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Abstract

Using rich product level data on prices and quantities of both in-
puts and outputs at the establishment level for Colombia, we develop a
methodological approach to decomposing sales and output growth over
an establishment’s life cycle. Our approach brings together strands of
the literature that have either focused on the relative roles of broadly
defined productivity vs. wedges using data on revenue and input ex-
penditure, or on the roles of cost vs. demand-side components of pro-
ductivity using data on prices and quantities of output. Our findings
show that the literature using just price and quantity data on output
understates the role of cost and productivity factors in accounting for
sales volatility especially at young ages. The reason is that such ap-
proaches implicitly combine the role of wedges that dampen volatility
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with cost and technology factors that exascerbate volatility. At the
same time, our inferences about the respective role of fundamentals
and wedges are quite different from those drawn from revenue and
input data alone. Use of the latter (which is the common approach in
the literature) yields a substantial overstatement of the contribution
of role of wedges in accounting for sales growth volatility. We find that
at young ages, technology and demand shocks are about equally im-
portant in accounting for variability in sales growth volatility but the
latter is dampened by wedges that are positively correlated with these
fundamentals. As plants age, wedges have a less dampening effect.
Moreover, demand differences increasingly dominate sales volatility
for older plants. The dominance of demand is driven by superstar
plants that are in the top quartile of life cycle growth.
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1 Introduction

Robust firm size and firm growth distributions are key features of develop-
ment: within narrowly defined sectors, firms in richer countries are larger
and grow faster than their counterparts in less developed economies, with
differences concentrated in the tails of the respective distributions.! Having
businesses that grow such as those in India or China rather than as those in
the US is associated with an aggregate TFP differential as large as 25 percent
(Hsieh and Klenow, 2014). Understanding the determinants of firm growth
and size is thus crucial to our understanding of development.

Research on this question has been constrained by data availability. One
strand of the literature uses revenue and input data to decompose firm growth
into the contributions of productivity vs. residual wedges, or alternatively,
productivity vs. markups (Hsieh and Klenow, 2014; De Loecker et al, 2015).
Another branch uses detailed information on prices and quantities of the
goods produced by the firm to separate growth into that attributable to
cost shocks and demand shocks (Hottman, Redding and Weinstein, 2016).
Wedges in the latter approach are subsumed into residual cost shocks, while
the former approach lumps demand shocks and cost shocks from technical
efficiency into "productivity", and cost shocks from input prices into wedges.

!See, e.g. Bento and Restuccia (2017, 2018) ; Hsieh and Klenow (2014), Eslava, Halti-
wanger and Pinzén (2018).



Bringing both approaches together to separate the role of these different com-
ponents requires simultaneous access to data on prices, quantities and values
for both inputs and outputs, and a structure suitable to take advantage of
this data. In the context of explaining life cycle growth, further availability of
these detailed data for long periods of time for each business unit is required.

Put differently, the paucity of firm-level price and quantitity data on both
outputs and inputs has implied that the inferences on the role of productivity,
demand and wedges in the literature has relied on a high ratio of assumptions
to data. Omne of the common simplifying assumptions is constant returns
to scale in production. An alternative is that estimation methods that in
fact yield elasticities of the revenue function are assumed to be proxies for
the needed elasticities of the production function. In a related way, it is of-
ten assumed that the production technology can be inferred without jointly
specifying and inferring the structure of demand. However, particularly for
multi-product firms, defining and measuring real output and inputs at the
firm-level requires computing a firm-level price index for both outputs and in-
puts. Following the insights of Hottman, Redding and Weinstein (2016) and
Redding and Weinsten (2018), this implies that a nested demand structure
must be specified at the product-level within firms to enable construction of
such firm-level price indices.

We develop a conceptual, measurement and estimation structure that
overcomes these limitations by taking advantage of uniquely rich data that
tracks product-level outputs and input prices and quantities within plants
over time. Our novel approach shows that integrating these different di-
mensions of data is crucial to inferences regarding the role of wedges and
fundamentals in explaining the life cycle growth of output and sales as well
as the relative importance of demand vs. cost factors in sales and output
volatlity. For this purpose, we use the Colombian Annual Manufacturing
Survey which is a census of non-micro Colombian manufacturing plants with
data on quantities and prices, at the detailed product class for outputs and
inputs within plants. Individual plants can be followed for up to thirty years
(1982-2012). The availability of price and quantity data for both outputs and
inputs at the product level permits separate measurement of fundamental at-
tributes of plants on the technology, the demand, and the cost sides, as well
as idiosyncratic markups. By technology or technical efficiency we refer to a
production function residual, where production is plant-level revenue deflated
with a quality adjusted plant-level deflator. We will refer to this technical ef-



ficiency dimension as TF PQ, as in Foster, Haltiwanger and Syverson (2008)?
On the demand side, we estimate plant-specific demand function residuals,
that identify greater appeal/quality as the ability to charge higher prices
for one unit of the same product. Input costs are directly measured from
input price data. Our specification of demand and competition allows for
idiosyncratic markups that vary with the plant’s market share and with the
elasticity of substitution in the plant’s sector. With all of these elements at
hand, we measure the contribution of each to the variability of sales growth.
Wedges, defined by the gap between actual size at any point of the life cycle
and size implied by the different fundamentals in a frictionless benchmark at
that point, can also be identified once fundamentals are measured.?

Key to our approach is the construction of plant-level price indices, which
allows measuring output as deflated revenue. Our demand function and
exact price index are derived following Hottman et al’s (2016) modelling
of preferences. To construct the theoretical price index relying solely on
observable price and quantity data, we follow Redding and Weinstein’s (2018)
recent Unified Price Index approach.

Our approach requires, and the richness of the data permits, estimating
the parameters of the production and demand functions for each sector both
to obtain TFP() and appeal as residuals of these functions. We introduce
an estimation technique that jointly estimates the production factor elastic-
ities and the elasticity of demand for plants, bringing together insights from
recent literature on estimating production functions using output and input
use data,! and literature on estimating demand functions using P and
data.” As in the former, we rely on assumptions regarding the dynamics of

’In contrast to Foster et al’s application to producers of one homogeneous good, we
use the term TF PQ in the context of multiproduct plants and potentially heterogeneous
products, where product is a quality-adjusted bundle of quantities of differentiated goods,
operationalized as deflated revenue. Hsieh and Klenow (2009, 2014) also use the term
TFPQ, but they use it to refer to a composite productivity measure that lumps together
technical efficiency and demand shocks. We refer to this composite concept further below
as TFPQ HK , as a reference to Hsieh and Klenow. Haltiwanger, Kulick and Syverson
(2018) explore properties of TFPQ HK using U.S. data.

3These wedges are also frequently termed “distortions”, but we prefer the former term
since the idiosyncratic gaps we identify may represent sources of productivity or welfare
loss that even the social planner would incur, as they may stem from constraints more
technological in nature, such as adjustment costs.

te.g. Ackerberg, Caves and Frazer (2015); De Loecker et al. (2016)

°E.g. Hottman, Redding and Weinstein (2016); Foster, Haltiwanger and Syverson



input use and input prices to form moments that identify production func-
tion coefficients. As in the latter, we rely on supply shocks to identify the
slope of the demand function. But, in contrast to much of that literature, we
identify the slope of the demand function by assuming that current period
innovations to technology are orthogonal to lagged demand shocks. In this
way, we allow T'F'P() and demand to be correlated if for instance, as plausi-
ble, higher quality is more difficult to produce, or investments in improving
fundamentals depend on previous profitability. Estimating production and
demand jointly ensures consistency and thus proper separate identification
of revenue vs. production parameters.

We find that exploiting price and quantity data for both outputs and
inputs yields distinct inferences relative to the different strands of the liter-
ature decomposing sources of sales volatility. Using price and quantity data
on outputs alone yields an understatement of cost and technology factors
in accounting for sales volatility because wedges and cost/technology factors
are lumped together, and wedges in our context turn out to be negatively
correlated with fundamentals. Alternatively, using revenue and input data
alone overstates the contribution of wedges for sales volatility for multiple
reasons including mis-estimation of the relevant demand and output elastici-
ties and missing the distinction between input price shocks and wedges.In our
results, input price variability explains most of the contribution of wedges
that would be estimated without explicit account of input prices. Moreover,
the estimated contribution of wedges depends crucially on the curvature of
the revenue function. Our ability to estimate of the parameters of the rev-
enue function for the particular application and for each sector turns out
to be quantitatively important: when imposing common parameters, wedges
are substantially underestimated for sectors where the revenue function has
close to constant returns to scale and overestimated for sectors where the
revenue function displays more marked curvature. Because the bias is quan-
titatively larger in the former cases, imposing common parameters leads to
an underestimation of the role of wedges.

Post entry growth is highly dispersed and skewed in our data, as it is in
other contexts (e.g. Decker et. al. (2014,2016)). Our focus is on decom-
posing the substantial variance in growth across plants at different stages of
the life cycle. By age 25, top quartile plants have multiplied their sales by
a factor of 7.6 relative to their birth; for this group, sales would have grown
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ten-fold in the absence of wedges. Of growth explained by technology and
demand-side fundamentals in this group, more than two thirds is attributable
to rapidly growing product demand/appeal and the remaining 1/3 to rising
technical efficiency. These patterns contrast with the lower quartiles of sales
growth. Most noticeably, while superstar plants are held back by wedges es-
pecially early in their life cycle, plants in the lowest two quartiles are propped
up by wedges. That is, wedges are strongly size-correlated. Moreover, the
third quartile exhibits sales growth from product appeal/demand that is less
than half of the top quartile and no growth attributable to rising technical
efficiency. Plants in the lowest two quartiles barely exhibit appeal growth
and display sharp efficiency decreases. Our findings of a dominant role of
demand shocks in accounting for life cycle growth is consistent with Foster,
Haltiwanger and Syverson (2008, 2016). However, our results imply (at least
for Colombia) that this is being driven by the superstar plants (top quartile)
where rising demand is especially dominant.

The wide dispersion in sales and output growth is mostly accounted for
by dispersion in fundamentals, rather than wedges, with T'F'P() and demand
shocks both playing a crucial role. Pooling all ages and allowing wedges to be
correlated with fundamentals, measured fundamentals account for more than
100% of the variability of revenue and output relative to birth level, reflecting
the mentioned fact that wedges dampen growth relative to what is implied
by fundamentals. For sales growth, over 90% of the combined contribution
of TFPQ and demand is from between plant variation in demand/appeal.
The much greater contribution of demand/appeal to sales volatility over the
life cycle is consistent with the Hottman et. al. (2016) finding of a dominant
role for demand in accounting for the variance of sales in the cross section.
We show this finding emerges naturally from our theoretical model where
sales (PQ) is directly interpretable as a quality/appeal adjusted measure of
output (Q).

Correlated wedges such as the ones we find may have different sources
including the adjustment costs, financial frictions and size dependent dis-
tortions. If measured wedges completely reflected factors correlated with
fundamentals then a reduced form regression of output and sales growth on
fundamentals would account for all of the variation. However, when we esti-
mate such reduced form regressions and conduct an accompanying reduced-
form decomposition of output and sales growth on fundamentals we find an
important residual that accounts for about 50% of output growth volatility
and 40% of sales growth volatility over the life cycle. This noise component
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of wedges is more important for young as opposed to mature plants. Thus,
young plants face both greater dampening of growth volatility due to cor-
related wedges and more random volatility of growth due to uncorrelated
wedges.

Our research brings together previous approaches that have estimated the
contribution of subsets of the determinants of growth that we consider. The
richness of the data allows us to rely on a structure that is less restrictive than
that in each of those individual approaches. A large literature starting with
the seminal work by Hsieh and Klenow (2009) investigates the role of wedges
using data on revenue and input payments, imposing Cobb-Douglas technol-
ogy with constant returns to scale, homogeneous input prices, and a CES
demand structure under monopolistic composition. Under these assump-
tions, a composite measure of technical efficiency and appeal can be inferred
from revenue data, and all dispersion in average revenue products of inputs
is attributed to wedges. By incorporating price and quantity data for both
inputs and outputs, we can measure efficiency and appeal independently, and
relax the assumptions of constant returns to scale in production and monop-
olistic competition, allowing average revenue product variation from sources
other than wedges and incorporating idiosyncratic markups. We are also
able to estimate demand elasticities directly and allow for heterogeneity in
demand and production parameters across finely defined sectors, an ability
that turns out to be crucial for quantitative results on the role of wedges.

Information on P and () has been previously used by Hottman et al
(2016) to assess the role of cost-side vs. demand-side fundamentals in rev-
enue growth, in the context of structure where the demand plus supply factors
account for sales volatility completely (i.e. there is no margin for wedges).
While we rely heavily on their nested plant-product approach to model de-
mand and markups, the richness of our data allows for a much more detailed
analysis of the supply side. In particular, our research adds to theirs by
combining price and quantity output data with input use data, which opens
the door for wedges between fundamentals and outcomes, and allows decom-
posing marginal costs into technology and input prices.

Price and quantity information in combination with data on input use
has been previously used by De Loecker et al (2016) to decompose prices
into marginal costs and markups. Markups, expressed as the ratio between a
flexible factor’s elasticity in production and its cost share, are obtained tak-
ing advantage of the fact that the detailed quantity data allows the authors
to properly estimate production (rather than revenue) factor elasticities. To
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deal with the difficulty of aggregating quantities of different products, the
authors estimate production functions relying solely on the information for
uniproduct plants. Our research contributes to that literature by providing
an approach to aggregate multiple product lines into a measure of output
for a multiproduct business. In doing so, our approach highlights the need
for relying on explicit assumptions about the structure of demand (prefer-
ences) to measure output for a multiproduct firm. Specifying preferences over
heterogeneous products allows the researcher not only to define the concept
of output for multiproduct firms, but also to establish proper comparisons
across businesses producing different goods, even in the case of uniproduct
businesses.

Much of the focus in trying to understand the reasons behind slow post-
entry productivity growth, and consequenty the focus on designing policy
interventions to address such slow growth, has been on dimensions external
to the business (our wedges), such as institutions that discourage growth.
Our results highlight that, alongside wedges, the dimensions internal to busi-
nesses are at least as important. On this internal side, the focus has fre-
quently been on efforts conducive to improvements in technical efficiency.
For instance, research on managerial practices that impact productivity has
focused on production processes and employee management (e.g. Bloom and
Van Reenen, 2007; Bloom et al. 2016). Our approach highlights the mul-
tidimensional character of growth drivers that are internal to the business,
including the appeal to costumers and input prices potentially affected by
its decisions. Our results align with those in Atkin et al (2016) and Atkin et
al (2019) in pointing at quality as crucial driver of business growth, and at
the fact that quality improvements may impose costs in terms of technical
efficiency.

The paper proceeds as follows. Section 2 presents our conceptual frame-
work, defining each of the plant fundamentals that we characterize, and
our approach to decompose growth into contributions of those fundamental
sources as well as wedges. We then explain the data used in our empiri-
cal work, and the approach we use to measure fundamentals, including the
joint estimation of the parameters of production and demand, respectively
in sections 3 and 4 . Results and comparisons of our results with previous
approaches are presented in section 5. Section 6 examines the robustness of
our results to using previous approaches and discusses the value added of
ours. Section 7 concludes.



2 Decomposing firm growth into fundamen-
tals vs wedges

We start with a simple model of firm optimal behavior given firm fundamen-
tals, to derive the relationship that should be observed between size growth
and growth in fundamentals as a firm ages. We also permit firm size to be
impacted by wedges. For consistency with the literature on business dynam-
ics, in our theoretical analysis we refer to a business as a “firm”, even though
the unit of observation for our empirical work is an establishment or plant.
The main fundamentals we consider are the efficiency of the firm’s produc-
tive process (which we term T'F PQ) as in Foster, Haltiwanger and Syverson,
2008) and a demand shock. The conceptual framework below makes clear
what we mean by each of these, and the sense in which they are “fundamen-
tals”. Beyond measuring T'F'P() and demand shocks, we observe unit prices
for inputs, in particular material inputs and labor.

In the model, the firm chooses its size optimally given T F P(), demand
shocks, input prices and wedges. As a result, growth over its life cycle is
driven by growth in each of them. This is the basis of our analysis. In the
spirit of a growth accounting exercise the framework remains silent about
the sources of growth of fundamentals, and rather asks how the firm adjusts
its size given those fundamentals, and contingent on survival.® However,
we do explore the relationship between fundamentals and wedges. In the
appendix, we also explore the relationship between proxies for investment in
innovation and lagged fundamentals in our robustness analysis below. We

For instance, the seminal models of Hopenhayn (1992) and Melitz (2003), and much of
the work that has since followed in Macroeconomics and Trade. Endogenous productivity-
quality growth has made its way to these models more recently (e.g. Atkenson and
Burstein, 2010; Acemoglu et al. 2014; Hsieh and Klenow, 2014; Fieler, Eslava, and Xu,
2016). The firm’s efforts to strengthen demand may include investments in building its
client base (Foster et al., 2016), and adding new products and/or improving the quality
of its pre-existing product lines. Those to strangthen T'F PQ) may include better manage-
ment of the production process (e.g. Bloom and Van Reenen, 2007) or acquiring better
machines. The results of our decomposition shed light on the relative role and character-
istics of each of these accumulation processes, useful for providing guidance about future
research that explores the determinants of these fundamentals. We also do not formally
model the exit decision in the analysis below. Formally, adding this margin would be
straightforward as each period the firm would choose whether or not to continue based on
present discounted value considerations net of any fixed cost of operations (which we do
not explicitly model). Our analysis, contingent on the stay decision, would still be valid.



focus on decomposing the determinants of surviving firms up to any given age
but include robustness analysis of the determinants of survival in appendix
H. Appendix H shows that our main results are robust to consideration of
selection issues.

We don’t explicitly model adjustment frictions but take the shortcut in
recent literature on misallocation to permit wedges or distortions between
frictionless static first order conditions and actual behavior (e.g. Hsieh and
Klenow, 2009). Such distortions and wedges might capture factors such as
adjustment frictions, technological frictions, and distortions arising from reg-
ulation.” This shortcut enables us to use a simple static model of optimal
input determination to frame our analysis of growth between birth and any
given age. We permit the wedges or distortions to vary by firm age which
could be viewed as a proxy for permitting adjustment frictions to vary by
firm age.

2.1 Firm Optimization

Consider a firm indexed by f, that produces output @) using a composite
input Xy, to maximize its profits, with technology

Qpe = ApX}, = ap A X5, (1)

Ay, is the firm’s technical efficiency, TF' P(), which has an aggregate and
an idiosyncratic component (A; and ay), while v is the returns to scale
(in production) parameter. Equation (1) defines as, as the (idiosyncratic)
efficiency of the productive process: how much output the firm obtains from
a unit of a basket of inputs. Firm f may be uni- or multi-product. Section
2.2 below discusses the definition of output () for multi-product firms.

We use a CES preference structure (specified in more detail below) that
yields demand at the firm level to be given by:

Py = DpQ = Did Q7 (2)

"This shortcut has limitations as the idiosyncratic distortions that we permit don’t
provide the discipline that formally modeling dynamic frictions imply. See, e.g., Asker,
Collard-Wexler and DeLoecker (2014), Decker et. al. (2017) and Haltiwanger, Kulick and
Syverson (2018). But it has the advantage in subsuming in a simple measure different
types of frictions and distortions.
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where Dy; is a demand shifter, and o is the elasticity of substitution between

1/c0
firms . Dy, has aggregate and idiosyncratic components D, = P, <%> and

dg, respectively. Ej is aggregate (sectoral) expenditure, and the aggregate
1
(sectoral) price index is given by P, = <Z§V£ ) d?tP;t_"> "7 where Ny is the
number of firms in the sector.
Firm appeal dy; is measured from equation (2) as the variation in firm
price holding quantities constant, beyond aggregate effects. We refer to dy,
generically as the firm’s (idiosyncratic) demand shock, intuitively capturing

quality /appeal. Notice also that, multiplying (2) by Q@ :

o—1

1-1 -
Rpp = DydpQp 7 = Dy (Q%) (3)

where Q?t is quality-adjusted output defined as dji‘tj Q- The idiosyncratic
component of sales is, thus, driven by quality adjusted output. Using the
CES preference structure discussed in more detail below, from which demand
equation 2 can be derived, it is apparent that idiosyncratic firm sales are
closely linked to consumer welfare. As a result, the distribution of firm sales
growth is the central focus of our analysis, although we also apply our analysis
to real output.

Putting together technology and demand, the firm chooses its scale X,
to maximize profits®

7(1—

1-1 z
Maz (1 =75) PpQpe = CpeXyo = (1= 750) DyeAg, “ Xy o) _ CrXpe

taking as given Ay, Dy, and unit costs of the composite input, Cf,.
There may be idiosyncratic revenue wedges 7y, that create a gap between
a firm’s actual scale and that which would be implied by its fundamentals.’
Such wedges capture, for instance, adjustment costs, product-specific tariffs,
financing constraints and size-dependent regulations or taxes. Adjustment

8Recall this is the characterization of the optimal size conditional on the firm deciding
to operate in the current period.

9As in Restuccia and Rogerson, 2009 and Hsieh and Klenow, 2009. Further below,
we also consider factor-specific distortions that, for given choice of X;;, affect the relative
choice of a given input with respect to others.
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costs break the link between actual adjustment and the “desired adjust-
ment”.!% Financing constraints may similarly limit the ability of the firm to
undertake optimal investments, and force it to remain smaller than optimal
and even potentially exit the market during liquidity crunches even if its
present discounted value is positive.!’ The resulting 7 may be randomly
distributed across plants or correlated with plant fundamentals themselves.
By their very nature, adjustment costs and financing constraints are typ-
ically correlated with plant fundamentals. Size-dependent regulations are
a prominent example of correlated wedges, though certainly not the only
one.'? In estimating the role of wedges as determinants of life-cycle growth,
we distinguish between wedges that are orthogonal to fundamentals and those
potentially correlated with them.

We allow firms to hold market power, so that a firm’s market share may
be non-negligible. This also implies that in choosing its optimal scale, a firm
does not take as given the aggregate price index, F;. Under these condi-
tions and the CES demand structure developed in section 2.2, variability in
markups across firms stems from market power (i.e., firms take into account
their impact on sectoral prices):

o 1
(0 —=1) (1= sy)

Where i, is the firm’s markup and sy; = %’:f (proof: Appendix D). As in
Hsieh and Klenow (2009, 2014), marginal cost is defined inclusive of wedges,

so that u; = % where C'T is total cost.
QT

(4)

Hpe =

Profit maximization yields optimal input demand X, = i) "
re(1=7re

which is then used to obtain optimal output and sales as functions of funda-
mentals (Dy,, Ay, and Cf,), wedges 7, and parameters. Subsequently divid-
ing each optimal outcome in period ¢ by its optimal level at birth (t = 0), we
obtain (see Appendix B for a proof):'?

10See, for instance, Caballero, Engel and Haltiwanger (1995, 1997), Eslava, Haltiwanger,
Kugler, and Kugler (2010).

" Gopinath et al. (2017), Eslava et al. (2018)

12E.g. Garcia-Santana and Pijoan-Mas (2014) and Garicano et al. (2016).

13There is some slight abuse of notation here as ¢ is used for calendar time and then for
every firm we create our life cycle measures by dividing its outcomes and determinants at
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% _ <%)’YH1 (%>1+’W€2 (pmft>—¢li1 <%>—5H1 (ﬂ)_’wﬂxx (5)
Qo do afo pm o W o Hfo tf

B ()" ()" () ) ) T
Ro do ajo pmo Wio Ko A
(6)

¢

B«

where we have further assumed Xy = K fZLJZ 1 SO that Cy; is the
corresponding Cobb-Douglas aggregate of the growth of different input prices,
, among which two are observed in the data: the price of material inputs,
Pmy,, and average wage per worker, Wy. We allow for potential factor-
specific wedges, lumped with revenue wedges and measurement error in y ft.14
As noted above, dy; and ay, are the idiosyncratic components of D, and Ay;.
Similarly, pmy; and wy; are the idiosyncratic components of Pmy, and Wy;.

. D\ (4, FEs2 o\ T

Aggregate components are lumped into y, = <D—é> (A—é) (O—;) .
Equations (5) and (6) are the focus of our analysis. We start with
the growth of (idiosyncratic) fundamentals that we can measure. Among
these,dd%, %, Z—%, z—;g, % are, respectively, life cycle growth in idiosyn-
cratic demand shocks, TF P@) , markups, and shocks to wages and material
input prices. Crucially, x;, captures idiosyncratic wedges, including those
stemming from 7, 73, and 7%, from the unobservability of the user cost of
capital, and from residual variation from noise in fundamentals not observed
by the firm at the time of choosing its scale in each period. The wedges
that a firm faces may be age-specific, and thus de-couple life-cycle growth

in output from the growth of fundamentals.!® Idiosyncratic wedges to the

some given age by those outcomes and determinants at birth. We use the ratio of these
variables at age t to age at birth (t = 0).

y = 3 () (1) T (1)
T at e G (e (Lt (k) T
where dft, aft, and (py capture measurement error in, respectively, demand, technology
and input price shocks, and 77 and 7™ are, respectively, wedges specific to labor and
materials with respect to capital.
15Some young firms may, for instance, have more dificulty in accessing financing, or
face greater adjustment costs than their older counterparts. Also, many startups enjoy
benefits that older firms do not face. This is the case, as an example, of small young firms

in Colombia who at times have been exempted from specific labor taxes.
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use of materials and labor relative to capital, 7'% and Tijt , may stem from
elements such as factor-specific adjustment costs, and subsidies/taxes to the
use of one input.

2.2 CES Demand Structure

In this subsection, we show that the firm-level demand structure used above
is consistent with single-product producers as well as multiproduct producers
using a CES preference structure. Taking into account multiproduct pro-
ducers is important in our context to be able to define and measure firm-level
output in a manner that captures within firm changes in product mix and
product appeal over time. The theoretical structure is such that we can mea-
sure output as revenue deflated with an appropriate firm-level price index.
As long as different products within a firm are not perfect substitutes, that
price index reflects product turnover and changing product appeal across ex-
isting products. To accomplish this we use the UPI approach developed by
Redding and Weinstein (2017) but also build on insights of Hottman et. al.
(2016).

Specifically, in the context of multiproduct firms we allow firm output

o—1

o—1
Qs+ to be a CES composite of individual products Q) = Z dyjtq ;s ,
of

where ¢yj; is period ¢ sales of good j produced by firm f, ’Ehe weights d g
reflect consumers’ relative preference for different goods within the basket
offered by firm f, and Qf is the basket of goods produced by f in year t. In
particular, consumers derive utility from a composite CES utility function,
with a CES layer for firms and another for products within firms. Consumer’s
utility in this general CES structure in period ¢ is given by:
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U (Quy o Q) = (Z dftQ}’;l) (7)
I

o—1
where Q= Z dpjed; s, (8)
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where pyj; is the price of gf;:, and I; is the set of firms in period t. We
refer to dy;; and dy; as, respectively product (within firm) and firm appeal
or demand shocks, defined as in equations 7 and 8: the weight, in consumer
preferences, of product fj in firm f’s basket of products, and of firm f
in the set of firms. Given normalizations in equation (10), product appeal
dyj: captures the valuation of attributes specific to good fj relative to other
goods produced by the firm, while firm appeal d s, captures attributes that are
common to all goods provided by firm f,, such as the firm’s customer service
and average quality of firm f’s products, in a constant utility framework.
Both firm and product appeal may vary over time.

Equation (8) defines real output for a firm in this multiproduct frame-
work. As Hottman et al (2016) explain, in a multiproduct-firm context it is
not possible to define real output in absence of assumptions about demand.
The concept of real output “in theory equals nominal output divided by a
price index, but the choice of price index is not arbitrary: it is determined by
the utility function” (Hottman et al., 2016, page 1349). We define the real
output of a multi-product firm as an aggregate of single-product outputs, in
which each product receives a weight equal to its appeal to costumers, rel-
ative to that of other products within the firm. Given (10) this real output
measure is normalized by the average appeal of products within the firm.
The crucial relevant assumption here is that products within firms are not
perfect substitutes so that tracking product turnover and changing product
appeal within firms is critical for measuring firm-level output.
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We assume the elasticity of substitution to be the same between and
within firms in a sector. This assumption implies we have a special case
of a nested CES with a nest for firms and another for products. Assuming
the same elasticity simplifies the analysis substantially by abstracting from
within firm cannibalization effects in a multi-product firm setting as explored
by Hottman et. al. (2016). As discussed above, our firms still recognize their
influence on the aggregate (sectoral) price level as they change their scale
yielding the firm-level variation in the markup. This simplifying assumption
also implies that in our estimation we can estimate the between firm elasticity
of substitution and then apply it for our measurement of firm-level price
indices.

Consumer optimization implies that the period t demand for product fj
and the firm revenue are, respectively, given by

o jo Pft - Prijt - Et
e = dfdy, (E) (P_ft B (11)

. E
Ry = QpPp= d‘]{tP/}t Pl—ig (12)
t
where )
(1-0)
Pro= |\ D_dijsl (13)
of
, and that
Pr=DpQ” = DidnQ (14)

Equation (14) comes from dividing (12) by Pj; and solving for Pf;.' The
implied firm-level price index is given by:

16We follow Redding and Weinstein (2016) in our treatment of product entry and exit.
They don’t formally model the decisions to add and substract products but rationalize
the entry and exit of products through assumptions on the patterns of product specific
demand shocks. That is, they assume products enter when the product specific demand
shock switches from zero to positive and exits when the reverse occurs. We rationalize
product entry and exit in the same manner. We consider multi-product plants mostly
for the purpose of obtaining a plant-level price deflator that takes into account changing
multi-product activity.
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Pro= | > dfupil (15)
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Observe that (14) is identical to (2). This consistency is important as we
use (15) to construct firm-level prices (using the UPI framework of Redding
and Weinstein (2017) to express this price index in terms of observables).
It is also useful to note that in using (12) one obtains the analogous inter-
pretation of measured firm appeal (ds;) used by Hottman et al (2016): dy;
captures sales holding prices constant. This is akin to quality as defined by
Khandelwal (2010), Hallak and Schott (2011), Fieler, Eslava and Xu (2016),
and others. Foster et al (2016), in turn, interpret firm appeal as capturing
the strength of the business’ client base.

Given our assumption of the same elasticity of substitution between and
within firms a natural question is whether firms still matter in this context.
Firms do matter for two reasons. First, our cost/production structure is
at the firm-level. That is, we specify the cost/production function as being
based on total output of the firm rather than product specific cost /production
functions as in Hottman et. al. (2016). We make this assumption for more
than the convenience that our input and input price data are at the firm level.
Our view is that if one queried most firms (in our case — really plants) to
specify input costs (capital, labor, materials and energy) on a product specific
basis they would be unable to do so since costs are shared across products
(i.e., there is joint production). That is, a firm is not simply a collection
of separable lines of production. A second reason that firms matter here is
firms may be large enough in the market so that we depart from monopolistic
competition as firms don’t take the sectoral output price as given. For these
reasons, we specify a firm-level profit maximization problem but one that
recognizes multi-product producers for purposes of measuring firm-level price
deflators and in turn output.'”

It is easily shown in our setting that we obtain the identical solution
for optimal firm-level output as in (5) if we maximize firm-level profits with
respect to each product defining profits as revenue (the sum of revenue from
each product) minus total costs (which varies with the total output — and

17 A limitation of our approach is we do not model the endogenous entry and exit of new
products but follow Redding and Weinstein (2017) as noted by assuming new products
arrive exogenously when dj;; goes from zero to positive and exits when dy;; goes to zero.
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in turn inputs) of the firm.!® This differs from Hottman et. al. (2016)
who specify a product specific cost function. In their setting, firms matter
only from the demand side — both because of differences in elasticities of
substitution within vs. between firms and also because of possible market
power effects on sectoral prices.

3 Data

3.1 Annual Manufacturing Survey

We use data from the Colombian Annual Manufacturing Survey (AMS) from
1982 to 2012. The survey, collected by the Colombian official statistical
bureau DANE, covers all manufacturing establishments (=plants) belonging
to firms that own at least one plant with 10 or more employees, or those with
production value exceeding a level close to US$100,000. Our sample contains
23,292 plants over the whole period, with 7,670 plants in the average year.

Each establishment is assigned a unique ID that allows us to follow it over
time. Since a plant’s ID does not depend on an ID for the firm that owns
the plant, it is not modified with changes in ownership, and such changes are
not mistakenly identified as plant births and deaths. '?

Surveyed establishments are asked to report their level of production and
sales, as well as their use of employment and other inputs, their purchases
of fixed assets, and the value of their payroll. We construct a measure of
plant-level wage per worker by dividing payroll into number of employees,
and obtain the capital stock using perpetual inventory methods, initializing
at book value of the year the plant enters the survey. Sector IDs are also
reported, at the 3-digit level of the ISIC revision 2 classification.?’ Since
2004, respondents are also asked about their investments in innovation, with
biannual frequency, in a separate "innovation and development" survey.

18We also specify that wedges are at the firm-level and scale or factor specific.

Y9Plant IDs in the survey were modified in 1992 and 1993. To follow establishments
over that period, we use the official correspondence that maps one into the other.The
correspondence seems to be imperfect (as suggested by apparent high exit in 92 and high
entry in 93), but even for actual continuers that are incorrectly classified as entries or
exits, our age variable is correct (see further below).

20The ISIC classification in the survey changed from revision 2 to revision 3 over our
period of observation. The three-digit level of disaggregation of revision 2 is the level at
which a reliable correspondence between the two classifications exists.
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A unique feature of the AMS, crucial for our ability to decompose fun-
damental sources of growth, is that inputs and products are reported at a
detailed level. Plants report separately each material input used and product
produced, at a level of disaggregation corresponding to seven digits of the
ISIC classification (close to six-digits in the Harmonized System). For each
of these detailed inputs and products, plants report separately quantities and
values used or produced, so that plant-specific unit prices can be computed
for both individual inputs and individual outputs. The average (median)
plant produces 3.56 (2) products per year and employs 11.17 (9) inputs per
year (Table 2).

Plant-specific unit prices on inputs imply that we directly observe idiosyn-
cratic input costs for individual materials. Furthermore, by taking advantage
of product-plant-specific prices, we can produce plant-level price indices for
both inputs and outputs, and as a result generate measures of productivity
based on output, estimate demand shocks, and consider the role of input
prices in plant growth. Details on how we go about these estimations are
provided in section 4. Our product level data are not at the detailed UPC
code level of Hottman et. al. (2016), but we observe them at the plant-
by-product-by-year level, which offers key advantages relative to other data
sources. Unlike UPC codes, our product-level information is available by
plant (physical location of production) rather than the aggregate firm, and is
jointly observed with input use by that plant. And, unlike transactions data
for imports (used, for instance by Feenstra, 2004, and Broda and Weinstein,
2006), we observe them not only at the product level (at similar levels of
disaggregations with respect to imports transactions data) but by producer
at a physical location.

Importantly for this study, the plant’s initial year of operation is also
recorded—again, unaffected by changes in ownership—. We use that informa-
tion to calculate an establishment’s age in each year of our sample. Though
we can only follow establishments from the time of entry into the survey, we
can determine their correct age, and follow a subsample from birth. Based
on that restricted subsample, we generate measurement adjustment factors
that we then use to estimate life-cycle growth even for plants that we do
not observe from birth.2! We restrict all of our analyses to plants born after
1969. Our decomposition results are in general robust to using the subsample
observed from birth rather than the full sample, although estimated with less

21See Appendix 1.2 for details.
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precision and for a shorter life-span. About a third of plants in our sample
are observed from birth.

3.2 Plant-level prices built from observables

A crucial feature of our theoretical framework is that it allows the evolution
of the plant size distribution to respond to changes in relative product appeal,
both within the plant and across plants. Output can be adjusted for appeal
(or quality) differences across products within the firm by properly deflating

1
. . . (1—0)
revenue with the exact plant level price index, Py = <ZQf d("]t Dijt ) )

Since the index depends on unobservable o and {dy;;} and thus cannot be
constructed readily from observables, we use Redding and Weinstein’s (2017)
Unified Price Index (UPI) approach as the appropriate empirical analogue or
our theoretical price index. The UPI adjusts prices to take into account the
evolution of the distribution of in-plant product appeal shifters, emanating
both from changes in appeal for continuing products and the entry/exit of
products.
In particular, the UPI logs change in f’s price index is given by:

1
Prj Q¢ 1 ee
Z In (—fﬁ )” ! +— <lnAJ%RW+ln)\Qf ) (16)

Pft 1 Qros Prit—1

where Qt,t—l is the set of goods produced by plant f in both period ¢ and
2l Siit
t,t—1

_ Qfee _
t 1. )\ft - Zﬂtf,_l Sfjt—1

is Feenstra’s (2004) adjustment for within-plant

% Q4
appeal changes from the entry /exit of products. )\QRW H (%) foees]
Qe -1 fjt_l’gzvtfl
is Redding-Weinstein’s adjustment for changes in relative appeal for continu-
ing products within the plant, which deals with consumer valuation bias that
affects traditional approaches to the empirical implementation of theory mo-
tivated price indices.?? The derivation of the UPI price index is presented

228ato (1976) and Vartia (1976) show how the theoretical price index can be implemented
empirically under the assumption of invariant firm appeal shocks and constant baskets of
goods. Feenstra (2004) derives an empirical adjustment of the Sato-Vartia approach that
takes into account changing baskets of goods, keeping the assumption of a constant firm
appeal distribution for continuing products. It is this last assumption that the UPI relaxes.
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in Appendix A. The derivation requires imposing the normalization that

Z In dJU]t“ il = 0. That is, the UPI adjusts for relative appeal changes

tf 1
within the plant, while average appeal changes for the plant are captured by

dt.
|t| [T (o)l -
x Ptjt ,t-1
Building recursively from a base year B and denoting P (pfjtil ) ,
I=B+1 | Q41

A?tRW = f[ [(AQRW>] and A?tfee = ﬁ [(z\%feeﬂ, we obtain:

I=B+1 I=B+1

Pft = PfB* <AQRWAQf66>07 (17)
1

= PfB *P_;t* (A?t> o

where P;p is the plant-specific price index at the plant’s base year B. We
initialize each plant’s price index at Pyp, which takes into account the average
price level in year B and the deviation of plant f’s product’s prices from the
average prices in the respective product category in that year. Details are
provided in Appendix A.

From (17), to move from our calculated P}, to the exact price index Py,

we need to adjust for the factor (A(]‘?t ﬁ, which depends on o. In turn,

the estimation of o requires information on Py (see section 4). We thus

J1
work initially with P_}‘t and carry the adjustment factor (A%) " into the

derivations of section 4, where its contribution to price variability is flexibly
estimated. In particular

R _1

o—1
Q= PfBP* = Qi * ( ft) (18)
We take advantage of this expression in estimating both the production
and demand functions using observables. We similarly obtain a measure of
materials by deflating material expenditure by plant-level price indices for
materials, pm ;, using information on prices and quantities of material inputs
at the detailed product class level. We construct pmy; using an analogous
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approach to that used to construct output prices. See Appendix A for
details.

In an alternative approach against which we compare our baseline quality-
adjusted prices (adjusted for quality differences within the firm), we examine
the robustness of our results to using “statistical” price indices based on
either constant baskets of goods, or on divisia approaches, and to the Sato-
Vartia-Feenstra approach. These are discussed in section 6.3.

4 Estimating TF P() and demand shocks

Calculating TFPQ and demand shocks requires estimating the production
and demand functions, 1 and 14. Once the coefficients of these functions
have been estimated, T F P() is the residual from 1 and the demand shock is
the residual from 14.

We implement a joint estimation procedure. Jointly estimating the two
equations allows us to take full advantage of the information to which we
have access to separate supply from demand in the data. As a result, we can
estimate production rather than revenue elasticities, even for multiproduct
plants, and simultaneously obtain an unbiased estimate of 0. We impose a
set of moment conditions that requires less structure overall, and weaker re-
strictions on the covariance between T'F'P() and demand shocks, than other
usual estimation methods of the demand-supply system. This is in part pos-
sible thanks to the fact that we have access to price and quantity information
for both inputs and outputs. Data on inputs informs the estimation directly
about the production side, thus allowing us to separate it from demand under
weaker restrictions than if we only used information on prices and quanti-
ties for outputs (as in, for instance, Broda and Weinstein, 2006, or Hottman,
Redding and Weinstein, 2016). On the production side, data on prices allows
us to properly both production revenue elasticities.

Beyond the usual simultaneity biases and restrictions on supply vs de-
mand , the estimation of 1 and 14 faces the problem that, until we have an

estimate of o, we are unable to properly construct Py, and thus Q¢ = f;_ﬁ

(see section 3.2). We therefore need to rely on Pp’s two separate compo-

nents: P_}‘t and A?t. We proceed in three steps to address this limitation
(details provided further below):

1. Jointly estimate the coefficients of the production function 1 and the
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_1
demand function 14, using Q}, = PfBP* = Qi * ( ) ' and Py =

PftA?t as the respective dependent variables / regressors of these two

functions. We carry A?t as a separate regressor in each equation to
deal with potential biases from the measurement error induced by the—
at this point—still partial estimation of revenue deflators. Similarly

introduce separately M7, and A% in the production function (where

Mo = materials expenditure
ft = PM;p PN,

of materials analogous to A?t see footnote 20). The joint estimation is

conducted separately for each three-digit sector.

, and A% is the adjustment factor for the prices

. Use the estimated demand elasticity o for the respective three-digit
%
sector to obtain Py, = Pjp * P_}‘t s (A?t) "' and subsequently Q =

<i—ﬁ>. Proceed in an analogous way to obtain a quantity index for

materials, M.

. Using Py, Qft, My (now properly estimated) and the estimated co-
efficients of the production and demand functions, obtain residuals
TFPQy and Dy We note that, in estimating TFPQy; and Dy, as
residuals at this stage, we first deviate Pr, Q ¢, My, Ly and Ky, from
sector*year effects, so that from this stage on, only idiosyncratic vari-
ation in TFPQy and Dy, is considered.

We now explain step 1 in detail.

4.1 Joint production-demand function estimation

We jointly estimate the log production and demand functions:

InQpu=alnKp+BInLy+ ¢lnMp +1InAyy (19)

1
ImPyp=a——-—InQp+InDy (20)
o

where Q) = < ) Using @}, = PfBP* = Q% < )j (equation 18),

these two equations can be rewritten:
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lnA% +In Ay

(21)
and

_ 1
nPh=a—— (m Qi+ lnA%) +1n Dy, (22)

We estimate 21 and 22, which are transformations of the original produc-
tion and demand functions, rather than those original forms.

The usual main concern in estimating these functions is simultaneity bias.
In the production function, this is the problem that factor demands are cho-
sen as a function of the residual Ay. A standard approach to deal with
this problem is the use of proxy methods, as in Ackerberg, Caves and Frazer
(2015, ACF henceforth), De Loecker and Warzinski (2012) and many others.
In the demand function, simultaneity arises because both price and quantity
respond to demand shocks. Usual estimation approaches rely on assumptions
regarding orthogonality between demand and supply shocks at some partic-
ular level. Foster et al (2008) use T'F P() estimated at a previous stage as an
instrument for () in the demand function, effectively imposing orthogonal-
ity between the levels of TF P() and demand shocks. Broda and Weinstein
(2006) and Hottman, Redding and Weinstein (2016) impose orthogonality
between double-differenced demand and marginal cost shocks.

We build on these approaches to estimate 21 and 22, but take advantage
of the unique access to prices and quantities on both inputs and outputs, and
the consequent possibility of jointly estimating the two equations, to relax
the assumptions about covariance between demand and supply shocks that
identify the elasticity of substitution. We rely on flexible laws of motion for
both T FP() and demand shocks:

InAg, = w5 +miinAp_; + 7T2AlnA?ct_1 + W?lnA?}t_l + f;‘t
InDyy = ) + 7 InDyy + 7y InD3,_y +75nD%,_| + &5,
That is, 5’]‘?75 is the stochastic component of the innovation to TF PQ).

Given this structure, our identification of production and demand elasticities
(v, B, ¢, o) uses standard GMM procedures, imposing the following set of
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moment conditions (further details provided in Appendix F):

[InM7,_y x &3]
lant X Sj}t
InKy x £,

InDye1 X £
In Aft
In th

As in ACF-based methods, we assume that, depending on whether inputs
are freely adjusted or quasi-fixed, they respond to stochastic innovations to
TFPQ contemporaneously or with a lag, respectively. We assume that ma-
terials are freely adjusted while the demand for capital and labor is assumed
quasi-fixed. Thus, in 23 we impose lagged materials demand to be or-
thogonal to current T'F' P() innovations, while L and K are required to be
contemporaneously orthogonal to £?t. The assumption that K is quasi-fixed
is standard, as is that indicating that M adjusts freely.?® L is also assumed
quasi-fixed in our context because important adjustment costs have been es-
timated for the Colombian labor market (e.g. Eslava et al. 2013). In fact,
when we estimate factor elasticities allowing L to adjust freely results are
frequently implausible (e.g. negative estimated elasticities of production to
labor), yielding further support to our assumption.

The condition that Dy_; must be orthogonal to f’?t identifies . Or-
thogonality between demand and technology shocks in levels has been used
to identify demand elasticities by Foster et al (2008, 2016) and Eslava et
al (2013), following the logic that the slope of the demand function can be
inferred taking advantage of shocks to supply. However, assuming orthog-
onality in levels (that is, between Ay and Dy;) has been criticized on the
basis that firms may endogenously invest in quality when they perceive bet-
ter returns (potentially because they have higher T'F'PQ) and that demand
shifters may be correlated with T'F' PQ) shocks if greater quality is more dif-
ficult to produce.?* Hottman, Redding and Weinstein (2016) and Broda and

23For In M1 to be useful in the identification of ¢, it must be the case that input
prices are highy persistent. The ARI1 coefficient for log materials prices is 0.95 in our
sample.

24R&D decisions that are endogenous to current profitability and affect future prof-
itability, for instance, are present in Aw, Roberts and Xu, 2011. Their framework does
not separately identify the demand and technology components of profitability, but both
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Weinstein (2006, 2010) partly address these criticisms by imposing orthog-
onality only between double-differenced demand and supply shocks (double
differencing over time and varieties). Imposing the orthogonality of the
double-differenced shocks is still a strong assumption. Given our ability to
specify demand and production separately given the price and quantity data
of both output and inputs, we impose E(In Dy x S?t) which permits a
correlation between changes in TF P(Q) and demand even within the plant.
While we are still taking advantage of shocks to the supply curve to iden-
tify the elasticity of demand, we only require that innovations in technical
efficiency in period ¢ be orthogonal to demand shocks in ¢ — 1.

Notice also that T'F' P() obtained as a residual from quality-adjusted @
is stripped of apparent changes in productivity related to within-firm appeal
changes, eliminating a source of correlation between appeal and efficiency
stemming from measurement error. Moreover, since we use plant-specific
deflators for both output and inputs, our estimation is not subject to the
usual bias stemming from unobserved input prices (De Loecker et al. 2016).2°

We implement this estimation separately for each three digits sector of
ISIC revision 3.2 We obtain plausible factor elasticities for almost all sectors
at the three digits sector, which is an encouraging sign of the suitability
of our method and data since proxy methods are usually implemented in
estimations at the two-digit level, and frequently yield implausible results—
in particular negative estimated factor coefficients for several sectors—at finer

could plausibly respond dynamically. In turn, the idea that quality is more costly to pro-
duce appears in Fieler, Eslava, and Xu (2018), to characterize cross sectional correlations
between quality and size.

25De Loecker et al (2016), use plant-level deflators for output but not for inputs. This
induces a bias stemming from unobserved input price heterogeneity, that they address
by including plant level output prices as controls in their estimation of the production
function, under the assumption that output prices enter the determination of input prices.
Furthermore, they address the within-plant aggregation issue by constraining their esti-
mation of the production function to uniproduct plants, where output quantity is observed
and well defined. The issue of how to properly compare units of output of different prod-
ucts across plants, however, remains unresolved. Our approach points that appeal shifters
Dy; (and thus quality adjustment of output across plants) addresses this issue.

Z6More precisely, we use the official Colombian-adapted ISIC (CIIU for its Spanish
acronym), revision 3. The data are originally codified using ISIC revision 2 until 1997
and revision 3 from 1998 onwards. We use the official correspondence tables to obtain
a consistent codification over time. At the three digit level the correspondence is almost
one-to-one. To solve the few cases in which it is not, we lump together a few sectors We
end up with 23 three-digits sectors.
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Table 1. Factor and demand elasticities
Returns to Returns to

Sector InL InK InM sigma scalein scalein
production  revenue
Average 0,45 0,20 0,44 3,10 1,09 0,63
Min 0,12 0,05 0,01 1,23 0,95 0,23
Max 0,91 0,57 0,75 7,59 1,29 0,90

levels of disaggregation. Still, if fully unconstrained, our joint estimation does
deliver implausible results for a few sectors. In particular, the unconstrained
estimation yields increasing revenue returns to scale for four (out of 23) three-
digits sectors, and negative factor coefficients in production for two sectors.
We thus further constrain returns to scale in revenue to be 0.9 or less.?” We
test and discuss the robustness of our results to changing this constraint in
sensitivity analysis below. Revenue returns to scale estimated or imposed in
the literature usually range between 0.67 and 0.85. In HK, the combination
of CRS in production, CES demand and an elasticity of substitution of 3
implies a returns to scale parameter of 0.67 in the revenue function.

The estimated factor and demand elasticities are summarized in table 1
and listed in Appendix I. Our results reveal slightly increasing returns to scale
in production at the three-digits sector level for most sectors. The estimated
elasticity of substitution stands at an average of 3.15, and varies substantially
across sectors, from 1.23 for plastics to 7.59 in processed food. Returns to
scale in revenue stand at an average 0.63 (0.7 ignoring sectors that hit the 0.9
bound). While our average estimated curvature is not far from that imposed
by HK, there is substantial dispersion across three-digits sectors. We show
below how ignoring this heterogeneity surprisingly dampens the estimated
contribution of wedges to sales variability.

27Only sectors for which this is violated in the uncostrained estimation are re-estimated
imposing the constraint. We still obtain a negative coefficient for labor in production
for one sector and an elasticity of substitution below one for another sector. For these
two sectors, we impose the full set of factor and substitution elasticites estimated for the
closest sectors. We also conduct robustness analysis in appendix C.
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5 Results

5.1 Outcome growth over the life cycle

We use the estimated demand elasticity o to construct In Py, = In (Pf BP_}}) +

% In A?t and subsequently recover )¢ = Bt We proceed in an analogous

Pt
way to construct pmy, and My.?® To build idiosyncratic life cycle growth
in revenue, 2—{):, we first deviate revenue from sector*year effects and then

obtain the ratio of current to initial (idiosyncratic) revenue. All other utcome
variables, in particular employment, capital, materials, output prices and
input prices are also stripped from sector*year effects before building life
cycle growth (% for each variable Z). Also, when building TFPQ, D,
and p we only exploit idiosyncratic (i.e. within sector*year) variation in the
levels of outcomes. That is, from this point, we will be dealing exclusively
with the idiosyncratic component of life cycle growth, for both outcome and
fundamental variables.?”

We define age as the difference between the current year, ¢, and the year
when the plant began its operations, and define the plant’s revenue (or other
outcome) level at birth Ry, as the average for ages 0 to 2. By averaging
over the plant’s first few years in operation we deal with measurement error
coming, for instance, from partial-year reporting (e.g. if the plant was in
operation for only part of its initial year).

The solid black lines in Figure 1 present mean growth from birth for
output, sales and employment. As in the rest of figures throughout the
paper, we use a logarithmic scale. The average establishment in our sample
grows by a factor of 2.3 in terms of output by age 10, and almost 6 times by
age 25.3° Average life-cycle revenue growth is more modest, growing four-fold
rather than six-fold by age 25. For comparison with existing literature on
life-cycle growth, the lower panel presents analogous results for employment:
i—i:. By age 10 the average establishment has almost doubled it employment,

28].e. we use the same measurement approach incorporating multi-materials inputs
to construct the plant-level deflator for materials, and use it to deflate expenditures in
materials to arrive at materials inputs. We use the same elasticity of substitution at the
sectoral level for this purpose.

29We also winsorize life cycle growth for each variable at 1% and 99% to eliminate
outliers that may drive the results of our decompositions.

30More precisely, g’;z = 1.63 when a = 5, 8;3 = 2.35 when a = 10, and g’;z = 5.57
when a = 25.
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and 25 years after birth employment it has grown more than three-fold.?!

Figure 1: Distribution of life cycle growth
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These average growth dynamics, however, hide considerable heterogene-
ity. Median growth (dashed line) falls under mean growth for all panels,
highlighting the fact that it is a minority of fast-growing plants that drive
mean growth. Related, the distribution of plant growth is highly skewed,
displaying a much more marked gap for the 90th-50th percentiles than for
the 50th-10th. By age five, for instance, while the average plant has multi-
plied its output at birth by a 1.63 factor, the plant in the 90th percentile has
multiplied it by 2.76, the median plant by 1.51, and the plant in the 10th per-
centile has shrank to 63% of its original size. At age ten the 90th percentile
of life cycle similarly more than doubles the median (4.32 rather than 1.91).
Employment and sales growth are characterized by similarly wide dispersion
and marked skewness.

Eslava et al. (2018) show that, though dispersion in life-cycle growth
across Colombian manufacturers is large and highly skewed towards a dy-
namic top decile, both dispersion and skewness fall short of that observed
in the U.S. This is consistent with the view that less developed economies
are characterized by less dynamic post-entry growth. Hsieh and Klenow
(2009) and Buera and Fattal (2014) attribute such cross-country differences
to institutions that fail to encourage investments in productivity and healthy
market selection in developing economies. Identifying the role that specific

31 For revenue and employment, we have g{f; = 1.6 and iig = 1.4 when a = 5,
Rie =217 and 2* = 1.93 when a = 10, and % = 4.03 and = = 3.22 when a = 25.
£f0 fo fo f0
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institutions play is an interesting area of future research.??

We emphasize that we can measure life cycle growth directly using longi-
tudinal data for each plant, rather than relying on cross-cohort comparisons.
This approach addresses some of the usual selection concern in the literature
of business’ life cycle growth. Still, we can only characterize and decompose
growth for survivors. Appendix H describes life-cycle growth for exits-to-be,
showing that the patterns in Figure 1 are mainly driven by plants that will
survive (so the exit bias is small).

5.2 TFPQ and demand shocks

As indicated, TF PQ; and Dy, are recovered as residuals from, respectively,
the production function (1) and the demand function (14), using the es-
timated factor and demand elasticities reported in Table 1, and deviating
Qft, L, My, and Ky, from sector*year effects previously, so that TFPQ
and Dy, contain only idiosyncratic variation. Table 2 presents basic sum-
mary statistics for (the idiosyncratic component of) sales and our estimates
of output, output prices, In A, In Dy, and input prices.*® Idiosyncratic dis-
persion in sales, output, output prices, T F P(), demand and input prices are
all large.

TFPQ is strongly negatively correlated with output prices, which is intu-
itive to the extent that more efficient production allows charging lower prices.
This was also found by Eslava et al. (2013) for an earlier period and using
a different approach to measure TF PQ) and D. Interestingly, Foster et. al.
(2008,2016) find similar correlations between prices and fundamentals using
US data for a selected number of commodity-like products. By contrast with
those products, endogenous quality may be more relevant in our context.

To the extent that quality is more difficult to produce, demand shocks and
technical efficiency may be negatively correlated. This is indeed the case in
our estimates. Output exhibits strong positive correlations with T'F P() and
demand while sales is especially positively correlated with demand. These

32Within-country changes in institutions, either across businesses or over time (or both)
offer a fruitful ground for such exploration, to the extent that they keep constant other
factors potentially influencing business dynamics, from the macroeconomic environment
to business culture. We undertake that exploration for Colombia, taking advantage of
changes in import tariffs, in a separate paper.

33 As explained above, TFPQ and demand shocks are obtained using only the idiosyn-
cratic components of (), prices and inputs.
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TableR.MescriptiveBtatistics

Panel@\.Number®flants,fiumber®dffroducts@nd@naterialsier@lant®ear

Number®flants Numberdfroducts@erplant Numberf@naterialsierplant
Total Avg.[ear Avg. P25 P50 P75 Avg. P25 P50 P75
23,292 7,670 3.56 1 2 5 11.17 5 9 14

Panel®.Standard@eviations@nd@orrelation@oefficientdor®utcomes@ndfundamentals
HwithinBector*year,&@lIFariablesdniogs)

Standard Output Demand Average
Deviation  Sales Output prices TFPQ Shock Inputrices wage

Sales 1.438 1

Output 1.611 0.89 1

OutputBrices 0.736 0.007 .451 1

TFPQ 0.874 0.135 0.464 BD.752 1

DemandBhock 0.758 0.722 0.42 0.493 £D.243 1

Input@rices 0.693 ®.036 .095 0.136 0.155 0.045 1

Averagellvage 0.414 0.603 0.517 0.045 0.099 0.477 0.003 1

basic correlation patterns remain true for within-plant correlations, and are
echoed in our growth decompositions below. Forlani et al. (2018) also find
TFPQ and demand to be negatively correlated.

The within sector*year distributions of the evolution over the life cycle
of fundamentals are displayed in Figure 2, including the life cycle growth of
TFPQ and demand shocks, Ay, and Dy, , as well as that of material input
prices and wages. The average growth of demand shocks dominates that of
input prices, and both dominate the average growth of TF P(Q over the life
cycle. By age 25, T'F'P() has barely grown on compared to birth on average,
while the demand shifter has grown on average close to two-fold. Part of
what is driving the contradicting patterns in Figure 2 is the evolution of
the negative correlation between the life cycle growth of T'F P(Q) and that of
demand shocks. At age 3, the correlation is -0.152, at age 10, -0.264 and
by age 20, -0.324. The rapid rise of product appeal/quality over the life
cycle comes at the cost of dampening the growth of TF'P(). The interplay
between output prices and demand shocks is also interesting: with growing
output over the life cycle, downward sloping demand would imply that the
plant would have to charge ever shrinking prices over its life cycle, unless the
appeal of f to costumers changed over time. We do not observe such fall in
output prices, signaling increasing ability of the firm to sell more at given
prices. By construction, this is what the life cycle growth of the demand
shock, Dy, captures.
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Figure 2: Distribution of fundamentals
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5.3 Decomposing growth into fundamental sources

We now decompose the variance of g—}f; and % into contributions associated
with different fundamental sources, most notably T'F P() and demand shocks
(equations (5) and (6)). We follow a two stage procedure, similar to that
in Hottman et al. (2016), but implement two variants of it: a structural
decomposition and a reduced form decomposition. We summarize each in
this section. Details are provided in Appendix G.

Structural decomposition: As shown in Appendix G, the contribution
of each (log) fundamental to the variance of (log) sales equals the ratio of
its covariance with sales to the variance of sales, multiplied by its structural

parameter in equation 6, reproduced below:.

R _ ()" ()" () () (1)
Rio dgo afo pm o w o I fo ik
(24)
where k1 = ﬁ, Ko = (1 - %) k1, and v and ¢ have been estimated as

explained above. The term (th ft)lfi is calculated as a residual, since all
of the other components are either measured or estimated. From equation 6
, error term In y;, captures life cycle growth in wedges, including distortions
from regulations, adjustment costs, and other factors, and measurement er-
ror. Because these wedges simply reflect the gap between actual growth and
that predicted by fundamentals through the lens of our model, they reflect
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all sources for such gaps, including some that may be correlated with fun-
damentals themselves. Thus, these wedges may imply exacerbated growth if
plants with better fundamentals also exhibit higher wedges than plants with
worse fundamentals, or dampened growth in the opposite case. We conduct
an analogous decomposition for output, following equation (5).

The first bar of Figure 3 depicts the result of this decomposition, pool-
ing across ages, and reporting the contributions of material prices and wages
together to simplify the figure. We find that the structural contribution of
fundamentals explains the bulk of sales growth over the life cycle. Taken
together, fundamentals in fact account for more than 100% of the variance of
growth across plants within a sector (a fact we turn to further below). The de-
mand shock is ten times as important as T'F P() to explain idiosyncratic sales
growth (or quality adjusted output growth). Input prices make smaller, but
far from negligible, contributions. This reflects the fact that, pooling across
ages, the covariance of demand shocks growth with sales growth is almost
five-fold that between T'F PQ) growth and sales growth (Table 3). The signif-
icant negative correlation between T'F'P() and demand shocks undoubtedly
plays a role in this fact. In the case of markups growth, its contribution to
the variance of sales growth is minimal, not even visible in the graph, reflect-
ing market shares concentrated around zero in most sectors.mantribution of
T F PQ for output growth volatility as compared to sales is not surprising, the
fact that demand shocks still account for almost 20% of real output growth
volatility is interesting, especially in a context where real output growth has
been adjusted for within plant changes in product mix and quality.

The dominance of demand-side fundamentals over supply side in explain-
ing the variance in sales resonates with recent findings in the literature
(Hottman et al. 2016, Foster et al. 2016). It is, however, noticeable that
this finding survives the expansion of the measurement framework to explic-
itly account for wedges. The availability of price and quantity data together
with data on input use, rare in the literature and enabled by the richness
of the Colombian data, is crucial to identify wedges from the gap between
actual growth and that predicted by fundamentals (see detailed discussion
in section 6).

Input prices, especially that of labor, also play a dampening role for the
variability of sales. This is consistent with Table 2 that shows a positive
correlation between input prices and wages in particular with TFP(@) and
demand. The variation in wages across plants might reflect many factors.
For example, it may reflect the geographic segmentation of labor markets as
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Figure 3: Life-cycle growth variance decomposition
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well as institutional barriers in the labor market. However, the correlations
in Table 2 with the accompanying dampening implications suggest that some
of this might reflect rent sharing but it also might reflect unmeasured quality
differences. We deal with quality differences for materials inputs by building
a quality-adjusted deflator, but not for labor, which is not broken down by
skill categories in the Manufacturing Survey for the long period covered by
our estimations. To address the relative importance of these two possible
sources of sales variance arising from wages, we take advantage of data on
broad skill categories available for 2000-2012 and construct quality-adjusted
wages and a quality-adjusted labor input given by the payroll deflated with
our adjusted wages. Skill categories are production workers without tertiary
education, production workers with tertiary education and administrative
workers. Implementing our decomposition with this alternative measure of
wages rather than the average wage per worker (Table J1, appendix J) re-
duces the negative contribution of wages for 2000-2012 from -0.128 to -0.058,
suggesting that increasing labor quality explains about half the dampening
role of wages over the variance of sales. Moreover, consistent with this in-
terpretation, we find that accounting for labor quality reduces the positive
contribution of TF P by about the same amount as the decrease in the
negative contribution of wages. In turn, there is virtually no impact on the
contribution of wedges, demand or other factors.

A striking feature of these results is that the wedge contributes negatively

34



to the variance of life cycle growth of both output and sales (or quality ad-
justed output). That is, the different sources of wedges captured in this term
dampen the effect of fundamentals growth on outcome growth, implying that
high-productivity high-appeal plants grow less relative to low-productivity
and appeal plants than their respective fundamentals would imply. The ef-
fect is quantitatively large: sales dispersion is dampened by about 15% with
respect to that implied by fundamentals. The corresponding figure for output
growth is about 20%. That is, Colombian manufacturing plants face signifi-
cant size-correlated wedges that de-link actual growth from the fundamental
attributes of plants.

The contributions of these different factors to sales and output life cycle
growth vary significantly depending on the horizon of growth considered.
The left panels of Figure 4 display results of the structural decomposition
separately for different ages.?® For both sales and output, demand becomes
increasingly important compared to T FP(Q over longer horizons. This is
because, although the covariance between sales growth and both TFPQ
growth and the growth of demand shocks increases as plants age, the latter
does so at a much faster speed (Table 3). These patterns echo the increasing
negative correlation between TF P(@Q and demand shocks over the life cycle.
Wedges, interestingly, play a more important dampening role at the youngest
ages. That is, wedges dampen output and sales variability compared to that
implied by fundamentals more among young plants than among older ones
(left panels of Figure 4). Appendix H shows that these general patterns
are robust to selection, in the sense of being similar for survivors-to-be and
exits-to-be. T'F PQ) plays a relatively more important role vis-a-vis demand
for the latter than the former.

Figure 5 shows the mechanics behind the negative contribution of struc-
tural wedges: the gap between actual growth (black solid line) and that
explained by fundamentals (grey solid line) is positive for plants with low
predicted growth and negative for those in the highest percentiles of pre-
dicted growth.®> Predicted growth corresponds to growth in equation (24)

34To conduct the decomposition by ages, we expand equations the decomposition equa-
tions to include interactions with the different age groups. See Appendix G for details.

35The 1% tails on both sides are excluded from the figure because they tend to dominate
the scale of the figure, rendering it useless to illustrate the point. Figure 6 shows that the
outliers in the distribution of predicted growth are not generated by extreme estimates of
fundamentals, but by the fact that, with high returns to scale in revenue for some sectors,
the model would predict extreme sizes for the best performing plants in those sectors.
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Figure4: Life-cycle growth variance decomposition by age
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setting x ;, = 0. Figure 5 implies that plants with weak growth in fundamen-
tals are implicitly subsidized while those with strongest fundamentals are
implicitly taxed, especially at young ages.

Figure 6 indicates that plants in the highest percentiles of predicted
growth have both higher demand and higher T'F' PQ) than those with low
predicted growth. Interestingly, the superstar plants (those in the upper
quartile of growth in fundamentals) differ from the rest most clearly in terms
of the growth of demand. For the rest of the distribution, TF PQ) growth is
at least as important as demand growth to explain the difference between
the worst and the not-so-bad plants.

Since the error term in equation (24) reflects both wedges to profitability
that may be correlated to fundamentals and others that are not, it is interest-
ing to uncover the full contribution of fundamentals, bringing together that

Appendix I shows the equivalent of Figure 5 without eliminating 1% tails.

36



Table®:@nomentsDftheRistribution®dflife®ycle@ErowthdorBales,Rlemand
shocks@nd@TFPQENdBtructural®oefficientsBfhe@ecomposition®dfFrowth
(pooling@crossEgesndBectors)

Age=all Age=5 Age=10 Age=20

Cov(TFPQ,Revenue) 0.062 0.040 0.071 0.087
Cov(Demand,®Revenue) 0.274 0.062 0.190 0.351
Var(Revenue) 0.688 0.156 0.468 0.859
Var(TFPQ) 0527 0145 0403  0.676
Var(D) 0.241 0.054 0.171 0.333
StructuralRoefficientsfaverage Kappal Kappa2z  Gamma Sigma
sector) 3.806 2.598 1.080 3.151

implied by our model and that stemming from the impact of fundamentals on
our structural wedges. Wedge sources potentially correlated with fundamen-
tals may arise from size-dependent policies, adjustment costs and endogenous
financial constraints. Wedges that are orthogonal to fundamentals may come
from horizontal regulations and measurement error. To decompose the role
of orthogonal vs. correlated wedges, we estimate the full contribution of
fundamentals by implementing the following reduced form decomposition:

Reduced form decomposition: The contribution of each (log) funda-
mental to the variance of (log) sales equals the ratio of its covariance with
sales to the variance of sales, multiplied by its reduced form parameter in
the following equation, estimated by OLS:

d
Rfo de afo pmyo

' w ' /’L
+47 In (i) + 40 In (i) +ef
Wro o

The residual term of this OLS estimation is orthogonal to the funda-
mentals by construction, and thus captures only uncorrelated wedges. As a
result, the reduced form decomposition assigns to each fundamental the role
it plays directly (i.e. its "structural" role) and also that it plays indirectly
through its effect on wedges and its correlation with other fundamentals.
Covariances between fundamentals are assigned equally to the contribution
of the different fundamentals. 3

36We find that the structural wedge has a correlation of -0.30 with TF PQ and -0.13 with,
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Figure 5: Contribution of fundamentals to life-cycle growth
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Results of this alternative exercise are shown in columns 2 and 4 of Fig-
ure 3, and in the right panels of Figure 4. The uncorrelated wedge term
contributes positively to the variance of outcome growth. In particular, it
explains 40% of sales growth dispersion and 53% of output growth disper-
sion. It is also interesting that, in transiting from the reduced form to the
structural decomposition, the contribution of TF PQ grows by (proportion-
ally) more than that of demand shocks. To the extent that (negatively)
correlated distortions are reflected in our structural wedges but not in the
reduced form ones, this suggests that such distortions are most strongly cor-
related with TF P(Q), distorting the return to technical efficiency more than
that to quality/appeal.

demand shocks consistent with our interpretation of the structural wedges being negatively
correlated with fundamentals. In contrast, the reduced form wedge has essentially zero
correlation with the fundamentals.
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Figure 6: Life-cycle fundamentals growth
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6 Robustness and the Value Added from Build-
ing Up Jointly from P, Q and inputs data

6.1 Value added of bringing P and () data to the Hsieh-
Klenow framework

Relative to the literature on wedges vs. fundamentals as determinants of size
and growth that build on Hsieh and Klenow (HK, 2009), our approach takes
advantage of rich data on prices and quantities at the micro level. HK have
shown that, in absence of P and () data, one can estimate the contribution
of wedges relative to fundamentals imposing a set of usual assumptions. Our
approach directly builds on HK’s, but even within that frameworks there is
multi-fold value added of the micro price and quantity data on both outputs
and inputs. First, the micro price and quantity data permit measurement
of Qs = % directly, so that a production function (as opposed to a revenue

function) and a demand structure can both be estimated to obtain production
and demand elasticities. These elasticities are themselves key ingredients to
determine the role of fundamentals vs. structural wedges, and are therefore
widely used when making inferences about the drivers of business perfor-
mance. In absense of the ability to estimate them, inferences are frequently
based on external estimates that correspond to a context not necessarily rel-
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evant to the particular application, are broadly aggregated (e.g. the same
elasticity of substitution is used for all sectors) and may not be appropri-
ately specified (e.g. revenue function elasticites or cost shares used in place
for production function elasticities). Second, estimation of the production
and demand structure naturally yield estimates of T'F'PQ s and Dy, so that
their individual role can be assessed. Third, the price and quantity data for
inputs permits identifying the contribution of idiosyncratic input prices to
size and growth. Clearly, then, these detailed P and () data are necessary if
one is interested in learning about the separate roles of A, Dy, and input
prices. But, how important is it to have access to such detailed data to an-
swer questions not related to unpackaging these fundamentals? For instance,
does having access to P and () data lead to a different answer to the question
of the contribution of wedges vs. “composite* fundamentals?

The latter question has been object of a long-standing literature, much of
which builds on insights from Restuccia and Rogerson (2008) and Hsieh and
Klenow (2009, 2014). HK, in particular, have shown that, in absence of P and
() data, one can estimate the contribution of wedges relative to fundamentals
imposing a set of usual assumptions. Since our structure closely follows that
proposed by HK, we now impose HK’s assumptions to estimate the role of
a composite fundamentals shock without using P and () data. We then
compare such results to those obtained for the same composite fundamental
shock but in a scenario where we relax assumptions on parameters, and use
the P and () data to estimate those parameters. We denote the composite
measure of fundamentals, which bundles up our TFPQ and D shocks, as
TFPQ HK.?

The starting point of 1this approach is revenue which in our notation is
given by: Ry = thQ}t_; = Dy (AftX;Zt)l_%. Thus, one can obtain the
composite shock TF P HK solely from revenue and input data as:

1

1/(1-1 -1
TFPQ HKj = Rf{( 7) X}, = ApD}, 7 (25)

37In the appendix to their paper, HK (2009) show how, in the presence of demand
shocks, the measure they call TFPQ is actually a composite of the technology and the
demand shock. Our expression for the TFPQ HK composite shock is exactly the same
as their expression (i.e. TFP@Q HK in this paper is what is called TF PQ by HK). Halti-
wanger, Kulick and Syverson (2018) also explore properties of TFPQ HK constructed
from revenue and input data compared to TFPQ and demand shocks constructed from
price and quantity data.
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Optimal input demand can be expressed as a function of t}iis composite
shock (see Appendix B), so that revenue Ry, = Dy, (A ftX;Zt)l_; can also be
expressed solely in terms of this composite shock and other primitives of the
model. Life cycle growth in revenue can then be expressed as:

1

By _ [(TFPQ_HKft) ((1—7'ft) Ofo/if())qw:,}) (26)
TFPQ_HKj) \(1=7s0) Crutipy

Ro

where C't; was defined above as a Cobb-Douglas composite of the prices
6 B o

of these inputs: Cp = pm?tw?tr?t.g‘g This expression implies that we can
decompose life cycle sales into its TFPQ HK component and a residual
component that will reflect wedges, input cost variation and idiosyncratic
markup variation. Such a two-way decomposition is feasible with revenue
and input data, so far as estimates of demand and factor elasticities are
available.

We now assess the contribution of TFPQ HKy, growth to sales growth
following the expression in (26), under two alternative approaches:

1. Use our estimates of the elasticities of output with respect to pro-
duction factors, and the implied returns to scale coefficient v to obtain X =

¢ B«
My, L}, Ky, Subsequently use our estimated 1 and v to obtain TFPQ_HKy,

Z1
R%(l 7 /X, and obtain the contribution of this composite shock in (26). We

call our estimate of TF'P() _H Ky, under this approach "I'F'PQ) H Ky, un-
constrained".

2. Impose the usual assumptions that v = 1 and factor elasticities are cost
shares to obtain X = M?;L?g K ]‘?‘;, where the subindex ¢ denotes cost share.

Subsequently impose a common demand elasticity to obtain TFPQ _HKy =

_1
R%(l 2 /X and obtain the contribution of this composite shock in (26).

We call our estimate of TFP(Q) _H Ky, under this approach "I'F'PQ_HKjy,
constrained". We use different values of ¢ for TFPQ) HK constrained: 1)
o = 3 used in Hsieh and Klenow (2009); 2) the o necessary to replicate
returns to scale in revenue equal to the average in Table 1, (1 — %) = 0.638;
3) the o necessary to replicate returns to scale as in the maximum permitted
in Table 1, (1-2) =0.9.

We implement our two-stage decomposition under these different ap-
proaches. Table 4 presents both the structural (upper panel) and reduced

38 This might also include factor specific wedges.
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form (lower panel) versions of the decompositions. 3°  Starting with the
comparison of columns 1 and 2 for the structural decomposition in the upper
panel, it is easily observed that the combined contribution of TFP() and
demand in column 2 (which corresponds to our baseline decomposition of
Figure 3) is equivalent to the contribution of unconstrained TFPQ HK.
While this result is by construction, comparing columns 1 and 2 highlights
the fact that some of what is attributed to wedges in a two-way decompo-
sition in column 1 is due to the contribution of variable input prices and
markups in column 2 (25% out of the 40% assigned to wedges in column 1).
Thus, the first important inference is that even with the correctly estimated
demand and output elasticities, the composite TF'P(Q) HK overstates the
contribution of wedges.

The left-panel of Figure 7, which reproduces column 1 of Table 4 by age
and is to be compared with the upper left panel of Figure 4, shows that the
message that correlated wedges affect young plants the most is still present
using the HK approach, since the contribution of input prices and markups
does not vary significantly over the life cycle. The underlying reasons for
input price and markup variability may well be related to factors that a
benevolent central planner could help address, such as idiosyncratic benefits
from policy, but they may also reflect deeper features of input and output
markets, and as such it is unclear that they arise from "distortions" that
policy could address.

Turning to the reduced form decomposition (lower panel) Column 2 shows
that the composite shock TF PQ) H K overstates the contribution of orthog-
onal wedges as well, not only because it attributes to wedges the contribution
of input prices and markups, but also because it lumps together T'F P() and
demand, and their joint contribution is dampened by their negative correla-
tion.

Compared to our baseline estimates, the constrained TFPQ HK also
overstates the contribution of wedges in the structural decomposition, with
the size of the bias depending on the magnitude of the returns to scale in
revenue (which depends on v and o). Comparing across columns 3, 4 and

39 As before, the structural version in the upper panel imposes the respective parameters
o and 7y in the first stage (equation 24) while the reduced form estimates those first-
stage parameters via OLS. The parameters imposed in the first stage of the structural
decomposition are the estimated ones in the unconstrained version and vy =1, 0 =3 (or
other imposed value) in the constrained version.
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Table@.Mecomposition®fBalesdinderibaselineBaindXonstrained¥undamentals
Structural

(1) (2) (3) (4) (5)
TFPQ_HK 1.40
TFPQ_HK®&onstrained 1.243 1.276 2.267
TFPQ 0.11
Demand®hock 1.28
In@pm 0.078
Infvage 0.152
In@markup 0.007
Wedge ™.396 .155 .243 ™.276 FL.267
Average®RS@An 0.638 0.638 0.638 0.666 0.9
Max®RSAn&evenue 0.9 0.9 0.638 0.666 0.9

Reduced

(1) (2) (3) (4) (5)
TFPQ_HK 0.321
TFPQ_HK&onstrained 0.642 0.596 0.187
TFPQ 0.031
Demand®hock 0.469
In@pm 0.002
Infvage 0.049
In@narkup 0.05
Wedge 0.679 0.402 0.358 0.404 0.813
Average®RSAn 0.638 0.638 0.638 0.666 0.9
Max®RSAn&evenue 0.9 0.9 0.638 0.666 0.9

TFPQ_HKAsEFunction®ETFPQ,@lemand@ hocks,Eandhelasticity@®f@ ubstitution.fThe
unconstrained@ersionfises@heFactorE@ndB ubstitution®lasticities@stimatedusing®
and@@lata,@eported@niTablefl.fThe@onstrained@ersiondisesost® haresEsFactor
elasticitiestanddmpos esERommonlasticity@onsistent@vithZ RSAnGBroductionznd
the@evenue®RSEeporteddn@heorresponding@olumn.

5 to column 1, it is clear that under less curvature in the revenue function
(higher RS in revenue) the decomposition assigns a more predominant role
to wedges.

While the fact that the estimated wedge increases in importance as re-
turns to scale grow is well known, Table 4 highlights the striking magnitude
of differences and their non-linearity with respect to changes in sigma: when
sigma is such that the curvature of the revenue function approaches constant
returns to scale, wedges gain much more weight than with increases in sigma
far from this region. This nonlinearity is the reason why the wedge is larger in
column 1 compared to column 3 of Table 4, despite the fact that the average
curvature is the same in both columns: some sectors exhibit sufficiently high
curvature that the role assigned to wedges outweights that of fundamentals
(detailed by sector results for different curvatures are shown in Appendix C).
Since results for the decomposition depend so closely on the elasticities used
to estimate fundamentals, the possibility of estimating elasticities relevant to
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Figure 7: Hsieh-Klenow and Hottman-Redding-Weinstein decompositions
using the same elasicities used in the baseline decomposition

7a: Hsieh-Klenow decomposition 7b: Hottman-Redding-Weinstein decomp.
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These figures reproduce the structural decomposition considering, alternatively, the components
considered by Hiseh and Klenow (2009, 2014) and Hottman, Redding and Weinstein (2016). The HK
decomposition of the left panel is the by-age version of the decomposition in column 1 of table 4, the
«unconstrained HK» case, since the factor elasticities in production and elasticity of substitution of the
baseline case are used.

the particular context—enabled by the availability of P and () data—is highly
valuable. Appendix C' shows that, beyond this nonlinear increase in the role
of wedges as returns to scale in revenue increase, the relative importance of
different fundamentals is robust to changes in the revenue curvature.

Table 4 thus sends three main messages about the value of P and @)
output and input data in our estimation. Using only revenue and input data
yields: 1) an overstatement of the contribution of wedges in the structural
and reduced form estimation when using the correctly estimated output and
demand elasticities; 2) an overstatement of the contribution of wedges when
using cost shares for output elasticities and an assumed unique value of the
demand elasticity — the magnitude of the latter varies substantially with
the assumed demand elasticity; and 3) an inability to identify the distinct
contributions of demand, T'F P() and idiosyncratic input prices.

6.2 Value added of bringing input data to the Hottman-
Redding-Weinstein framework

The differential contribution of demand vs. cost-side socks to plant sales
is explored by Hottman, Redding and Weinstein (HRW, 2016). Using the
demand structure that we also impose in our baseline estimation, they de-
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compose sales into the contributions of price (observed) and demand shocks
(residual) using the estimated elasticity of substitution, and subsequently
decompose price into the contributions of markups—computed as in equation
4—and residual marginal costs. These residual marginal costs thus capture
input price variability, technical efficiency, and any other factor not directly
modelled in their framework, including wedges.

Since we fully rely on HRW’s demand structure, the contribution of the
demand shock and markup are, by construction, the contributions one would
obtain in their approach. The availability of data on input use and input
prices, beyond P and () data on the output side which their approach al-
ready employs, allows us to further decompose their marginal cost component
into input prices, TFP() and wedges. Figure 7b illustrates the by-age de-
composition obtained in our data with the HRW approach (to be compared
with the upper left panel of Figure 4). As in their results for consumer goods
in the US, demand shocks explain the bulk of sales growth variation, and
markups play a modest role. But the negative, flat over ages, pattern esti-
mated for the contribution of marginal costs is a combination of the positive
contribution of T'F P() and the dampening role of wedges and input prices in
the context of our application, each of them negatively correlated with sales.
HRW found a relatively minor but positive contribution of cost shocks to
the variance of consumer goods sales in the U.S. Differences from our results
stem from at least two sources. First, the literature on misallocation has
pointed that size-correlated distortions are generally stronger in less devel-
oped economies, so that wedges are more likely to represent a drag to the cost
component a-la HRW in Colombia than the US. Second, since our strategy
to identify the elasticity of substitution and demand shocks imposes weaker
restrictions on the correlation between demand shocks and cost shocks than
that in HRW, if delivering products with greater quality and appeal to de-
mand requires a greater effort in production and more costly inputs, our
approach will take this negative correlation between demand shocks and cost
shocks into greater account and thus assign a more dampening role to cost
factors over the variance of sales.*’

40HRW impose orthogonality between double-differenced demand and cost shocks at
the product level, where differencing takes place over time and with respect to one of
the business’ products. This identification assumes away the possibility that the business
shifts towards higher quality products that imply greater cost. Our baseline identification
at the plant level allows the average quality of plant’s products to correlate with cost
shocks, with findings that imply that greater appeal comes at a higher cost (Table 2)
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The lumping together of cost, productivity and wedges also misses the
rich life cycle dynamics of each of these factors. Productivity becomes less
important as do wedges for older businesses in our baseline framework but
this pattern is missed completely in the HRW approach. Relatedly, the
increasing magnitude of the inverse correlation between demand and T'F P()
over the life cycle is missed in the HRW approach.

6.3 The value of Quality Adjustment

Results discussed so far use UPI prices to deflate output . UPI plant price
indices adjust real output for intra-firm quality /appeal differences (see section
3.2). Moreover, in the context of UPI prices, sales measure output that is
additionally adjusted for cross-plant quality differences.

We now discuss the empirical role of quality adjustment in more detail.
We do so by comparing results to what would be obtained under two alter-
natives to price measurement. First, we implement a “statistical” approach
based on Toérnqvist indices for a constant basket of goods within the plant
or, alternatively, on the divisia price index that allows that basket to change
and uses average t, t — 1 expenditure shares. We implement a second alter-
native approach, using prices based on the insights offered by Sato (1976),
Vartia (1976) and Feenstra (1994). The Sato-Vartia approach is economi-
cally motivated but keeps appeal shifters and baskets of goods constant over
two consecutive periods, implying a much slower quality adjustment for both
continuing products and those that enter and exit. The Feenstra adjustment
for changing varieties incorporated into our UPI approach can also be added
to the Sato-Vartia index to adjust for changing baskets of goods over consecu-
tive periods (it was, in fact, originally implemented by Feenstra, 2004, within
the Sato-Vartia approach). The UPI, meanwhile, allows for both changing
baskets of goods and varying appeal shifters, dimensions of flexibility which
respectively deal with the "consumer valuation bias" and the "variety bias"
(Redding and Weinstein, 2017). (For a detailed discussion of each of these
alternatives, contrasted with the UPI, see 3.2, Appendix A, and Redding and
Weinstein, 2017).

In each approach, the aggregation from the plant to the sector level is
analogous to the aggregation from the product to the plant level, using
weights and shares that correspond to the basket of plants in aggregate expen-
diture by contrast to the basket of products in plants’ sales. For theory-based
indices this is directly implied by theory. For statistical indices we impose it
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for consistency.

If the quality mix within the plant improves over time, plant-level quality
adjusted price indices will grow less than unadjusted ones, as a result yielding
less deflated output growth and less TFP(@) growth. This composes with
overall plant quality growth to imply economically motivated aggregate prices
that grow less than unadjusted ones. Not properly adjusting plant-level
prices for quality changes biases estimated idiosyncratic output and technical
efficiency growth downwards because such estimates will ignore the part of
price increases that reflects increasing valuation of goods and the services of
plants to their costumers, and thus mistakenly translate those price increases
into welfare decreases for given expenditure.

Figure 8 depicts aggregate price changes under these four different ap-
proaches, (where aggregation is at the 3-digit sector level, reported for the
average sector.! UPI growth is very similar to price growth using constant
baskets in all periods, but the difference is much more marked starting in
1991. On average over 1991-2012, baseline (UPI) price growth is 3.2. per-
centage points below that of the statistical index with a fixed basket of goods,
while for the pre-1991 period the two indices display virtually identical vari-
ations.*? Interestingly, this is precisely the time when market-oriented re-
forms were implemented. As many other countries in Latin America and
around the globe, Colombia undertook wide market-oriented reforms during
the 1990s, including unilateral trade opening, financial liberalization, and
flexibilization of labor regulations. Figure 8 suggests more quality adjust-
ment starting at that time, broadly consistent, for instance, with findings
in Fieler et al. (2018) about the effect of the 1990s trade liberalization on
quality in Colombian manufacturing.

As a result, adjusting output for quality changes assigns a much larger
weight to technical efficiency, T'F' P(), and a lesser role to demand, in explain-
ing output life cycle growth (see Appendix I for detailed results). While with
constant-weights-Tornqvist-indices T'F' P() and demand are estimated to con-
tribute roughly equally to output growth, T'F P() is assigned progressively
more relative importance as one moves to the Sato-Vartia and then to the
UPI approaches. But quality adjusting prices matters much more in decom-

41Three-year moving averages are shown to smooth out jumps in the series.

42The gap between the UPI and the statistical index with a fixed basket is slightly
smaller in magnitude compared to that reported by Redding and Weinstein (2017) for the
U.S. using data on final consumption goods. They find a gap of close to 5% in aggregate
price growth.
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Figure 8: Annual changes in the aggregate price index
Average three-digit sector, tree-year moving average
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posing output than for sales because, beyond the more precise measurement
of fundamentals when quality is adjusted for, the measure of output itself is
affected by price indices.

7 Conclusion

Our use of product-level price and quantity data on outputs and inputs for
plants enables us to overcome a host of conceptual, measurement and esti-
mation challenges in the literature. However, our findings raise a number
of questions and point to important areas for future research. First, our
approach has the advantage that wedges are measured as the components
of sales and output volatility that cannot be accounted for by fundamentals
with the latter estimated independently of measuring wedges. While this is
an advantage, wedges are still a residual and therefore a black box. Iden-
tifying the specific sources of wedges that dampen output and sales growth
especially for young plants is one potential area of research. Since there is
an important role for correlated wedges, one natural candidate is adjustment
costs that especially impact young businesses. From this perspective, this
may include the costs of developing and accumulating organizational capital
(such as customer base). Our finding that between-plant differences in de-
mand become more important in accounting for output growth volatility for
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more mature plants is consistent with this hypothesis.

Size-dependent policies and other characteristics of the regulatory envi-
ronment are othe set of candidate explanations behind wedges. Colombia
is a country that underwent dramatic reforms over our sample period, some
of them displaying cross-sectional variability (such as product-specific reduc-
tions to import tariffs in the early 1990s), and thus offers fruitful ground for
investigating the impact of the regulatory environment on life-cycle dynam-
ics. In prior work, we have explored the effect of these reforms in cross-
sectional productivity and factor adjustments, finding that the they have
changed adjustment dynamics of factors (see, e.g., Eslava et. al. (2010)), the
responsiveness of selection to fundamentals, and within-plant productivity
growth (see, e.g., Eslava et. al. (2013)). Moreover, Eslava, Haltiwanger and
Pinzén (2018) show that high growth plants have become more prevalent in
Colombia from the 1980s to 2000s.

Our findings provide insights into the relative importance of the variance
in fundamentals in explaining plant growth, inviting further research into the
ultimate sources of the variance in these fundamentals. While our current
framework allows for wedges that are correlated with current fundamentals,
and in fact we find that they are indeed (inversely) correlated, we do not take
explicit account of the likely endogenous response of the variance of funda-
mentals over the life cycle to past performance and past wedges. Research
that sheds light on the endogenous determinants of the variance in the supply
side (TFPQ) and demand side fundamentals should have a high priority in
future research. In exploratory analysis shown in Appendix F we find evi-
dence that TF P() and demand shocks are highly persistent and part of this
persistence reflects that observable indicators of endogenous innovation such
as R&D expenditures are increasing in lagged fundamentals. We also find
suggestive evidence that wedges influence the evolution of fundamentals but
the quantitative impact of lagged wedges on current period fundamentals or
current period R&D expenditures is relatively small.

Our research also finds support for the agenda that highlights the im-
portance of quality-adjusting measures of price indices. Our findings in this
paper are that, in Colombia, quality-adjusted inflation (of manufacturing
products) is about three percentage points lower than the unadjusted indica-
tor. And, interestingly, that this gap grows substantially at the beginning of
the nineties, coinciding with wide-spread market reforms, including trade lib-
eralization. Those findings suggest that quality adjustments have become an
increasingly important source of welfare gains (partly from trade, as demon-
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strated in Fieler et al. 2018). Estimating the changing relative importance
of the components of fundamentals during these market reforms is explored
in Eslava and Haltiwanger (2018).
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