf. All Manuf. Non-Manuf.
(1) (2) (3) (4) (5) (6)

Panel A: 2SLS Regression
β̂ −0.75 −0.58 −0.17 −0.70 0.20 −0.72
Robust [−1.09,−0.42] [−0.77,−0.39] [−0.48, 0.13] [−1.18,−0.22] [−0.79, 1.19] [−1.23,−0.21]
Cluster [−1.12,−0.39] [−0.78,−0.38] [−0.47, 0.12] [−1.19,−0.21] [−0.76, 1.16] [−1.22,−0.22]
AKM [−1.24,−0.26] [−0.85,−0.31] [−0.55, 0.20] [−1.31,−0.09] [−0.73, 1.13] [−1.37,−0.07]
AKM0 [−2.02,−0.34] [−1.25,−0.31] [−0.96, 0.15] [−1.95,−0.09] [−1.45, 1.17] [−2.23,−0.16]

Panel B: OLS Reduced-Form Regression
β̂ −0.66 −0.50 −0.15 −0.61 0.18 −0.63
Robust [−0.97,−0.35] [−0.65,−0.36] [−0.43, 0.12] [−1.05,−0.17] [−0.67, 1.02] [−1.11,−0.15]
Cluster [−0.87,−0.44] [−0.62,−0.39] [−0.39, 0.09] [−1.01,−0.21] [−0.67, 1.02] [−1.06,−0.20]
AKM [−1.11,−0.20] [−0.73,−0.28] [−0.49, 0.18] [−1.17,−0.05] [−0.62, 0.97] [−1.23,−0.02]
AKM0 [−1.72,−0.30] [−0.94,−0.30] [−0.89, 0.12] [−1.66,−0.08] [−1.45, 0.87] [−1.97,−0.13]

Panel C: 2SLS First-Stage
β̂ 0.87
Robust [0.63, 1.11]
Cluster [0.62, 1.12]
AKM [0.71,1.03]
AKM0 [0.72, 1.17]
Notes: N = 1, 444 (722 CZs × two time periods). Models are weighted by start of period CZ share of national population.
All regressions include the full vector of baseline controls in ADH. 95% confidence intervals in square brackets. Robust is the
Eicker-Huber-White standard error; Cluster is the standard error that clusters of CZs in the same state; AKM is the standard
error in eq. (40) with 3-digit SIC clusters; AKM0 is the confidence interval with 3-digit SIC clusters described in the last sentence
of Section 4.3.1.

by similarity in sectoral compositions rather than by geographic proximity.
Panel B of Table 4 reports confidence intervals for the reduced-form specification. In this case, the

increase in the confidence interval length is slightly larger: across outcomes, it increases on average
by 54% for AKM and 129% for AKM0. The smaller relative increase in the confidence interval length
for the IV estimate α̂ relative to its increase for the reduced-form estimate β̂RF is a consequence of the
fact that all inference procedures yield very similar confidence intervals for the first-stage estimate
β̂FS, as reported in Panel C.

As discussed in Section 5, the differences between the AKM (or the AKM0) standard errors and
state-clustered standard errors are related to the importance of the sector-level component in the
regression residual. The results in Panel C suggest that, once we account for the changes in sectoral
imports from China to other high-income countries, there is not much sectoral variation left in the
first-stage regression residual; i.e., there are no other sectoral variables that are important to explain
the changes in sectoral imports from China to the U.S.31 To formally investigate this claim, Table D.3

31This is similar to the effect of state-specific regression covariates on state-clustered standard errors: if one includes
enough covariates that vary at the state level, state-clustered standard errors in regressions in which the variable of interest
also varies at the state level will be similar to heteroskedasticity-robust standard errors, since there is not much within-state
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reports the rejection rates implied by a placebo exercise analogous to that described Section 5 when
the outcome variable in the placebo exercise is the same as that in the first-stage specification reported
in Panel C of Table 4. Panel A in Table D.3 shows that, when no covariates are included, traditional
methods still suffer from severe overrejection problems and our methods yield the correct test size.
However, as shown in Panels B and C in Table D.3, the problem is greatly attenuated when controlling
for the instrumental variable and other covariates used in ADH. This indicates that the instrumental
variable and additional covariates included in ADH soak most of the cross-CZ correlation in the CZs
exposure to Chinese imports; i.e. most of the cross-CZ correlation in the ADH treatment variable.

Overall, Table 4 shows that, despite the wider confidence intervals obtained with our procedure,
the qualitative conclusions in ADH with respect to the effect of U.S. imports from China on CZs labor
market outcomes remain valid at usual significance levels. However, the increase in the length of
the 95% confidence interval indicates that there is more uncertainty regarding the magnitude of the
impact of Chinese import exposure on labor markets. In particular, the AKM0 confidence interval
is much wider than that based on state-clustered standard errors; it is asymmetric around the point
estimate, and it indicates that the negative impact of the China shock could have been 2 to 3 times
larger than the effect implied by the point estimates.32

6.2 Estimation of labor supply elasticity

Our second application focuses on the estimation of the labor supply elasticity. Following the model
in Section 2, we consider the estimation of the parameter φ using eq. (10) as estimating equation:

êi = φω̂i + Ziδ + ν̂i, (46)

where, as in Section 2, we use ẑ = ln(zt/z0) to denote log-changes in a variable z between some initial
period t = 0 and some other period t. In our empirical application, we define each region i as a U.S.
CZ and use the same vector of covariates Zi as in the application described in Section 6.1; i.e., the
vector of controls listed in column (6) of Table 3 of ADH.

As illustrated through the model in Section 2, changes in local supply shocks, ν̂i, will generally
affect both changes in equilibrium local average wages and local employment rates. Thus, ω̂i and ν̂i

are correlated and the OLS estimator of φ in eq. (46) will be biased. To circumvent this problem, a
popular approach in the literature is the use of shift-share instrumental variables. In this section, we
implement this strategy with two different sector-level shifters: (i) the national employment growth,
as in Bartik (1991); and (ii) the increase in imports from China by a set of high-income countries that
does not include the United States, as in Autor, Dorn and Hanson (2013).

Table 5 presents first-stage, reduced-form and IV estimates associated to the estimation of the

correlation left in the residuals.
32It follows from the formula in Remark 6 (see the expression for the quantity A, by which the confidence interval is

recentered) that the asymmetry comes from the correlation between the regression residuals R̂s and the shifters cubed,
which is zero in large samples. In fact, it can be shown that AKM and AM0 are asymptotically equivalent. The differences
between the confidence intervals in Table 4 thus reflects differences in their finite-sample properties, which are not captured
by the asymptotics. This notwithstanding, the placebo exercise presented in Section 5 shows that both inference procedures
yield close to correct rejection rates in a sample with the same number of regions and sectors as that used to generate the
estimates in Table 4.
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Table 5: Estimation of labor supply elasticity.

First-Stage Reduced-Form 2SLS
ŵi êi êi
(1) (2) (3)

Panel A: Bartik IV
30.08 37.99 1.26

Robust [21.05, 39.12] [28.18, 47.80] [0.97, 1.55]
Cluster [18.28, 41.89] [24.07, 51.91] [0.89, 1.63]
AKM [16.68, 43.49] [22.77, 53.21] [0.97, 1.56]
AKM0 [15.73, 44.81] [21.68, 54.69] [0.98, 1.72]

Panel B: ADH IV
−0.61 −0.97 1.58

Robust [−1.05,−0.17] [−1.43,−0.50] [0.75, 2.42]
Cluster [−1.01,−0.21] [−1.27,−0.66] [0.78, 2.39]
AKM [−1.17,−0.05] [−1.64,−0.29] [0.53, 2.64]
AKM0 [−1.66,−0.08] [−2.54,−0.45] [0.88, 4.79]

Notes: N = 1, 444 (722 CZs × two time periods). Models are weighted by start of
period CZ share of national population. All regressions include the full vector of
baseline controls in ADH. 95% confidence intervals in square brackets. Robust is
the Eicker-Huber-White standard error; Cluster is the standard error that clusters of
CZs in the same state; AKM is the standard error in eq. (40) with 3-digit SIC clusters;
AKM0 is the confidence interval with 3-digit SIC clusters described in the last sentence
of Section 4.3.1.

parameter φ in eq. (46). Panel A reports results using the Bartik (1991) instrumental variable with
sectoral national employment growth as shifters, and Panel B reports results using the ADH instru-
mental variable with sectoral imports from China by high-income countries other than the US as
shifters. In both cases, the estimates of the labor supply elasticity are similar: 1.26 in Panel A and
1.58 in Panel B.

We now compare the different IV confidence intervals in column (3). In Panel A, our proposed
confidence intervals are wider than heteroskedasticity-robust 95% confidence intervals, but tighter
than state-clustered 95% confidence intervals. For Panel B, our proposed confidence intervals are
30%–140% wider than those obtained with state-clustered and heteroskedasticity-robust standard
errors. As discussed in Section 6.1, such differences are related to the sector-level component of the
cross-regional correlation in residuals. Our results suggest that the national employment growth in
the Bartik (1991) instrumental variable absorbs the bulk of this component, leaving little correlation
left for our inference procedures to correct. In contrast, the ADH instrumental variable absorbs a
lower fraction of the sectoral component of residuals, which implies that our procedure has a larger
impact on the length of the 95% confidence interval.

7 Concluding remarks

This paper analyzes the statistical properties of shift-share empirical specifications. Our analysis
shows that standard economic models predict changes in regional outcomes to depend on observed
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and unobserved sector-level shocks through several shift-share covariates. Our model thus implies
that the residual in shift-share regressions is likely to be correlated across regions with similar sectoral
composition, independently of their geographic location, due to the presence of unobserved sectoral
shifters affecting the outcome of interest. Such a correlation is ignored by inference procedures
typically used in shift-share regressions, such as when standard errors are clustered on geographic
units. To illustrate the importance of this shortcoming, we implement a placebo exercise in which
we study the effect of randomly generated sector-level shocks on actual changes in labor market
outcomes across CZs in the United States. We find that traditional inference procedures severely
overreject the null hypothesis of no effect. We derive two novel inference procedures that yield
correct rejection rates.

It has become standard practice to report cluster-robust standard errors in regression analysis
whenever the variable of interest varies at a more aggregate level than the unit of observation. This
practice guards against potential correlation in the residuals that arises whenever the residuals contain
unobserved shocks that also vary at a more aggregate level. In the same way, we recommend that
researchers report confidence intervals in shift-share designs that allow for a shift-share structure in
the residuals, such as one of the two confidence intervals that we propose.
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Appendices

A Economic model: details and extensions

A.1 Sector-specific price index

The price change in every sector s, P̂s, depends on the shocks Âis, γ̂s and v̂i of all sectors and regions
of the world economy. Specifically, the change in the sector-specific price index is

P̂s = −∑
s′

θss′
J

∑
j=1

x0
js′(Âjs′ + λjv̂j − λj ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]), (A.1)

where {θss′}s,s′ are positive constants, and xjs is the share of the world production in sector s that
corresponds to region j, x0

js ≡ Xjs/ ∑J
i=1 Xis. Imposing that all regions j in a country c are small is

equivalent to assuming that x0
js ≈ 0 for all j ∈ Jc and for s = 1, . . . , S. Therefore, when all regions

j ∈ Jc are small, we can rewrite the change in the sector-specific price index as

P̂s = −∑
s′

θss′ ∑
j/∈Jc

x0
js′(Âjs′ + λjv̂j − λj ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]). (A.2)

In this case, P̂s does not depend on the labor supply shocks and technology shocks in any region j
included in country c; i.e. P̂s does not depend neither on {Âjs′}S

s=1,j∈Jc
nor on {v̂j}j∈Jc

Proof of eq. (A.1). Equations (9) and (14) imply that

P̂s −∑
k

θ̃skP̂k = ∑
j

x0
js(λj ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]− λjv̂j − Âjs),

where θ̃sk ≡ ∑j x0
jsl

0
jkλj(σk − 1). Let us use bold variables to denote vectors, y ≡ [ys]s, and bar bold

variables to denote matrices, ā ≡ [ask]s,k. Thus,

(
I − θ̄

)
P̂ = η̂

with η̂s ≡ ∑j x0
js

(
λj ∑k l0

jk

[
γ̂k + (σk − 1)Âjk

]
− λjv̂j − Âjs

)
. As σk > 1 and φ > 0, it will be true that

∑
k
|θ̃sk| = ∑

j
x0

js

−1 + ∑k l0
jkσk

φ + ∑k l0
jkσk

< ∑
j

x0
js = 1,

and, therefore,

θ ≡ (I − θ̃)−1 =
∞

∑
d=0

θ̃
d, with θsk > 0.

This immediately implies eq. (A.1). �
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A.2 Expression for sector- and region-specific employment

Similarly to eq. (18), we can write the change in employment in sector s in a region i as

L̂is = γ̂s + (σs − 1)
(

Âis + P̂s
)
− σsλi

S

∑
s=1

l0
is
[
γ̂s + (σs − 1)

(
Âis + P̂s

)]
+ σsλiv̂i. (A.3)

This expression shows that the change in employment in a particular sector- and region-specific pair
also depends on the same set of shocks affecting each region’s total employment and wages according
to eqs. (17) and (18). However, as a comparison of eqs. (18) and (A.3) illustrates, the response of total
regional employment L̂i to, for example, a particular change in the world price of a sector s, P̂s, is
different from the response of sectoral employment, L̂is, no matter whether we focus on its response
to the same sector prices, P̂s, or its response to changes in prices in a different sector k 6= s, P̂k.
Specifically,

dL̂is/dP̂s = (σs − 1)− l0
isβL,iss, with βL,iss ≡ σsλi(σs − 1); (A.4)

dL̂is/dP̂k = −l0
ikβL,isk, with βL,isk ≡ σsλi(σk − 1), ∀ s 6= k. (A.5)

The expression in eq. (A.5) reflects the presence of cross-sectoral spillovers in the model described in
Section 2.1: exogenous shocks to labor demand in one sector k affect employment in every other sector
s. By doing simple algebra, the expressions in eqs. (A.4) and (A.5) also show that one can recover
the total impact of P̂s on regional employment L̂i in eq. (19) as the appropriate weighted average of
the elasticities in eqs. (A.4) and (A.5): dL̂i/dP̂s = l0

isdL̂is/dP̂s + ∑k 6=s l0
ik(dL̂ik/dP̂s).33 Following this

approach would however require estimating S parameters just to compute dL̂i/dP̂s for a particular is
pair; i.e. {βL,isk}S

k=1. Conversely, using the expression in eq. (18) as basis for analysis only requires
estimating one single parameter: the parameter βL,is introduced in eq. (19).

A.3 Allowing for regional migration

We extend here the baseline environment described in Section 2.1 to allow for mobility of individuals
across regions within a single country c. We still assume that the number of individuals living in
each country c is fixed and equal to Mc.

Environment. The only difference with respect to the setting described in Section 2.1 is that the
mass of individuals living in a region i, Mi, is no longer fixed. Instead, we assume that, before the
realization of the shock u(ι) in eq. (6), individuals must decide their preferred region of residence
taking into account their idiosyncratic preferences for local amenities in each region. Specifically, we
assume that the utility to individual ι of residing in region i is

U(ι) = ũi(ι) (Ūi(ωi/P, bi/P)− 1) (A.6)

where Ūi(ωi/P, bi/P) is the expected utility of residing in region i, as determined by eqs. (6) and (7),

33Note that L̂i = ∑S
k=1 l0

ik L̂ik and, therefore, dL̂i/dP̂s = ∑S
k=1 l0

ik(dL̂ik/dP̂s) = l0
isdL̂is/dP̂s + ∑k 6=s l0

ik(dL̂ik/dP̂s).
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and ũi(ι) is the idiosyncratic amenity level of region i for individual ι. For simplicity, we assume that
individuals draw their idiosyncratic amenity level independently (across individuals and regions)
from a Type I extreme value distribution:

ũi(ι) ∼ Fũ(ũ) = e−ũ−φ̃
, φ̃ > 0. (A.7)

A similar modeling of labor mobility has been previously imposed, among others, in Allen and
Arkolakis (2016), Redding (2016), Allen, Arkolakis and Takahashi (2018), Monte, Redding and Rossi-
Hansberg (2018) and Fajgelbaum et al. (2018). See Redding and Rossi-Hansberg (2017) for additional
references.

Equilibrium. To characterize the labor supply in region i, we first compute Ūi(wi/P, bi/P):

Ūi(ωi/P, bi/P) =
ωi

P

∫ ∞

bi/ωi

udFu(u) +
bi

P

∫ bi/ωi

νi

dFu(u),

= φ
ωi

P

∫ ∞

bi/ωi

( u
νi

)−φ
du +

bi

P

∫ bi/ωi

νi

φ

νi

( u
νi

)−φ−1
du,

=
φ

φ− 1
ωi

P
ν

φ
i

(ωi

bi

)φ−1
+

bi

P

(
1− ν

φ
i

(ωi

bi

)φ)
,

=
bi

P

(
1 +

1
φ− 1

ν
φ
i

(ωi

bi

)φ)
.

To simplify the analysis, we assume that the unemployment benefit is identical in all regions and
equal to the price index P; i.e. bi = P for all i ∈ J. Defining vi ≡ (νi/bi)

φ as in eq. (10), the assumption
that bi = P for all i ∈ J implies that vi ≡ νi/P and, thus,

Ūi(ωi/P, bi/P) = 1 +
1

φ− 1
vi

(ωi

P

)φ
,

and the share of national population in region i is

Mi = Pr
[
ũi(ι) (Ūi(ωi/P, bi/P)− 1) > ũj(ι)

(
Ūj(ωj/P, bj/P)− 1

)
, ∀j ∈ Jc

]
= Pr

[
ũi(ι)vi(ωi)

φ > ũj(ι)vj(ωj)
φ, ∀j ∈ Jc

]
.

Given the distributional assumption in eq. (A.7), it holds that

Mi =
vi(ωi)

φm

Φc
Mc such that Φc = ∑

j∈Jc

vj(ωj)
φm and φm ≡ φ̃φ. (A.8)

Combining eqs. (14) and (A.8), we obtain the following equilibrium equation

vi(ωi)
φm

∑j∈Jc
vj(ωj)φm

Mcvi(ωi)
φ = ∑

s
(ωi)

−σs (AisPs)
σs−1 γsW, (A.9)
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or, equivalently,
(Φc)

−1Mcvi(ωi)
φ+φm = ∑

s
(ωi)

−σs (AisPs)
σs−1 γsW, (A.10)

for every region i in every country c. As in the model described in Section 2, W ≡ ∑i∈J Wi and
Wi ≡ ∑ Wi and we impose the normalization W = 1. Conditional on this normalization, the system
of J labor market clearing conditions in eq. (A.9) and the system of S price indices in eqs. (8) and (11)
jointly determine the set of equilibrium wages {ωi}i∈J as a function of the technology levels in all
regions {Ais}S

s=1,i∈J , sectoral preferences {γs}S
s=1, labor supply shifters {vi}i∈J , and the parameters

{σs}S
s=1, φ, and φm.

Labor Market Impact of Economic Shocks in a Small Open Economy. Assuming that {Mc}C
c=1,

{σs}S
s=1, and (φ, φm) are fixed and totally differentiating eq. (A.9) with respect to the remaining de-

terminants of ω̂i, we can express the changes in wages in every region i of the small economy c
as

ω̂i = λ̃iΦ̂c + λ̃i

S

∑
s=1

l0
is
[
γ̂s + (σs − 1)(Âis + P̂s)

]
− λ̃iv̂i,

where λ̃i ≡ (φ + φm + ∑s l0
isσs)−1 and l0

is is the share of workers living in region i that were employed
in sector s at the initial period 0; i.e. l0

is ≡ L0
is/L0

i . Eliminating sectoral differences in the constant
elasticity of substitution in demand in eq. (5), σs = σ ∀s, the expression for the change in wages
simplifies to:

ω̂i = λ̃Φ̂c + λ̃
S

∑
s=1

l0
is
[
γ̂s + (σ− 1)(Âis + P̂s)

]
− λ̃v̂i, (A.11)

where λ̃ ≡ (φ + φm + ∑s l0
isσ)

−1 and

Φ̂c = ∑
i∈Jc

m0
i (φmω̂i + v̂i) ,

= λ̃φmΦ̂c + λ̃φm ∑
i∈Jc

m0
i

S

∑
s=1

l0
is
[
γ̂s + (σ− 1)(Âis + P̂s)

]
− λ̃φm ∑

i∈Jc

m0
i v̂i,

=
λ̃φm

1− λ̃φm
∑
i∈Jc

m0
i

S

∑
s=1

l0
is
[
γ̂s + (σ− 1)(Âis + P̂s)

]
− λ̃φm

1− λ̃φm
∑
i∈Jc

m0
i v̂i, (A.12)

where m0
i is the share of individuals living in country c that had residence in region i at the initial

period 0; i.e. m0
i ≡ M0

i /M0
c , with M0

c ≡ ∑i∈Jc
M0

i . As in the main text, let’s consider the case in which
all regions i in country c are small open economies. The variable Φ̂c thus depends on technology
shocks and labor supply shocks in all regions i of country c, {(Âis, v̂i)}S

s=1,i∈Jc
, and on the aggregate

sectoral preference shocks and sectoral prices changes, {(γ̂s, P̂s)}S
s=1. Furthermore, the sectoral price

changes themselves depend on the aggregate sectoral preference shocks and on the technology shocks
and labor supply shocks in every other region of the world, {(Âis, v̂i)}S

s=1,i∈J/Jc
.

Once we impose the assumption that σs = σ ∀s, the expression in eq. (17) is identical to that in
eq. (A.11) under the restrictions that Φ̂c = 0 and φ̃ = 0. Specifically, focusing again on the impact of
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sectoral price shocks P̂s, note that

dω̂i/dP̂s = λ̃(dΦ̂c/dP̂s) + l0
isλ̃(σ− 1), s = 1, . . . , S, i = 1, . . . , Jc, (A.13)

and λ̃ = λ if φ̃ = 0. Therefore, the second term in eq. (A.13) has a shift-share structure, being the
product of an observed weight l0

is and an unobserved parameter λ̃(σ − 1). However, even if one
could consistently estimate the parameter λ̃(σ− 1) (e.g. using eq. (A.11) as estimating equation and
controlling for Φ̂c through a country c dummy variable) the expression l0

isλ̃(σ − 1) will not capture
the impact of P̂s on ω̂i. It will only capture some partial impact that does not take into account the
effect that P̂s has on ω̂i through the term Φ̂c.

To recover the total effect of P̂s on ω̂i one would need to substitute for Φ̂c in eq. (A.11) using the
expression in eq. (A.12). Interestingly, once we rewrite eq. (A.12) as

Φ̂c =
λ̃

1− λ̃
∑
i∈Jc

S

∑
s=1

(m0
i l0

is)
[
γ̂s + (σ− 1)(Âis + P̂s)

]
− λ̃

1− λ̃
∑
i∈Jc

m0
i v̂i,

one can observe that the term that depends on P̂s in this equation also has a shift-share structure,
where the “share” corresponding to the shifter P̂s equals ∑i∈Jc

(m0
i l0

is). More precisely, from eqs. (A.11)
and (A.12), one can rewrite the relationship between ω̂i and the vector of sectoral price shocks {P̂s}S

s=1

as

ω̂i = λ̃
λ̃

1− λ̃

S

∑
s=1

l̃0
s (σ− 1)P̂s + λ̃

S

∑
s=1

l0
is(σ− 1)P̂s + ˆ̃ε i, (A.14)

where l̃0
s ≡ ∑i∈Jc

(m0
i l0

is) and ˆ̃ε i accounts for all remaining terms impacting ω̂i in eqs. (A.11) and (A.12).
As the expression in eq. (A.14) shows, we can rewrite the effect of P̂s on ω̂i in eq. (A.13) as

dω̂i/dP̂s = l̃0
is β̃ω,is + l0

isβω,is, with β̃ω,is ≡ λ̃
λ̃

1− λ̃
(σ− 1) and βω,is ≡ λ̃(σ− 1), (A.15)

for every sector s = 1, . . . , S and every region i = 1, . . . , Jc.
Analogously, we can also construct an expression for the change in population in a location i as

M̂i = −Φ̂c + v̂i + φmω̂i, (A.16)

and an expression for the change in employment in a location i as

L̂i = v̂i + φω̂i + M̂i, (A.17)

where ω̂i is defined in eqs. (A.11) and (A.12). Therefore, estimating the impact of P̂s on either M̂i

or L̂i also requires accounting for the impact that it has on the country-c specific term Φ̂c. If, on the
contrary, a researcher builds an estimating equation for M̂i using as basis the equilibrium condition in
eq. (A.16) and controls for the term Φ̂c using a country-c specific dummy, then the resulting estimate
will at best capture only a partial effect of P̂s on M̂i. The same is true if the effect of P̂s on L̂i is
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estimated using the equilibrium condition in (A.17) as estimating equation and controlling for Φ̂c

through a country-c fixed effect.

A.4 Sector-specific factors of production

We extend here the model described in Section 2.1 to incorporate other factors of production. In
particular, we introduce a specific-factor in each sector, as in the seminal paper by Jones (1971). More
recently, Kovak (2013) uses a specific-factors model to derives a shift-share specification.

Environment. The only difference with respect to the setting described in Section 2.1 is that the
production function in eq. (3) is substituted for a Cobb-Douglas production function that combines
labor and capital inputs:

Qis = Ais (Lis)
1−θis (Kis)

θis .

We additionally assume that capital is a sector-specific factor of production (sector-s capital has no
use in any other sector) and that, for every sector s = 1, . . . , S, each region has an endowment of
sector-specific capital K̄is.

Equilibrium. Conditional on the region-i equilibrium wage ωi and rental rate of sector-s capital Ris,
the cost minimization problem of the sector-s region-i representative firm and the market clearing
condition for sector-s region-i specific capital imply that

1− θis

θis

K̄is

Lis
=

ωi

Ris
.

Conditional on the sector-s region-i final good price pis, the firm’s zero profit condition implies that

pis Ais θ̃is = (ωi)
1−θis (Ris)

θis ,

where θ̃is ≡ (θis)
θis (1− θis)

1−θis . The combination of these two conditions yields the demand for labor
in sector s and region i,

Lis =
1− θis

θis
K̄is

(
pis Ais θ̃is

ωi

) 1
θis

, (A.18)

and the total sales of the sector-s region-i good are

Xis =
1

1− θis
ωiLis =

K̄is

θis

(
pis Ais θ̃is

) 1
θis (ωi)

1− 1
θis . (A.19)

Given the normalization that sets world income to one, W = 1, the total expenditure in the sector-s
region-i good is equal to xisγs, with xis defined as a function of the equilibrium prices pis and Ps in
eq. (9). Equating eqs. (9) and (A.19), we can solve for the equilibrium value of pis as a function of the

49



sector-s price index Ps:

pis =

[
K̄is

θis

(
Ais θ̃is

) 1
θis (ωi)

1− 1
θis

P1−σs
s

γs

]−θisηis

(A.20)

where ηis ≡ (1 + θis(σs − 1))−1 ∈ (0, 1). Furthermore, combining the expression for pis in eq. (A.20)
and that for Ps in eq. (8), we can solve for the equilibrium value of the sectoral price Ps as a function
of {ωi}i∈J and exogenous parameters.

Combining the expression in eq. (A.20) with eq. (A.18) we obtain an expression for labor demand
in sector s of region i as a function of equilibrium wages ωi, the sector-s price Ps and other exogenous
determinants:

Lis = κisγ
ηis
s (AisPs)

(σs−1)ηis (ωi)
−σsηis

where κis ≡ (1− θis)(K̄is θ̃
1

θis
is /θis)

1−ηis . Adding across sectors, we obtain aggregate labor demand in
region i:

Li =
S

∑
s=1

κisγ
ηis
s (AisPs)

(σs−1)ηis (ωi)
−σsηis

Finally, equalizing labor demand and labor supply in every region, we obtain the following J labor
market clearing conditions:

Mivi(ωi)
φ =

S

∑
s=1

κisγ
ηis
s (AisPs)

(σs−1)ηis (ωi)
−σsηis , j = 1, . . . , J. (A.21)

Given these J equations and an expression for every sectoral price index Ps as function of the com-
plete vector of wages in every region of the world, we can solve for these equilibrium wage levels
{ωi}i∈J .

Labor Market Impact of Economic Shocks in a Small Open Economy. Assuming that {Mi}i∈J ,
{σs}S

s=1, φ and {(K̄is, θis)}S
s=1,i∈J are fixed and totally differentiating eq. (A.21) with respect to the

remaining determinants of ωi, we can express the changes in wages in every region i of the small
open economy c as

ω̂i = λ̃i ∑
s

l0
is
[
ηisγ̂s + (σs − 1)ηis

(
Âis + P̂s

)]
+ λ̃iv̂i, (A.22)

where λ̃i ≡
(
φ + ∑s l0

isσsηis
)−1. Finally, plugging this expression into an equation relating changes in

employment in region i to changes in wages in region i, L̂i = v̂i + φω̂i, we can express the changes in
employment in every region i of the small open economy c as

L̂i = φλ̃i ∑
s

l0
is
[
ηisγ̂s + (σs − 1)ηis

(
Âis + P̂s

)]
+ (1− φλi)v̂i. (A.23)
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Given eqs. (A.22) and (A.23) and focusing again on price shocks P̂s for illustrative purposes, note
that we can write, for every region i and sector s,

dL̂i/dP̂s = l0
isβL,is, with βL,is ≡ φλ̃iηis(σs − 1); (A.24)

dω̂i/dP̂s = l0
isβω,is, with βω,is ≡ λ̃iηis(σs − 1). (A.25)

Conditional on the values of the reduced-form parameters βL,is and βω,is, these two expressions are
identical to those in eqs. (19) and (20). Furthermore, the reduced-form parameters entering eqs. (A.24)
and (A.25) will be identical to those entering eqs. (19) and (20) if and only if θis = 0 for every i and s.

A.5 Sector-specific preferences

We extend here the model described in Section 2.1 to allow workers to have idiosyncratic preferences
for being employed in the different s = 1, . . . , S sectors and for being non-employed s = 0.

Environment. The only difference with respect to the setting described in Section 2.1 is that the
utility function in eqs. (6) and (7) is substituted by an alternative utility function that features workers
idiosyncratic preferences for being employed in the different s = 1, . . . , S sectors and for being non-
employed s = 0. Specifically, we assume here that, conditional on obtaining utility Cj from the
consumption of goods, the utility of a worker ι living in region j is

Uis = us(ι)Ci, (A.26)

and, to simplify the analysis, we assume that us(ι) is distributed independently and identically across
individuals ι and sectors s with a Fréchet cumulative distribution function; i.e. for every region i =
1, . . . , J and sector s = 0, . . . , S,

Fu(u) = e−visu−φ
, φ > 1. (A.27)

A similar modeling of workers’ sorting patterns across sectors has been introduced in Galle, Rodríguez-
Clare and Yi (2017) and Burstein, Morales and Vogel (2018a). See Adão (2016) for a framework that
relaxes the distributional assumption in eq. (A.27). Given that individuals have heterogeneous prefer-
ences for employment in different sectors, workers are no longer indifferent across sectors and, thus,
equilibrium wages {ωis}S

s=1 may vary across sectors within a region i. As in the main text, we as-
sume that workers that choose the non-employment sector s = 0 in region i receive non-employment
benefits bi, which are financed as indicated in Section 2.1.

Equilibrium. Conditional on the equilibrium wages {ωis}S
s=1, the labor supply in sector s = 1, . . . , S

of region i is

Lis = Mi
vis(ωis)

φ

Φi
with Φi ≡ vi0bφ

i +
S

∑
s=1

vis(ωis)
φ, (A.28)
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and the labor supply in the non-employment sector s = 0 is

Li0 = Mi
vi0(bi)

φ

Φi
. (A.29)

By combining the expression in eq. (A.28) and the labor demand in eq. (12), and imposing the normal-
ization W = 1, the labor market clearing condition in every sector s = 1, . . . , S and region i = 1, . . . , J
is

Mi
vis(ωis)

φ

Φi
= (ωis)

−σs (AisPs)
σs−1 γs. (A.30)

The system of J× S equations formed by this expression for every every sector s = 1, . . . , S and region
i = 1, . . . , J yields the equilibrium wages {ωis}S

s=1,j∈J .
In equilibrium, Burstein, Morales and Vogel (2018a) show that the average wage in every sector s

of the region i is

ωi = γΦ
1
φ

i , (A.31)

where γ = Γ (1− 1/φ) with Γ(.) denoting the Gamma function.

Labor Market Impact of Economic Shocks in a Small Open Economy. Assuming that {Mi}i∈J ,
{σs}S

s=1, and φ are fixed and totally differentiating eq. (A.30) with respect to the remaining determi-
nants of ωis, we can express the changes in wages in every sector s and every region i of the small
open economy c as

ω̂is = (φ + σs)
−1 (Φ̂i + γ̂s + (σs − 1)(Âis + P̂s)− v̂is

)
.

From the definition of Φi in eq. (A.28), we can derive the expression

Φ̂i =
S

∑
s=0

l0
isv̂is + φl0

i0b̂i + φ
S

∑
s=1

l0
isω̂is,

and, plugging in the expression for ω̂is and grouping terms, we obtain

Φ̂i = v̂i + λ̄iφ
S

∑
s=1

l0
is(φ + σs)

−1 [γ̂s + (σs − 1)(Âis + P̂s)
]

where λ̄i ≡ (1− φ ∑S
s=1 l0

is(φ + σs)−1)−1, and v̂i ≡ λ̄iφl0
i0b̂i + λ̄il0

i0v̂i0 + λ̄i ∑S
s=1 l0

isσs(φ + σs)−1v̂is. Thus,
plugging this expression back in the expression for ω̂is, we obtain that

ω̂is = (φ + σs)
−1
[
v̂i − v̂is + γ̂s + (σs − 1)(Âis + P̂s) + λ̄iφ

S

∑
k=1

l0
ik(φ + σk)

−1 [γ̂k + (σk − 1)(Âik + P̂k)
] ]

.

We can similarly compute an expression for the change in total employment in region i as

L̂i = −
l0
i0

1− l0
i0

l̂i0 =
l0
i0

1− l0
i0
(Φ̂i − φb̂i)
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= ν̂i + λ̃iφ
S

∑
s=1

l0
is(φ + σs)

−1(γ̂s + (σs − 1)(Âis + P̂s)) (A.32)

where ν̂i = l0
i0(1− l0

i0)
−1(v̂i − φb̂i), and λ̃i ≡ l0

i0(1− l0
i0)
−1λ̄i.

In addition, the change in the average in region i is

ω̂i =
1
φ

v̂i + λ̄i

S

∑
s=1

l0
is(φ + σs)

−1 [γ̂s + (σs − 1)(Âis + P̂s)
]

(A.33)

Given eq. (A.32) and eq. (A.33), the effect of price shocks P̂s is

dL̂i/dP̂s = l0
isβL,is, with βL,is ≡ φλ̃i(φ + σs)

−1(σs − 1) (A.34)

dω̂i/dP̂s = l0
isβω,is, with βω,is ≡ λ̃i(φ + σs)

−1(σs − 1). (A.35)

Conditional on the value of the reduced-form parameters βL,is and βω,is, these expressions are identi-
cal to those in equations eqs. (19) and (20).

B Proofs and additional details for Section 4

Since Propositions 1 and 2 are special cases or Propositions 3 and 4, we only prove Propositions 3,
4 and 5. Before proving these results in Appendices B.2, B.2 and B.4, we collect some auxiliary
Lemmata used in the proofs in Appendix B.1. Finally, Appendix B.5 discusses inference when the
effects βis are heterogeneous. Throughout this appendix, we use the following notation. We use the
notation AS � BS to denote AS = O(BS), i.e. there exists a constant C independent of S such that
AS ≤ CBS. We denote the σ-field generated by (Y(0), B, W, U,Z) by F0 = σ(Y(0), B, W, U,Z). Define
wst = ∑N

i=1 wiswit, X̃s = Xs −Z′sγ, and σ2
s = var(Xs | F0) = var(Xs | Z, W).

B.1 Auxiliary results

Lemma 1. {AS1, . . . ,ASS}∞
S=1 be a triangular array of random variables. Fix η ≥ 1, and let ASi =

∑S
s=1 wisASs, i = 1 . . . , NS. Suppose E[|ASs|η | W] exists and is bounded uniformly over S and s. Then

E[|ASi|η |W] exists and is bounded uniformly over S and i.

Proof. By Hölder’s inequality,

E[|ASi|η |W] = E

[∣∣∣∣∣ S

∑
s=1

w
η−1

η

is w
1
η

isASs

∣∣∣∣∣
η

|W
]
≤
(

S

∑
s=1

wis

)η−1 S

∑
s=1

wisE|Aη
Ss |W|

=
S

∑
s=1

wisE|Aη
Ss |W| ≤ max

s
E[Aη

Ss |W],

which yields the result.
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Lemma 2. {AS1, . . . , ASNS}∞
S=1 be a triangular array of random variables. Suppose E[A2

Si | W] exists and
is bounded uniformly over S and i. Then N−2 ∑S

s=1 E
[
(∑N

i=1 wis ASi)
2 | W

]
→ 0, provided Assumption 2(ii)

holds.

Proof. By Cauchy-Schwarz inequality,

N−2
S

∑
s=1

E

( N

∑
i=1

wis ASi

)2 ∣∣∣ W

 ≤ 1
N2

S

∑
s=1

N

∑
i=1

N

∑
j=1

wiswjsE[A2
Si |W]1/2E[A2

Sj |W]1/2

� 1
N2

S

∑
s=1

N

∑
i=1

N

∑
j=1

wiswjs = N−2
S

∑
s=1

n2
s

The result follows from the fact that N−2 ∑S
s=1 n2

s ≤ maxs ns/N, which converges to zero by Assump-
tion 2(ii).

Lemma 3. let {AS1, . . . , ASNS , BS1, . . . , BSNS ,AS1, . . . ,ASS}∞
S=1 be a triangular array of random variables

such that E[A4
Si | W], E[B4

Si | W], and E[A2
Ss | W] exist and are bounded uniformly over S, i and s. Then

(∑s n2
s )
−1 ∑i,j,s wiswjs ASiBSjASs = OP(1).

Proof. Let RS = (∑s n2
s )
−1 ∑i,j,s wiswjs ASiBSjASs. Then by Cauchy-Schwarz inequality,

E[|RS| |W] ≤ 1
∑s n2

s
∑
i,j,s

wiswjsE[|ASiBSjASs| |W]

≤ 1
∑s n2

s
∑
i,j,s

wiswjsE[|BSj|4 |W]1/4E[|ASi|4 |W]1/4E[A2
Ss |W]1/2 � 1

∑s n2
s

∑
i,j,s

wiswjs = 1.

The result then follows by Markov inequality and the dominated convergence theorem.

B.2 Proof of Proposition 3

Let EW denote expectation conditional on W. We first show that

1
N

X′Z =
1
N ∑

i,s
wisZ

′
sγZi + oP(1) (B.1)

1
N

X′X =
1
N ∑

s
σ2

s wss +
1
N ∑

s,t
Z′sγZ

′
tγwst + oP(1) (B.2)

1
N

Z′Y =
1
N ∑

i
ZiYi(0) +

1
N ∑

i,t
ZiwitZ

′
tγβit + oP(1) (B.3)

1
N

X′Y =
1
N ∑

i,s,t
wiswit(Z

′
sγ)(Z

′
tγ)βit +

1
N ∑

i,s
w2

isσ
2
s βis +

1
N ∑

i,s
wis(Z

′
sγ)Yi(0) + oP(1). (B.4)

Consider (B.1). We have

1
N

X′Z =
1
N ∑

s
Xs ∑

i
wisZi =

1
N ∑

s
X̃s ∑

i
wisZi +

1
N ∑

i,s
wisZ

′
sγZi.
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It therefore suffices to show that
1
N ∑

s
X̃s ∑

i
wisZi = oP(1). (B.5)

The left-hand side has mean zero conditional on W, with the variance of the kth row given by

var

(
1
N ∑

i,s
wisX̃sZik |W

)
=

1
N2 ∑

s
EWσ2

s

(
∑

i
wisZik

)2

� 1
N2 ∑

s
EW

(
∑

i
wisZik

)2

.

By Lemma 1, Assumption 4(iv), and the Cr-inequality, EW [Z2
ik] = EW [(∑s wisZsk + Uik)

2] is bounded,
so that by Lemma 2, the right-hand side converges to zero. Equation (B.5) then follows by Markov
inequality and the dominated convergence theorem.

Next, consider eq. (B.2). We have

1
N

X′X =
1
N ∑

i,s,t
XsXtwiswit =

2
N ∑

s<t
X̃sX̃twst +

1
N ∑

i,s
(X2

s − E[X2
s | Zs, W])w2

is

+
2
N ∑

s 6=t
Z′sγX̃twst +

1
N ∑

s
σ2

s wss +
1
N ∑

s,t
Z′sγZ

′
tγwst. (B.6)

We will show that the first three summands are of the order oP(1). All three summands are mean zero
since they are mean zero conditional on F0, so by Markov inequality and the dominated convergence
theorem, it suffices to show that their variances, conditional on W, converge to zero. To that end,

var

(
2
N ∑

s<t
X̃sX̃twst |W

)
=

4
N2 ∑

s<t
EW [σ2

s σ2
t ]w

2
st �

1
N2 ∑

s,t
w2

st

≤ 1
N2 ∑

i,j,s
wiswjs =

1
N2 ∑

s
n2

s → 0. (B.7)

where the last inequality follows from ∑s wiswjs ≤ ∑s wis = 1, and the convergence to 0 follows
by Assumption 2(ii). The variance of the second summand can be bounded by

var

(
1
N ∑

i,s
(X2

s − E[X2
s | Zs, W])w2

is |W
)
� 1

N2 ∑
s

(
∑

i
w2

is

)2

≤ 1
N2 ∑

s
n2

s ,

which converges to zero by Assumption 2(ii). Finally, variance of the third summand in eq. (B.6) can
be bounded by

var

(
2
N ∑

i,s 6=t
Z′sγX̃twiswit |W

)
≤ 4

N2 ∑
t

EWσ2
t

(
∑
s,i
|Z′sγ|wiswit

)2

� 1
N2 ∑

s
EW

(
∑

i
wis ∑

t
wit|Z′tγ|

)2

.

By Lemma 1, the second moment of ∑t wit|Z′tγ| is bounded, so by Lemma 2, the right-hand side
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converges to zero.
Next, consider eq. (B.3). We can decompose

1
N

Z′Y =
1
N ∑

i,s
ZiwisX̃sβis +

1
N ∑

i
ZiYi(0) +

1
N ∑

i,t
ZiwitZ

′
tγβit.

We will show that the first summand is oP(1). Since it has mean zero, by Markov inequality, it suffices
to show that the variance of each row k conditional on W converges to zero. Now,

var

(
1
N ∑

i,t
ZikwitX̃tβit |W

)
=

1
N2 ∑

s
EWσ2

s

(
∑

i
Zikwisβis

)2

� 1
N2 ∑

s
EW

(
∑

i
wis|Zik|

)2

→ 0,

where the convergence follows by Lemma 2, since as observed above, EW [|Zik|2] is bounded. Finally,
consider eq. (B.4). Decompose

1
N ∑

i
XiYi =

1
N ∑

s
X̃s ∑

i
wisYi(0) +

1
N ∑

i,s<t
wiswitX̃sX̃tβit

+
1
N ∑

i,s>t
wiswitX̃sX̃tβit +

1
N ∑

s 6=t
(Z′sγ)X̃t ∑

i
wiswitβit

+
1
N ∑

s 6=t
X̃s(Z

′
tγ)∑

i
wiswitβit +

1
N ∑

i,s
w2

is(X
2
s − E[X2

s | Zs, W])βis

+
1
N ∑

i,s,t
wiswit(Z

′
sγ)(Z

′
tγ)βit +

1
N ∑

i,s
w2

isσ
2
s βis +

1
N ∑

i,s
wis(Z

′
sγ)Yi(0).

We will show that all summands except for the last three are oP(1). Since they are all mean zero
conditional on F0, it suffices to show that their variances conditional on W converge to zero. The
variance of the first summand is bounded by

var

(
1
N ∑

s
X̃s ∑

i
wisYi(0) |W

)
=

1
N2 ∑

s
EWσ2

s

(
∑

i
wisYi(0)

)2

� 1
N2 ∑

s
EW

(
∑

i
wisYi(0)

)2

→ 0

by Lemma 2. The variance of the second summand is bounded by

var

(
1
N ∑

i,s<t
wiswitX̃sX̃tβit |W

)
=

1
N2 ∑

s<t
EWσsσt

(
∑

i
wiswitβit

)2

� 1
N2 ∑

s<t
w2

st → 0,

where the convergence to zero follows by arguments analogous to those in (B.7). The variance of the
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third summand converges to zero by analogous arguments. Variance of the fourth summand satisfies

var

(
1
N ∑

s 6=t
(Z′sγ)X̃t ∑

i
wiswitβit |W

)
≤ 1

N ∑
s

EWσ2
s

(
∑

t
|(Z′tγ)|∑

i
wiswit|βis|

)2

� 1
N ∑

s
EW

(
∑

i
wis ∑

t
wit|(Z′tγ)|

)2

,

which converges to by Lemma 2, since by Lemma 1, the second moment of ∑t wit|(Z′tγ)| is bounded.
Variance of the fifth summand converges to zero by analogous arguments. Finally, variance of the
sixth summand satisfies

var

(
1
N ∑

i,s
w2

is(X
2
s − E[X2

s | Zs, W])βis |W
)
� 1

N2 ∑
s

EW

(
∑

i
w2

isβis

)2

� 1
N2 ∑

s
n2

s → 0,

which yields (B.4). We now use eqs. (B.1), (B.2), (B.3) and (B.4) to derive the result. Since U′i γ =

0, Equation (B.1) implies Z′X/N = Z′Zγ/N + oP(1). Consequently, since by Assumption 4(iii),
(Z′Z/N)−1 = oP(1),

1
N

Ẍ′Ẍ =
1
N

X′X− 1
N

X′Z(Z′Z)−1Z′X =
1
N ∑

s
σ2

s wss + oP(1) =
1
N ∑

i,s
πis + oP(1), (B.8)

and, since Z′Y/N = oP(1),

1
N

Ẍ′Y =
1
N

X′Y− γ′
1
N

Z′Y + oP(1) =
1
N ∑

i,s
πisβis + oP(1).

Combining Assumption 4(iii) with the preceding two displays then yields the result.

B.3 Proof of Proposition 4

Let rN = 1/ ∑s n2
s , and let EW denote expectation conditional on W. Note that γ′Ui = 0 implies

Zγ = WZγ. Therefore, Ẍ admits the decomposition

Ẍ = (I − Z(Z′Z)−1Z′)X = (I − Z(Z′Z)−1Z′)(X− Zγ) = (I − Z(Z′Z)−1Z′)WX̃.

Using this decomposition, we obtain

r1/2
N (Ẍ′Ẍ)(β̂− β) = r1/2

N Ẍ′(Y− X′β) = r1/2
N X̃′W ′(Y− Xβ− Zδ̌)

= r1/2
N X̃′W ′(Y− Xβ− Zδ)− r1/2

N X̃′W ′Z(δ̌− δ)

= r1/2
N ∑

s,i
X̃swisεi −

X̃′W ′Z
N

(rN N2)1/2(δ̌− δ) = r1/2
N ∑

s,i
X̃swisεi + oP(1).
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where the last line follows by Assumption 5(ii) and (B.5). It follows from eq. (B.8) and Assump-
tion 4(iii) that (Ẍ′Ẍ/N)−1 = (1 + oP(1))(N−1 ∑i,s πis)

−1, so that

N
(∑s n2

s )
1/2 (β̂− β) = (1 + oP(1))

1
N−1 ∑i,s πis

r1/2
N ∑

s,i
X̃swisεi + oP(1).

Therefore, it suffices to show

r1/2
N ∑

s,i
X̃swisεi = N(0, plimVN) + oP(1).

Define Vi = Yi(0)− Z′i δ + ∑t witZ
′
tγ(βit − β), and

as = ∑
i

wisVi, bst = ∑
i

wiswit(βit − β).

Then we can write εi = Vi + ∑t witX̃t(βit− β), and, using the fact that 0 = ∑i,s πis(βis− β) = ∑s σ2
s bss,

we can decompose

r1/2
N ∑

s,i
X̃swisεi = r1/2

N ∑
s
X̃s ∑

i
wis

(
Vi + ∑

t
witX̃t(βit − β)

)
= r1/2

N ∑
s
Ys,

where

Ys = X̃sas + (X̃2
s − σ2

s )bss +
s−1

∑
t=1

X̃sX̃t(bst + bts).

Observe that Ys is a martingale difference array with respect to the filtration Fs = σ(X1, . . . ,Xs,F0).
By the dominated convergence theorem and the martingale central limit theorem, it suffices to show
that r2

N ∑S
s=1 EW [Y4

s ] → 0 so that the Lindeberg condition holds, and that the conditional variance
converges,

rN

S

∑
s=1

E[Y2
s | Fs−1]− VN = oP(1).

To verify the Lindeberg condition, by the Cr-inequality, it suffices to show that

r2
N ∑

s
EW [X̃4

s a4
s ]→ 0, r2

N ∑
s

EW [(X̃2
s − σ2

s )
4b4

ss]→ 0

r2
N ∑

s
EW

(
s−1

∑
t=1

X̃sX̃tbst

)4

→ 0, r2
N ∑

s
EW

(
s−1

∑
t=1

X̃sX̃tbts

)4

→ 0.

Note that since ∑s|∑t witZ
′
tγ(βit − β)|4 � ∑s|∑t witZ

′
tγ|

4, it follows from Lemma 1, Assumption 3(ii),
Assumption 5(i), and the Cr inequality that the fourth moment of Vi exists and is bounded. Therefore,
by arguments as in the proof of Lemma 2, ∑s EW [a4

s ] � ∑s n4
s , so that

r2
N ∑

s
EW [X̃4

s a4
s ] = r2

N ∑
s

EW [E[X̃4
s | F0]a4

s ] � r2
N ∑

s
EW [a4

s ] � r2
N ∑

s
n4

s → 0
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by Assumption 3(i), since ∑s n4
s ≤ maxs n2

s /rN . Second, since βis is bounded by Assumption 2(i),
bss � ∑i w2

is ≤ ns, so that

r2
N ∑

s
EW [(X̃2

s − σ2
s )

4b4
ss] � r2

N ∑
s

EW [(X̃2
s − σ2

s )
4n4

s ] � r2
N ∑

s
n4

s → 0.

Third, by similar arguments

r2
N ∑

s
EW

(
s−1

∑
t=1

X̃sX̃tbst

)4

= r2
N ∑

s
EW E[X̃4

s | F0]E

(s−1

∑
t=1

X̃tbst

)4

| F0


� r2

N ∑
s

(
s−1

∑
t=1

∑
i

wiswit

)4

≤ r2
N ∑

s
n4

s → 0.

The claim that r2
N ∑s EW

(
∑s−1

t=1 X̃sX̃tbts

)4
→ 0 follows by similar arguments.

It remains to verify that the conditional variance converges. Since VN can be written as

VN =
1

∑S
s=1 n2

s
var

(
∑

i
(Xi − Z′i γ)εi | F0

)
= rN ∑

s
E[Y2

s | F0]

= rN ∑
s

[
E
[
(X̃sas + (X̃2

s − σ2
s )bss)

2 | F0
]
+

s−1

∑
t=1

σ2
s σ2

t (bst + bts)
2

]
,

we have
rN ∑

s
E[Y2

s | Fs−1]− VN = 2D1 + D2 + 2D3,

where

D1 = rN ∑
s
(σ2

s as + E[X̃3
s | F0]bss)

s−1

∑
t=1

X̃t(bst + bts),

D2 = rN ∑
s

σ2
s

s−1

∑
t=1

(X̃2
t − σ2

t )(bst + bts)
2,

D3 = rN ∑
s

σ2
s

s−1

∑
t=1

t−1

∑
u=1

X̃tX̃u(bst + bts)(bsu + bus).

It therefore suffices to show that Dj = oP(1) for j = 1, 2, 3. Since E[Dj | F0] = 0, it suffices to show
that var(Dj | W) = EW [var(Dj | F0)] → 0. Since bst + bts � wst, and since EW [|asat|] � nsnt, and
|bss| � wss ≤ ns, it follows that

var(D1 |W) = r2
N ∑

t
EW

σ2
t

(
S

∑
s=t+1

(bst + bts)(σ
2
s as + E[X̃3

s | F0]bss)

)2


� r2
N ∑

t

(
S

∑
s=t+1

wstns

)2

≤ r2
N max

s
n2

s ∑
t

(
∑

s
wst

)2

= rN max
s

n2
s → 0,
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where the convergence to zero follows by Assumption 3(i). By similar arguments, since wst ≤ ns

var(D2 |W) = r2
N ∑

t
EW(X̃2

t − σ2
t )

2

(
S

∑
s=t+1

σ2
s (bst + bts)

2

)2

� r2
N ∑

t

(
S

∑
s=t+1

w2
st

)2

≤ r2
N ∑

t

(
S

∑
s=1

nswst

)2

≤ rN max
s

n2
s → 0.

Finally,

var(D3 |W) = r2
N ∑

t

S

∑
u=t+1

EWσ2
t σ2

u

(
S

∑
s=u+1

σ2
s (bst + bts)(bsu + bus)

)2

� r2
N ∑

t

S

∑
u=t+1

(
S

∑
s=u+1

wstwsu

)2

≤ r2
N ∑

s,t,u,v
wstwsuwvtwvu ≤ rN max

s
n2

s → 0,

where the last line follows the fact that since ∑s wst = nt and wst ≤ ns,

∑
s,t,u,v

wstwsuwvtwvu ≤ max
s

ns ∑
s,t,u,v

wsuwvtwvu = max
s

ns ∑
u,v

nunvwvu

≤ max
s

n2
s ∑

u,v
nvwvu = max

s
n2

s /rN .

Consequently, Dj = oP(1) for j = 1, 2, 3, the conditional variance converges, and the theorem follows.

B.4 Proof of Proposition 5

Let θ̂ = (β̂, δ̂′)′, θ = (β, δ), Mi = (Xi, Z′i)
′, rN = 1/ ∑S

s=1 n2
s , and let

V̂N = rN ∑
s
X̂sR̂2

s .

Since VN = rN ∑s σ2
s R2

s , we can decompose this estimator as

V̂N = rN ∑
s
(X̂2

s − X̃2
s )R̂2

s + rN ∑
s
X̃2

s (R̂2
s − R2

s ) + rN ∑
s
(X̃2

s − σ2
s )R2

s + VN . (B.9)

We’ll show that the first three terms are oP(1). Since ε̂i = εi + M′i(θ − θ̂), with εi = Yi(0)− Z′i δ, we
can decompose

R̂2
s = ∑

i,j
wiswjsε̂i ε̂j = R2

s + 2 ∑
i,j

wjswis M′i(θ − θ̂)εj + ∑
i,j

wiswjs M′i(θ − θ̂)M′j(θ − θ̂). (B.10)

60



Therefore, the second term in eq. (B.9) satisfies

rN ∑
s
X̃2

s (R̂2
s − R2

s ) = 2

[
rN ∑

s,i,j
wjswisX̃

2
s εj M′i

]
(θ − θ̂) + (θ − θ̂)′

[
rN ∑

s,i,j
wiswjsX̃

2
s Mj M′i

]
(θ − θ̂)

= OP(1)(θ − θ̂) + (θ − θ̂)′OP(1)(θ − θ̂) = op(1),

where the second line follows from Lemma 3. Second, the variance of the third term in eq. (B.9) can
be bounded by

var(rN ∑
s
(X2

s − σ2
s )R2

s |W) = r2
N ∑

s
E[(X2

s − σ2
s )

2R4
s |W] � r2

N ∑
s

E[R4
s |W] � r2

N ∑
s

n4
s → 0

since r2
N ∑s n4

s ≤ maxs n2
s / ∑t n2

t → 0 by Assumption 3(i). Since E[rN ∑s(X
2
s −σ2

s )R2
s |W] = E[rN ∑s E[(X2

s −
σ2

s ) | F0]R2
s | W] = 0, it follows by Markov inequality and the dominated convergence theorem that

rN ∑s(X
2
s − σ2

s )R2
s = oP(1).

It remains to show that the first term in eq. (B.9) is oP(1). Let γ̂ = (Z′Z)−1Z′X. Since WX = X
and Z = WZ + U, it follows that

X̂ = (W ′W)−1W ′Ẍ = (W ′W)−1W ′(X− Z(Z′Z)−1Z′X) = X − (W ′W)−1W ′Z(Z′Z)−1Z′X

= X − (W ′W)−1W ′Z(γ̂− γ)− (W ′W)−1W ′Zγ

= X̃ − (W ′W)−1W ′Z(γ̂− γ)

= X̃ −Z(γ̂− γ)− (W ′W)−1W ′U(γ̂− γ).

Let U = (W ′W)−1W ′U, and denote the sth row by U′s. Since U4
sk = (∑i((W ′W)−1W ′)siUik)

4, it follows
by the Cauchy-Schwarz inequality that

E[U4
sk |W] ≤ max

s
E[(∑

i
((W ′W)−1W ′)siUik)

4 |W] � max
s

(∑
i
|((W ′W)−1W ′)si|)4,

which is bounded assumption of the proposition. Therefore, the fourth moments of Us are bounded
uniformly over s. Consequently,

rN ∑
s
(X̂2

s − X̃2
s )R̂2

s = (γ̂− γ)′rN ∑
s
ZsR̂2

s − (γ̂− γ)′rN ∑
s
UsR̂2

s

= (γ̂− γ)′OP(1)− (γ̂− γ)′OP(1)

= oP(1),

where the second line follows by applying Lemma 3 after using the expansion in eq. (B.10), and the
third line follows since by eq. (B.1) and Assumption 4(iii), γ̂ = γ + oP(1).
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B.5 Inference under heterogeneous effects

For valid (but perhaps conservative) inference under heterogeneous effects, we need to ensure that
that that when βis 6= β, eq. (39) holds with inequality, that is,

∑S
s=1 X̂

2
s R̂2

s

∑S
s=1 n2

s
≥ VN + oP(1). (B.11)

To discuss conditions under which this is the case, observe that the “middle-sandwidch” in the
asymptotic variance sandwich formula, VN , as defined in Proposition 4, can be decomposed into
three terms:

VN =
var

(
∑s X̃sRs | F0

)
∑S

s=1 n2
s

=
∑s E[X̃2

s R2
s | F0]

∑S
s=1 n2

s
− ∑s E[X̃sRs | F0]2

∑S
s=1 n2

s
+

∑s 6=t E[(X̃sRs − E[X̃sRs | F0])(X̃tRt − E[X̃sRs | F0]) | F0]

∑S
s=1 n2

s
.

where, as before Rs = ∑s wisεi, and εi = Yi(0)− Z′i δ + ∑s Xswis(βis− β). Under homogeneous effects,
Rs is non-random conditional on F0, and the second and third term are equal to zero, since in this
case E[X̃sRs | F0] = E[X̃s | F0]Rs = 0, and E[X̃sRsX̃tRt | F0] = RsRtE[X̃sX̃t | F0] = 0 if s 6= t.
Therefore, only the first term remains, and the standard error estimator consistently estimates this
term by Proposition 5.

It can be shown that the proposition remains valid under regularity conditions if the effects βis

are heterogeneous, so that to ensure valid inference under heterogeneous effects, one needs to ensure
that the sum of the second and third term is weakly negative. This is the case under several different
settings. We now discuss two of them.

First observe that since E[X̃sRs | F0] = E[X̃s ∑S
t=1 Xtwit(βit − β) | F0] = σ2

s wis(βis − β), the second
term equals

−
∑S

s=1

(
∑N

i=1 πis(βis − β)
)2

∑S
s=1 n2

s
,

where πis = w2
isσ

2
s as in the statement Proposition 3. The term is always negative, and it reflects the

variability of the treatment effect. It makes the variance estimate that we propose conservative if the
third term equals zero. This is analogous to the result that the robust standard error estimator is
conservative in randomized trials, and that the cluster-robust standard error estimator is conservative
in cluster-randomized trials (see, for example Imbens and Rubin, 2015, Chapter 6). The third term
reflects the correlation between XsRs and XtRt, and it has no analog in cluster-randomized trials.
Indeed, the term can be written as

1
∑s n2

s
∑
s 6=t

σ2
s σ2

t ∑
i,j

wiswit(βit − β)wjswjt(β js − β).

In the example with “concentrated sectors”, which is the analog of the cluster-randomized setup if
there are no covariates, the term is thus zero, since in that case wiswit = 0 for s 6= t. Our standard
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errors are thus valid, although conservative, in this case. Another sufficient condition for validity
of inference is that βis and β jt are uncorrelated if t 6= s, in which case it follows from the display
above that the third term converges to zero. Numerical work, not reported here, indicates that the
correlation between βis and β jt needs to be quite high and depend on the weights wis in order for
the third term to dominate the second term. We therefore expect our inference to remain valid for
empirically relevant distributions of the effects βis.

C Placebo Exercise

C.1 Confounding sector-level shocks: omitted variable bias and solutions

In this appendix, we investigate the consequences of violations of Assumption 1(i) that requires
observed sectoral shocks of interest X1, . . . ,XS to be independent from other sectoral shocks affecting
the outcome variable of interest. We study in this section the impact that violations of this assumption
have on the properties of the OLS estimator of the coefficient on the shift-share regressor of interest.
We also consider the properties of two solutions to this problem: (i) the inclusion of regional controls
as a proxy for sector-level unobserved shocks (discussed in Section 4.2), and (ii) the use of a shift-share
instrumental variable constructed as a weighted average of exogenous sector-level shocks (discussed
in Section 4.3.2).

To generate both confounding sectoral shocks and an instrument for the sectoral shock of interest,
we extend the baseline placebo exercise and, for each sector s and simulation m, we take a draw of a
three-dimensional vector

(Xa,m
s ,Xb,m

s ,Xc,m
s ) ∼ N(0; Σ̃),

where Xa
s is the variable of interest, Xb

s is the unobserved confounding effect, Xc
s is an observed

instrumental variable. Specifically, the matrix Σ̃ is such that var(Xa
s ) = var(Xb

s ) = var(Xc
s ) = σ̃,

cov(Xa
s ,Xb

s ) = cov(Xa
s ,Xc

s ) = ρ̃σ̃, and cov(Xb
s ,Xc

s ) = 0. Thus, we impose that Xa
s has a correlation

of ρ̃ with both Xb
s and Xc

s , but Xb
s and Xc

s are independent. In our simulations, we impose that
ρ̃ = 0.7 and δ̃ = 12.

To assign the role of a confounding effect to Xb
s , we generate an outcome variable as

Ym
i = Yobs

i + δ
S

∑
s=1

wisX
b,m
s ,

where Yobs
i is the observed 2000–2007 change in the employment rate in CZ i, and δ is a parameter

controlling the impact of the unobserved sectoral shocks (Xb
1 , . . . ,Xb

S ) on the simulated outcome Ym
i .

The parameter δ thus modulates the magnitude of the confounding effect of the unobserved shock
Xb

s . We explore the impact of δ by simulating data both with δ = 0 and with δ = 6.
In addition, we assume that we observe a regional variable that is a noisy measure of CZ i’s

exposure to the unobserved sectoral shocks (Xb
1 , . . . ,Xb

S ),

Xb,m
i = um

i + ∑
s

wisX
b,m
s where um

i ∼ N(0, σu).
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The parameter σu thus modulates the measurement error in Xb
i as a proxy for the impact of the

unobserved sectoral shocks (Xb
1 , . . . ,Xb

S ) in CZ i. We explore the impact of σu by simulating data
both with σu = 0 and with σu = 6.34

For each set of parameters (δ, σu) that we explore and for each simulation draw, we compute three
estimators of the impact of Xa

i ≡ ∑S
s=1 wisX

a
s on Yi. First, we ignore the possible endogeneity problem

and compute the OLS estimator without controls; i.e. the estimator in eq. (23). Second, we consider
the OLS estimator in a regression in which we include Xb

i as a proxy for the vector of unobserved
confounding sectoral shocks (Xb

1 , . . . ,Xb
S ); i.e. the estimator in eq. (34). Third, we consider the IV

estimator that uses Xc
i ≡ ∑i wisX

c
s as the instrumental variable; i.e. the estimator in eq. (43). For each

of these three estimators, we compute four estimates of its standard error: Robust, St-cluster, AKM
and AKM0. All results are reported in Table C.1.

When there is no confounding sectoral shock (δ = 0), Panel A shows that all three estimators yield
an average coefficient close to zero. Panels B and C report results in the presence of confounding
sectoral shocks (δ > 0), in which case the OLS estimator in a simple regression of Yi on Xa

i that does
not include any additional covariates is positively biased (β̂ = 4.23). The introduction of the regional
control only yields unbiased estimates when it is a good proxy for the underlying confounding
sectoral shocks (i.e. if σu = 0). In contrast, the IV estimate always yields an average estimated
coefficient of zero due to the orthogonality between the sector-level instrumental variable and the
sector-level unobserved confounding shock.

Traditional inference methods under-predict the dispersion of estimated coefficients both in the
case of the OLS and the IV estimators. As discussed above, this is driven by the correlation between
the unobservable residuals of regions with similar sector employment compositions. By allowing for
such a correlation, our proposed methods yield, on average, estimates of the average length of the
95% confidence interval equal or higher to the standard deviation of the empirical distribution of
estimates. As a result, Table C.2 in Appendix C reports that, while traditional methods overreject the
null H0 : β = 0 in the context of both OLS and IV estimation, our methods yield the correct test size
for both estimators.

34Using the notation in Section 4.2, the simulated variable Xa
s corresponds to Xs, the simulated variable Xb

s is a column
in the matrix Z (which also includes a column of ones), ui corresponds to Ui, and Xb

i to Zi. The value of the parameter γ
in eq. (33) is thus equal to ρ̃.
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Table C.1: Magnitude of standard errors. Confounding effects.

Estimates Median effective std. error

Average Std. dev Robust St-cluster AKM AKM0

Panel A: No confouding effect (δ = 0)
OLS without controls −0.02 1.27 0.48 0.59 1.21 1.40
OLS with regional control −0.04 1.75 0.67 0.83 1.68 1.94
2SLS −0.04 1.77 0.68 0.85 1.72 1.99

Panel B: Confouding effect (δ = 6) and perfect regional control (σu = 0)
OLS without controls 4.23 1.47 0.58 0.70 1.37 1.58
OLS with regional control −0.05 1.75 0.67 0.82 1.67 1.93
2SLS −0.05 1.79 0.68 0.84 1.72 1.98

Panel C: Confouding effect (δ = 6) and imperfect regional control (σu = 2)
OLS without controls 4.26 1.45 0.58 0.69 1.36 1.57
OLS with regional control 4.16 1.44 0.58 0.69 1.38 1.58
2SLS −0.15 2.45 0.93 1.08 2.06 2.58

Notes: All estimates in this table use the total employment share in each CZ as the outcome variable Yi . For
the inference procedure indicated in the first row, “median effective std. error” refers to the median length of the
95% confidence interval across the 1000 simulated datasets divided by 2× 1.96. Robust is the Eicker-Huber-White
standard error; St-cluster is the standard error that clusters CZs in the same state; AKM is the standard error in
eq. (37); AKM0 is the confidence interval Remark 6.

Table C.2: Rejection rate of H0 : β = 0 with significance level of 5%, Confounding Effects.

Estimates Rejection rate of H0 : β = 0 at 5%

Average Std. Dev Robust St-cluster AKM AKM0

Panel A: No confouding effect (δ = 0)
OLS without controls −0.02 1.27 49.1% 36.9% 7.6% 4.0%
OLS with regional control −0.04 1.75 48.8% 38.8% 6.8% 3.1%
IV -0.04 1.77 48.1% 39.3% 6.8% 3.4%

Panel B: Confouding effect (δ = 6) and perfect regional control (σu = 0)
OLS without controls 4.23 1.47 97.9% 96.8% 82.2% 74.7%
OLS with regional control −0.05 1.75 48.3% 38.5% 7.3% 3.4%
IV -0.05 1.79 46.7% 37.2% 7.1% 4.0%

Panel C: Confouding effect (δ = 6) and imperfect regional control (σu = 2)
OLS without controls 4.26 1.45 98.6% 97.6% 83.4% 76.0%
OLS with regional control 4.16 1.44 98.4% 96.9% 81.5% 74.0%
IV -0.15 2.45 40.6% 33.3% 9.7% 5.7%

Notes: All estimates in this table use the total employment share in each CZ as the outcome variable Yi . For the inference
procedure indicated in the first row, this table indicates the percentage of the 1000 simulated datasets for which we reject
the null hypothesis H0 : β = 0 using a 5% significance level test. Robust is the Eicker-Huber-White standard error;
St-cluster is the standard error that clusters CZs in the same state; AKM is the standard error in eq. (37); AKM0 is the test
in Remark 6.
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C.2 Additional Results
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Figure C.1: Empirical distribution of estimated coefficients in the placebo exercise.

Notes: The blue line indicates the average estimated coefficient; the red lines indicate the 2.5% and 97.5%
percentiles of distribution of β̂m across the m = 1, . . . , 1000 simulations we perform. The dependent
variable Y is the 2000–2007 change in the employment rate.
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Panel D: AKM0
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Figure C.2: Empirical distribution of effective standard errors for different standard error estimators
in the placebo exercise.

Notes: In each of the four panels, the red line indicates the standard deviation of the empirical distribution of estimated coefficients
represented in Figure C.1 (i.e. 1.95); the green line indicates average of the estimated effective standard error (95% confidence interval
divided by 2× 1.96) and the light blue bars represent the distribution of the effective standard errors across the 1000 simulations. The
dependent variable Y is the 2000–2007 change in the employment rate in all four panels.

Table C.3: Rejection rate of H0 : β = 0 at 5% significance level: County-level analysis.

Robust St-cluster AKM AKM0

Panel A: Change in the share of working-age population
employed 47.4% 38.0% 7.7% 4.4%
employed in manufacturing 65.2% 52.3% 7.7% 3.5%
employed in non-manufacturing 28.5% 26.8% 8.0% 5.2%

Notes: The content of this table is analogous to that in Table 2. The only difference is that 3107
counties (instead of CZs) are used as regional unit of analysis.
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Table C.4: Rejection rate of H0 : β = 0 at 5% significance level: Occupation employment shares.

Robust St-cluster AKM AKM0

Panel A: Change in the share of working-age population
employed 84.0% 63.8% 23.7% 4.0%
employed in manufacturing 90.2% 76.2% 32.8% 3.5%
employed in non-manufacturing 63.9% 38.7% 17.9% 3.6%

Panel B: Change in average log weekly wage
employed 84.6% 64.8% 30.3% 3.8%
employed in manufacturing 55.7% 28.3% 12.9% 5.7%
employed in non-manufacturing 84.3% 66.4% 30.4% 3.5%

Notes: The content of this table is analogous to that in Table 2. The only difference is that the
placebo exercise is based on random shocks for 331 occupations.

Table C.5: Magnitude of standard errors. Sectoral composition.

Estimates Median effective std. error

Average St Dev Robust St-cluster AKM AKM0 AKM AKM0

Sector Correlation: Independent 3-digit cluster

Panel A: Number of sectors
2-digit (S = 20) 0.04 3.16 0.67 0.97 2.98 5.45 — —
3-digit (S = 136) 0.04 2.21 0.72 0.93 2.15 2.68 — —
4-digit (S = 398) 0.01 1.94 0.73 0.91 1.85 2.17 — —

Panel B: Simulated Shocks to non-manufacturing sector
0.08 4.21 0.58 0.75 1.16 1.31 — —

Panel C: Simulated shocks with correlation within 3-digit SIC sectors
ρ = 0.00 0.00 1.95 0.73 0.92 1.86 2.16 1.85 2.20
ρ = 0.25 −0.06 2.06 0.77 1.07 2.00 2.14 2.11 2.33
ρ = 0.50 −0.06 2.10 0.76 1.06 1.99 2.13 2.22 2.46
ρ = 0.75 −0.03 2.24 0.76 1.08 1.98 2.08 2.30 2.55
ρ = 1.00 0.00 2.31 0.76 1.08 1.96 2.04 2.39 2.65
Notes: All estimates in this table use the total employment share in each CZ as the outcome variable Y. For inference
procedure indicated in the first row, “median effective std. error” refers to the median length of the 95% confidence interval
across the 1000 simulated datasets divided by 2 × 1.96. Robust is the Eicker-Huber-White standard error; St-cluster is the
standard error that clusters CZs in the same state; AKM (Independent) is the standard error in Remark 5; AKM0 (Independent)
is the confidence interval in Remark 5; AKM (3-digit cluster) is the standard error in eq. (40); and AKM0 (3-digit cluster) is the
confidence interval described in the last sentence of Section 4.3.1.

68



D Empirical application: additional results

Table D.1: Effect of Chinese on U.S. Commuting Zones in Autor, Dorn and Hanson (2013): Reduced-
Form Regression

Change in the employment share Change in avg. log weekly wage

All Manuf. Non-Manuf. All Manuf. Non-Manuf.
(1) (2) (3) (4) (5) (6)

Panel A: All Workers
β̂ -0.66 -0.50 -0.15 -0.61 0.18 -0.63
Robust [-0.97,-0.35] [-0.65,-0.36] [-0.43,0.12] [-1.05,-0.17] [-0.67,1.02] [-1.11,-0.15]
Cluster [-0.87,-0.44] [-0.62,-0.39] [-0.39,0.09] [-1.01,-0.21] [-0.67,1.02] [-1.06,-0.20]
AKM (indep.) [-1.08,-0.23] [-0.71,-0.3] [-0.46,0.15] [-1.1,-0.11] [-0.61,0.96] [-1.17,-0.09]
AKM0 (indep.) [-1.47,-0.32] [-0.85,-0.32] [-0.72,0.10] [-1.41,-0.14] [-1.21,0.85] [-1.62,-0.18]
AKM (4d cluster) [-1.09,-0.22] [-0.73,-0.28] [-0.46,0.16] [-1.15,-0.07] [-0.62,0.97] [-1.20,-0.06]
AKM0 (4d cluster) [-1.53,-0.32] [-0.92,-0.32] [-0.73,0.11] [-1.55,-0.11] [-1.27,0.87] [-1.73,-0.17]
AKM (3d cluster) [-1.11,-0.20] [-0.73,-0.28] [-0.49,0.18] [-1.17,-0.05] [-0.62,0.97] [-1.23,-0.02]
AKM0 (3d cluster) [-1.72,-0.30] [-0.94,-0.30] [-0.89,0.12] [-1.66,-0.08] [-1.45,0.87] [-1.97,-0.13]

Panel B: College Graduates
β̂ -0.34 -0.49 0.15 -0.64 0.42 -0.63
Robust [-0.55,-0.13] [-0.65,-0.32] [-0.06,0.35] [-1.12,-0.15] [-0.14,0.97] [-1.14,-0.13]
Cluster [-0.52,-0.17] [-0.65,-0.33] [-0.07,0.36] [-1.10,-0.17] [-0.18,1.01] [-1.09,-0.18]
AKM (indep.) [-0.60,-0.09] [-0.68,-0.30] [-0.05,0.34] [-1.11,-0.16] [-0.15,0.98] [-1.13,-0.14]
AKM0 (indep.) [-0.75,-0.10] [-0.74,-0.28] [-0.17,0.33] [-1.35,-0.15] [-0.48,0.96] [-1.45,-0.18]
AKM (4d cluster) [-0.60,-0.08] [-0.70,-0.28] [-0.06,0.35] [-1.17,-0.11] [-0.18,1.01] [-1.16,-0.11]
AKM0 (4d cluster) [-0.80,-0.11] [-0.81,-0.28] [-0.16,0.35] [-1.48,-0.11] [-0.54,1.00] [-1.55,-0.16]
AKM (3d cluster) [-0.61,-0.07] [-0.71,-0.27] [-0.06,0.35] [-1.19,-0.08] [-0.17,1.00] [-1.21,-0.06]
AKM0 (3d cluster) [-0.85,-0.09] [-0.82,-0.22] [-0.24,0.35] [-1.63,-0.07] [-0.57,1.05] [-1.79,-0.13]

Panel C: Non-College Graduates
β̂ -0.94 -0.49 -0.45 0.18 -0.63 -0.64
Robust [-1.38,-0.49] [-0.65,-0.33] [-0.82,-0.07] [-0.67,1.02] [-1.11,-0.15] [-1.12,-0.15]
Cluster [-1.26,-0.62] [-0.63,-0.35] [-0.76,-0.13] [-0.67,1.02] [-1.06,-0.20] [-1.10,-0.17]
AKM (indep.) [-1.61,-0.26] [-0.74,-0.23] [-0.93,0.04] [-0.61,0.96] [-1.17,-0.09] [-1.11,-0.16]
AKM0 (indep.) [-2.27,-0.42] [-0.97,-0.28] [-1.38,-0.06] [-1.21,0.85] [-1.62,-0.18] [-1.35,-0.15]
AKM (4d cluster) [-1.62,-0.25] [-0.76,-0.22] [-0.94,0.04] [-0.62,0.97] [-1.20,-0.06] [-1.17,-0.11]
AKM0 (4d cluster) [-2.36,-0.42] [-1.03,-0.28] [-1.42,-0.06] [-1.27,0.87] [-1.73,-0.17] [-1.48,-0.11]
AKM (3d cluster) [-1.67,-0.20] [-0.75,-0.22] [-0.99,0.09] [-0.62,0.97] [-1.23,-0.02] [-1.19,-0.08]
AKM0 (3d cluster) [-2.71,-0.38] [-1.10,-0.28] [-1.69,-0.03] [-1.45,0.87] [-1.97,-0.13] [-1.63,-0.07]

Notes: N = 1, 444 (722 CZs × two time periods). Models are weighted by start of period CZ share of national population. All
regressions include the full vector of baseline controls in ADH. Robust is the Eicker-Huber-White standard error; Cluster is the
standard error that clusters CZs in the same state; AKM is the standard error in Remark 5 (for independent shocks), or that in eq. (40)
(for correlated shocks). AKM0 is the test in Remark 6 (for independent shocks) or that described in the last sentence of Section 4.3.1
(for correlated shocks). The table reports confidence intervals computed under the assumption of independent shocks, 4-digit SIC
correlated shocks, and 3-digit SIC correlated shocks.
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Table D.2: Effect of Chinese on U.S. Commuting Zones in Autor, Dorn and Hanson (2013): 2SLS
Regression

Change in the employment share Change in avg. log weekly wage

All Manuf. Non-Manuf. All Manuf. Non-Manuf.
(1) (2) (3) (4) (5) (6)

Panel A: All Workers
β̂ -0.75 -0.58 -0.17 -0.70 0.20 -0.72
Robust [-1.09,-0.42] [-0.77,-0.39] [-0.48,0.13] [-1.18,-0.22] [-0.79,1.19] [-1.23,-0.21]
Cluster [-1.12,-0.39] [-0.78,-0.38] [-0.47,0.12] [-1.19,-0.21] [-0.76,1.16] [-1.22,-0.22]
AKM (indep.) [-1.18,-0.33] [-0.81,-0.35] [-0.51,0.16] [-1.24,-0.16] [-0.72,1.13] [-1.28,-0.16]
AKM0 (indep.) [-1.41,-0.38] [-0.89,-0.36] [-0.67,0.13] [-1.42,-0.16] [-1.11,1.07] [-1.54,-0.22]
AKM (4d cluster) [-1.19,-0.32] [-0.84,-0.32] [-0.51,0.16] [-1.29,-0.11] [-0.74,1.14] [-1.31,-0.13]
AKM0 (4d cluster) [-1.66,-0.38] [-1.12,-0.33] [-0.73,0.14] [-1.72,-0.13] [-1.21,1.16] [-1.83,-0.20]
AKM (3d cluster) [-1.24,-0.26] [-0.85,-0.31] [-0.55,0.20] [-1.31,-0.09] [-0.73,1.13] [-1.37,-0.07]
AKM0 (3d cluster) [-2.02,-0.34] [-1.25,-0.31] [-0.96,0.15] [-1.95,-0.09] [-1.45,1.17] [-2.23,-0.16]

Panel B: College Graduates
β̂ -0.39 -0.56 0.17 -0.73 0.48 -0.73
Robust [-0.62,-0.16] [-0.79,-0.33] [-0.08,0.42] [-1.28,-0.18] [-0.19,1.15] [-1.29,-0.17]
Cluster [-0.64,-0.15] [-0.81,-0.31] [-0.08,0.41] [-1.33,-0.14] [-0.19,1.14] [-1.30,-0.16]
AKM (indep.) [-0.67,-0.12] [-0.81,-0.32] [-0.08,0.41] [-1.27,-0.19] [-0.22,1.18] [-1.27,-0.19]
AKM0 (indep.) [-0.76,-0.12] [-0.85,-0.28] [-0.16,0.41] [-1.42,-0.16] [-0.46,1.17] [-1.46,-0.21]
AKM (4d cluster) [-0.68,-0.11] [-0.83,-0.29] [-0.08,0.42] [-1.33,-0.13] [-0.25,1.21] [-1.30,-0.16]
AKM0 (4d cluster) [-0.89,-0.12] [-1.05,-0.27] [-0.16,0.47] [-1.71,-0.12] [-0.52,1.32] [-1.72,-0.19]
AKM (3d cluster) [-0.70,-0.09] [-0.85,-0.27] [-0.09,0.42] [-1.36,-0.11] [-0.23,1.19] [-1.35,-0.11]
AKM0 (3d cluster) [-1.03,-0.09] [-1.13,-0.21] [-0.24,0.46] [-1.94,-0.08] [-0.58,1.39] [-2.07,-0.15]

Panel C: Non-College Graduates
β̂ -1.08 -0.56 -0.51 0.20 -0.72 -0.73
Robust [-1.56,-0.59] [-0.74,-0.38] [-0.93,-0.10] [-0.79,1.19] [-1.23,-0.21] [-1.28,-0.18]
Cluster [-1.60,-0.55] [-0.75,-0.37] [-0.95,-0.08] [-0.76,1.16] [-1.22,-0.22] [-1.33,-0.14]
AKM (indep.) [-1.74,-0.41] [-0.82,-0.30] [-1.02,-0.01] [-0.72,1.13] [-1.28,-0.16] [-1.27,-0.19]
AKM0 (indep.) [-2.13,-0.52] [-0.95,-0.33] [-1.29,-0.08] [-1.11,1.07] [-1.54,-0.22] [-1.42,-0.16]
AKM (4d cluster) [-1.75,-0.40] [-0.84,-0.28] [-1.02,-0.01] [-0.74,1.14] [-1.31,-0.13] [-1.33,-0.13]
AKM0 (4d cluster) [-2.49,-0.51] [-1.17,-0.31] [-1.44,-0.07] [-1.21,1.16] [-1.83,-0.20] [-1.71,-0.12]
AKM (3d cluster) [-1.86,-0.29] [-0.86,-0.26] [-1.09,0.06] [-0.73,1.13] [-1.37,-0.07] [-1.36,-0.11]
AKM0 (3d cluster) [-3.11,-0.45] [-1.36,-0.30] [-1.86,-0.03] [-1.45,1.17] [-2.23,-0.16] [-1.94,-0.08]

Notes: N = 1, 444 (722 CZs × two time periods). Models are weighted by start of period CZ share of national population. All
regressions include the full vector of baseline controls in ADH. Robust is the Eicker-Huber-White standard error; Cluster is the
standard error that clusters CZs in the same state; AKM is the standard error in Remark 5 (for independent shocks), or that in eq. (40)
(for correlated shocks). AKM0 is the test in Remark 6 (for independent shocks) or that described in the last sentence of Section 4.3.1
(for correlated shocks). The table reports confidence intervals computed under the assumption of independent shocks, 4-digit SIC
correlated shocks, and 3-digit SIC correlated shocks.
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Table D.3: Rejection rate of H0 : β = 0 with significance level of 5%. Placebo exercise based on the
first-stage regression in Autor, Dorn and Hanson (2013):

Estimates Rejection rate of H0 : β = 0 at 5%

Average St Dev Robust St-cluster AKM AKM0

Panel A: Baseline simulation without controls
0.02 1.72 42.0% 37.4% 5.7% 3.6%

Panel B: Controlling for ADH IV
−0.08 1.32 30.0% 22.8% 7.5% 4.3%

Panel C: Controlling for ADH IV and baseline controls
0.00 0.73 13.3% 12.3% 7.5% 4.5%

Notes: Dependent variable is the “shift-share” regressor in ADH contructed
from the interaction of CZ’s employment share in 4-digit SIC manufacturing
industries and the normalized U.S. imports from China in the same indus-
tries. The inference procedure employed to compute the average length of
the 95% confidence interval in each of the columns is indicated in the first
row. Robust is the Eicker-Huber-White standard error estimate; St-cluster is
the standard error clusters CZs in the same state; AKM is the standard error
in Remark 5; AKM0 is the test in Remark 6.
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