
Suffi cient Statistics for Unobserved Heterogeneity
in Structural Dynamic Logit Models

Victor Aguirregabiria∗

University of Toronto and CEPR
Jiaying Gu∗

University of Toronto
Yao Luo∗

University of Toronto

March 28th, 2019

Abstract

We study the identification and estimation of structural parameters in dynamic panel data
logit models where decisions are forward-looking and the joint distribution of unobserved het-
erogeneity and observable state variables is nonparametric, i.e., fixed-effects model. We consider
models with two endogenous state variables: the lagged decision variable, and the time duration
in the last choice. This class of models includes as particular cases important economic applica-
tions such as models of market entry-exit, occupational choice, machine replacement, inventory
and investment decisions, or dynamic demand of differentiated products. The identification of
structural parameters requires a suffi cient statistic that controls for unobserved heterogeneity
not only in current utility but also in the continuation value of the forward-looking decision
problem. We obtain the minimal suffi cient statistic and prove identification of some structural
parameters using a conditional likelihood approach. We apply this estimator to a machine
replacement model.
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1 Introduction

Persistent unobserved heterogeneity is pervasive in empirical applications using panel data of indi-

viduals, households, or firms. An important challenge in these applications consists of distinguish-

ing between true dynamics due to state dependence and spurious dynamics due to unobserved

heterogeneity (Heckman, 1981). The identification of true dynamics, when persistent unobserved

heterogeneity is present, should deal with two key econometric issues: the incidental parameters

problem, and the initial conditions problem. The first one establishes that a simple dummy-variables

estimator, that treats each individual unobservable as a parameter to be estimated jointly with the

parameters of interest, is inconsistent in most nonlinear panel data models when T is fixed (Ney-

man and Scott, 1948, Lancaster, 2000). Given this issue, it would seem reasonable to consider a

nonparametric (or a flexible) joint distribution of the unobserved heterogeneity and the observables

variables, and construct a likelihood function that is integrated over unobservables. In this context,

the initial conditions problem establishes that the joint distribution of the unobserved heterogene-

ity and the initial values of the observable variables is not nonparametrically identified, but the

misspecification of this joint distribution can generate important biases in the estimation of the

parameters of interest (Heckman, 1981, Chamberlain, 1985, among others).

There are two general approaches to deal with this issue: random effects and fixed effects

models/methods. Random-effects models impose restrictions on the distribution of unobserved

heterogeneity (e.g., parametric, finite mixture), and on the joint distribution of these unobservables

and the initial conditions of the observable explanatory variables. Under these restrictions, the

parameters of interest and the distribution of the unobserved heterogeneity are jointly identified.

In contrast, fixed-effects methods focus on the identification of the parameters of interest and

they do not try to identify the distribution of the unobserved heterogeneity. These methods are

more robust because they are fully nonparametric in the specification of the joint distribution of

unobserved heterogeneity and exogenous or predetermined explanatory variables.1

A fixed effect conditional likelihood method (Cox, 1958, Rasch, 1961, Andersen, 1970, Cham-

berlain, 1980) is based on the derivation of suffi cient statistics for the incidental parameters (fixed

effects) and the maximization of a likelihood function conditional on these suffi cient statistics. This

1See Arellano and Honoré (2001), and Arellano and Bonhomme (2012, 2017) for recent surveys on the econometrics
of nonlinear panel data models.
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paper deals with this fixed effects - suffi cient statistics - conditional maximum likelihood approach

(FE-CML hereinafter). We study the applicability of this approach to structural dynamic discrete

choice models where agents are forward-looking.2

There is a wide class of nonlinear panel data models where the FE-CML approach cannot

identify the structural parameters.3 In general, a suffi cient statistic of the incidental parameters

always exists.4 The identification problem appears when the minimal suffi cient statistic is such

that the likelihood conditional on this statistic does not depend on the structural parameters.

For instance, in the context of binary choice models, Chamberlain (1993, 2010) shows that a

necessary and suffi cient condition for (point) identification under the FE-CML approach is that the

distribution of the time-varying unobservable is logistic.5 Similarly, identification is not possible in

discrete choice models where unobserved heterogeneity appears in the slope parameters, interacting

with predetermined explanatory variables 6 This has important implications for structural dynamic

discrete choice models. In these models, an agent’s optimal decision depends not only on her current

utility but also on the continuation value function, which is an endogenous object. In general,

unobserved heterogeneity enters non-additively in the continuation value function and interacts

with the observable state variables, even when this unobserved heterogeneity is additively separable

in the one-period utility function. This interaction between the unobserved heterogeneity and the

2Among the class of fixed-effects estimators in short panels, the dummy-variables estimator is the simplest of these
methods. However, as mentioned above, this estimator is inconsistent in most nonlinear panel data models when T is
fixed. Two-step bias reduction methods, both analytical and simulation-based, have been proposed to correct for the
asymptotic bias of these dummy-variables fixed-effect estimators (e.g., Hahn and Newey, 2004, Browning and Carro,
2010, and Hahn and Kuersteiner, 2011, among others). Other fixed-effect estimator is Manski’s maximum score
method (Manski, 1987). Honore and Kyriazidou (2000) have developed a maximum score estimator for dynamic
discrete choice models. Bonhomme (2012) presents a functional differencing approach that includes as particular
cases different fixed effects estimators in the literature.

3 In this paper, the concepts of identification and consistent estimation, as N goes not infinity and T is fixed, are
used as synonymous.

4For instance, we could define as suffi cient statistic the complete choice history of an individual. Obviously,
the conditional likelihood function based on this suffi cient statistic does not depend neither on incidental nor on
structural parameters. Though this is an extreme example, it illustrates that the key identification problem is not
finding a suffi cient statistic for the incidental parameters but showing that there are suffi cient statistics for which the
conditional likelihood still depends on the structural parameters.

5Chamberlain (1993, 2010) considers the model where the time-varying unobservables are independently and
identically distributed. Magnac (2004) studies a two-period model where the two time-varying unobservables have a
general joint distribution. Honorè and Tamer (2006) study partial identification of the dynamic Probit model and
derive sharp bounds on parameters.

6Browning and Carro (2014) study the identification of this type of dynamic binary choice model with maximal
heterogeneity in short panels. The fixed-effects model (nonparametric specification of the unobserved heterogeneity)
is not identified. They consider a finite mixture specification of the heterogeneous parameters. This is in the same
spirit as Kasahara and Shimotsu (2009), though these other authors consider a nonparametric Markov chain with
finite mixture unobserved heterogeneity.
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endogenous state variables implies that structural parameters are not identified in the fixed-effects

model.

For non-structural (i.e., myopic) dynamic logit models with unobserved heterogeneity only in

the intercept, Chamberlain (1985) and Honoré and Kyriazidou (2000) have shown that the FE-CML

approach can identify the parameters of interest.7 In contrast, all the methods and applications

for structural dynamic discrete choice models have considered random-effects models with a finite

mixture distribution, e.g., Keane and Wolpin (1997), Aguirregabiria and Mira (2007), Kasahara and

Shimotsu (2009), Arcidiacono and Miller (2011), among many others. This random-effects approach

imposes important restrictions: the number of points in the support of the unobserved heterogeneity

is finite and is typically reduced to a small number of points; furthermore, the joint distribution of

the unobserved heterogeneity and the initial conditions of the observable state variables is restricted.

In this paper, we revisit the applicability of FE-CML methods to the identification and esti-

mation of structural dynamic discrete choice models. We follow the suffi cient statistics approach

to study the identification of payoff function parameters in structural dynamic logit models with a

fixed-effects specification of the time-invariant unobserved heterogeneity. We consider multinomial

models with two types of endogenous state variables: the lagged value of the decision variable,

and the time duration in the last choice. The main challenge for the identification of this model

comes from the fact that unobserved heterogeneity enters not only in current utility but also in

the continuation value of the forward-looking decision problem. In general, this continuation value

is a nonlinear function of unobserved heterogeneity and state variables.8 Therefore, identification

requires a suffi cient statistic that controls for this continuation value but implies a conditional

likelihood that still depends on the structural parameters that capture true state dependence. We

derive the minimal suffi cient statistic and show that some structural parameters are identified. The

forward-looking model where the only state variable is the lagged decision is identified under the

same conditions as the myopic version of the model. Instead, with duration dependence, there are

7Chamberlain (1985) and Honoré and Kyriazidou (2000) consider discrete choice logit models where the explana-
tory variables are the dependent variable lagged one and two periods, i.e., AR(1) and AR(2) models. D’Addio and
Honoré (2010) study more comprehensively the AR(2) model. They do not incorporate time duration in the last
choice as an explicit explanatory variable, though they interpret a non-zero value for the parameter associated to
the second lag as evidence consistent with duration dependence. In our model, we include both lagged decision and
duration as explicit state variables.

8 In fact, before solving the model, we do not know how unobserved heterogeneity and state variables enter this
continuation value function. Therefore, for fixed-effects estimation, it is as if we had a nonparametric specification of
this function.
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some parameters identified in the myopic model but not in the forward-looking model.

Based on our identification results, we consider a conditional maximum likelihood estimator,

and a test for the validity of a correlated random effects specification. We apply this estimator and

the test to the bus engine model Rust (1987) using both simulated and actual data.

In most empirical applications of structural models, the researcher is not only interested in the

value of the structural parameters but also in the effects of marginal changes of the explanatory vari-

ables or the structural parameters. The identification of marginal effects requires the identification

of the distribution of the observed heterogeneity. Point identification requires imposing restrictions

on the joint distribution of unobserved heterogeneity and the initial conditions of the state variables.

Alternatively, the researcher may prefer not to impose these restrictions and then set-identify the

distribution of the unobservables and the marginal effects (Chernozhukov, Fernandez-Val, Hahn,

and Newey, 2013). We discuss this problem in section 3.7.

This paper contributes to the literature on structural dynamic discrete choice models. The

structure of the payoff function and of the endogenous state variables that we consider in this

paper includes as particular cases important economic applications in the literature of dynamic

discrete choice structural models, such as market entry/exit models with either binary choices

(Roberts and Tybout, 1997, Aguirregabiria and Mira, 2007) or multinomial choices (Sweeting,

2013; Caliendo et al, 2015); occupational choice models (Miller, 1984; Keane and Wolpin, 1997);

machine replacement models (Rust, 1987; Das, 1992; Kennet, 1993; and Kasahara, 2009); inventory

and investment decision models (Aguirregabiria 1999; Ryan, 2013; Kalouptsidi, 2014); demand of

differentiated products with consumer brand switching costs (Erdem, Keane, and Sun, 2008) or

storable products (Erdem, Imai, and Keane, 2003; Hendel and Nevo, 2006); and dynamic pricing

models with menu costs (Willis, 2006), or with duration dependence due to inflation or other forms

of depreciation (Slade, 1998; Aguirregabiria, 1999; Kano, 2013); among others.9 Our paper also

contributes to the literature on nonlinear dynamic panel data models by providing new identification

results of fixed effects dynamic logit models with duration dependence (Frederiksen, Honoré, and

Hu, 2007).

9Note that most of the empirical applications cited above in this paragraph do not allow for time-invariant
unobserved heterogeneity. This is still a common restriction in empirical applications of dynamic structural models,
and it is mostly justified by computational convenience. The exceptions, within the cited papers, are Keane and
Wolpin (1997), Erdem, Imai, and Keane (2003), Willis (2006), Aguirregabiria and Mira (2007), and Erdem, Keane,
and Sun (2008).

4



The rest of the paper is organized as follows. Section 2 describes the class of models that we

study in this paper. Section 3 presents our identification results. Section 4 deals with estimation and

inference. In section 5, we illustrate our identification results in the context of a bus replacement

model. Section 6 summarizes and concludes. Proofs of Lemmas and Propositions are in the

Appendix. Also in the Appendix, we show that our identification results extend to an extended

version of our model where the endogenous state variables have a stochastic transition rule.

2 Model

Time is discrete and indexed by t that belongs to {1, 2, ...,∞}.10 Agents are indexed by i. Every

period t, agent i chooses a value of the discrete variable yit ∈ Y = {0, 1, ..., J} to maximize her

expected and discounted intertemporal utility Et
[∑∞

j=0δ
j
i Πi,t+j(yi,t+j)

]
, where δi ∈ (0, 1) is agent

i’s time discount factor, and Πit(j) is her one-period utility if she chooses action yit = j. This

utility is a function of four types of state variables which are known to the agent at period t:

Πit(j) = α (j,ηi, zit) + β (j,xit, zit) + εit(j). (1)

zit and xit are observable to the researcher, and εit and ηi are unobservable. The vector zit

contains exogenous state variables and it follows a Markov process with transition probability

function fz(zi,t+1|zit). The vector xit contains endogenous state variables. We describe below the

nature of these endogenous state variables and their transition rules. Vectors zit and xit have

supports Z and X , respectively. The unobservable variables {εit(j) : j ∈ Y} are i.i.d. over (i, t, j)

with an extreme value type I distribution. The vector ηi represents time-invariant unobserved

heterogeneity from the point of view of the researcher. Let θi ≡ (ηi, δi) represent the unobserved

heterogeneity from individual i. The probability distribution of θi conditional on the history of

observable state variables {zit,xit : t = 1, 2, ...} is unrestricted and nonparametrically specified,

i.e., fixed effects model. Functions α (j,η, z) and β (j,x, z) are nonparametrically specified.

Our specification of the utility function represents a general semiparametric fixed-effect logit

model. It extends Rust’s model (Rust, 1987, 1994) in two directions. First, Rust assumes that all

the unobservables satisfy the conditions of additive separability and conditional independence, and

they have an extreme value distribution. While our time-varying unobservables εit(j) satisfy these

10The time horizon of the decision problem is infinite.
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conditions, our time-invariant unobserved heterogeneity interacts, in an unrestricted way, with the

exogenous state variables and the choice, and they do not satisfy the conditional independence

assumption. Second, we allow for unobserved heterogeneity in the discount factor.

The assumption of additive separability between ηi and the endogenous state variables in xit is

key for the identification results in this paper. This condition does not imply that the conditional-

choice value functions, that describe the solution of the dynamic model, are additive separability

between ηi and xit. In general, the solution of the dynamic programming problem implies a value

function that is not additively separable in ηi and xit even when the utility function is additive in

these variables.

The model includes two types of endogenous state variables that correspond to two different

types of state dependence, xit = (yi,t−1, dit): (a) dependence on the the lagged decision variable,

yi,t−1; and (b) duration dependence, where dit ∈ {1, 2, ...,∞} is the number of periods since the last

change in choice. The lagged decision has the obvious transition rule. The transition rule for the

duration variable is di,t+1 = 1 {yit = yi,t−1} dit + 1, where 1{.} is the indicator function.11

The term β (j,xit, zit) in the payoff function captures the dynamics, or structural state depen-

dence, in the model. We distinguish in this function two additive components that correspond to

the two forms of state dependence in the model:

β (j,xit, zit) = 1{j = yi,t−1} βd (j, dit, zit) + 1{j 6= yi,t−1} βy (j, yi,t−1, zit) (2)

Function βd (j, dit, zit) captures duration dependence. For instance, in an occupational choice

model, this term captures the return on earnings of job experience in occupation j. Function

βy (j, yi,t−1, zit) represents switching value (or switching costs with negative sign). In an occupa-

tional choice model, this term represents the (negative) cost of switching from occupation yi,t−1

to occupation j. The additive separability between switching costs and "returns to experience"

is not without loss of generality. For instance, the cost of switching occupation could depend on

experience in the current job not only through the loss of the returns of experience, i.e., βy(.) could

depend on dit. However, this additive separability facilitates our analysis of identification and the

model is still more general than previous fixed-effects discrete choice models.

11Note that these endogenous state variables follow deterministic transition rules. In the Appendix, we present a
version of the model that allows for stochastic transition rules for the endogenous state variables.
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We impose a restriction on the structural function βd (j, d, zit) that plays a role in our iden-

tification results for this function. We assume that there is not duration dependence in choice

alternative y = 0, i.e., βd (0, d, zit) = 0 for any value of d. Also, but without loss of generality, we

set βy(j, y, zit) = 0, i.e., the switching cost of no-switching is zero.12 Assumption 1 summarizes our

basic conditions on the model. For the rest of the paper, we assume that this assumption holds.

ASSUMPTION 1. (A) The time horizon is infinite and δi ∈ (0, 1). (B) The utility function has

the form given by equations (1) and (2). (C) βy(j, j, z) = 0, βd (0, d, z) = 0. (D) {εit(j) : j ∈ Y}

are i.i.d. over (i, t, j) with a extreme value type I distribution. (E) zit follows a time-homogeneous

Markov process. (F) The probability distribution of θi ≡ (ηi, δi) conditional on {zit,xit : t = 1, 2, ...}

is nonparametrically specified and completely unrestricted. �

Assumption 1 implies that the model is stationary. Therefore, it rules out time trends and time

dummies as explanatory variables. This setting can be unrealistic in some empirical applications.

However, this stationarity assumption is the status quo in applications of dynamic structural models

with infinite horizon, which are common in industrial organization.

Since the model does not have duration dependence when at choice alternative 0, it is convenient

for notation to make duration equal to zero at state yt−1 = 0. In other words, we consider the

following modification in the transition rule for duration:

di,t+1 =

{
1 {yit = yi,t−1} dit + 1 if yit > 0

0 if yit = 0
(3)

For our identification results in forward-looking models with duration dependence, we also

impose the following assumption.

ASSUMPTION 2. For any j ∈ Y there is a finite value of duration, d∗j <∞, such that the marginal

return of duration is zero for values greater that d∗j :
13

βd (j, d, z) = βd
(
j, d∗j , z

)
for any d ≥ d∗j � (4)

For the moment, we assume that the researcher knows the values of d∗j . In section 4, we show

that these values {d∗j} are identified from the data.

12Given the payoff function in equation (2), the parameter βy(j, j) is completely irrelevant for an individual’s
optimal decision. When yit = yi,t−1 = j, we have that β (j,xit) = βd (j, dit) + 0 such that the term βy (j, j) never
enters in the relevant payoff function. Therefore, βy (j, j) can be normalized to zero without loss of generality.
13The assumption of no duration dependence in choice alternative y = 0 is equivalent to assuming d∗0 = 1.
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The following are some examples of models within the class defined by Assumption 1.

(a) Market entry-exit models. In its simpler version, there is only one market, and the choice

variable is binary and represents a firm’s decision of being active in the market (yit = 1) or not

(yit = 0), e.g., Dunne et al. (2013). The only endogenous state variable is the lagged decision, yi,t−1.

The parameter −βy (1, 0, z) represents the cost of entry in the market. Similarly, the parameter

−βy (0, 1, z) represents the cost of exit from the market. An extension of the basic entry model

includes as an endogenous state variable the number of periods of experience since last entry in the

market, dit, which follows the transition rule di,t+1 = dit + 1 if yit = 1 and di,t+1 = 0 if yit = 0. The

parameter βd (1, d, z) represents the effect of market experience on the firm’s profit (Roberts and

Tybout, 1997). The model can be extended to J markets (Sweeting, 2013; Caliendo et al, 2015).

The two endogenous state variables are the index of the market where the firm was active at the

previous period (yi,t−1) and the number of periods of experience in the current market (dit). The

parameter βy (j, k, z) represents the (negative) cost of switching from market k to market j. There

is not duration dependence if a firm is not active in any market (if j = 0), and the marginal return

to experience in market j is zero after d∗j periods in the market.

(b) Occupational choice models (Miller, 1984; Keane and Wolpin, 1997). A worker chooses between

J occupations and the choice alternative of not working (y = 0). There are costs of switching

occupations such that a worker’s occupation at previous period, yit−1, is a state variable of the

model. There is (passive) learning that increases productivity in the current occupation. There is

not duration dependence if the worker is unemployed.

(c) Machine replacement models (Rust, 1987; Das, 1992; Kennet, 1993; and Kasahara, 2009). The

choice variable is binary and it represents the decision of keeping a machine (yit = 1) or replacing it

(yit = 0). The only endogenous state variable is the number of periods since the last replacement,

dit, i.e., the machine age. The evolution of the machine age is di,t+1 = dit + 1 if yit = 1 and

di,t+1 = 0 if yit = 0. The parameter βd (1, d, z) represents the effect of age on the firm’s profit,

e.g., productivity declines and maintenance costs increase with age.14 More generally, the class of

models in this paper includes binary choice models of investment in capital, inventory, or capacity

14 In some versions of this model, such as Rust (1987), the endogenous state variable represents cumulative usage
of the machine and it can follow a stochastic transition rule. We consider this stochastic version of the model in the
Appendix.
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(Aguirregabiria 1999; Ryan, 2013; Kalouptsidi, 2014), as long as the depreciation of the stock is

deterministic.

(d) Dynamic demand of differentiated products (Erdem, Imai, and Keane, 2003; Hendel and Nevo,

2006). A differentiated product has J varieties and a consumer chooses which one, if any, to

purchase (no purchase is represented by y = 0). Brand switching costs imply that the brand in

the last purchase is a state variable (Erdem, Keane, and Sun, 2008). For storable products, the

duration since last purchase, dit, represents (or proxies) the consumer’s level of inventory that is an

endogenous state variable. Function βd (j, d, z) captures the effect of inventory on the consumer’s

utility, and function βy (j, y−d, , z) represents brand switching costs.

(e) Menu costs models of pricing (Slade, 1998; Aguirregabiria, 1999; Willis, 2006; Kano, 2013).

A firm sells a product and chooses its price to maximize intertemporal profits. The firm’s profit

has two components: a variable profit that depends on the real price (in logarithms), rit; and a

fixed menu cost that is paid only if the firm changes its nominal price. There is a constant inflation

rate, π, that erodes the real price. Every period, the firm decides whether to keep its nominal

price (yit = 1) or to adjust it (yit = 0) such that current real price becomes r∗. The evolution of

log-real-price is: rit+1 = rit − π if yit = 1, and rit+1 = r∗ − π if yit = 0. If dit represents the time

duration since the last nominal price change, we can represent the transition rule of the real price

as follows: (rit+1 − r∗)/π = dit + 1 if yit = 1, and (rit+1 − r∗)/π = 0 if yit = 0. This model has a

similar structure as the machine replacement models described above. �

We now derive the optimal decision rule and the conditional choice probabilities in this model.

Agent i chooses yit to maximize its expected and discounted intertemporal utility. Given the infinite

horizon and the time-homogeneous utility and transition probability functions, Blackwell’s Theorem

establishes that the value function and the optimal decision rule are time-invariant (Blackwell,

1965). Let Vθi (yt, dt, zt) be the integrated (or smoothed) value function for agent type θi, as

defined by Rust (1994).15 The optimal choice at period t can be represented as:

yit = arg max
j∈Y
{ α (j,ηi, zit) + β (j,xit, zit) + εit(j) + δi E [Vθi (j, di,t+1, zi,t+1) | j, xit, zit] } (5)

Note that di,t+1 is a deterministic function of (j, xit). Therefore, we can represent the continuation

15The integrated value function is defined as the integral of the value function over the distribution of the i.i.d.
unobservable state variables ε.
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value E[Vθi (j, di,t+1, zi,t+1) | y, xit, zit] using a function vθi(j, dt+1[j,xit]), zit) with dt+1[j,xit] = 0

if j = 0 and dt+1[j,xit] = 1{j = yit−1}dit + 1 if j > 0. The extreme value type 1 distribution of the

unobservables ε implies that the conditional choice probability (CCP) function has the following

form:

Pθi (j | xit, zit) =
exp { α (j,ηi, zit) + β (j,xit, zit) + vθi(j, dt+1[j,xit], zit) }∑

k∈Y
exp { α (k,ηi, zit) + β (k,xit, zit) + vθi(k, dt+1[k,xit], zit) } (6)

The continuation value function vθi has two properties which play an important role in our

identification results. These properties establish conditions under which the continuation values do

not depend on current endogenous state variables, (yi,t−1.dit).

Property 1. In a model without duration dependence (i.e., βd = 0), the continuation value of

choosing alternative j becomes vθi(j, zit), which does not depend on the state variable, yit−1.

Property 2. Under assumption 2, for j = yit−1 and any dit ≥ d∗j − 1, the continuation value

vθi(j, dt+1[j, yit−1, dit], zit) becomes vθi(j, d
∗
j , zit).

3 Identification

3.1 Preliminaries

The researcher has a panel dataset of N individuals over T periods of time, {yit, xit , zit : i =

1, 2, ..., N ; t = 1, 2, ..., T}. We consider microeconometric applications where N is large and T

is small. More precisely, our identification results assume that N goes to infinity and T is small

and fixed.16 We are interested in the identification of the functions βy and βd that represent the

dependence of utility with respect to the endogenous state variables.

For the rest of this section, we omit the individual subindex i in most of the expressions, and

instead we include θ as an argument (or subindex) in those functions that depend on the time-

invariant unobserved heterogeneity, i.e., αθ (y, z) and vθ (x, z).

Similarly as in Honoré and Kyriazidou (2000), our suffi cient statistics include the condition

that the vector of exogenous state variables z remains constant over the T periods in the sample.

16Note that T represents the number of periods with data on the decision variable and the state variables for all
the individuals. The set of observable state variables includes the endogenous state variables yi,t−1 and dit. Knowing
the values of these state variables at the initial period t = 1 (i.e., knowing yi0 and di1) may require data on the
individual’s choices for periods before t = 1. Therefore, the time dimension T may not correspond to the actual time
dimension of the required panel dataset.
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For notational simplicity, we omit z as an argument in most of the expressions for the rest of this

section. We use β to represent the vector of structural parameters that define the functions βy and

βd.17

In discrete choice models, we can only identify utility differences relative to the utility of a

baseline choice alternative. This implies that we cannot identify all the parameters in the functions

βy and βd, regardless the model has fixed effects unobserved heterogeneity or not, or agents are

myopic or forward-looking. Therefore, we start presenting a reparameterization of the model that

defines the set of parameters in βy and βd that can be identified in a version of the model without

unobserved heterogeneity and with myopic agents. Lemma 1 presents this reparameterization. The

proof is in the Appendix.

LEMMA 1. The model can be represented using the following equation:

yt = arg max
j∈Y

{
α̃θ(j) +

∑
k 6={0,j}

1{yt−1 = k} β̃y(j, k) + 1{yt−1 = j} β̃d(j, dt) + ṽθ(j, dt+1) + εt(j)

}
(7)

with α̃θ(j) ≡ αθ(j)− αθ(0)+ βy(j, 0); β̃y(j, k) ≡ βy(j, k)− βy(0, k)− βy(j, 0); β̃d(j, d) ≡ βd(j, dt)−

βy(0, j)− βy(j, 0); and ṽθ(j, dt+1) ≡ vθ(j, dt+1)− ṽθ(0, 0). �

Lemma 1 establishes that in the best case scenario of a model without time invariant unobserved

heterogeneity and with myopic agents, the parameters {β̃y(j, k) : j, k ≥ 1, j 6= k} and {β̃d(j, d) : j ≥

1, d ≥ 1} represent all the information that we can obtain about the functions βy and βd. Therefore,

for the rest of the paper, we only consider these structural parameters. These parameters have a

clear economic interpretation. Parameter β̃y(j, k) represents the difference in switching cost between

a direct (one-period) switch from k to j and an indirect (two periods) switch via alternative 0.

Parameter β̃d(j, d) is the sum of two components: βd(j, d) is the return of d periods of experience

in occupation/market j; and the term −βy(j, 0) − βy(0, j) is the sum of the cost of entry into

occupation/market j (−βy(j, 0)) and the cost of exit from occupation/market j (−βy(0, j)). The

sum of these two costs is typically described as the sunk cost of entry in occupation/market j. Given

the parameters β̃d(j, d), we can obtain the marginal return to experience βd(j, d)− βd(j, d− 1) for

values of experience d greater or equal than two, i.e., βd(j, d)−βd(j, d− 1) = β̃d(j, d)− β̃d(j, d− 1).

17Since (yt,xt) has finite support, for a given value of z we can represent the structural functions βy (yt, yt−1, z)
and βd (yt, dt, z) using a finite vector of parameters.
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Given this description of the model, we can summarize our main identification results as follows.

First, all the switching cost parameters {β̃y(j, k) : j, k ≥ 1, j 6= k} are identified regardless fixed

effects unobserved heterogeneity or agents’forward-looking behavior (see Propositions 1, 2, 7, 8,

9, 10, and 11). Though these parameters are always identified, the set of choice histories in the

data that provide information about these parameters depends crucially on whether the model has

unobserved heterogeneity and/or agents are forward-looking. Second, all the return to experience

parameters {β̃d(j, d) : j ≥ 1, d ≥ 1} are identified in a model with unobserved heterogeneity when

agents are myopic (see Propositions 3 and 9). However, without further restrictions, we cannot

identify any return to experience parameter when agents are forward-looking (see Propositions 4

and 10). Third, in the forward-looking model, under the additional restriction of Assumption 2, we

can identify the returns to experience parameters {β̃d(j, d∗j )− β̃d(j, d∗j−1) : j ≥ 1} (see Propositions

5 and 11). Finally, we show that the value of the parameters {d∗j : j ≥ 1} in Assumption 2 are

identified (see Proposition 6).

3.2 A general description of the conditional likelihood approach

The data for an individual in the sample consist of the history of choices between periods 1 and

T , {y1, y2, ..., yT }, and the initial values of the endogenous state variables, (y0, d1). We represent

these data using the vector ỹ ≡ (d1, y0; y1, y2, ..., yT ) and we refer to this vector as an individual’s

history. The model implies the following probability:

P (ỹ | θ, β) =
T∑
t=1

exp
{
α̃θ (yt) + β̃ (yt,xt) + ṽθ (yt, dt+1)

}
∑
j∈Y

exp
{
α̃θ (j) + β̃ (j,xt) + ṽθ (j, dt+1)

} p (y0, d1 | θ) (8)

In a fixed effects model, the probability distribution of the initial values of the endogenous state

variables conditional on the incidental parameters, p (y0, d1 | θ), is nonparametrically specified.

Our identification results, for different versions of the model, have the following common features.

First, we show that the log-probability function lnP (ỹ | θ, β) has the following structure (up to a

constant term that does not depend on the data ỹ):

lnP (ỹ | θ, β) = U(ỹ)′gθ + S(ỹ)′β∗ (9)

where U(ỹ) and S(ỹ) are vectors of statistics (i.e., deterministic functions of the data ỹ), gθ is a

vector of functions of θ, and β∗ is a vector of linear combinations of the original vector of structural
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parameters β. This representation is such that each of the vectors, U(ỹ), gθ, S(ỹ), and β∗, has

elements which are linearly independent.18 The exact elements included in these vectors depend

on the version of the model. Based on this representation of the log-probability of a choice history,

we establish the following results. For notational simplicity, we use U and S to represent U(ỹ) and

S(ỹ), respectively.

(i) Suffi ciency. Definition: U is a suffi cient statistic for θ if and only if, for any ỹ the probability

P (ỹ | θ, β,U) does not depend on θ. We now show that, given the structure in equation (9), U is

a suffi cient statistic for θ. Since U is a deterministic function ỹ, we have that: (a) lnP (ỹ | θ, β, U)

is equal to lnP (ỹ | θ, β)− lnP (U | θ, β); and (b) P (U | θ, β) is the sum of probabilities of all the

possible histories ỹ′ with the same value U . Therefore, we have that lnP (ỹ | θ, β, U) is equal

to lnP (ỹ | θ, β) − ln[
∑
ỹ′: U(ỹ′)=U P (ỹ′ | θ, β)]. Combining this expression with the form of the

log-probability in equation (9), we have that:

lnP (ỹ | θ, β, U) = U ′gθ + S′β∗ − ln

( ∑
ỹ′: U(ỹ′)=U

exp {U(ỹ′)′gθ + S(ỹ′)′β∗}
)

= S′β∗ − ln

( ∑
ỹ′: U(ỹ′)=U

exp {S(ỹ′)′β∗}
) (10)

Since the right hand side of equation (10) does not depend θ, we have that the structure of the

log-probability in equation (9) implies that U is a suffi cient statistic for θ.

Equation (8) implies that the term ln p (y0, d1 | θ) enters additively in the logarithm of the

probability of an individual’s data. Since the probability function p (y0, d1 | θ) is nonparametrically

specified in a fixed effects model, any vector of suffi cient statistics for the incidental parameters θ

should include the initial value of the endogenous state variables, (y0, d1).

(ii) Minimal suffi ciency. U is a minimal suffi cient statistic, that is, it does not contain redundant

information. More formally, let U be a matrix consisting of U(ỹ)′ for all possible values of ỹ as

row vectors. Then, U is minimal if and only if matrix U is full-column rank.

(iii) Identification. Define the conditional log-likelihood function in the population, ` (β∗) ≡

Eỹ [lnP (ỹ | U, β∗)]. The vector of parameters β∗ is point identified if the population likelihood
18Suppose that S and β are K × 1 vectors, and only K∗ < K elements in S are linearly independent. Then,

S = [Sa, Sb] where Sa contains K∗ linearly independent elements, and Sb = A Sa where A is a (K − K∗) × K∗

matrix. This implies that S′β = S′aβ
∗ with β∗ = [I

... A]′β, such that Sa and β∗ are vectors with linearly independent
elements.
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is uniquely maximized at the true value of β∗. Lemma 2 establishes a necessary and suffi cient

condition for identification. Let K be the dimension of the vector of parameters β∗.

LEMMA 2. Given K + 1 histories, say {Aj : j = 0, 1, ..., K}, let S be a K ×K matrix consisting

of row vectors S(Aj)
′ − S(A0)

′ for all j = 1, ..., K. The vector β∗ is identified if and only if there

exist K + 1 histories with the same value of the statistic U and a non-singular matrix S. �

For example, if β∗ is a scalar such that K = 1, then this parameter is identified if and only if

there are two histories, A and B, such that U(A) = U(B) and S(A) 6= S(B).

The derivation of these suffi cient statistics should deal with two issues that do not appear in

the previous literature on FE-CMLE of non-structural (or myopic) nonlinear panel data models.

First, we consider models with duration dependence. Duration dependence reflects that the payoff

and thus the choice probability depends on the number of periods since the last change in choice.

In some applications, this may represent an important source of persistence. Second, we should

take into account that unobserved heterogeneity enters in the continuation value function, vθ. This

implies that the suffi cient statistic U should control not only for α̃θ (yt) but also for the continuation

values ṽθ (yt, dt+1). This is challenging because, in general, these continuation values depend on

the endogenous state variables. We cannot fully control for (or condition on) the value of the state

variables because the identification condition (iii) would not hold. Instead, we show that there are

states where the continuation value does not depend on current state variables once we condition

on current choices.

The presentation of our identification results tries to emphasize both the links and extensions

with previous results in the literature. For this reason, we start presenting identification results for

the binary choice model, that is the model more extensively studied in the literature of nonlinear

dynamic panel data. For this binary choice model, we present new identification results for the

myopic model with duration dependence and for the forward-looking model with and without

duration dependence. Then, we present our identification results for multinomial models.

3.3 Some useful statistics

We show below that, in our model, the log-probability of a choice history, P (ỹ | θ, β), can be

written in terms of several sets of statistics or functions of ỹ: the initial and final choices, {y0, yT };
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the initial and final durations, {d1, dT+1}; and the statistics that we define below. Note that each

of these statistics are for a single history ỹ.

Table 1 summarizes our definition of statistics.

Table 1
Definition of statistics for a choice history ỹ

Name: Symbol Definition

Hits: T (j)
∑T

t=1 1{yt = j}

Dyad: D(j,k)
∑T

t=1 1{yt = j, yt−1 = k}

Histogram of states: H(j)(d)
∑T

t=1 1{yt−1 = j, dt = d}

Extended histogram of states: X(j)(d)
∑T

t=1 1{yt−1 = yt = j, dt = d}

Diff. final-initial states: ∆(j)(d) 1{yT = j,dT+1 = d} − 1{y0 = j, d1 = d}

Hit statistics. For any choice alternative j ∈ Y, the hit statistic T (j) represents the number of

times that alternative j is visited (or hit) between periods 1 and T in the choice history ỹ, i.e.,

T (j) ≡
∑T

t=1 1{yt = j}.

Dyad statistics. For any pair of choice alternatives j, k ∈ Y, the dyad statistic D(j,k) is the number

of times that the sequence of choices (j, k) is observed at two consecutive periods in the history ỹ,

i.e., D(j,k) ≡
∑T

t=1 1{yt = j, yt−1 = k}.

Histogram of states. For any choice alternative j ∈ Y and any duration d ≥ 0, the statistic

H(j)(d) is the number of times that we observe state (yt−1, dt) = (j, d) in a choice history ỹ, i.e.,

H(j)(d) ≡
∑T

t=1 1{yt−1 = j, dt = d}.

Extended histogram of states. For any choice alternative j ∈ Y and any duration d ≥ 0, the statistic

X(j)(d) represents the number of times that we observe state (yt−1, dt) = (j, d) and the individual

decides to continue one more period in choice j, i.e., X(j)(d) ≡
∑T

t=1 1{yt−1 = yt = j, dt = d}.

Difference between final and initial states. For any choice alternative j ∈ Y and any duration d ≥ 0,

the statistic ∆(j)(d) is defined as 1{yT = j, dT+1 = d} − 1{y0 = j, d1 = d}.
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3.4 Binary choice models

Given the general representation of the model in equation (7), we can particularize it to the binary

choice model to have:

yt = 1
{
α̃θ + yt−1 β̃d(dt) + ṽθ(dt + 1) + ε̃t ≥ 0

}
(11)

where α̃θ ≡ αθ(1)−αθ(0)+βy(1, 0), β̃d(d) = βd(1, d)−βy(1, 0)−βy(0, 1), ṽθ(d) ≡ vθ(1, d)−vθ(0, 0),

and ε̃t ≡ εt(1) − εt(0). We now present identification results for different versions of this model,

starting with the myopic model without duration dependence that has been studied by Chamberlain

(1985) and Honoré and Kyriazidou (2000).

3.4.1 Myopic dynamic model without duration dependence

Consider the model in equation (11) under the restrictions of myopic behavior (i.e., δ = 0) and

no duration dependence (i.e., βd(1, d) = 0). These restrictions imply that the continuation values

ṽθ(dt + 1) become zero, and the term β̃d(dt) becomes equal to −βy(1, 0)− βy(0, 1). The parameter

−βy(1, 0) − βy(0, 1) represents the sum of the costs of market entry and exit, or equivalently the

sunk cost of entry. We use β̃y to denote this sunk cost parameter. We can present this model using

the standard representation,

yt = 1
{
α̃θ + β̃y yt−1 + ε̃t ≥ 0

}
(12)

Define function σθ(yt−1) ≡ − ln
(

1 + exp
{
α̃θ + β̃yyt−1

})
. The log-probability of the choice

history ỹ is:

lnP (ỹ | θ) = ln pθ(y0) +
∑T

t=1 yt

[
α̃θ + β̃yyt−1

]
+ (1− yt−1) σθ(0) + yt−1 σθ(1) (13)

Proposition 1 establishes (i) the suffi cient statistic, (ii) minimal suffi ciency, and (iii) identification

for this model. The identification result in this Proposition was established in Chamberlain (1985).

PROPOSITION 1. In the myopic binary choice model without duration dependence the log-probability

of a choice history has the form lnP (ỹ | θ, β) = U ′gθ + S′β∗ with

U =
(
y0, yT , T

(1)
)
; S = D(1,1) ; β∗ = β̃y (14)

U is a minimal suffi cient statistic for θ. For T ≥ 3, conditional on U there is variation in S such

that the parameter β̃y is identified. �
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EXAMPLE 1. Suppose that T = 3 such that the history of an individual is {y0 | y1, y2, y3}.

Consider the pair of histories A = (0 | 0, 1, 1) and B = (0 | 1, 0, 1). Applying equation (13)

to these histories, we have that lnP (A) = ln pθ(0)+ 2α̃θ+ 2σθ(0)+ σθ(1)+ β̃y, and lnP (B) =

ln pθ(0)+ 2α̃θ+ 2σθ(0)+ σθ(1), such that lnP (A) − lnP (B) = β̃y. Therefore, the parameter β̃y is

identified as lnP (0|0, 1, 1) − lnP (0|1, 0, 1). Intuitively, the sunk cost parameter is identified from

the logarithm of the ratio between the frequency of "stayers" (that is, individuals with histories

(0|0, 1, 1)) and the frequency of "switchers" (that is, individuals with histories (0|1, 0, 1)). We

can also obtain this identification result using the representation in Proposition 1. The vector of

suffi cient statistics U consists of y0, y3, and y1+ y2+ y3. The identifying statistic S is y0y1+ y1y2+

y2y3. Histories A and B have the same value for the suffi cient statistic vector, U(A) = U(B) = (y0,

y3, y1+y2+y3) = (0, 1, 2), but they have different values for the identifying statistic, D(1,1)(A) = 1

and D(1,1)(B) = 0. �

With T ≥ 3, the parameter β̃y is over-identified. For instance, following up with the case

with T = 3 in Example 1, we can consider the pair of histories (1 | 1, 0, 0) and (1 | 0, 1, 0),

and it is simple to verify that β̃y can be also identified as lnP(1|1, 0, 0) − lnP(1|0, 1, 0). There-

fore, the model implies the testable over-identifying restriction lnP (0|0, 1, 1) − lnP (0|1, 0, 1) =

lnP (1|1, 0, 0) − lnP (1|0, 1, 0), which is an implication of the assumptions of stationarity and no

duration dependence.

3.4.2 Forward-looking dynamic model without duration dependence

Consider a forward-looking version of the model in equation (11) but without duration dependence.

We can represent this model as,

yt = 1{α̃θ + ṽθ + β̃y yt−1 + ε̃t ≥ 0} (15)

where ṽθ = vθ(1) − vθ(0). The only difference between this model and the myopic model is that

now the fixed effect has two components: α̃θ that comes from current profit, and ṽθ that comes

from the continuation values. However, from the point of view of identification, the two models are

observationally equivalent.

PROPOSITION 2. In the forward-looking binary choice model without duration dependence the
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log-probability of a history has the form lnP (ỹ | θ, β) = U ′gθ + S′β∗ with

U =
(
y0, yT , T

(1)
)
; S = D(1,1) ; β∗ = β̃y (16)

U is a minimal suffi cient statistic for θ. For T ≥ 3, conditional on U there is variation in S such

that the parameter β̃y is identified. �

EXAMPLE 2. Example 1 applies to this model as well such that, with T = 3, the sunk cost

parameter β̃y is identified from the logarithm of the ratio between the frequency of "stayers"

and the frequency of "switchers". That is, β̃y = lnP (0, 0, 1, 1) − lnP (0, 1, 0, 1) and also, β̃y =

lnP (1, 1, 0, 0)− lnP (1, 0, 1, 0). �

3.4.3 Myopic dynamic model with duration dependence

Consider the model in equation (11) with duration dependence but where agents are myopic. We

can present this model as

yt = 1
{
α̃θ + yt−1 β̃d(dt) + ε̃t ≥ 0

}
(17)

For this model, the log-probability of the choice history ỹ = (y0, d1; y1, ..., yT ) is:

lnP (ỹ | θ) = ln pθ(y0, d1) +
∑T

t=1 yt

[
α̃θ + yt−1 β̃d(dt)

]
+ σθ(yt−1, dt) (18)

where σθ(yt−1, dt) ≡ − ln
(

1 + exp
{
α̃θ + yt−1 β̃d(dt)

})
.

Proposition 3 establishes the minimal suffi cient statistic and the identification of structural

parameters in this model.

PROPOSITION 3. In the myopic binary choice model with duration dependence under Assumption

1, the log-probability of a choice history has the form lnP (ỹ | θ, β) = U ′gθ + S′β∗ with

U =
[
d1, y0, yT , H

(1)(d) : d ≥ 1
]
; S =

[
∆(1)(d+ 1) : d ≥ 1

]
; β∗ =

[
β̃d(d) : d ≥ 1

]
(19)

U is a minimal suffi cient statistic for θ. Conditional on U , the elements in the vector of statistics

S are linearly independent such that the structural parameters β∗ are identified. �

For this model, the vector of suffi cient statistics include the histogram of durations {H(1)(d) :

d ≥ 1}. Conditional on these statistics, the identification of the structural parameter β̃d(d) comes

from the difference between the final and the initial value of duration, ∆(1)(d + 1) = 1{dT+1 =
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d + 1}− 1{d1 = d + 1} for d ≥ 1. The identification result in Proposition 3 for the myopic model

with duration dependence does not depend on Assumption 2.

Note that under the assumption of myopic individual behavior, we can identify the same dura-

tion dependence parameters β̃d(d) regardless the model has fixed effects unobserved heterogeneity

or not, provided that the number of periods T is at least d+ 2. However, the set of choice histories

that contain identifying information about these parameters is substantially reduced when we have

unobserved heterogeneity.

EXAMPLE 3(a). Suppose that T = 3 such that a choice history is {y0, d1 | y1, y2, y3}. Consider

the histories A = {0, 0 | 0, 1, 1} and B = {0, 0 | 1, 0, 1}. Applying equation (18) to these histories,

we have that lnP (A) = ln pθ(0, 0)+ 2α̃θ+ 2σθ(0)+ σθ(1)+ β̃d(1), and lnP (B) = ln pθ(0, 0)+ 2α̃θ+

2σθ(0)+ σθ(1), such that lnP (A) − lnP (B) = β̃d(1). This implies that the parameter β̃d(1) is

identified from lnP (0, 0|0, 1, 1) − lnP (0, 0|1, 0, 1). We can also confirm this identification result

using the representation in Proposition 3. Histories A and B have the same value of the initial

condition, (y0, d1) = (0, 0), and of the final choice, y3 = 1. Under history A, the series of durations

{d1, d2, d3} is {0, 0, 1}, and under history B the evolution of durations is {0, 1, 0}. Therefore, the

histogram of durations between periods 1 and 3 is the same under the two histories such that they

have the same value for the suffi cient statistic vector, U(A) = U(B). However, the two histories

have different final durations d4. We have that d4 = 2 under history A, and it is equal to 1 under

history B. Therefore, we have that S(A)′β∗ = β̃d(1) and S(B)′β∗ = 0, and this implies that the

parameter β̃d(1) is identified from lnP (0, 0|0, 1, 1)− lnP (0, 0|1, 0, 1). �

EXAMPLE 3(b). Suppose that T ≥ 5, let n be any integer such that 2 ≤ n ≤ (T − 1)/2, and

define a sub-history {y0, d1 | y1, ..., y2n+1}. Consider the sub-histories A = {0, 0 | 1n−1, 0,1n+1}

and B = {0, 0 | 1n, 0,1n}, where 1n represents a sequence of n ones. Applying equation (18)

to these histories, we have that lnP (A) = 2n α̃θ+ 2
∑n−2

d=1 β̃d(d)+ β̃d(n − 1)+ β̃d(n)+ 2σθ(0)+

2
∑n−1

d=1 σθ(1, d) + σθ(1, n), and lnP (B) = 2n α̃θ+ 2
∑n−2

d=1 β̃d(d)+ 2β̃d(n − 1)+ 2
∑n−1

d=1 σθ(1, d) +

σθ(1, n), such that lnP (A) − lnP (B) = β̃d(n) − β̃d(n − 1). This implies that the parameter

βd(1, n) − βd(1, n − 1) is identified from lnP(0, 0|1n−1, 0,1n+1) − lnP(0, 0|1n, 0,1n). We can also

confirm this identification result using the representation in Proposition 3. Histories A and B have

the same value of the initial condition, (y0, d1) = (0, 0), and of the final choice, y2n+1 = 1. Under
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history A, the series of durations {d1, d2, ..., d2n+2} is {0, 1, ..., n−1, 0, 1, ..., n}, and under history B

the evolution of durations is {0, 1, ..., n, 0, 1, ..., n−1}. The histogram of durations between periods

1 and 2n+ 1 is the same under the two histories such that U(A) = U(B). The two histories have

different final durations d2n+2. We have that d2n+2 = n + 1 under history A, and it is equal to n

under history B. Therefore, we have that S(A)′β∗ − S(B)′β∗ = β̃d(n)− β̃d(n− 1). �

3.4.4 Forward-looking dynamic model with duration dependence

Consider the general binary choice model in equation (11), with duration dependence and with

forward-looking agents. For this model, the log-probability of the choice history ỹ conditional on

(y0, d1, θ) is:

lnP (ỹ | θ) = ln pθ(y0, d1) +
∑T

t=1 yt

[
α̃θ + yt−1 β̃d(dt) + ṽθ(dt + 1)

]
+ σθ(yt−1, dt) (20)

with σθ(yt−1, dt) ≡ − ln(1+ exp{α̃θ + yt−1 β̃d(dt) + ṽθ(dt + 1)}). Comparing equation (20) with

(18) we can see the forward looking model has the additional term
∑T

t=1 yt ṽθ (dt + 1).

Proposition 4 establishes that under Assumption 1 (and without Assumption 2) there is not

identification of any structural parameter.

PROPOSITION 4. In the forward-looking binary choice model with duration dependence under

Assumption 1, the log-probability of a choice history has the form lnP (ỹ | θ, β) = U ′gθ+S′β∗, with

U =
[
d1, y0, H(1)(d), ∆(1)(d) : d ≥ 1

]
(21)

U is a minimal suffi cient statistic for θ. The structural parameters βy and βd are not identified

because U includes all the statistics associated with these structural parameters. �

In terms of the minimal suffi cient statistic, the difference between this forward-looking model

and its myopic counterpart is that now we need to control for the difference between final and

initial duration, ∆(1)(d). These additional statistics are also the only statistics associated with the

structural parameter β̃d(d). Therefore, after controlling for the vector of suffi cient statistics U ,

there is not variation left that can identify structural parameters in this model.

EXAMPLE 4(a). Suppose that T = 3 such that a history is {y0, d1 | y1, y2, y3}. Consider histories

A = {0, 0 | 0, 1, 1} and B = {0, 0 | 1, 0, 1}. Taking into account the form of the log-probability
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in equation (20), we have that lnP (A) = 2α̃θ+ β̃d(1)+ ṽθ (1) + ṽθ (2) + 2σθ(0)+ σθ(1, 1), and

lnP (B) = 2α̃θ+ 2 ṽθ (1) + 2σθ(0)+ σθ(1, 1), such that

lnP (A)− lnP (B) = β̃d(1) + ṽθ (2)− ṽθ (1) (22)

The right-hand side includes the expected future return of a second year of experience, ṽθ (2)−ṽθ (1),

which depends on the incidental parameters. Therefore, lnP (A) − lnP (B) does not identify any

structural parameter. In particular, it does not identify β̃d(1). �

EXAMPLE 4(b). Suppose that T ≥ 5, let n be any integer such that 2 ≤ n ≤ (T − 1)/2,

and consider the same sub-histories as in Example 3(b): A = {0, 0 | 1n−1, 0,1n+1} and B =

{0, 0 | 1n, 0,1n}. Given the expression for the log-probability in equation (20), we have that

lnP (A) = 2nα̃θ+ 2
∑n−2

d=1 β̃d(d)+ β̃d(n− 1)+ β̃d(n)+ 2
∑n−1

d=1 ṽθ (d) + ṽθ (n) + ṽθ (n+ 1) + 2σθ(0)+

2
∑n−1

d=1 σθ(1, d) + σθ(1, n), and lnP (B) = 2nα̃θ+ 2
∑n−2

d=1 β̃d(d)+ 2β̃d(n − 1)+ 2
∑n

d=1 ṽθ (d) +

2σθ(0)+ 2
∑n−1

d=1 σθ(1, d) + σθ(1, n), such that

lnP (A)− lnP (B) = β̃d(n)− β̃d(n− 1) + ṽθ (n+ 1)− ṽθ (n) (23)

This difference in log-probabilities depends on the incidental parameters through the continuation

values. In contrast to the myopic model in Example 3(b), this pair of histories does not identify

any structural parameter in the forward-looking model with duration dependence. �

Examples 4(a) and 4(b), and more specifically equations (22) and (23), suggest a restriction

that provides identification of the structural parameters. A suffi cient condition for the identifica-

tion of β̃d(n) − β̃d(n − 1) from lnP (A) − lnP (B) is that ṽθ (n+ 1) − ṽθ (n) = 0 for any possible

value of the incidental parameters.19 By Property 2, under Assumption 2 there is a value d∗ such

that ṽθ (n+ 1) − ṽθ (n) = 0 for any duration n greater or equal than d∗. This property provides

identification of some structural parameters. Proposition 5 establishes this result.

PROPOSITION 5. In the forward-looking binary choice model with duration dependence under

Assumptions 1 and 2, the log-probability of a choice history has the form lnP (ỹ | θ, β) = U ′gθ+S
′β∗

19 In principle, it would be suffi cient that vθ (1, n+ 1)−vθ (1, n) does not depend on θ, i.e., vθ (1, n+ 1)−vθ (1, n) =
f(n). If we could get this type of condition, then lnP (A)− lnP (B) would identify the parameter β̃y+βd(1, n)+f(n)
where f(n) would have an economic interpretation as a continuation value. However, vθ (1, n) is a nonlinear function
of θ, i.e., vθ (1, n) = ln(exp{δ vθ (0)}+ exp{δ[αθ + β̃y + βd(1, n) + vθ (1, n+ 1)]}). Given this structure, it seems that
the only restrictions on the primitives of the model that can make vθ (1, n+ 1)− vθ (1, n) independent of θ are those
that make it equal to zero.
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with 
U =

[
d1, y0, {H(1)(d), ∆(1)(d) : d ≤ d∗ − 1},

∑
d≥d∗H

(1)(d),
∑

d≥d∗∆
(1)(d)

]
S = ∆(1)(d∗); β∗ = βd(1, d

∗ − 1)− βd(1, d∗)
(24)

U is a minimal suffi cient statistic for θ. Conditional on U , the statistic ∆(1)(d∗) has variation and

the structural parameter βd(1, d∗)− βd(1, d∗ − 1) is identified. �

EXAMPLE 5(a). Consider the data in Example 4(a) with T = 3 and histories A = {0, 0 | 0, 1, 1}

and B = {0, 0 | 1, 0, 1}. We have shown that lnP (A) − lnP (B) = β̃d(1) + ṽθ (2) − ṽθ (1). Sup-

pose that d∗ = 1 such that there is return for one period of experience but not for additional

experience, that is, β̃d(d) = β̃d(1) for d ≥ 1. Under this assumption, as established in Prop-

erty 2 of the model, we have that ṽθ (d) − ṽθ (1) = 0 for any d ≥ 1. Therefore, the parameter

β̃d(1) is identified as lnP (0, 0 | 0, 1, 1) − lnP (0, 0 | 1, 0, 1). With d∗ = 1, the suffi cient statistic is

U = [d1, y0,
∑

d≥1H
(1)(d),

∑
d≥1∆

(1)(d)], or taking into account that
∑

d≥1H
(1)(d) = T (1)+y0−yT

and
∑

d≥1∆
(1)(d) = yT − y0, we have that U = [d1, y0, yT , T

(1)]. The identifying statistic is

S = ∆(1)(1) = yT 1{dT = 1} − y0 1{d1 = 1}. �

EXAMPLE 5(b). Consider the data in Example 4(b) with T ≥ 5, and sub-histories A = {0, 0 |

1n−1, 0,1n+1} and B = {0, 0 | 1n, 0,1n} for n ≤ (T−1)/2. We have shown that lnP (A)−lnP (B) =

β̃d(n)− β̃d(n− 1)+ ṽθ (n+ 1)− ṽθ (n). Suppose that Assumption 2 holds, and consider values of n

such that n ≥ d∗. Under these conditions, we have that ṽθ (n+ 1)− ṽθ (n) = 0 such that:

lnP (0, 0 | 1n−1, 0,1n+1)− lnP (0, 0 | 1n, 0,1n) = β̃d(n)− β̃d(n− 1) (25)

For n = d∗, we have that lnP (A)− lnP (B) identifies βd(1, d∗)−βd(1, d∗− 1). For values n strictly

greater than d∗, the model implies that lnP (A) − lnP (B) = βd(1, n) − βd(1, n − 1) = 0. As we

show below, this restriction for n > d∗ implies the identification of the parameter d∗. �

In the forward-looking binary choice model with duration dependence, only β̃d(d∗)− β̃d(d∗− 1)

is identified. This result contrasts with the myopic model where we can identify β̃d(d) for any

duration 2 ≤ d ≤ T − 1 (Proposition 3).

Table 2 summarizes the identification results for the binary choice model.
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Table 2
Identification of Dynamic Binary Logit Models

Panel 1: Models without duration dependence

Myopic Model Forward-Looking Model
Minimal Identified Identifying Minimal Identified Identifying

suffi cient stat. parameters statistics suffi cient stat. parameters statistics

T (1), y0, yT β̃y D(1,1) T (1), y0, yT β̃y D(1,1)

Panel 2: Models with duration dependence

Myopic Model Forward-Looking Model
Minimal Identified Identifying Minimal Identified Identifying

suffi cient stat. parameters statistics suffi cient stat. parameters statistics

y0, d1, yT , β̃d(d) for ∆(1)(d) H(1)(d) : d ≤ d∗−1; β̃d(n)− β̃d(n− 1) ∆(1)(n)

H(1)(d) : d ≥ 1 1 ≤ d ≤ T − 2
∑

d≥d∗H
(1)(d); for n ≥ d* for n ≥ d*

∆(1)(d) : d ≤ d∗−1;∑
d≥d∗∆

(1)(d)

3.5 Identification of d∗ in the forward-looking model

We have assumed so far that the value of d∗ is known to the researcher. We now establish the

identification of d∗. Let n be any duration such that 2n + 1 ≤ T . Consider the pair of histories

An = {0, 0 | 1n−1, 0,1n+1} and Bn = {0, 0 | 1n, 0,1n}. We have that:
For n > d∗, U(An) = U(Bn), and lnP (An)− lnP (Bn) = ∆βd(n) = 0

For n = d∗, U(An) = U(Bn), and lnP (An)− lnP (Bn) = ∆βd(d
∗) 6= 0

For n < d∗, U(An) 6= U(Bn)

(26)

Note that lnP (An)− lnP (Bn) identifies the parameter β̃d(n)− β̃d(n− 1) only if n ≥ d∗. Given a

dataset with T time periods, we can construct histories An and Bn only if 2n + 1 ≤ T . Putting

these two conditions together, the identification of the value of d∗ requires that T ≥ 2d∗ + 1 or

equivalently, d∗ ≤ (T − 1)/2. Under this condition, we can describe the parameter d∗ as the

maximum value of n such that lnP (An)− lnP (Bn) 6= 0. This condition uniquely identifies d∗.

PROPOSITION 6. Consider the forward-looking binary choice model with duration dependence
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under Assumptions 1 and 2. For any duration n with 2n+ 1 ≤ T , define the pair of histories An =

{0, 0 | 1n−1, 0,1n+1} and Bn = {0, 0 | 1n, 0,1n}. Then, if d∗ ≤ (T − 1)/2, we have that the value

of d∗ is point identified as:

d∗ = max {n : lnP (An)− lnP (Bn) 6= 0} � (27)

EXAMPLE 6. Suppose that T = 7. Consider the following three pairs of histories: A1 =

{0, 0 | 0, 1, 1} and B1 = {0, 0 | 1, 0, 1}; A2 = {0, 0 | 1, 0, 1, 1, 1} and B2 = {0, 0 | 1, 1, 0, 1, 1}; and

A3 = {0, 0 | 1, 1, 0, 1, 1, 1, 1} and B3 = {0, 0 | 1, 1, 1, 0, 1, 1, 1}. Without knowing the true value of

d∗, all we can say is that:

lnP (A1)− lnP (B1) = β̃d(1) + ṽθ (2)− ṽθ (1)

lnP (A2)− lnP (B2) = β̃d(2)− β̃d(1) + ṽθ (3)− ṽθ (2)

lnP (A3)− lnP (B3) = β̃d(3)− β̃d(2) + ṽθ (4)− ṽθ (3)

(28)

Given that T = 7, to identify d∗ we need to assume that d∗ ∈ {0, 1, 2, 3}. The following table

describes the pattern of the log-probabilities differences lnP (A1)− lnP (B1), lnP (A2)− lnP (B2),

and lnP (A3)− lnP (B3) for each of the four possible values of d∗.

True d∗ ln

[
P (A1)

P (B1)

]
ln

[
P (A2)

P (B2)

]
ln

[
P (A3)

P (B3)

]
d∗ = 0 0 0 0
d∗ = 1 6= 0 0 0
d∗ = 2 any value 6= 0 0
d∗ = 3 any value any value 6= 0

We can distinguish between these different patterns and therefore we can identify d∗. �

3.6 Multinomial choice models

3.6.1 Multinomial myopic model without duration dependence

Consider the general multinomial choice model in equation (7) but particularized to the case with

myopic agents, ṽθ (j, d) = 0, and without duration dependence, β̃d(j, d) = 0. We have:

yt = arg max
j∈Y

{
α̃θ(j) +

∑
k 6=01{yt−1 = k} β̃y(j, k) + εt(j)

}
(29)

The log-probability of the choice history ỹ = {y0, y1, ..., yT } conditional on θ is:

lnP (ỹ|θ) = ln pθ(y0) +
∑T

t=1

∑
j 6=0 1{yt = j}

[
α̃θ(j) + β̃y(j, yt−1)

]
+ σθ(yt−1) (30)
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where σθ(yt−1) ≡ − ln
[
1 +

∑
j 6=0 exp{α̃θ(j) + β̃y(j, yt−1)}

]
. Proposition 7 presents our identifica-

tion result for this model.

PROPOSITION 7. In the myopic multinomial model without duration dependence under Assump-

tion 1, the log-probability has the form lnP (ỹ | θ, β) = U ′gθ + S′β∗ with

U =
[
y0, yT , {T (j) : j ≥ 1}

]
S =

[
D(j,k) : j, k ≥ 1

]
β∗ =

[
β̃y(j, k) : j, k ≥ 1

] (31)

U is a minimal suffi cient statistic for θ. Conditional on U , the elements in the vector of statistics

S are linearly independent such that the vector of parameters β∗ is identified. �

The following example presents a pair of histories that identifies β̃y(j, k).

EXAMPLE 7. Suppose that T = 3 and consider the following two realizations of the history

(y0| y1, y2, y3): A = {0 | 0, k, j} and B = {0 | k, 0, j} with j, k 6= 0. Using the formula for

the log-probability of a choice history in equation (30), we have that lnP (A) = ln pθ(0)+ α̃θ(k)+

α̃θ(j)+ 2σθ(0)+ σθ(k)+ β̃y(k, 0)+ β̃y(j, k), and lnP (B) = ln pθ(0)+ α̃θ(k)+ α̃θ(j)+ 2σθ(0)+ σθ(k)+

β̃y(k, 0)+ β̃y(0, k)+ β̃y(j, 0), such that lnP (A)−lnP (B) identifies the parameter β̃y(k, j)− β̃y(0, j)−

β̃y(k, 0) which is equal to β̃y(k, j) because, by definition, β̃y(0, j) = 0 and β̃y(0, k) = 0. We can also

obtain this identification result by using the representation in Proposition 7. Histories A and B have

the same value for the initial condition, y0, the final choice, y3, and the statistics T (j) and T (k), such

that U(A) = U(B). The identifying statistics D(y−1,y) take the following values: D(j,k)(A) = 1,

D(j,k)(B) = 0, D(j,0)(A) = 0, D(j,0)(B) = 1, D(0,k)(A) = 0, D(0,k)(B) = 1, and D(y,y−1)(A) =

D(y,y−1)(B) = 0 for any other pair (y, y−1). Therefore, S(A)′β∗−S(B)′β∗ = [D(j,k)(A)−D(j,k)(B)]

β̃y(j, k)+ [D(j,0)(A)−D(j,0)(B)] β̃y(j, 0)+ [D(0,k)(A)−D(0,k)(B)] βy(0, k) = β̃y(k, j). A particular

case of this example is when j = k, such that A = {0 | 0, j, j} and B = {0 | j, 0, j}. In this case,

lnP (A)− lnP (B) identifies β̃y(j, j), which is equal to the sunk cost −βy(0, j)− βy(j, 0). �
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3.6.2 Multinomial forward-looking model without duration dependence

Consider the general multinomial choice model in equation (7) with forward-looking agents but

without duration dependence, β̃d(j, d) = 0. We can represent this model as:

yt = arg max
j∈Y

{
α̃θ(j) + ṽθ(j) +

∑
k 6=01{yt−1 = k} β̃y(j, k) + εt(j)

}
(32)

The log-probability of the choice history ỹ conditional on θ has a similar form as in the myopic

model, but now the incidental parameter θ enters through the function α̃θ(j) + ṽθ(j).

lnP (ỹ|θ) = ln pθ(y0) +
∑T

t=1

∑
j 6=0 1{yt = j}

[
α̃θ(j) + ṽθ(j) + β̃y(j, yt−1)

]
+ σθ(yt−1) (33)

where σθ(yt−1) ≡ − ln
[
1 +

∑J
j=0 exp{α̃θ(j) + ṽθ(j) + β̃y(j, yt−1)}

]
. Therefore, the identification of

the structural parameters is the same as in the myopic model without duration dependence.

PROPOSITION 8. In the multinomial forward-looking model without duration dependence under

Assumption 1, the log-probability of a choice history has the following form lnP (ỹ | θ, β) = U ′gθ +

S′β∗ with U = [y0, yT , {T (j) : j ≥ 1}], S = [D(j,k) : j, k ≥ 1], and β∗ = [β̃y(j, k) : j, k ≥ 1]. U is a

minimal suffi cient statistic for θ. Conditional on U , the elements in the vector of statistics S are

linearly independent such that the vector of parameters β∗ is identified. �

EXAMPLE 8. Example 7 also applies to the forward-looking model. With T = 3, we have that

the parameter β̃y(j, k) is identified from lnP (0|0, k, j)− lnP (0 | k, 0, j). �

3.6.3 Multinomial myopic model with duration dependence

Consider the multinomial choice model in equation (7) with duration dependence but with myopic

agents. We can represent this model as follows:

yt = arg max
j∈Y

{
α̃θ(j) +

∑
k 6={0,j}

1{yt−1 = k} β̃y(j, k) + 1{yt−1 = j} β̃d(j, dt) + εt(j)

}
(34)

The log-probability of a choice history ỹ conditional on θ is:

lnP (ỹ|θ) = ln pθ(y0, d1) +
T∑
t=1

∑
j 6=0

1{yt = j} α̃θ(j) +
T∑
t=1
σθ(yt−1, dt)

+
T∑
t=1

∑
j 6=0

[ ∑
k 6={0,j}

1{yt = j,yt−1 = k} β̃y(j, k) + 1{yt = yt−1 = j} β̃d(j, dt)
] (35)
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where σθ(yt−1, dt) ≡ − ln[1+
∑

j 6=0 exp{α̃θ(j)+
∑

k 6={0,j}1{yt−1 = k}β̃y(j, k)+1{yt−1 = j}β̃d(j, dt)}].

Proposition 9 presents identification results.

PROPOSITION 9. In the multinomial myopic model with duration dependence under Assumption

1, the log-probability of a choice history has the form lnP (ỹ | θ, β) = U ′gθ + S′β∗ with

U =
[
d1, y0, yT , {H(j)(d) : j ≥ 1, d ≥ 1}

]
S =

[
D(j,k) : j, k ≥ 1, k 6= j; ∆(j)(d) : j ≥ 1; d ≥ 2

]
β∗ =

[
β̃y(j, j) : j ≥ 1, k 6= j; β̃d(j, d) : j ≥ 1; d ≥ 1

] (36)

U is a minimal suffi cient statistic for θ. Conditional on U , the elements in the vector of statistics

S are linearly independent such that the vector of parameters β∗ is identified. �

The following examples present choice histories that identify β̃y(j, k) and β̃d(j, d).

EXAMPLE 9(a). Suppose that T = 3 such that a choice history is (y0, d1 | y1, y2, y3). For j, k 6= 0

and j 6= k, consider the pair of histories A = {0, 0 | 0, j, k} and B = {0, 0 | j, 0, k}. Using the

expression for the log-probability of a choice history in equation (35) we have that lnP (A) =

ln pθ(0, 0)+ α̃θ(j)+ α̃θ(k)+ 2σθ(0)+ σθ(j, 1)+ β̃y(k, j), and lnP (B) = ln pθ(0, 0)+ α̃θ(j)+ α̃θ(k)+

2σθ(0)+ σθ(j, 1), such that lnP (A)− lnP (B) = β̃y(k, j). Therefore, the parameter β̃y(k, j) is

identified from lnP (0, 0 | 0, j, k)− lnP (0, 0 | j, 0, k). We can also obtain this identification result by

using Proposition 9. The initial condition, (d1, y0) = (0, 0), and the final choice, y3 = k, are the same

in the two histories. The histories have also the same histogram for the states (yt−1, dt): the state

(0, 0) occurs twice, state (j, 1) occurs once, and the other possible states never happen. Therefore,

we have that U(A) = U(B). As for the values of the identifying statistics in the vector S, we have

that: D(j,k) = 1 under history A andD(j,k) = 0 under history B; since d1 = 0 and d4 = 1 in the both

histories, we have that for any d ≥ 2 the statistics ∆(k)(d) ≡ 1{y3 = k, d4 = d} − 1{y0 = k, d1 = d}

are zero for both A and B. Therefore, S(A)′β∗ − S(B)′β∗ = β̃y(k, j). �

EXAMPLE 9(b). Suppose that T ≥ 5, let n be any integer such that 2 ≤ n ≤ (T − 1)/2, and

define a sub-history {y0, d1 | y1, ..., y2n+1}. Consider the sub-histories A = {0, 0 | jn−1, 0, jn+1} and

B = {0, 0 | jn, 0, jn}, where jn represents a sequence of n consecutive values of the choice alternative

j. Applying equation (35) to these histories, we have that lnP (A) = ln pθ(0, 0)+ 2n α̃θ(j)+ 2σθ(0)+

2[
∑n−1

d=1 σθ(j, d)]+ σθ(j, n)+ 2[
∑n−2

d=1 β̃d(j, d)]+ β̃d(j, n−1)+ β̃d(j, n), and lnP (B) = ln pθ(0, 0)+ 2n
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α̃θ(j)+ 2σθ(0)+ 2[
∑n−1

d=1 σθ(j, d)]+ σθ(j, n)+ 2[
∑n−2

d=1 β̃d(j, d)]+ 2β̃d(j, n − 1), such that lnP (A) −

lnP (B) = β̃d(j, n)− β̃d(j, n− 1). Therefore, the marginal return of going from n− 1 to n periods

of experience in alternative j, βd(j, n) − βd(j, n − 1), is identified from lnP (0, 0|jn−1, 0, jn+1)−

lnP (0, 0|jn, 0, jn). We can also obtain this identification result using the representation of the log-

probability in Proposition 9. Histories A and B have the values for the vector of suffi cient statistics

U : the initial condition, (y0, d1) = (0, 0), the final choice, y2n+1 = j, and the histogram of states

(yt−1, dt). As for the identifying statistics, we have that the dyad statistics D(j,k) are the same in

the two histories (D(j,j) = 2n− 2, D(j,0) = 1, D(0,j) = 1, and for the rest of the dyads D(j,k) = 0),

but the statistic ∆(j)(n + 1) is equal to 1 for history A and it is zero for history B, the statistic

∆(j)(n) is equal to 0 for history A and it is one for history B. Therefore, S(A)′β∗ − S(B)′β∗ =

βd(j, n)− βd(j, n− 1). �

3.6.4 Multinomial forward-looking model with duration dependence

Consider the general multinomial choice model in equation (7) with duration dependence and

forward-looking agents. The log-probability of a choice history ỹ conditional on θ is:

lnP (ỹ|θ) = ln pθ(y0, d1) +
T∑
t=1
αθ(yt) + σθ(yt−1, dt) + vθ(yt, dt+1)

+
T∑
t=1

1{yt 6= yt−1}βy(yt, yt−1) + 1{yt = yt−1}βd(yt, dt)

(37)

In this multinomial choice model it is possible to identify switching cost parameters without im-

posing Assumption 2. Proposition 10 establishes the identification of switching costs parameters.

PROPOSITION 10. In the multinomial forward-looking model with duration dependence under

Assumption 1, the log-probability of a choice history has the form lnP (ỹ | θ, β) = U ′gθ +S′β∗ with

U =
[
d1, y0, yT , {H(j)(d), ∆(j)(d) : j ≥ 1, d ≥ 1}

]
S =

[
D(j,k) : j, k ≥ 1, j 6= k

]
β∗ =

[
β̃y(k, j) : j, k ≥ 1, j 6= k

] (38)

U is a minimal suffi cient statistic for θ. Conditional on U , the elements in the vector of statistics S

are linearly independent such that the vector of parameters β∗ is identified. The duration dependence

parameters β̃d(j, d) are not identified. �

28



Now, in contrast to the result in Proposition 9, the vector of suffi cient statistics U includes also

the statistics {∆(j)(d) : j ≥ 1, d ≥ 1}. This implies that, without additional restrictions, we cannot

identify the duration dependence parameters β̃d(j, d). However, the dyad statistics D(j,k) are not

part of the suffi cient statistic U and they still provide identification of the parameters β̃y(k, j).

Example 10 presents a pair of histories that identifies β̃y(k, j).

EXAMPLE 10. Consider the same data and histories as in Example 9(a) but now in a forward-

looking model. That is, T = 3 and the pair of histories is A = {0, 0 | 0, j, k} and B = {0, 0 | j, 0, k}

with j, k 6= 0 and j 6= k. Using the expression for the log-probability of a choice history in equa-

tion (37) we have that lnP (A) = ln pθ(0, 0)+ αθ(0)+ αθ(j)+ αθ(k)+ 2σθ(0)+ σθ(j, 1)+ vθ(0, 0)+

vθ(j, 1)+ vθ(k, 1)+ βy(j, 0)+ βy(k, j), and lnP (B) = ln pθ(0, 0)+ αθ(0)+ αθ(j)+ αθ(k)+ 2σθ(0)+

σθ(j, 1)+ vθ(0, 0)+ vθ(j, 1)+ vθ(k, 1)+ βy(j, 0) + βy(0, j)+ βy(k, 0), such that lnP (A)− lnP (B) =

βy(k, j)−βy(0, j)−βy(k, 0) = β̃y(k, j). Therefore, in this forward-looking model we can still identify

the switching cost parameter β̃y(k, j) from lnP (0, 0 | 0, j, k)− lnP (0, 0 | j, 0, k). �

For the identification of duration dependence parameters, we impose the restriction in Assump-

tion 2. Proposition 11 presents this identification result.

PROPOSITION 11. In the multinomial forward-looking model with duration dependence under

Assumptions 1 and 2, the log-probability of a choice history has the form lnP (ỹ | θ, β) = U ′gθ+S
′β∗

with 

U =


d1, y0, yT ,{
H(j)(d), ∆(j)(d) : j ≥ 1, 1 ≤ d ≤ d∗j − 1

}
,{∑

d≥d∗j
H(j)(d),

∑
d≥d∗j

∆(j)(d) : j ≥ 1
}


S =

[
D(j,k) : j, k ≥ 1, j 6= k; ∆(j)(d∗j ) : j ≥ 1

]
β∗ =

[
β̃y(k, j) : j, k ≥ 1, j 6= k; βd(j, d

∗
j )− βd(j, d∗j − 1) : j ≥ 1

]
(39)

U is a minimal suffi cient statistic for θ. Conditional on U , the elements in the vector S are linearly

independent such that the vector of parameters β∗ is identified. �

EXAMPLE 11. Suppose that T ≥ 2d∗j + 1, let n be any integer such that d∗j ≤ n ≤ (T −

1)/2. Consider the pair of choice histories A = {0, 0 | jn−1, 0, jn+1} and B = {0, 0 | jn, 0, jn}.

Applying equation (37) to these histories, we have that lnP (A) = ln pθ(0, 0)+ αθ(0)+ 2n αθ(j)+

2σθ(0)+ 2[
∑n−1

d=1 σθ(j, d)]+ σθ(j, n)+ 2βy(j, 0)+ βy(0, j)+ 2[
∑n−2

d=1 βd(j, d)]+ βd(j, n−1)+ βd(j, n)+
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vθ(0)+ 2[
∑d∗j−1

d=1 vθ(j, d)]+ 2(n − d∗j + 1) vθ(j, d
∗
j ), and lnP (B) = ln pθ(0, 0)+ αθ(0)+ 2n αθ(j)+

2σθ(0)+ 2[
∑n−1

d=1 σθ(j, d)]+ σθ(j, n)+ 2βy(j, 0)+ βy(0, j)+ 2[
∑n−2

d=1 βd(j, d)]+ 2βd(j, n− 1)+ vθ(0)+

2[
∑d∗j−1

d=1 vθ(j, d)]+ 2(n − d∗j + 1) vθ(j, d
∗
j ), such that lnP (A) − lnP (B) = βd(j, n) − βd(j, n − 1).

Therefore, the marginal return of experience βd(j, n)−βd(j, n−1) is identified for any value n ≥ d∗j .

We can also obtain this result using the conditions in Proposition 11. The two choice histories have

the same value for the suffi cient statistic U , and it is straightforward to show that the statistic

∆(j)(d∗j ) is equal to zero in history A and equal to one in history B. �

Table 3 summarizes the identification results for the multinomial model.

Table 3
Identification of Dynamic Multinomial Logit Models

Panel 1: Models without duration dependence

Myopic Model Forward-Looking Model
Minimal Identified Identifying Minimal Identified Identifying

suffi cient stat. parameters statistics suffi cient stat. parameters statistics

T (j), ∆(j): j ≥ 1 β̃y(j, k) D(k,j): T (j), ∆(j): j ≥ 1 β̃y(j, k) D(k,j):
j, k ≥ 1 j, k ≥ 1 j, k ≥ 1 j, k ≥ 1

Panel 2: Models with duration dependence

Myopic Model Forward-Looking Model
Minimal Identified Identifying Minimal Identified Identifying

suffi cient stat. parameters statistics suffi cient stat. parameters statistics

∆(j): j ≥ 1, β̃y(j, k) D(j,k): H(j)(d) : β̃y(j, k) D(j,k):

H(j)(d) : j, k ≥ 1, j 6= k j, k ≥ 1, j 6= k j ≥ 1,d ≤ d∗j − 1; j, k ≥ 1, j 6= k j, k ≥ 1, j 6= k

j ≥ 1, d ≥ 1 and and
∑
d≥d∗j

H(j)(d) : j ≥ 1; and and

β̃d(j, d) : ∆(j)(d) : ∆(j)(d) : ∆βd(j, d
∗
j ) : ∆(j)(d∗j ) : j ≥ 1

j ≥ 1, d ≥ 1 j ≥ 1, d ≥ 1 j ≥ 1, d ≤ d∗j − 1; j ≥ 1∑
d≥d∗j

∆(j)(d) : j ≥ 1
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3.7 Identification of the distribution of unobserved heterogeneity

In empirical applications of dynamic structural models, the answer to some important empirical

questions requires the identification of the distribution of the unobserved heterogeneity. For in-

stance, the researcher can be interested in the average marginal effects
∫

[∂Pθ (y| x, β∗) /∂x] f(θ)

dθ or
∫

[∂Pθ (y| x, β∗) /∂β∗] f(θ) dθ, where f(θ) is the density function of the unobserved hetero-

geneity. Without further restrictions, the density function f(θ) is not (nonparametrically) point

identified. This is the initial conditions problem. In this section, we briefly describe this identifica-

tion problem, and two possible approaches that the researcher can take to deal with this problem

after the structural parameters β∗ have been identified: (a) nonparametric finite mixture; and (b)

set identification.

Let f(θ | x1) be the density function of θ conditional on the initial value of the state variables

x1 ≡ (y0, d1). After the identification of the structural parameters, β∗, the model implies the

following restrictions for the identification of f(θ | x1). For any choice history ỹ, we have that:

P (ỹ|x1) =

∫ [ T∏
t=1

P (yt | xt, β∗, θ)
]
f(θ|x1) dθ (40)

The probabilities of choice histories P (ỹ|x1) are identified from the data. Also, for a fixed value

of θ, the probabilities P (yt | xt, β∗, θ) are also known to the researcher after the identification of

the structural parameters β∗. Equation (40) can be seen as a system of linear equations (with a

potentially infinite dimension), and the identification of the density function f(θ|x1) is equivalent

to finding a unique solution to this system.

Let |Θ| be the dimension of the support of θ. This dimension can be infinite. Equation (40)

can be written in vector form as,

Px1 = Lx1 fx1 (41)

The term Px1 is a vector of dimension (J + 1)T × 1 with the probabilities of all the possible choice

histories with initial conditions x1. The term Lx1 is a matrix with dimension (J + 1)T × |Θ| such

that each row contains the probabilities
∏T
t=1P (yt | xt, β∗, θ) for a given choice history and for

every value of θ. Finally, the term fx1 is a |Θ| × 1 vector with the probabilities f(θ|x1). Given this

representation, it is clear that fx1 is point identified if and only if matrix Lx1 is full column rank.

If the distribution of θ is continuous, then |Θ| =∞ and Lx1 cannot be full-column rank. In fact,
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the number of rows in matrix Lx1 (i.e., the number of possible choice histories, (J + 1)T ) provides

an upper bound to the dimension of the support |Θ| for which the density is nonparametrically

(point) identified. The researcher may be willing to impose the restriction that the support of θ

is discrete, and choose the points in the support of the fixed effects, such that matrix Lx1 is full

column rank. Under this condition, fx1 can be identified as the linear projection:

fx1 =
[
L′x1Lx1

]−1
L′x1Px1 (42)

Note that the identification of β∗ is still based on a fixed-effect model that is robust to this finite-

mixture restriction on the distribution of the unobservables. However, under this approach, the

point identification of marginal effects depends on this assumption. Alternatively, the researcher

may prefer not to impose this finite support restriction and set-identify the distribution of the

unobservables. This is the approach in Chernozhukov, Fernandez-Val, Hahn, and Newey (2013).

Finally, we would like to comment on a practical issue in the identification of the finite-mixture

model described above. For the evaluation of the choice probabilities P (yt | xt, β∗, θ) in matrix

Lx1 , the vector of unobserved heterogeneity θ is multidimensional. That is, we need to choose a

grid of points for the parameters αθ(j) but also for the continuation values vθ(j, d). In the forward-

looking model without duration dependence, unobserved heterogeneity enters through the term

τθ(j) ≡ αθ(j) + vθ(j). Therefore, for this model we need to fix a grid of points for the J incidental

parameters {τθ(j) : j > 1}. Using a grid of κ points for each parameter τθ(j) we have that the

dimension of the density vector fx1 is |Θ| = κJ that should be smaller that (J + 1)T such that the

order condition of identification holds. In the forward-looking model with duration dependence,

unobserved heterogeneity enters through the term τθ(j, d) ≡ αθ(j) +vθ(j, d). Therefore, we need to

fix a grid of points for the JT incidental parameters {τθ(j, d) : j > 1; 1 ≤ d ≤ T}. Using a grid of

κ points for each parameter τθ(j, d) we have that the dimension of fx1 is |Θ| = κJT that should be

smaller that (J + 1)T . This is a strong restriction on the dimension of unobserved heterogeneity,

κ. However, this approach is not taking into account that the continuation values vθ(j, d) are

endogenous objects that can be obtained given α′θs and β
∗ by solving the Bellman equation of

the model. Taking into account this structure of the model, we can reduce substantially the

dimensionality of θ. Given a value of the J incidental parameters {αθ(j) : j > 1}, we can solve the

Bellman equation to obtain all the continuation values vθ(j, d). Therefore, the dimension of θ in
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the structural model with duration dependence is also equal to the dimension of {αθ(j) : j > 1},

as in the model without duration dependence.

4 Estimation and Inference

Since the identification is based on the conditional MLE approach, the estimator for the structural

parameters of interest will be an Andersen (1970) type of estimator. We illustrate the estimator for

the forward-looking multinomial choice model with duration dependence under Assumption 1 and

2, since estimators for the structural parameters in the other models can be defined in a similar

fashion.

4.1 Estimation of β∗ (given d∗)

Let β∗ be the vector of identified structural parameters. Let Ui and Si be the vectors of suffi cient

and identifying statistics, respectively, for observation i. The conditional MLE for β∗is defined as

the maximizer of the conditional log-likelihood function:

LN (β∗) =
N∑
i=1

Li(β∗) =
N∑
i=1

S′iβ
∗ −

( ∑
ỹ:U(ỹ)=Ui

exp
{
S(ỹ)′β∗

})
(43)

where the condition {ỹ : U(ỹ) = Ui} represents all the choice histories with the same value of U as

observation i. This log-likelihood function is globally concave in β∗, and therefore the computation

of the CMLE is straightforward using Newton-Raphson or BHHH algorithm. Using standard

arguments (Newey and McFadden, 1994), we have

√
N(β̂∗ − β∗)⇒ N (0, J(β∗)−1) (44)

The consistent estimator for the Fisher information is JN (β̂∗) = −N−1
∑N

i=1∇ββLi(β̂∗).

The main cost in the computation of this estimator comes from the calculation of the statistics

U(ỹ) and S(ỹ) for every possible choice history ỹ (in the sample or not), and from the calculation

of the sums of the terms exp {S(ỹ)′β∗} over all these possible histories. The number of possible

histories increases exponentially with the number of time periods, T . For instance, if the number

of choice alternatives is six, the number of possible choice histories is close to 8, 000 when T = 5

but it becomes larger than 60 million when T = 10. To deal with this computational burden, some

authors have proposed splitting the original histories in the data into shorter sub-histories. In the
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new transformed dataset, we have more individual histories but with a shorter time dimension, and

we treat two histories from the same individual as if they were from different individuals. This

approach is perfectly feasible for the estimation of our model. The Conditional MLE applied to

the transformed data has the same asymptotic properties as described above but it implies a loss

of effi ciency (a larger asymptotic variance) due to the splitting of the original histories.

4.2 Joint estimation of β∗ and d∗

We describe here a CML estimator for the joint estimation of (d∗, β∗). Let d∗0 represent the true value

of the parameter d∗. And let β0(n) be the true value of the parameter β(n) ≡ βd(y, n)−βd(y, n−1).

By definition, we have that β0(d∗0) 6= 0 and β0(n) = 0 for any n > d∗0. For notational simplicity,

we use β∗ and β∗0 to represent β(d∗) and and β0(d∗0), respectively. We are interested in the joint

estimation of (d∗0, β
∗
0) from the maximization of the conditional likelihood function. In particular,

for every guess of d∗, we estimate the structural parameter β∗ using a constrained CML estimator.

We then provide a BIC-based estimator for d∗.

Let LT be the equal to x(T − 1)/2y where x.y represent the floor function. For any integer n

such that 2 ≤ n ≤ LT , define the pair of histories An = {0, 0 | jn−1, 0, jT−n} and Bn = {0, 0 |

jn, 0, jT−n−1}. Then, Ui = {ỹi ∈ An ∪Bn for some 2 ≤ n ≤ LT }. Given this statistic, the condi-

tional likelihood function is:

LN (ν) =
LT∑
n=2

N∑
i=1

1{ỹi = An} ln

[
exp {ν(n)}

1 + exp {ν(n)}

]
+ 1{ỹi = Bn} ln

[
1

1 + exp {ν(n)}

]
(45)

where ν(n) is a parameter that represents the value βd(y, n)−βd(y, n−1)+
∫

[vθ(y, n+1)−vθ(y, n)]

f(θ|x1) dθ, and ν is the vector of parameters {ν(n) : n = 2, 3, ..., L}. The unconstrained likelihood

function LN (ν) is globally concave in each of the parameters ν(n). It is straightforward to show

that the unconstrained CML estimator of ν(n) is v̂(n) = ln P̂ (An) − ln P̂ (Bn), where P̂ (An) and

P̂ (Bn) are the sample frequencies N−1
∑N

i=11{ỹi = An} and N−1
∑N

i=11{ỹi = Bn}, respectively.

However, the model imposes nontrivial constraints on ν(n), which leads to a constrained CMLE.

In particular, the model implies the following relationship between the parameters ν(n) and the
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structural parameters (d∗, β∗).

ν(n) =


unrestricted if n < d∗

β∗ if n = d∗

0 if n > d∗

(46)

For a given value of d∗, let ν̂cd∗ be the constrained estimator of ν that imposes the restriction in

equation (46) such that: ν̂cd∗(n) = ν̂(n) (unconstrained) for n ≤ d∗; and ν̂cd∗(n) = 0 (constrained)

for n > d∗. Furthermore, the estimator of the structural parameter β∗ is β̂∗(d∗) = ν̂(d∗).

We now consider the estimation of d∗. Let `N (d∗) be the concentrated likelihood function

`N (d∗) ≡ LN (ν̂cd∗), i.e., the value of the likelihood given a value of d
∗ and where the parameters ν

have been estimated under the model restriction in equation (46). By definition, we have that:

`N (d∗) = N
d∗∑
n=2

P̂ (An) ln

[
P̂ (An)

P̂ (An) + P̂ (Bn)

]
+ P̂ (Bn) ln

[
P̂ (Bn)

P̂ (An) + P̂ (Bn)

]

+ N
LT∑

n=d∗+1
P̂ (An) ln

[
1

2

]
+ P̂ (Bn) ln

[
1

2

] (47)

The following Proposition 12 establishes some properties of this concentrated likelihood function.

PROPOSITION 12. (A) As N → ∞, N−1`N (d∗) converges uniformly in d∗ to its population

counterpart `0(d∗). (B) `0(d∗0) > `0(d
∗) for any d∗ < d∗0, and `0(d

∗
0) = `0(d

∗) for any d∗ > d∗0.

Therefore, d∗0 is point identified as the minimum value of d∗ that maximizes the concentrated

likelihood function: d∗0 = min{n : n ∈ arg max2≤d∗≤LT `0(d
∗)}. �

Given this result, a possible estimator for d∗0 would be the sample analog d̂∗ = min{n : n ∈

arg max2≤d∗≤L `N (d∗)}. However, this estimator has an important limitation in finite samples.

Though the population likelihood function `0(d∗) is flat for values of d∗ greater than the true d∗0,

in a finite sample this likelihood increases with d∗ and reaches its maximum at the largest possible

value of d∗. This is because any value of d∗ smaller than LT implies restrictions on the parameters

ν(n), i.e., ν(n) = 0 for n > d∗. The larger the value of d∗, the smaller the number of these

restrictions and the largest the value of the likelihood in a finite sample.

To deal with this problem we consider an estimator of d∗0 that maximizes the Bayesian Informa-

tion Criterion (BIC). This criterion function introduces a penalty that increases with the number

of free parameters {v(n)} in the model. In this model, the number of free parameters is equal to
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d∗. The BIC function is defined as:

BICN (d∗) = `N (d∗)− d∗

2
ln(N) (48)

Our estimator of d∗0 is defined as the value of d
∗ that maximizes BICN (d∗).

PROPOSITION 13. Consider the estimator d̂∗N = arg max2≤d∗≤LT BICN (d∗). As N → ∞,

P(d̂∗N = d∗0)→ 1. �

The joint estimation of (d∗, β∗) has the analogy of model selection where d∗ determines the

model dimension and β∗ is the parameter of interest. We can use standard inference for the CML

estimator for β∗ in this joint estimation method since Proposition 13 shows that d̂∗N is a consistent

estimator for d∗0. This is in the same spirit that under consistent model selection: the asymptotic

property of the estimator for parameters in the selected model is unaffected (see Pötscher, 1991).

However, Pötscher (1991) also pointed out that inference for parameters post model selection can be

problematic in finite samples if the parameter is too close to zero and the true model is not selected

with probability close to one. In our Monte Carlo experiments, we found that the probability of

selecting the true d∗0 is very close to 1.
20

5 Empirical Application

Here we revisit the model and data in the seminal article by Rust (1987). The model belongs

to the class of machine replacement models that we have briefly described in section 2. The

superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company has a fleet

of N buses indexed by i. For every bus i and at every period t, the superintendent decides whether

to keep the bus engine (yit = 1) or to replace it (yit = 0). In Rust’s model, if the engine is replaced,

the payoff is equal to −RC+ εit(0), where RC is a parameter that represents the replacement cost.

If the manager decides to keep the engine, the payoff is equal to −c0− c1(mit) +εit(1), where mit is

a state variable that represents the engine cumulative mileage, and c0 + c1(mit) is the maintenance

cost. We incorporate two modifications in this model. First, we replace cumulative mileagemit with

duration since last replacement, dit. The transition rule for this state variable is dit+1 = yit[dit+1],

such that dit ∈ {0, 1, 2, ...}. Using Rust’s actual data, the correlation between the variables mit

and dit is 0.9552. Second, we allow for time-invariant unobserved heterogeneity in the replacement

20For example, for DGP 1 with Sample B, described in Table 5, 99% of the times d̂∗N agrees with the true d∗0.
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cost, RCi, and in the constant term in the maintenance cost function, c0i. Using our notation,

the payoff function is αi(0) + εit(0) if yit = 0 (replacing the engine), and αi(1) + βd(dit) + εit(1) if

yit = 1 (keeping the engine), where αi(0) = −RCi, αi(1) = −c0i, and βd(dit) = −c1(dit).

In section 5.1, we present evidence from several Monte Carlo experiments using this model. The

purpose of these experiments is threefold. First, showing that the FE-CMLE provides precise and

robust estimates of structural parameters, even when the sample size is not large. Second, showing

that the bias of misspecifying the distribution of the unobserved heterogeneity. And third, showing

that a Hausman test, based on the comparison of the FE-CMLE and a Correlated Random Effects

MLE, has enough power to reject specifications that wrongly ignore unobserved heterogeneity, or

that misspecified its probability distribution or its joint distribution with the initial conditions of

the state variables. In section 5.2, we apply the FE-CMLE method, our procedure to estimate d∗,

and the Hausman test to the actual dataset in Rust (1987).

5.1 Monte Carlo experiments

We present experiments using simulated data from four different Data Generating Processes (DGPs).

Table 4 describes these DGPs. The difference between the four DGPs is in the specification of the

distribution of the unobserved heterogeneity for the replacement cost RCi. In DGP 1, the distrib-

ution of the replacement cost is normal with mean 8 and standard deviation 2. In DGPs 2 and 3,

this distribution has only two types. Finally, DGP 4 is a model without unobserved heterogeneity.

For each of these DGPs, we do not estimate the model using the whole sample of T = 25

periods. Instead, we construct three samples: sample A, from period 1 to 7; sample B, from period

1 to 14; and Sample C, from period 8 to 21. Therefore, we present results from 12 Monte Carlo

experiments, i.e., four DGPs times 3 samples. We analyze the effect of increasing the number of

time periods T , by comparing the experiments with sample A (with T = 7) and sample B (with

T = 14). We study the effect of the initial conditions problem by comparing the experiments for

sample B (where at t = 1 all the buses have the same initial condition, (yi0, di1) = (0, 0)) and

sample C, that is subject to the initial conditions problem.
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Table 4
Description of DGPs in the Monte Carlo experiments

Parameter / Constant DGP 1 DGP 2 DGP 3 DGP 4

αi(0) = −RCi N(µ, σ2) Two types Two types 1 type
Random draws from: µ = 8, σ = 2 RC1 = 4.5, RC2 = 9 RC1 = 8, RC2 = 9 RC = 8

λ1 = λ2 = 0.5 λ1 = λ2 = 0.5
αi(1) = −c0i 0 0 0 0

βd(d) = β d if d ≤ d∗ β = 1 β = 1 β = 1 β = 1
d∗ 3 3 3 3

Discount factor ( δ) 0.95 0.95 0.95 0.95

Initial y0, d1 0, 0 0, 0 0, 0 0, 0
Maximum T 25 25 25 25

N (number of buses) 1000 1000 1000 1000
# simulated samples 1000 1000 1000 1000

The structural parameter of interest is parameter β in the maintenance cost function, βd(d) = β

d. We apply four estimators to each of the samples: the FE-CMLE using the true value of d∗ (that

we denote as CMLE-true-d* ); FE-CMLE using the BIC estimator of d∗ (that we denote as CMLE-

BIC-d* ); an MLE that imposes the restriction of no unobserved heterogeneity (that we denote as

MLE-noUH ), and an MLE that assumes that there are two types of replacement costs and ignores

the potential initial conditions problem (that we denote as MLE-2types). We compare the bias and

variance of these estimators.21

We also implement two Hausman tests: a test of the null hypothesis of no unobserved hetero-

geneity, that compares estimators CMLE-BIC-d* andMLE-noUH ; and a test of the null hypothesis

of two-types, that compares estimators CMLE-BIC-d* and MLE-2types. We present the results

of the experiments with DGP 1 in table 5. The results with the other DGPs are presented in the

appendix.

Table 5 deals with DGP 1, with normally distributed replacement costs. The MLEs are sub-

stantially biased, especially in sample C (with the initial conditions problem) and sample B (with

large T ). When T increases there are multiple spells per bus and this implies stronger correlation

between observed durations and unobserved heterogeneity. This generates a larger bias of the MLE

21The code for this experiment is in Matlab. For the two ML estimators, we use the Nested Fixed Point Algorithm.
The maximization of the log-likelihood function applies a quasi-newton method (procedure fminunc) using the true
value of the vector of parameters as the starting value. For the MLE with 2-types, during the search algorithm we
often get a singular Hessian matrix. When this happens, we switch to the BHHH method.

38



of a misspecified model. In contrast, the biases of the CMLEs (either with true or estimated d∗)

are negligible. The BIC method provides precise estimates of d∗: in all our DGPs, the estimated

value of d∗ is equal to its true value for more than 95% of the Monte Carlo replications. As a result,

the bias of the CMLE estimator of β with estimated d∗ is very similar to the bias of the CMLE

with true d*. As expected, the CMLEs have larger variance than the MLEs, and the CMLE with

estimated d∗ has larger variance than the CMLE with true d∗. However, the CMLE-BIC-d* has

a Mean Square Error that is substantially smaller than the one of the MLE-noUH in the three

samples, and of the MLE-2types in samples B and C. In sample A, the MLE-2types has a MSE

comparable to the one of the CMLE. That is, in a DGP without initial conditions problem and

with one duration spell for most of the buses, a misspecified random effects model with only two

types has good properties. This is not longer the case in samples B and C.

Table 5
Monte Carlo Experiments with DGP 1 (Normal RCs)

Sample A (t = 1to 7) Sample B (t = 1to 14) Sample C (t = 8to 21)
Estimator Estimate(1) Estimate(1) Estimate(1)

of β Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0073 1.0086 0.1436 0.9990 1.0003 0.0801 0.9954 0.9978 0.0731

CMLE-BIC-d* 1.0073 1.0086 0.1436 0.9935 1.0001 0.1054 0.9873 0.9971 0.1146

MLE-2types 0.9778 0.9765 0.0528 0.8956 0.8962 0.0325 0.8565 0.8554 0.0308

MLE-noUH 0.6204 0.6191 0.0295 0.5842 0.5835 0.0232 0.5444 0.5439 0.0229

Frequency of Ho rejection Frequency of Ho rejection Frequency of Ho rejection
Testing with significance level with significance level with significance level

null hypothesis 1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.541 0.777 0.874 0.999 1.000 1.000 1.000 1.000 1.000

Two types 0.008 0.042 0.096 0.125 0.308 0.429 0.281 0.515 0.658

Note (1): Mean, median, and standard deviation of estimated parameter over the 1,000 replications.

Hausman test has very strong power to reject the model without unobserved heterogeneity.22

It has also substantial power to reject the model with two types in samples B and C. However, the
22Though the distribution of types in DGP 1 is continuous, the level of unobserved heterogeneity is modest. In
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rejection rates for the model with two types in sample A are practically equal to the nominal size

or significance level of the test.

5.2 Estimation using Rust’s dataset

Rust’s full sample contains a total of 124 buses that are classified in eight groups according to the

bus size and the engine manufacturer. For the estimation of the structural model, Rust focuses on

groups 1 to 4 that account for 104 buses. For every bus, the choice history in the data starts with

the actual initial condition of the engine, i.e., the first month where the engine was installed. For

these 104 buses, only 59 had at least one engine replacement. For the implementation of our FE-

CMLE, choice histories with zero replacements do not contain any useful information. Therefore,

for the CMLE we use only 59 buses. For our analysis, we consider that the frequency of the

superintendent’s decisions is at the annual level.

Table 6
Bus Engine Replacement (Rust, 1987)

Empirical distribution of histories with replacement
Frequency

Choice history Absolute % % cumulative

110111 2 3.39 3.39
111011 7 11.86 15.25
111101 7 11.86 27.12
111110 11 1864 45.76

1101111111 1 1.69 47.46
1110111111 4 6.78 54.24
1111011111 2 3.39 57.63
1111101111 7 11.86 69.49
1111110111 7 11.86 81.35
1111111011 5 8.47 89.83
1111111101 3 5.08 94.91
1111111110 2 3.39 98.30

1101110111 1 1.69 100.00

Total 59 100.00

the distribution of RCi, the coeffi cient of variation is only 25%. Continuous distributions with higher variance imply
higher rejection rates of the model with only two types.
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Table 6 presents the empirical distribution of choice histories for the 59 buses with at least one

engine replacement, of which 27 are observed during 6 years, and 32 over 10 years.

Table 7
Bus Engine Replacement (Rust, 1987)

Maximum Likelihood Estimates
Model RC β∗d ≡ −∆βd(d

∗)

βd(d) d∗ R̂C se
(
R̂C
)

β̂∗d se
(
β̂∗d

)
log-likelihood

Square root 3 28.2218 6.9110 2.0110 0.5149 -162.7081
βd(d) = β

√
d 4 16.5364 3.0438 0.7777 0.1546 -160.7515

5 12.8403 1.9959 0.4486 0.0774 -158.5760
6 10.8566 1.5247 0.3054 0.0496 -158.2108∗∗

7 9.6817 1.2821 0.2317 0.0372 -158.7021
8 8.9953 1.1623 0.1909 0.0313 -159.4693
9 8.6517 1.1183 0.1682 0.0285 -160.0868

Linear 3 18.2995 4.1695 2.0388 0.4977 -162.7529
βd(d) = β d 4 11.4552 1.9053 0.8418 0.1566 -160.9650

5 9.2473 1.2769 0.5103 0.0817 -158.8536
6 7.9817 0.9809 0.3623 0.0548 -158.8132
7 7.1859 0.8219 0.2856 0.0434 -159.7641
8 6.7030 0.7411 0.2448 0.0388 -160.9912
9 6.4612 0.7114 0.2259 0.0379 -161.9368

Square 3 13.1481 2.7300 2.1006 0.4804 -162.8699
βd(d) = β d2 4 8.7707 1.2806 0.9603 0.1628 -161.4943

5 7.3081 0.8850 0.6257 0.0921 -159.4992
6 6.3777 0.6844 0.4709 0.0673 -160.0882
7 5.7404 0.5689 0.3905 0.0583 -161.9366
8 5.3323 0.5072 0.3535 0.0578 -164.0680
9 5.1227 0.4837 0.3515 0.0636 -165.6751

Table 7 presents ML estimates of the model with three different specifications of the maintenance

cost function βd(d) according to: the value of the parameter d∗ (at which function βd(d) becomes

flat); and the functional for durations smaller than d∗, i.e., linear, quadratic, and square-root. We

report estimates of the replacement cost parameter and of the parameter β∗d ≡ βd(d∗)−βd(d∗− 1).

We consider a model with two unobserved types. However, for all the specifications, we always

converge to a model with a single type. We have tried thousands of initial values for the vector of
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parameters (i.e., RC1, RC2, λ, and βd), and we have also estimated the model using grid search.

Regardless the computational strategy, we always converge to the same estimate with only one

type. The specification of the function βd(d) that provides the maximum value of the likelihood

function is the the square-root function with a value d∗ equal to six. For this specification, the

estimate of the replacement cost parameter is R̂C = 10.8566 (s.e. = 1.5247), and the estimate of

the parameter of β∗d is β̂
∗
d = 0.3054 (s.e. = 0.0496).

Table 8 presents estimates of the parameter β∗d ≡ βd(d
∗) − βd(d∗ − 1) using the CMLE and

under different values of d∗. Given the observed histories in this dataset (as shown in Table 9), the

parameter β∗d is identified only under two possible values of d
∗ : d∗ = 3 and d∗ = 4.23 We report

the value of the concentrated log-likelihood function and of the BIC function. According to the

BIC function, the estimate of d∗ is d̂∗ = 3, and the corresponding estimator of β∗d is β̂
∗
d = 1.7009

(s.e. = 1.0244). Note also that for d∗ = 3, the estimate of β∗d is significantly different to zero for a

significance level of 10% parameter (p-value = 0.0968). In contrast, for d∗ = 4, this parameter is not

significantly different to zero for any standard significance level (p-value = 0.8446). Therefore, the

estimate d̂∗ = 3 and β̂∗d = 1.7009 is consistent with the definition of d∗ as the maximum duration

with βd(d)− βd(d− 1) different to zero.

Table 8
Bus Engine Replacement (Rust, 1987)

Fixed-Effects-Conditional Maximum Likelihood
β∗d p-value concentrated

d∗ β̂∗d se
(
β̂∗d

)
H0 : β∗d = 0 log-likelihood BIC(d∗)

3 1.7009 1.0244 0.0968 -102.1215 -108.2378

4 0.1178 0.6009 0.8446 -102.1020 -110.2571

Table 9 compares the CMLE estimate of the parameter β∗d with the corresponding MLE using

the estimates in Table 10. Given the very small sample size and the corresponding large standard

error of the CMLE estimates, we cannot reject the null hypothesis of no unobserved heterogeneity,

23To identify β∗d for d
∗ = 2, we need histories with a replacement when duration is equal to 1 (d∗ − 1). To identify

β∗d when d
∗ ≥ 5, we need histories with at least 5 years without replacement both before and after an observed

replacement. In this small sample, we do not observe these types of histories.
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despite the magnitude of the difference between MLE and CMLE estimates is important and it

generates important differences in distribution of durations.

Table 9
Bus Engine Replacement (Rust, 1987)

Hausman Test of Unobserved Heterogeneity
β̂∗d (se) β̂∗d (se)

Model MLE CMLE Hausman p-value

Square root 0.4548 (0.0739) 1.7009 (1.0244) 1.4873 0.2226

Linear 0.3623 (0.0549) 1.7009 (1.0244) 1.7123 0.1907

Square 0.3476 (0.0512) 1.7009 (1.0244) 1.7494 0.186

6 Conclusions

This paper presents the first identification results of structural parameters in forward-looking dy-

namic discrete choice models where the joint distribution of time-invariant unobserved heterogeneity

and endogenous state variables is nonparametrically specified. This unobserved heterogeneity can

have multiple components and can have continuous support. The dependence between the unob-

served heterogeneity and the initial values of the state variables is also unrestricted. We consider

models with two endogenous state variables: the lagged decision variable, and the time duration

in the last choice. We show that structural parameters that capture switching costs are identified

under mild conditions. The identification of structural parameters that capture duration depen-

dence require additional restrictions. In particular, to obtain identification of these parameters we

assume that the marginal return of an additional period of experience (duration) becomes equal to

zero after a finite number of periods.

Based on our identification results, we propose tests for the validity of restricted models without

unobserved heterogeneity or with a parametric specification of the correlated random effects. Our

Monte Carlo experiments show that the Conditional MLE provides precise estimates of structural

parameters and the specification test has strong power to reject misspecified correlated random

effects models.
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Appendix 1. Proofs

Proof of Lemma 1. We choose alternative j = 0 as the baseline. We can write the optimal

decision using utilities in deviations with respect to alternative 0. That is,

yt = arg max
j∈Y
{αθ(j)−αθ(0)+βy(j, yt−1)−βy(0, yt−1)+1{j = yt−1}βd(j, dt)+vθ(j, dt+1)−vθ(0)+εt(j)}

(A.1)

where we have imposed the restriction that βd(0, dt) = 0, that comes from assumption 1. For the

term related to the switching cost, we have that βy(j, yt−1) − βy(0, yt−1) = 1{yt−1 = 0} βy(j, 0)+∑
k 6=0 1{yt−1 = k} [βy(j, k)− βy(0, k)], and given that 1{yt−1 = 0} = 1−

∑
k 6=0 1{yt−1 = k} we can

write this expression as:

βy(j, yt−1)− βy(0, yt−1) = βy(j, 0) +
∑
k 6=0

1{yt−1 = k}[βy(j, k)− βy(0, k)− βy(j, 0)] (A.2)

As for the term associated to the return of experience, 1{yt−1 = j} βd(j, dt), note that it appears

multiplied by the dummy variable 1{yt−1 = j}. This dummy variable also appears associated

to the parameter −βy(0, j) − βy(j, 0) in equation (A.2) (note that βy(j, j) = 0). Therefore, we

cannot separately identify the parameter −βy(0, j) − βy(j, 0) and the parameters in the duration

dependence function βd(j, dt). To avoid this perfect collinearity problem, we can put together the

terms 1{yt−1 = j} [−βy(0, j)− βy(j, 0)] and 1{yt−1 = j} βd(j, dt). That is,

βy(j, yt−1)− βy(0, yt−1) + 1{j = yt−1} βd(j, dt) =
∑

k 6={0,j}
1{yt−1 = k} [βy(j, k)− βy(0, k)− βy(j, 0)]

+ 1{yt−1 = j} [βd(j, dt)− βy(0, j)− βy(j, 0)]
(A.3)

Plugging equation (A.3) into equation (A.1), we have the following reparameterization of the model:

yt = arg max
j∈Y

{
α̃θ(j) +

∑
k 6={0,j}

1{yt−1 = k} β̃y(j, k) + 1{yt−1 = j} β̃d(j, dt) + ṽθ(j, dt+1) + εt(j)

}
(A.4)

where α̃θ(j) ≡ αθ(j)−αθ(0)+ βy(j, 0); β̃y(j, k) ≡ βy(j, k)− βy(0, k)− βy(j, 0); β̃d(j, d) ≡ βd(j, dt)−

βy(0, j)− βy(j, 0); and ṽθ(j, dt+1) ≡ vθ(j, dt+1)− ṽθ(0, 0). �

Lemma 3 and Proof. The proofs of the Propositions exploits some properties or relationships

between the statistics. We summarize these properties in the following Lemma.

LEMMA 3. For any history ỹ and choice alternative j > 0, the following properties apply:

(i) H(j)(0) = 0; (ii) X(j)(0) = 0; (iii)
∑

d≥1H
(j)(d) = T (j) + 1{y0 = j} − 1{yT = j}; (iv)
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∑
d≥1X

(j)(d) = D(j,j); (v) for d ≥ 1, X(j)(d) = H(j)(d + 1) + ∆(j)(d + 1); (vi)
∑

d≥1 ∆(j)(d) =

1{yT = j} − 1{y0 = j}; and (vii)
∑

k 6=j D
(j,k) = T (j) −D(j,j). �

Proof of Lemma 3.

(i) For any j > 0, we have that 1{yt−1 = j, dt = 0} = 0 because yt−1 > 0 implies dt > 0.

Therefore, H(j)(0) =
∑T

t=1 1{yt−1 = j, dt = 0} = 0.

(ii) For any j > 0, we have that 1{yt−1 = yt = j, dt = 0} = 0 because yt−1 > 0 implies dt > 0.

Therefore, X(j)(0) =
∑T

t=1 1{yt−1 = yt = j, dt = 0} = 0.

(iii) For any j > 0,
∑

d≥1H
(j)(d) =

∑
d≥1

∑T
t=1 1{yt−1 = j, dt = d} =

∑T
t=1 1{yt−1 = y} =

T (j)+ 1{y0 = j}− 1{yT = j}.

(iv) For any j > 0,
∑

d≥1X
(j)(d) =

∑T
t=1

∑
d≥1 1{yt−1 = yt = j, dt = d} =

∑T
t=1 1{yt−1 = yt =

j} = D(j,j).

(v) First, note that yt−1 = j > 0 implies dt ≥ 1. Therefore, for any j > 0 and d ≥ 1, the

event {yt−1 = yt = j, dt = d} is equivalent to the event {yt = j, dt+1 = d + 1} for any 1 ≤ t ≤ T .

Therefore, X(j)(d) =
∑T

t=1 1{yt = j, dt+1 = d+ 1} =
∑T+1

t=2 1{yt−1 = j, dt = d+ 1} = H(j)(d+ 1)−

1{y0 = j, d1 = d+ 1}+ 1{yT = j, dT+1 = d+ 1} = H(j)(d+ 1) + ∆(j)(d+ 1).

(vi) For any j > 0,
∑

d≥1 ∆(j)(d) =
∑

d≥1 1{yT = j, dT+1 = d} − 1{y0 = j, d1 = d} =

1{yT = j} − 1{y0 = j}.

(vii) For any j ≥ 1,
∑

k 6=j D
(k,j) =

∑T
t=1

∑
k 6=j 1{yt−1 = k, yt = j} =

∑T
t=1 1{yt = j}−1{yt−1 =

yt = j} = T (j) −D(j,j). �

Proof of Proposition 1. From equation (13) we have that lnP (ỹ | θ) =
∑T

t=1yt

[
α̃θ + β̃yyt−1

]
+

(1 − yt−1) σθ(0) + yt−1 σθ(1) + y0 ln p(1|θ) + (1 − y0) ln p(0|θ), and we can write this expressions

as σθ(0) + ln pθ(0) +
[∑T

t=1yt

]
α̃θ+

[∑T
t=1ytyt−1

]
β̃y+

[∑T
t=1yt−1

]
[σθ(1)− σθ(0)] + y0 [ln pθ(1)−

ln pθ(0)]. Remember that by definition the statistic T (1) is equal to
∑T

t=1yt, and the statisticD
(1,1) is

equal to
∑T

t=1yt−1yt. Also, not that
∑T

t=1yt−1 = T (1)+y0−yT . Therefore, we can write lnP (ỹ | θ)

as T (1) [α̃θ + σθ(1)− σθ(0)] + D(1,1) β̃y+ [y0 − yT ] [σθ(1)− σθ(0)] + y0 [ln pθ(1) − ln pθ(0)]. Or

equivalently,

lnP (ỹ|θ) = y0 [ln pθ(1)− ln pθ(0) + σθ(1)− σθ(0)] + yT [σθ(0)− σθ(1)]

+ T (1) [α̃θ + σθ(1)− σθ(0)]

+ D(1,1) β̃y

(A.5)
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where we have omitted the term T σθ(0)+ln pθ(0) because it is constant over all the histories. We can

write equation (A.5) as U ′gθ+S′β∗ with U = (y0, yT , T (1)), gθ = (ln pθ(1)− ln pθ(0)+σθ(1)−σθ(0),

σθ(0) − σθ(1), α̃θ + σθ(1) − σθ(0))′, S = D(1,1), and β∗ = β̃y. For T ≥ 3, it is always possible to

find a pair of histories, A and B, with the same values for the initial condition y0, the final

choice yT , and the number of 1′s T (1), but with D
(1,1)
A 6= D

(1,1)
B such that β̃y is identified as

[lnP(A|U)− lnP(B|U)]/[D
(1,1)
A −D(1,1)

B ]. We provide examples in Example 1. �

Proof of Proposition 2. The only difference between the expression for lnP (ỹ | θ) in this

forward-looking model and in the myopic model of Proposition 1 is that now α̃θ + ṽθ replaces α̃θ

in the vector gθ. This does not have any influence in the suffi cient statistic U or the identifying

statistic S. �

Proof of Proposition 3. The log-probability of this model is:

lnP (ỹ|θ) =
T∑
t=1

yt

[
α̃θ + yt−1 β̃d(dt)

]
+ σθ(yt−1, dt) + ln pθ(y0, d1) (A.6)

We can write this log-probability as α̃θ
∑T

t=1 yt+
∑

d≥1[
∑T

t=1 ytyt−1 1{dt = d}] β̃d(d)+ σθ(0)
∑T

t=1(1−

yt−1)+
∑

d≥1[
∑T

t=1 yt−1 1{dt = d}] σθ(1, d)+ ln pθ(y0, d1). Using the definition of the statistics in

table 1, this expression becomes: T (1)α̃θ+
∑

d≥1X
(1)(d) β̃d(d)+ [T −

(
T (1) + y0 − yT

)
] σθ(0)+∑

d≥1H
(1)(d) σθ(1, d)+ ln pθ(y0, d1). We have that

∑
d≥1H

(1)(d) = T (1)+y0−yT by Lemma 3(iii).

We obtain:

lnP (ỹ|θ) = ln pθ(y0, d1) + (yT − y0) α̃θ +
∑
d≥1

H(1)(d) [α̃θ + σθ(1, d)− σθ(0)]

+
∑
d≥1

X(1)(d) β̃d(d)

(A.7)

where we have omitted the term T σθ(0) because T is constant over all the histories. Now, Lemma

3(v) establishes that X(1)(d) = H(1)(d+ 1) + ∆(1)(d+ 1). Then, we have that,

lnP (ỹ|θ) = ln pθ(y0, d1) + (yT − y0) α̃θ +
∑
d≥1

H(1)(d) [α̃θ + σθ(1, d)− σθ(0)]

+
∑
d≥1

[
H(1)(d+ 1) + ∆(1)(d+ 1)

]
β̃d(d)

= ln pθ(y0, d1) + (yT − y0) α̃θ +H(1)(1) [α̃θ + σθ(1, 1)− σθ(0)]

+
∑
d≥2

H(1)(d)
[
α̃θ + σθ(1, d)− σθ(0) + β̃d(d− 1)

]
+

∑
d≥1

∆(1)(d+ 1) β̃d(d)

(A.8)
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We can write equation (A.8) as U ′gθ+S′β∗ with U = (d1, y0, yT , H(1)(d) : d ≥ 1), S = (∆(1)(d+1) :

d ≥ 1), and β∗ = (β̃d(d) : d ≥ 1). �

Proof of Proposition 4. The log-probability of this model is:

lnP (ỹ|θ) = ln pθ(y0, d1) +
∑T

t=1 yt

[
α̃θ + yt−1 β̃d(dt) + ṽθ (dt + 1)

]
+ σθ(yt−1, dt) (A.9)

Comparing this log-probability with the one for the myopic model with duration, we can see that

the only difference is in the term
∑T

t=1 yt ṽθ (dt + 1), that can be written as
∑

d≥0
ṽθ (d+ 1) (

∑T
t=1 yt

1{dt = d}). Then, taking into account (A.8), we have:

lnP (ỹ|θ) = ln pθ(y0, d1) + (yT − y0) α̃θ +H(1)(1) [α̃θ + σ̃θ(1, 1)]

+
∑
d≥2

H(1)(d)
[
α̃θ + σ̃θ(1, d) + β̃d(d− 1)

]
+

∑
d≥1

∆(1)(d+ 1) β̃d(d)

+
∑
d≥0

ṽθ (d+ 1)
[∑T

t=1 yt1{dt = d}
]

(A.10)

where σ̃θ(1, d) ≡ σθ(1, d)− σθ(0). For the statistic
∑T

t=1 yt 1{dt = d} we can distinguish two cases:

(a) if d = 0, then
∑T

t=1 yt 1{dt = 0} =
∑T

t=1 yt (1 − yt−1) = T (1) −D(1,1); and (b) if d ≥ 1, then∑T
t=1 yt 1{dt = d} =

∑T
t=1 yt yt−1 1{dt = d} = X(1)(d). Therefore,

∑
d≥0

T∑
t=1
yt1{dt = d}vθ (1, d+ 1) =

[
T (1) −D(1,1)

]
ṽθ (1, 1) +

∑
d≥1

X(1)(d) ṽθ (1, d+ 1)

= T (1) ṽθ (1, 1) +
∑
d≥1

X(1)(d) [ṽθ (1, d+ 1)− ṽθ (1, 1)]

(A.11)

where for the second equality we have applied Lemma 3(iv), D(1,1) =
∑

d≥1X
(1)(d). Then, plugging

(A.11) into (A.10), we have:

lnP (ỹ|θ) = ln pθ(y0, d1) + (yT − y0) α̃θ +H(1)(1) [α̃θ + σ̃θ(1, 1)]

+
∑
d≥2

H(1)(d)
[
α̃θ + σ̃θ(1, d) + β̃d(d− 1)

]
+

∑
d≥1

∆(1)(d+ 1) β̃d(d)

+ T (1) ṽθ (1) +
∑
d≥1

X(1)(d) [ṽθ (d+ 1)− ṽθ (1)]

(A.12)
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From Lemma 3, we have that: (iii) T (1) =
∑

d≥1H
(1)(d)+(yT −y0); and (v) X(1)(d) = H(1)(d+1)+

∆(1)(d+ 1), and solving these expressions in (A.12), we have that:

lnP (ỹ|θ) = ln pθ(y0, d1) + (yT − y0) [α̃θ + ṽθ (1)] +H(1)(1) [α̃θ + σ̃θ(1, 1) + ṽθ (1)]

+
∑
d≥2

H(1)(d)
[
α̃θ + σ̃θ(1, d) + β̃d(d− 1) + ṽθ (d)

]
+

∑
d≥1

∆(1)(d)
[
ṽθ (d)− ṽθ (1) + β̃d(d− 1)

] (A.13)

Taking into account that
∑

d≥1∆
(1)(d) = yT − y0, we have:

lnP (ỹ|θ) = ln pθ(y0, d1) +
∑
d≥1

H(1)(d) gθ,1(d) +
∑
d≥1

∆(1)(d) gθ,2(d) (A.14)

with gθ,1(1) ≡ α̃θ + σ̃θ(1, 1) + ṽθ (1); for d ≥ 2, gθ,1(d) ≡ α̃θ + σ̃θ(1, d) + β̃d(d− 1) + ṽθ (d); and for

d ≥ 1, gθ,2(d) ≡ α̃θ + ṽθ (d) + β̃d(d− 1). �

Proof of Proposition 5. Define Z ≡
∑

d≥1∆
(1)(d)

[
ṽθ (d) + β̃d(d− 1)

]
. Under Assumption 2, we

have that ṽθ (d)− ṽθ (d∗) = 0 for any d ≥ d∗, and β̃d(d− 1) = β̃d(d
∗) for any d ≥ d∗+ 1. Therefore,

we have:

Z =
∑

d≤d∗−1
∆(1)(d) ṽθ (d) +

[ ∑
d≥d∗

∆(1)(d)

]
ṽθ (d∗)

+
∑
d≤d∗

∆(1)(d) β̃d(d− 1) +

[ ∑
d≥d∗+1

∆(1)(d)

]
β̃d(d

∗)

=
∑

d≤d∗−1
∆(1)(d)

[
ṽθ (d) + β̃d(d− 1)

]
+

[ ∑
d≥d∗

∆(1)(d)

] [
ṽθ (d∗) + β̃d(d

∗)
]

+ ∆(1)(d∗)
[
β̃d(d

∗ − 1)− β̃d(d∗)
]

(A.15)

Then, the log-probability becomes:

lnP (ỹ|θ) =
∑
d≥1

H(1)(d) gθ,1(d)

+
∑

d≤d∗−1
∆(1)(d) gθ,2(d) +

[ ∑
d≥d∗

∆(1)(d)

]
gθ,2(d

∗)

+ ∆(1)(d∗)
[
β̃d(d

∗ − 1)− β̃d(d∗)
]

(A.11)
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with gθ,1(d) ≡ α̃θ + σ̃θ(1, d) + β̃d(d − 1) + ṽθ (d), and gθ,2(d) ≡ α̃θ + ṽθ (d) + β̃d(d − 1). Note that

gθ,1(d) = gθ,1(d
∗) for any d ≥ d∗. Therefore, we have

∑
d≥1H

(1)(d) gθ,1(d) =
∑

d≤d∗−1H
(1)(d)

gθ,1(d)+
[∑

d≥d∗H
(1)(d)

]
gθ,1(d

∗), such that

lnP (ỹ|θ) =
∑

d≤d∗−1
H(1)(d) gθ,1(d) +

[ ∑
d≥d∗

H(1)(d)

]
gθ,1(d

∗)

+
∑

d≤d∗−1
∆(1)(d) gθ,2(d) +

[ ∑
d≥d∗

∆(1)(d)

]
gθ,2(d

∗)

+ ∆(1)(d∗)
[
β̃d(d

∗ − 1)− β̃d(d∗)
]

�

(A.16)

Proof of Propositions 7 and 8. For this model, the log probability is ln pθ(y0)+
∑T

t=1

∑
j 6=01{yt =

j} α̃θ(j) +
∑T

t=1

∑
j 6=0
∑

k 6=01{yt = j, yt−1 = k} β̃y(j, k)+
∑T

t=1

∑J
j=01{yt−1 = j} σθ(j). Using the

definitions of our statistics, we have that:

lnP (ỹ|θ) = ln pθ(y0) +
J∑
j=0

T (j) α̃θ(j) +
∑
j 6=0

∑
k 6=0

D(j,k)β̃y(j, k) +
J∑
j=0

[
T (j) −∆(j)

]
σθ(j) (A.17)

where ∆(j) ≡ 1{yT = j} − 1{y0 = j}. Note that T (0) = T −
∑J

j=1T
(j), and ∆(0) = 1−

∑J
j=1∆

(j),

such that:

lnP (ỹ|θ) =
J∑
j=1

1{y0 = j} ln pθ(j) +
J∑
j=1

T (j) [α̃θ(j) + σ̃θ(j)] +
J∑
j=1

∆(j) [−σ̃θ(j)]

+
∑
j 6=0

∑
k 6=0

D(j,k) β̃y(j, k)

(A.18)

with σ̃θ(j) ≡ σθ(j)− σθ(0). Note that we have omitted the term (T − 1) σθ(0) because it does not

vary over the different histories. �

Proof of Proposition 9. For this model, the log probability of a choice history is ln pθ(y0, d1) +∑J
j=1

∑T
t=11{yt = j} α̃θ(j)+

∑J
j=1

∑
k 6={0,j}

∑T
t=11{yt−1 = j, yt = k} β̃y(k, j)+

∑J
j=1

∑
d≥1
∑T

t=11{yt−1 =

yt = j, dt = d} β̃d(j, d)+
∑T

t=11{yt−1 = 0} σθ(0)+
∑J

j=1

∑
d≥1
∑T

t=11{yt−1 = j, dt = d} σθ(j, d).

Note that 1{yt−1 = 0} = 1 −
∑J

j=1

∑
d≥11{yt−1 = j, dt = d}, such that the last two terms can be

written as T σθ(0) +
∑J

j=1

∑
d≥1
∑T

t=11{yt−1 = j, dt = d} σ̃θ(j, d), with σ̃θ(j, d) = σθ(j, d)− σθ(0).
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Using the definition of the statistics in Table 1, we can write this log-probability as follows:

lnP (ỹ|θ) = ln pθ(y0, d1) +
J∑
j=1

T (j) α̃θ(j) +
J∑
j=1

∑
d≥1

H(j)(d) σ̃θ(j, d)

+
J∑
j=1

∑
k 6={0,j}

D(j,k) β̃y(j, k) +
J∑
j=1

∑
d≥1

X(j)(d) β̃d(j, d)

(A.19)

Given that T (j) = ∆(j)+
∑

d≥1H
(j)(d) and that by Lemma 3(v), for j ≥ 1 and d ≥ 1, we have that

X(j)(d) = H(j)(d+ 1)−∆(j)(d+ 1), we have that:

lnP (ỹ|θ) = ln pθ(y0, d1) +
J∑
j=1

∑
d≥1

H(j)(d) [α̃θ(j) + σ̃θ(j, d)]

+
J∑
j=1

[1{yT = j} − 1{y0 = j}] α̃θ(j)

+
J∑
j=1

∑
k 6={0,j}

D(j,k)β̃y(j, k) +
J∑
j=1

∑
d≥1

[
H(j)(d+ 1) + ∆(j)(d+ 1)

]
β̃d(j, d)

(A.20)

or

lnP (ỹ|θ) = ln pθ(y0, d1) +
J∑
j=1

∑
d≥1

H(j)(d)
[
α̃θ(j) + σ̃θ(j, d) + 1{d ≥ 2} β̃d(j, d− 1)

]

+
J∑
j=1

[1{yT = j} − 1{y0 = j}] α̃θ(j)

+
J∑
j=1

∑
k 6={0,j}

D(j,k) β̃y(j, k) +
J∑
j=1

∑
d≥1

∆(j)(d+ 1) β̃d(j, d)

(A.21)

This expression implies that lnP (ỹ | θ, β) = U ′gθ + S′β∗, with U = [d1, y0, yT , {H(j)(d) : j ≥ 1,

d ≥ 1}], S = [D(j,k) : j, k ≥ 1, j 6= k; ∆(j)(d) : j ≥ 1; d ≥ 2], and β∗ = [β̃y(k, j) : j, k ≥ 1, j 6= k;

β̃d(j, d) : j ≥ 1; d ≥ 1]. �

Proof of Proposition 10. The expression of the log-probability is similar as in Proposition 9 but

now we have the additional term
∑T

t=1ṽθ(yt, dt+1) that can be written as
∑J

j=1

∑
d≥1
∑T

t=11{yt = j,

dt+1 = d} ṽθ(j, d). Note that the statistic
∑T

t=11{yt = j, dt+1 = d} can be written as H(j)(d) +

∆(j)(d), such that
∑T

t=1ṽθ(yt, dt+1) =
∑J

j=1

∑
d≥1[H

(j)(d) + ∆(j)(d)] ṽθ(j, d). Using equation (A.21)

from the proof of Proposition 9, and adding this additional term associated to the continuation
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values, we have

lnP (ỹ|θ) = ln pθ(y0, d1) +
J∑
j=1

∑
d≥1

H(j)(d)
[
α̃θ(j) + σ̃θ(j, d) + 1{d ≥ 2} β̃d(j, d− 1) + ṽθ(j, d)

]

+
J∑
j=1

[1{yT = j} − 1{y0 = j}] α̃θ(j)

+
J∑
j=1

∑
k 6={0,j}

D(j,k) β̃y(j, k) +
J∑
j=1

∑
d≥1

∆(j)(d)
[
1{d ≥ 2} β̃d(j, d− 1) + ṽθ(j, d)

]
(A.22)

Taking into account that
∑

d≥1 ∆(j)(d) = ∆(j) for any j ≥ 1, we have

lnP (ỹ|θ) = ln pθ(y0, d1) +
J∑
j=1

∑
d≥1

H(j)(d) gθ,1(j, d) +
J∑
j=1

∑
d≥1

∆(j)(d) gθ,2(j, d)

+
J∑
j=1

∑
k 6={0,j}

D(j,k) β̃y(j, k)

(A.23)

with gθ,1(j, d) ≡ α̃θ(j) + σ̃θ(j, d) + 1{d ≥ 2} β̃d(j, d− 1) + ṽθ(j, d), and gθ,2(j, d) ≡ α̃θ(j) + 1{d ≥ 2}

β̃d(j, d− 1) + ṽθ(j, d). This expression implies that the vector of suffi cient statistics is U = [d1, y0,

yT , {H(j)(d), ∆(j)(d) : j ≥ 1, d ≥ 1}], the vector of identifying statistics is S = [D(j,k) : j, k ≥ 1,

j 6= k], and the vector of identified parameters is β∗ = [β̃y(k, j) : j, k ≥ 1, j 6= k]. �

Proof of Proposition 11. Define Z(j) ≡
∑

d≥1 ∆(j)(d)[ṽθ(j, d) + β̃d(j, d− 1)]. Under Assumption

2, for every j ≥ 1, we have that: ṽθ(j, d) = ṽθ(j, d
∗
j ) and β̃d(j, d) = β̃d(j, d

∗
j ) for any d ≥ d∗j .

Therefore,

Z(j) =
∑

1≤d≤d∗j−1
∆(j)(d) ṽθ(j, d) +

[ ∑
d≥d∗j

∆(j)(d)

]
ṽθ(j, d

∗
j )

+
∑

1≤d≤d∗j
∆(j)(d) β̃d(j, d− 1) +

[ ∑
d≥d∗j+1

∆(j)(d)

]
β̃d(j, d

∗
j )

=
∑

1≤d≤d∗j−1
∆(j)(d)

[
ṽθ(j, d) + β̃d(j, d− 1)

]
+

[ ∑
d≥d∗j

∆(j)(d)

] [
ṽθ(j, d

∗
j ) + β̃d(j, d

∗
j )
]

+ ∆(j)(d∗j )
[
β̃d(j, d

∗
j − 1)− β̃d(j, d∗j )

]
(A.24)
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Solving equation (A.24) into (A.23), we have that the log-probability becomes:

lnP (ỹ|θ) = ln pθ(y0, d1) +
J∑
j=1

∑
d≥1

H(j)(d) gθ,1(j, d)

+
J∑
j=1

∑
1≤d≤d∗j−1

∆(j)(d) gθ,2(j, d) +
J∑
j=1

[ ∑
d≥d∗j

∆(j)(d)

]
gθ,2(j, d

∗
j )

+
J∑
j=1

∑
k 6={0,j}

D(j,k) β̃y(j, k) + ∆(j)(d∗j )
[
β̃d(j, d

∗
j − 1)− β̃d(j, d∗j )

]
(A.27)

Note that gθ,1(j, d) = gθ,1(j, d
∗
j ) for d ≥ d∗j . Therefore, we have

∑
d≥1H

(j)(d) gθ,1(d) =
∑

d≤d∗j−1
H(j)(d)

gθ,1(d) + [
∑

d≥d∗j
H(j)(d)] gθ,1(d

∗
j ), such that

lnP (ỹ|θ) = ln pθ(y0, d1) +
J∑
j=1

∑
d≤d∗j−1

H(j)(d) gθ,1(j, d) +
J∑
j=1

[ ∑
d≥d∗j

H(j)(d)

]
gθ,1(j, d

∗
j )

+
J∑
j=1

∑
1≤d≤d∗j−1

∆(j)(d) gθ,2(j, d) +
J∑
j=1

[ ∑
d≥d∗j

∆(j)(d)

]
gθ,2(j, d

∗
j )

+
J∑
j=1

∑
k 6={0,j}

D(j,k) β̃y(j, k) + ∆(j)(d∗j )
[
β̃d(j, d

∗
j − 1)− β̃d(j, d∗j )

]
(A.25)

This expression implies that the vector of suffi cient statistics is U = [d1, y0, yT , {H(j)(d), ∆(j)(d) :

j ≥ 1, 1 ≤ d ≤ d∗j − 1},
∑

d≥d∗j
H(j)(d),

∑(j)
d≥d∗j

∆(j)(d)], the vector of identifying statistics is S =

[D(j,k) : j, k ≥ 1, j 6= k; ∆(j)(d∗j )], and the vector of identified parameters is β
∗ = [β̃y(k, j) : j, k ≥ 1,

j 6= k; β̃d(j, d∗j − 1)− β̃d(j, d∗j )]. �

Proof of Proposition 12. It is clear that P̂ (An) →p P0 (An) and P̂ (Bn) →p P0 (Bn) such that

the concentrated likelihood function N−1`N (d∗) converges uniformly to the function:

`0(d
∗) =

d∗∑
n=2

P0 (An) ln

[
P0 (An)

P0 (An) + P0 (Bn)

]
+ P0 (Bn) ln

[
P0 (Bn)

P0 (An) + P0 (Bn)

]

+
LT∑

n=d∗+1
P0 (An) ln

[
1

2

]
+ P0 (Bn) ln

[
1

2

] (A.26)

Lemma. Consider the function f(q) = p1 ln(q) + p2 ln(1 − q) where p1, p2, q ∈ (0, 1). This

function is uniquely maximized at q = p1/[p1 + p2].
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Taking into account this Lemma, we have that for any value of n:

P0 (An) ln

[
P0 (An)

P0 (An) + P0 (Bn)

]
+ P0 (Bn) ln

[
P0 (Bn)

P0 (An) + P0 (Bn)

]
(A.27)

≥ P0 (An) ln

[
1

2

]
+ P0 (Bn) ln

[
1

2

]
and the inequality is strict if and only if P0 (An) = P0 (Bn). Given this result, it is straightforward

to show that: `0(d∗0) > `0(d
∗) for any d∗ < d∗0; and `0(d

∗
0) = `0(d

∗) for any d∗ > d∗0. �

Proof of Proposition 13. Let n be a value of the parameter d∗ different to the true value d∗0.

Given our BIC function, we favor d̂∗N = n over d̂∗N = d∗0 if and only if BICN (n) > BICN (d∗0) and

this is equivalent to:

2 [`N (n)− `N (d∗0)] > [n− d∗0] ln(N) (A.28)

We show below that, as N → ∞, P(2 [`N (n)− `N (d∗0)] > [n− d∗0] ln(N)) → 0, and therefore,

P(d̂∗N = d∗0)→ 1.

First, we show that P(d̂∗N > d∗0)→ 0 as N →∞. By definition,

P
(
d̂∗N > d∗0

)
= P (∃n > d∗0 : 2 [`N (n)− `N (d∗0)] > [n− d∗0] ln(N)) (A.29)

Proposition 12 implies that, for any n ≥ d∗0, N
−1`N (n) →p `0(d

∗
0) and 2[`N (n) − `N (d∗0)] →d

χ2n−d∗0
= Op(1). Therefore, P

(
d̂∗N > d∗0

)
= P (Op(1) > [n− d∗0] ln(N)) that goes to zero asN →∞.

Now, we show that P(d̂∗N < d∗0) → 0 as N → ∞. We need to prove that, for any n < d∗0, the

probability that 2 [`N (d∗0)− `N (n)] < [d∗0 − n] ln(N) goes to zero as N →∞. We can write

2 [`N (d∗0)− `N (n)] = 2 [`N (d∗0)− `N (d∗0 − 1)] +

d∗0−1∑
j=n+1

2 [`N (j)− `N (j − 1)] (A.30)

Since β0(d∗0) 6= 0, classical results imply that: (a) there exist constants c and C such that cN

≤ 2 [`N (d∗0)− `N (d∗0 − 1)] ≤ CN ; and (b)
∑d∗0−1

j=n+1 2 [`N (j)− `N (j − 1)] = Op(N) for all n < d∗0,

therefore P(2 [`N (d∗0)− `N (n)] < [d∗0 − n] ln(N))→ 0 as N →∞. �

Appendix 2. Model with stochastic transition of the endogenous state variables

Consider a model with the same structure as the model in Section 2 and Assumption 1 but now

the vector of endogenous state variables is xt = (xyt , x
d
t ) and variables x

y
t and x

d
t stochastic versions
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of the variables yt−1 and dt, respectively. We now describe precisely the stochastic process of these

variables.

The support of state variable xyt is the choice set Y, and its transition rule is x
y
t+1 = fy(yt, ξ

y
t+1)

where ξyt+1 is i.i.d. over time and independent of xt. The support of state variable xdt is the

set of possible durations, {1, 2, ...,∞}, and its transition rule is xdt+1 = 1{yt > 0}[ 1 {yt = xyt }

xdt + 1 + ξdt+1], where ξ
d
t+1 has support {0, 1, ...,∞}, and it is i.i.d. over time and independent of xt.

Importantly, the stochastic shocks ξyt+1 and ξ
d
t+1 are not known to the agent when she makes her

decision at period t. Note that this model becomes our model in the main text when these shocks

have a degenerate probability distribution with p(ξyt+1 = 0) = p(ξdt+1 = 0) = 1.

Assumption 1’below is simply an extension of our Assumption 1 to this stochastic version of

the model. We omit the exogenous state variables zt for notational simplicity.

ASSUMPTION 1’. (A) The time horizon is infinite and δ ∈ (0, 1). (B) The utility function is

Πt(j) = αθ (j) + 1{j = xyt } βd
(
j, xdt

)
+ 1{j 6= xyt } βy (j, xyt ) + εt(j). (C) βy(j, j) = 0, βd

(
0, xd

)
=

0. (D) {εt(j) : j ∈ Y} are i.i.d. over (i, t, y) with a extreme value type I distribution. (E) zt

follows a time-homogeneous Markov process. (F) The probability distribution of θ conditional on

{zt,xt : t = 1, 2, ...} is nonparametrically specified and completely unrestricted. (G) xyt ∈ Y, and

xyt+1 = fy(yt, ξ
y
t+1) where ξ

y
t+1 is i.i.d. over time and independent of xt; x

d
t ∈ {0, 1, ...,∞}, and

xdt+1 = 1{yt > 0}[ 1 {yt = xyt } xdt + 1 + ξdt+1], where ξ
d
t+1 has support {0, 1, ...,∞}, and it is i.i.d.

over time and independent of xt. �

The model has the following integrated Bellman equation:

Vθ (xt) = ln

∑
j∈Y

exp
{
αθ (j) + β (j,xt) + δ Eξt+1

[
Vθ

(
fy(j, ξ

y
t+1), 1 {j = xyt }xdt + 1 + ξdt+1

)] }
where Eξt+1(.) the expectation over the distribution of (ξyt+1,ξ

d
t+1). Let vθ,t be the continuation

value function δ Eξt+1 [Vθ
(
fy(j, ξ

y
t+1), 1 {j = xyt }xdt + 1 + ξdt+1

)
] . Under our assumptions on the

distribution of (ξyt+1,ξ
d
t+1), the continuation value function has very similar properties as in the

model with a deterministic transition of the endogenous state variables. More specifically, (a) it

depends only yt and 1 {yt = xyt }xdt + 1, i.e., vθ,t = vθ(yt, 1 {yt = xyt }xdt + 1); (b) If yt 6= xyt , then

vθ,t = vθ(yt, 1); (c) If yt = xyt , then vθ,t = vθ(yt, x
d
t + 1); and (D) if xdt ≥ d∗y − 1 and yt = xyt , then

vθ,t = vθ(yt, d
∗
y).
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Appendix 3. Monte Carlo Experiments for DGPs 2, 3, and 4.

Table A.1 presents results under DGP 2, with two types of replacement costs, RC1 = 4.5 and

RC2 = 9, with equal probabilities. In this case, the MLE-2types and our CMLEs are consistent

estimators. Both estimators have negligible finite-sample biases in the three samples. As expected,

the MLE-2types has smaller variance, especially in sample A. In the three samples, the MLE-noUH

is still extremely biased and the Hausman test that compares this estimator with CMLE-BIC-d*

has strong power to reject the model without unobserved heterogeneity. For the rejection of the

true model with two types, Hausman test exhibits a rejection rate that is practically identical to

the nominal size or significance level.

Table A.1
Monte Carlo Experiments with DGP 2 (Two types: RC = 4.5, 9)

Sample A (t = 1to 7) Sample B (t = 1to 14) Sample C (t = 8to 21)
Estimator Estimate(1) Estimate(1) Estimate(1)

of β Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0094 1.0060 0.1598 1.0027 1.0033 0.0813 0.9992 0.9948 0.0813

CMLE-BIC-d* 1.0094 1.0060 0.1598 0.9952 1.0025 0.1216 0.9886 0.9941 0.1384

MLE-2types 1.0018 0.9990 0.0513 1.0007 1.0001 0.0289 0.9954 0.9941 0.0288

MLE-noUH 0.5556 0.5557 0.0229 0.5283 0.5284 0.0156 0.5009 0.5004 0.0146

Frequency of Ho rejection Frequency of Ho rejection Frequency of Ho rejection
Testing with significance level with significance level with significance level

null hypothesis 1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.590 0.820 0.902 1.000 1.000 1.000 1.000 1.000 1.000

Two types 0.005 0.044 0.094 0.005 0.054 0.096 0.005 0.047 0.107

Note (1): Mean, median, and standard deviation of estimated parameter over the 1,000 replications.

Table A.2 deals with DGP 3, that has also two types of replacement costs, but now these

types are very similar: RC1 = 8 and RC2 = 9, with equal probabilities. The main purpose of

the experiments with this DGP is to investigate the bias of the MLE-noUH and the power of this

Hausman test in an scenario with a very modest amount of unobserved heterogeneity. Even in this
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scenario, for samples B and C, the bias of the MLE-noUH is approximately 5% of the true value

of the parameter, and the Hausman test rejects the null hypothesis of no unobserved heterogeneity

with probability that is more than twice the nominal size of the test.

Table A.2
Monte Carlo Experiments with DGP 3 (Two types: RC = 8, 9)

Sample A (t = 1to 7) Sample B (t = 1to 14) Sample C (t = 8to 21)
Estimator Estimate(1) Estimate(1) Estimate(1)

of β Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0088 1.0058 0.1371 1.0014 1.0035 0.0744 0.9978 0.9957 0.0726

CMLE-BIC-d* 1.0088 1.0058 0.1371 0.9905 1.0026 0.1313 0.9923 0.9941 0.1040

MLE-2types 1.0111 1.0064 0.0626 1.0026 1.0012 0.0374 0.9990 0.9982 0.0389

MLE-noUH 0.9628 0.9609 0.0451 0.9576 0.9564 0.0317 0.9501 0.9492 0.0334

Frequency of Ho rejection Frequency of Ho rejection Frequency of Ho rejection
Testing with significance level with significance level with significance level

null hypothesis 1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.014 0.057 0.117 0.031 0.088 0.163 0.032 0.121 0.187

Two types 0.014 0.051 0.104 0.008 0.053 0.100 0.009 0.065 0.115

Note (1): Mean, median, and standard deviation of estimated parameter over the 1,000 replications.

Finally, Table A.3. presents results of experiments under DGP 4 where there is not unobserved

heterogeneity and RC = 8. The purpose of these experiments is to study possible biases in the size

of Hausman test for the null hypothesis of no unobserved heterogeneity. We can see that, for the

three samples, the size of this test is very close to the nominal size.
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Table A.3
Monte Carlo Experiments with DGP 4 (No UH, RC = 8)

Sample A (t = 1to 7) Sample B (t = 1to 14) Sample C (t = 8to 21)
Estimator Estimate(1) Estimate(1) Estimate(1)

of β Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0030 1.0029 0.1237 0.9979 0.9942 0.0660 0.9994 0.9994 0.0660

CMLE-BIC-d* 1.0030 1.0029 0.1237 0.9900 0.9937 0.1140 0.9889 0.9986 0.1201

MLE-2types 1.0203 1.0156 0.0513 1.0070 1.0063 0.0312 1.0079 1.0061 0.0318

MLE-noUH 1.0011 1.0004 0.0414 1.0001 0.9990 0.0293 1.0017 1.0005 0.0302

Frequency of Ho rejection Frequency of Ho rejection Frequency of Ho rejection
Testing with significance level with significance level with significance level

null hypothesis 1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.007 0.045 0.094 0.009 0.05 0.097 0.014 0.052 0.108

Two types 0.008 0.056 0.104 0.012 0.063 0.109 0.019 0.053 0.107

Note (1): Mean, median, and standard deviation of estimated parameter over the 1,000 replications.
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