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Abstract

The problem of allocating children to public daycares di¤ers from the school

choice problem in two fundamental ways: there is entry and exit of agents over

time, and the priorities of schools over children are history dependent. Our

lead example is the case of Denmark. We show that no mechanism is strategy-

proof and stable. We propose a strategy-proof, and Pareto e¢ cient mechanism

in which parents sequentially choose menus of schools, ordered by the child�s

birth date. Moreover, this mechanism eliminates ex-post uncertainty, and may

be considered fair: parents face similar choice sets, which increase over time.

JEL classi�cation: C78, D61, D78, I20.

KEYWORDS: daycare assignment, matching, strong stability, e¢ ciency.

1 Introduction

The decision of which daycare to enroll a child is an important and di¢ cult one.

This caution is justi�ed by mounting evidence that early childhood care facilities are
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heterogeneous and crucial to the development of important non-cognitive skills that

have a signi�cant impact on the child�s future career and social opportunities (Chetty

et al., 2010; Heckman, 2008). In addition, important risks are associated with opting

out of a daycare facility in favor of home care. For example, Goldin (1994) argues

that home care is a major barrier to the advancement of female careers because

it undermines mothers�time at work during those years when the possibilities for

career advancement are at their fullest.

Many daycare systems are publicly funded and centrally administered, particu-

larly in European countries. Our lead example is the case of Denmark. Copenhagen

has more than 400 independently managed daycare facilities and parents can, in

principle, choose to have their children assigned to any one of these facilities. How-

ever, each facility has strict capacity constraints due to the mandated number of

children per pedagogue as well as inherent space restrictions. As such, parents may

sign up for a particular daycare, but they are not guaranteed to have their children

accepted into it. In practice, some daycares are very popular and di¢ cult to enter

while other daycares are less popular and easier to enter.1

A centralized daycare system attempts to balance parental choice with the pri-

orities of the public daycares regarding the various children. A general sense exists

that daycares are a useful tool for social integration via the non-cognitive skill devel-

opment of less fortunate children (see Warren (2010)). Therefore, the priorities of

public daycares are often set to accommodate disadvantaged groups. Other criteria

for priorities might exist, for example the assignment system currently in place in

Denmark is such that the oldest unassigned child is given high priority in a daycare

where presently no capacity restriction exists�a concept called �child care guaran-

tee.�

In the current paper, we study the problem of the centralized assignment of

children to daycares. Parents report their preferences concerning institutional and

home daycare. Given these reports and the priorities of each daycare, the central

authorities decide on the assignment. Our goal is three-fold: illustrate the problem

by presenting what is currently done in Denmark; extend well-known concepts from

the static problem to a dynamic one; and, �nally, propose an algorithm that has

several advantages over the current one and other commonly used mechanisms.

1For example, there is much heterogeneity in the wait list lengths of each day-
care in Copenhagen, as is evidenced by current statistics published (in Danish) at
http://www.kk.dk/Redirections/daginstitutioner.aspx
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Most importantly, in the process of doing this, we believe that some of the concepts

developed in this paper will be useful to other applications and to the theory of

dynamic matching in general.

In the static problem known as school choice problem, children of a speci�c age

are assigned to di¤erent schools.2 The problem proposed in this paper extends

the school choice problem in two fundamental ways.3 First, the daycare assignment

problem has a dynamic structure: each child may attend daycare for several periods,

but not necessarily the same facility. Moreover, in any given period, children of

di¤erent ages may be allocated to the same daycare. For example, in Denmark,

children attending the same daycare range in age from 6 months to 3 years. Every

month, a group of young children start daycare while those children who turn 3 years

leave for the next level of pre-school. The second de�ning feature of the daycare

assignment problem is that the schools�priorities are history dependent: a school

gives priority to children previously allocated to it. In Denmark, it is also the case

that children that were not assigned to any school in a given period are given high

priority in all schools in the subsequent period.

One of the main objectives in the school choice literature has been to identify

mechanisms that satisfy one or more well-de�ned positive properties, such as sta-

bility, Pareto e¢ ciency, and strategy-proofness. Stability has been interpreted as

eliminating �justi�ed envy�: a mechanism that leads to an allocation in which no

child would prefer a di¤erent school to her current one and, at the same time, �nd

a student in that preferred school with a lower priority than her. Pareto e¢ ciency,

on the other hand, refers to the preferences of the students, and, thus, ignores the

schools�priorities. Finally, an algorithm is said to be strategy-proof if reporting the

true preference pro�le is a weakly dominant strategy. Abdulkadiro¼glu and Sönmez

(2003) discuss two important mechanisms to be used in this allocation problem: the

Gale-Shapley Deferred Acceptance algorithm, which is shown to be strategy-proof

and to yield a stable algorithm; and the Top-Trading Cycles, which is strategy-proof

and yields an e¢ cient matching. Here, we extend the above mentioned concepts to

the daycare assignment problem and study whether these concepts are compatible

with one another in this new�dynamic�environment.

In our setting, the concept of stability must be strengthened to be meaningful.

2See Abdulkadiro¼glu and Sönmez (2003) for an important paper in the area, and also Pathak
(2011) for a recent survey.

3Henceforth, we will refer to our problem as the daycare assignment problem mainly due to what
we see as its prototypical application.
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The main intuition here is that justi�ed envy becomes harder to de�ne when the

priorities of each school depend on the allocation of the previous year. For example,

a child who stays home in period t might have a higher priority in her preferred

daycare in period t + 1 (in particular, this is true under the assignment mechanism

currently in place in Denmark). Thus, in the discussion of the concept of justi�ed

envy for period t + 1 , it is not clear whether the allocation to which it should be

analyzed is the one in t or the one in t + 1 .

To account for issues such as the ones raised in the previous paragraph, we

propose a re�nement for the concept of stability, which we denote strong stability.

A strongly stable matching is one in which there is no pro�le of schools such that

an agent that prefers this pro�le over her assigned pro�le has higher priorities in

these schools even if she were to move to these referred schools. To �nd a strongly

stable matching we show that one can treat the daycare assignment problem as

separate school choice problems in di¤erent periods and �nd stable matchings in

each period, sequentially starting from period 0. The well known Gale-Shapley

deferred acceptance algorithm satis�es strong stability. We also show that it is not

Pareto dominated by any other mechanism that satis�es strong stability, and, if

there exists an e¢ cient and strongly stable matching, it must be the Gale-Shapley

one.

Importantly, though, we show that the mechanism described above is not strat-

egy proof: parents might have incentives to misreport their true preferences. This

negative result holds even if we restrict attention to a restricted domain of pref-

erences and priorities. Speci�cally, for the most part we assume that priorities of

schools are history dependent in only a rather weak sense: the priority ranking

of each school will only change for children previously allocated to it, while for

all other children, the priorities will remain the same. We denote this condition

by independence of previous assignment. Moreover, we also consider a restriction

on preferences, which we call separability. This restriction implies that preferences

over schools are somehow stable and consistent; in particular, there are no comple-

mentarities. Even with only this weak link between periods, the problem becomes

substantially di¤erent from the static case and the Gale-Shapley is not strategy-

proof.

The result above raises the question of whether there is any mechanism that

would be strategy-proof and stable (even if only weakly). This question is a very

important one in the context of the school choice literature, where much attention
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has been given to stability and the Gale-Shapley mechanism (which has since been

adopted in New York and Boston). However, the search for a stable and strategy-

proof mechanism is not straightforward, since the class of all possible mechanisms

is, of course, very large. Here we prove an impossibility result: there does not exist

a mechanism that is both strategy-proof and stable.

To prove the result above (Theorem 3), we construct an example in which for

di¤erent preference pro�les there is a unique stable outcome. Thus, if there is a

strategy-proof and stable mechanism, it must yield the unique stable allocation for

each reported preference pro�le. We then proceed to show that a player may bene�t

from a unilateral deviation in her reported preference pro�le�which must yield the

unique stable matching for that reported pro�le. This impossibility result does not

rely on the concept of strong-stability, but it holds even with the weaker concept

of static stability. Moreover, the result is true even in the restricted domain of

preferences and priorities referred above.

We turn the focus to �nding a strategy-proof and Pareto e¢ cient mechanism.

Unlike the case of stability, extending the concept of e¢ ciency in the daycare assign-

ment problem is straightforward�at least conceptually. However, although in static

settings it is impossible to �nd a child who would agree to trade her placement for a

worse one, in a dynamic setting this may be possible as long as the child obtains a

better placement in the other period. Hence, as long as there are two or more �will-

ing�participants of such a trade, there is room for Pareto improvement even if none

exists by changing one period matchings only. We show that due to this motive, the

Top Trading Cycles is not e¢ cient. We also show that it is not strategy-proof and

that even a variation of this algorithm, which we call Top Trading Cycles by cohort,

is not strategy-proof.

Strategy-proofness is more di¢ cult to achieve in the dynamic environment that

we consider since there is an additional potential bene�t for a player from misreport-

ing her true preferences: to a¤ect the priority rankings of schools in the subsequent

period. This motive is indeed very strong and is the driving force of some of our

negative results. In addition, note that if an assignment algorithm in place is not

strategy-proof, then computing the optimal strategy for the parents is substantially

more complicated in a dynamic problem than it is in a static one.4

4Our problem is not part of the literature on multi-unit allocation. Papai (2001), and Ehlers
and Klaus (2003), for example, have obtained negative results concerning strategy-proofness and
e¢ ciency, however, the problem here is substantially di¤erent and their results do not apply to
our setting. Many of the results in that literature depend on the feature that each agent might
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We propose a mechanism and denote it the Sequential Choice Mechanism. In

this mechanism, which is a version of the well-known Serial Dictatorship, children

are exogenously ordered by the planner and they choose a menu of schools over time

according to their position in the queue. The Serial Dictatorship is not strategy-

proof nor e¢ cient in our problem if applied period-by-period, but this extended

version satis�es both properties. Moreover, as Pathak (2011) argued, in the school

choice problem there is no natural way of ordering the agents, so the Serial Dictator-

ship mechanism may seem �unfair.�In contrast, our dynamic problem has a natural

way of ordering the agents: each child�s date of birth. If the Sequential Choice

Mechanism is used in practice, each child has the right to choose at some point in

time, over all menus available at that moment.5 This proposed mechanism has the

advantage of being simple and transparent. In addition, once parents make their

choices, they know the daycares that their child will attend at each di¤erent period.

In contrast, in the mechanism currently in place in Denmark, parents sign up to

multiple waiting lists, but they have little idea of how these choices will translate

into dates of acceptance.

We should highlight that although our problem is motivated by the assignment of

children to daycares, it has many other applications. A �rm with o¢ ces in di¤erent

cities must also solve a dynamic allocation problem; workers must be allocated

according to their preferences and the priorities of each o¢ ce.6

Other interesting applications are the assignment of teachers to public schools,

diplomats to di¤erent embassies, or high-level bureaucrats to di¤erent regions (see

Bloch and Cantala (2008)). A problem related to this one is the market for new

physicians in the United Kingdom, where each doctor is allocated to two six-month

positions, a medical post and a surgical post (see Roth (1991) and I. (1998)).

Since the work of Abdulkadiro¼glu and Sönmez (2003), mechanism design has

been used by many researchers to design new algorithms for the assignment of

children to schools. This literature has shown that some of the systems currently

consume several goods. In contrast, here, each agent consumes only a �xed number of goods (one
per period). In addition, due to the overlapping generations, some goods are only available in future
periods.

5Our model is discrete and each child attends daycares for two periods only. This is not important
for the results, though: a more general model with each child living for n periods would still give
us the same results.

6This is exempli�ed by the following excerpt from a McKinsey quarterly report:
�It is thus no surprise that a systematic and continuous approach to �tting the right person to

the right job at the right time has long been the Holy Grail of workforce organization.� (Agrawal
et al. (2003)).
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in place have many shortcomings, and new systems that overcome some of these

problems have been proposed. In particular, as we have mentioned before, special

attention has been given to the Gale-Shapley Deferred Acceptance algorithm and the

Top-Trading Cycles. These new mechanisms were recently adopted in Boston and

New York school systems, and the early evidence suggests that these mechanisms

are an improvement over the previous systems. See Abdulkadiro¼glu et al. (2009)

and Abdulkadiro¼glu et al. (2005) for a discussion of the practical considerations in

the student assignment mechanisms in these two cities.

The theory of market design and dynamic allocation is very recent. Ünver (2010)

extends the literature on centralized matching for kidney exchanges to a dynamic

environment in which the pool of agents evolves over time. Kurino (2009) studied

the housing allocation problem with an overlapping generations structure. There,

stability is not discussed, since there is no concept of priorities in the housing allo-

cation model. Bloch and Cantala (2008) consider a dynamic matching problem, but

their focus is on the long-run properties of di¤erent assignment rules, which makes

their analysis substantially di¤erent from ours.

The structure of this paper is as follows. In Section 2, we present a short descrip-

tion of the daycare system currently in place in Denmark. In Section 3, we describe

the model in detail. In Section 4, we study stable matchings and their properties.

In Section 5, we prove an impossibility result relating strong stability and strategy-

proofness. In Section 6, we study e¢ ciency and propose an algorithm that yields

e¢ ciency and strategy-proofness. In Section 7, we provide a brief conclusion. Longer

proofs are left in the appendix.

2 The Danish Daycare System

The local municipalities in Denmark use broadly similar mechanisms to assign chil-

dren to daycares. For speci�city, below we highlight the essential features of the

Aarhus mechanism, which are also common to most municipalities in Denmark,

including Copenhagen.

Children can start a daycare at the age of 6 months and when she turns 3 years

she must exit, moving to the next level of pre-schooling. The assignment algorithm

runs once a month and each parent reports the preference for her top 3 choices

among all daycares. They also report whether they want the option for what is

called as a �guaranteed spot,�in case the child is currently unassigned. The parents
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can enroll their child any time after birth. Even if a child has a spot in some daycare

she can participate in the assignment algorithm without having to give up her spot,

i.e. she may sign up for two di¤erent daycares and will be placed in a waiting list

for these two daycares. It is important to highlight that children currently allocated

to a daycare, will not be displaced from that daycare involuntarily.

When a spot opens in a daycare, a child will be allocated according to a general

priority ordering. Below is brief description of the priority orderings of the daycares

from the assignment algorithm currently in place in the Aarhus Municipality.7 Once

a spot opens, it is o¤ered to a child according to the following order:

1. Children with special needs, e.g., children with disabilities.

2. Children with siblings in the same daycare.

3. Immigrant children who after expert evaluations are considered in need of

special assistance in daycare.

4. The oldest child who is listed for a guaranteed place in his or her own district

i.e., not at a particular daycare.8

5. The oldest child who is listed for a guaranteed place in the local warranty

district. Aarhus Municipality is divided into 8 major warranty districts. A

warranty district consists of one to several districts.

6. The oldest child listed for a guaranteed place from a di¤erent warranty district.

7. The oldest child from the waiting list of a particular daycare. This o¤er is

also made to a child already in a daycare (unless the child was assigned to a

guaranteed place under rules 4-6).

7For the original document see:
https://www.borger.dk/selvbetjening/sider/fakta.aspx?sbid=8632

8�You can choose a guaranteed place and also a desired place with one or more speci�c institu-
tions. These requests will be taken into account when we �nd a place for you. However, we cannot
guarantee your desired institution. If your desired institutions does not have an opening, you will
be o¤ered a �guaranteed place. A guaranteed place is a place within the district you live in, or at
a distance from your home which involves no more than half an hour of extra transport each way
to and from work. The municipal placement guarantee is satis�ed when you have been o¤ered a
place. To be assigned a guaranteed seat at a desired time, the application must be received by the
placement guarantee o¢ ce no later than 3 months before the place is desired.� (Translated from
https://www.borger.dk)
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With this mechanism, it is not clear what is the best way to report the preferences

from the point of view of the parents. A very popular daycare will take longer to open

a position, so it may be desirable to choose a less popular daycare. Moreover, the

guaranteed place may be used strategically as illustrated in the following example.

Suppose that a parent knows (by talking to a principal, for example) that a spot is

likely to open in her preferred daycare 5 months from now. In this case, she may be

inclined to wait for 2 months before asking for the guaranteed spot. This way, when

the spot opens in 5 months, chances are that she will be in need of a place according

to the guaranteed spot concept. Thus, this mechanism is not strategy-proof. Also

the Aarhus mechanism fails e¢ ciency and stability. However, we present the formal

proof in Section 3.4 because we need to adapt the concepts of e¢ ciency and stability

to our setting.

The Aarhus mechanism is also not fully transparent: parents sign up to daycare

wait lists, but have very little information about the waiting time. Moreover, given

that it is not clear where and when a new spot will be o¤ered to a child, the

mechanism generates uncertainty from the parents�point of view.

3 Model

In Section 3.1 we de�ne the concept of matching in our setting. Moreover, we de�ne

the preference relation of the children over the di¤erent pro�les of daycares and the

priority orderings of the daycares over the set of children. In Section 3.2 we de�ne

the concepts of a Pareto e¢ cient matching and (weak) stability. Further, we extend

the well known concept of stability, and denote it strong stability. In Section 3.3 we

de�ne a mechanism and its properties. In particular, we de�ne strategy-proofness.

Finally in Section 3.4, we revisit the Aarhus mechanism and show its weaknesses.

3.1 Setup

Time is discrete and t = �1; 0; � � � ;1. There are a �nite number of in�nitely lived
schools/daycares. Let S = fs1; � � � ; smg be the set of schools. Each school s 2 S
has a maximal capacity rs which we assume is constant. Children can attend school

when they are 1 and 2 years old. School attendance is not mandatory. Let h stand

for the option of staying home. Let �S = S[fhg. For technical convenience, we treat
h as a school with unbounded capacity. In each period t, a new set of 1-year old

children It = f1; � � � ; ntg arrives. Consequently, at any period t the set of school-age
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children is It�1 [ It. As time passes the set of school-age children evolves in the
�overlapping generations�(OLG) fashion. The set of all children is I = [tIt.

First, we extend the de�nition of matching to a dynamic context. For the static

problem, matching maps the set of children to the set of schools. Here, a matching

is a collection of functions indicating which school-age child is assigned to which

school at every period.

De�nition 1 (Matching). A period t matching �t is a function �t : It [ It�1� �S !
f0; 1g such that

1. For all i 2 It�1 [ It,
P
s2 �S �

t(i; s) = 1;

2. For all s 2 S,
P
i2It�1[It �

t(i; s) � rs:

A matching � is a collection of period matchings � = (��1; �0; � � � ; �t; � � � ).

If child i is placed at school s in period t, then �t(i; s) = 1. Requirement (1)

above says that each child is placed at one school, while requirement (2) says that

each school cannot house more children than its capacity. We assume that at time

t = �1 the matching is exogenously given (for example, it may be that these initial
children stay at home in their �rst year). In other words, each matching we consider

has a common period -1 matching.

With slight abuse of notation, �t(i) denotes the school at which child i is placed

under �t, i.e., �t(i) = s whenever �t(i; s) = 1, for each i 2 It�1 [ It: Similarly, �t(s)
denotes the set of children who are placed at school s under �t, i.e., �t(s) = fi 2
It�1 [ It : �t(i; s) = 1g.

Children�s Preferences

Each child is characterized by a strict preference relation �i over �S2. The no-
tation (s; s0) denotes the allocation in which a child is placed at school s at age 1

and at school s0 at age 2. We write (s; s0) �i (�s; �s0) if either (s; s0) �i (�s; �s0) or
(�s; �s0) = (s; s0). Throughout the paper, we maintain the following assumptions on

preferences:

Assumption 1 (Preferences). Each child i�s preferences satisfy:

1. (No complementarities) If (s; s) �i (s0; s0) for some s; s0 2 �S, then (s; s) �i
(s; s0) and (s; s) �i (s0; s).
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2. (Weak separability) If (s; s) �i (s0; s0) for some s; s0 2 �S, then (s; s00) �i (s0; s00)
and (s00; s) �i (s00; s0) for any s00 6= s0.

No complementarities and the strictness of preferences yield that for any s; s0 2 �S
and i, at least one of the following conditions is satis�ed

(i) (s; s) �i (s; s0) and (s; s) �i (s0; s); or

(ii) (s0; s0) �i (s; s0) and (s0; s0) �i (s0; s):

Moreover, the two conditions above may be satis�ed at the same time. This would be

the case, for example, if a child incurs a large enough cost (not necessarily monetary)

from changing schools.

In this paper, we often consider a stronger version of the weak separability as-

sumption which we call separability. Recall that if child�s preferences satisfy weak

separability, then whenever attending school s in both periods is preferred to at-

tending school s0 in both periods, attending s and a third school s00 must be better

than attending s0 and s00. However, weak separability does not rule out the possibil-

ity that the child prefers attending school s0 in both periods to attending s in one

period and s0 in the other. Separability, however, rules out this possibility.

De�nition 2 (Separability). Child i�s preferences are separable if, for any s; s0 2 �S

(s; s) �i (s0; s0)() (s; s00) �i (s0; s00) and (s00; s) �i (s00; s0) for all s00 2 �S:

Schools�Priorities

At any time t � 0, each school ranks all the school-age children by priority.

Priorities do not represent school preferences but rather, they are imposed by local

municipality. For example, in the existing assignment mechanism in Denmark, all

schools give priority to their currently enrolled children. Similarly, the children with

special needs are given higher priority by the schools tailored to meet those needs.

Henceforth, we assume that each institution gives the highest priority to its

currently enrolled children, which is a feature of the assignment mechanism currently

in place in Denmark. A rationale behind this priority is that no school forces its

current enrollee out in order to free a spot for some other child. Because of this

assumption, the priority ranking of each school is history dependent, i.e., a school�s

priority ranking depends on its attendees of the previous period.
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One could argue that even in the school choice problem, the schools�priorities are

history dependent because a typical school gives priority to children whose siblings

are in it. In other words, the matchings of the previous periods a¤ect how the

schools rank the new applicants. However, in the school choice literature, this

history dependence of the schools�priorities is not modelled explicitly. This omission

is justi�ed if the older siblings make decision without caring about the younger ones,

i.e., one sibling�s well-being is not dependent on another�s. However, in our model,

the children participate in the assignment mechanism twice and of course, any child�s

well being depends on the schools she attends in di¤erent periods. Therefore, in our

model, we have to take the history dependence of the schools�priorities seriously.

We will denote the strict, binary relation which generates the priority ranking

of school s at period t by Bts(�t�1): That is, if at period t child i has a higher
priority than child j at school s given the period t � 1 matching �t�1, then we
denote iBts

�
�t�1

�
j. We write iDts

�
�t�1

�
j if either iBts

�
�t�1

�
j or i = j.

We impose the following assumptions on the schools�priorities.

Assumption 2 (Priorities). Each school�s priorities satisfy:

1. (Priority for currently enrolled children) If i 2 It�1 and i 2 �t�1(s) for some
s 2 S, then iBts (�t�1)j for all j =2 �t�1(s):

2. (Weak consistency of di¤erent period rankings) If i Bt�1s (�t�2)j for some

i; j 2 It�1, s 2 S and �, then iBts
�
�t�1

�
j in any of the following cases:

� �t�1(i) = �t�1(j) = s

� �t�1(i) = s; h and �t�1(j) = h

� �t�1(j) 6= s; h

3. (Weak irrelevance of previous assignment) If iBts (�t�1)j for some i; j 2 It�1,
s 2 S, and � with �t�1(i) 6= s; h and �t�1(j) 6= s; h, then iBts

�
��t�1

�
j for any

�� satisfying one of the following conditions.

� ��t�1(i) = ��t�1(j) = s

� ��t�1(i) = s; h and ��t�1(j) = h

� ��t�1(j) 6= s; h

12



4. (Weak irrelevance of di¤erence in age) If iBts (�t�1)j for some i 2 It�1, j 2 It,
s 2 S, and � with �t�1(i) 6= s; h, then i Bts

�
��t�1

�
j for all ��. In addition, if

j Bts (�t�1)i for some i 2 It�1, j 2 It, s 2 S, and � with �t�1(i) 6= s; h, then
j Bts

�
��t�1

�
i for all �� with ��t�1(i) 6= s; h.

Loosely speaking, the last three assumptions mean that the priorities of any

school do not depend on the attendees of other schools (excluding staying home).

Speci�cally, the second one says that if child i has higher priority than child j at

school s in period t�1, then child i keeps her advantage over child j in the following
period unless child j attends school s (h) while child i does not attend s (s or h).

The third one says that at any period, school s�s relative ranking of any two children

is not a¤ected by the fact that one child has attended school s0 6= s and the other
s00 6= s. The fourth assumption says that at any period school s�s relative ranking
of any two children is not a¤ected by the fact that one child has attended school

s0 6= s at period t � 1 while the other is one year old at period t. Here we remark
that Assumption 2 does not rule out the possibility that a school s gives priorities

to the children who have not attended any school over the ones who have attended

some school other than s in the previous period. This possibility is ruled out if the

schools�priorities satisfy the Independence of Past Attendance property which we

de�ne below.

De�nition 3 (Independence of Past Attendance). School s�s priorities satisfy the
Independence of Past Attendance (IPA) property if the conditions below are satis�ed:

2a. (Consistency of di¤erent period rankings) If iBt�1s (�t�2)j for some i; j 2 It�1,
s 2 S and �, then iBts

�
�t�1

�
j in any of the following cases:

� �t�1(i) = �t�1(j) = s

� �t�1(j) 6= s

3a. (Irrelevance of previous assignment) If iBts (�t�1)j for some i; j 2 It�1, s 2 S,
and � with �t�1(i) 6= s and �t�1(j) 6= s, then iBts

�
��t�1

�
j for any �� satisfying

one of the following conditions.

� ��t�1(i) = ��t�1(j) = s

� ��t�1(j) 6= s
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4a. (Irrelevance of di¤erence in age) If i Bts (�t�1)j for some i 2 It�1, j 2 It,
s 2 S, and � with �t�1(i) 6= s, then i Bts

�
��t�1

�
j for all ��. In addition, if

j Bts (�t�1)i for some i 2 It�1, j 2 It, s 2 S, and � with �t�1(i) 6= s, then

j Bts
�
��t�1

�
i for all �� with ��t�1(i) 6= s.

In practice, IPA is often not satis�ed: many schools give priority to two year

old children who have not attended any school in the previous period over one year

old children and the two year old children who have attended school in the previous

period. In particular, given a concept called �guaranteed spots,�IPA is not satis�ed

in the current Danish daycare assignment mechanism, but Assumption 2 is satis�ed.

The school choice problem is a special case of the daycare assignment problem.

To see this, suppose that each child is one at period �1 when they stay home. The
schools�priorities are well de�ned at period 0. In addition, the children rank the

schools at period 0 �xing that their period �1 matches are h. Now one can see that
this special case of our daycare assignment problem is a school choice problem.

The OLG structure of the daycare assignment problem is one of its distinguishing

features from the school choice problem. To be speci�c, due to the OLG structure,

schools could have di¤erent number of open slots in di¤erent periods. Hence, a child

may face a situation in which her preferred school does not have any open slot when

she is one but does have one when she is two. This type of possibility must a¤ect

the child�s decision. To illustrate why the OLG structure is crucial, let us consider

the following dynamic model. Let all the children in the model be born at the same

time and attend school for two periods. Given Assumption 1, the children can rank

schools by their preferences under the assumption that they will attend the same

school in both periods. We can treat the problem as a static problem in which each

child is assigned to the same school in both periods. Consequently, all the results

from the school choice problem will extend to this special case.

We also remark that the history dependence of the schools�priorities plays a

crucial role in our analysis. However, let us postpone this discussion until we study

strategy-proofness.

3.2 Properties of a Matching: E¢ ciency and Stability

The matching literature has identi�ed Pareto e¢ ciency and stability as the two main

desirable properties. The main goal of this subsection is to adapt these concepts to

our daycare assignment problem.
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The de�nition of Pareto e¢ ciency in our setting coincides with the one in the

school assignment problem: a matching � is Pareto e¢ cient if no other matching

strictly improves at least one child without hurting the others.

De�nition 4 (Pareto E¢ ciency). A matching �� Pareto dominates � if for some

t � 0 and some i 2 I,

�
��t (i) ; ��t+1 (i)

�
�i
�
�t (i) ; �t+1 (i)

�
and for 8j 2 I, �

��t (j) ; ��t+1 (j)
�
�j
�
�t (j) ; �t+1 (j)

�
:

A matching � is Pareto e¢ cient if no matching �� Pareto dominates �.

Adapting the de�nition of stable matching in our setting is much less straight-

forward as the dynamic nature of our setting presents some challenges, absent in

the school choice problem. We propose two stability concepts based on the idea

of justi�ed envy freeness9: weak stability and the strong stability. A matching is

weakly stable if no child can justify her envy of another child at some period, i.e., at

any period t, if child i improves by moving to school s from her currently matched

school only at t while keeping her past/future then s must not assign a seat to any

child who has lower priority than i. In a way, for weak stability, we are analyzing

the problem at �xed period t, assuming that the matching of every other period

t0 6= t is �xed. In this sense, the weak stability concept is analogous to the stability
concept in the school choice problem.

De�nition 5 (Weak Stability). A matching � is weakly stable if at any period

t � 0, there does not exist a school-child pair (s; i) such that (1) and (2) below hold
at the same time

1. (a) (s; �t+1(i)) �i (�t(i); �t+1(i)); or

(b) (�t�1(i); s) �i (�t�1(i); �t(i));

2.
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s):

9 In static settings in which one side of the market has priorities but not preferences, stable
matchings are de�ned as the ones free of justi�ed envy. See Balinski and Sonmez (1999) and
Abdulkadiro¼glu and Sönmez (2003) for examples.
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Condition (1) above refers to the fact that child i would be strictly better o¤ by

switching to some school s rather than the school speci�ed by the matching �. On

top of that, condition (2) implies that either there are un�lled spots at the preferred

school s of child i, or the school is in full capacity but some child j placed at this

school under the matching � has lower priority than child i.

In the de�nition of weak stability, one considers only the one period deviations

which has two shortcomings: (1) because the children can attend school for two

periods, a child can imagine situations in which she changes her match in both

periods and (2) the schools� priorities, which have to be considered for stability,

evolve depending on the past matchings.

To account for the issues raised above, we de�ne a stronger concept of stability.

Mainly, under strong stability a child takes into consideration that priorities are

history-dependent, so that justi�ed envy is not simply based on the current period�s

matching. Before formally de�ning the concept, we need to de�ne the following

notation.

For any i; j 2 It, s 2 �S and � such that �(i) 6= �(j) and �(j) 2 S, let

�M t(i; j; �) �
�
��t : ��t(i) = �t(j); ��t(j) 6= �t(j)& ��t(i0) = �t(i0)8 i0 6= i; j 2 It�1 [ It

	
:

That is, the set �M t(i; j; �) is a set of matchings at period t such that j is

replaced by i in the allocation speci�ed by the matching �t, j is placed at a di¤erent

school and all other children�s placements remain unchanged. One may think of

this as the set of all hypothetical matchings at time t such that i replaces j who

then �nds a school somewhere else � perhaps home, or some other school � and

all other children remain in the same school. Implicit in the solution concept of

strong stability and the construction of the set �M t(i; j; �) is the assumption that

children are not �farsighted.�Under this view, an allocation of a particular period

is considered �unfair�(or subject to justi�ed envy) if the child takes the matching

of all other children at all other periods as given. In particular, when the child

�feels� that she has justi�ed envy over some child in a particular school, for the

following period, she imagines that this child over whom she had priority will either

stay at home, or be placed in some other school that will not a¤ect the next period�s

matching and all other children remain matched as originally. When evaluating that

the matching � is subject to justi�ed envy, the child does not evaluate the entire

general equilibrium e¤ect of a new allocation that would take into consideration her
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justi�ed envy and possibly everyone else�s.

De�nition 6 (Strong Stability). Matching � is strongly stable if it is weakly stable
and at any period t � 0, there does not exist a triplet (s; s0; i) such that

(s; s0) �i (�t(i); �t+1(i));

for s 6= �t(i), s0 6= �t+1(i) and one of the following conditions holds:

1.
���t(s)�� < rs and ���t+1(s0)�� < rs0 ;

2.
���t(s)�� < rs, ���t+1(s0)�� = rs0, and, for some j0 2 �t+1(s0), i Bt+1s0 (��t)j0 where

��t is the period t matching with ��t(i) = s and ��t(i0) = �t(i0) for all i0 6= i 2
It�1 [ It;

3.
���t(s)�� = rs, ���t+1(s0)�� < rs0, and, for some j 2 �t(s), iBts (�t�1)j;

4.
���t(s)�� = rs,

���t+1(s0)�� = rs0, for some j 2 �t(s), j0 2 �t+1(s0) and for any
��t 2 �M(i; j; �), iBts (�t�1)j and iBt+1s0 (��t)j0:10

We interpret justi�ed envy in the dynamic context as the existence of a pair

of schools for which a child prefers to its current match and such that in some

�reasonable�way it would be �fair� for her to go to the preferred schools. Speci�-

cally, a reasonable way may mean one the four cases: (1) both of these schools have

unassigned spots; (2) in the �rst period a preferred school has an unassigned spot

and in the second, the child has a higher priority over another child allocated at a

preferred school; (3) a preferred school in the second period is operating with less

than full capacity and in the �rst period the child is placed on a higher priority than

some other child already allocated there, and �nally (4) in the �rst year the child

has a higher priority than some other child in a particular school and in the second

year, the child has a higher priority than some other child even if there had been a

reallocation in the �rst period, in which she replaced some child in year 1, as long

as in this new allocation, all other children remained in the same school.

To further illustrate the need for the concept of strong stability, we consider the

following two examples.

Example 1 (Justi�ed Envy under Failure of Separability). Consider a matching
that places child i at school s0 when she is both 1 and 2 years old. However, there is
10Observe that �t(j) = s 6= h as h has an unlimited capacity. Hence, M t(i; j; �) is well de�ned.
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another school s such that child i improves only if she switches to school s in both

periods. Observe that child i�s preferences are not separable. Moreover, suppose

that when child i is 1 year old, at school s she has priority over another child i0

who is placed at school s at that time. With this information, we cannot rule out

the possibility that the matching is weakly stable. This is because child i prefers

attending s0 for 2 periods to attending school s when she is 1 and s0 when she is 2.

However, one can argue that child i�s envy of i0 is justi�ed: she has a right to

attend school s ahead of i0 at age 1. Then, in the following period, she will be in the

highest priority group at school s. This gives her a right to attend school s when she

is 2. This argument is captured in requirement 4 in the strong stability de�nition.�

Example 2 (Justi�ed Envy under Failure of IPA). Suppose there are 2 schools, s
and s0, with respective capacities of 1 and 2 children. Children i and i0 are born at

the same period and their preferences satisfy the following property: (s; s) � (s0; s) �
(h; s) � (s0; s0). Suppose that school s gives higher priority to child i than i0 at period
t when the children are 1 year old. However, i0 is given higher priority over child i

by school s at period t+1 if at period t, i0 does not attend any school while i attends

s0. Observe that school s�s priorities do not satisfy IPA.

Consider a matching which places both children at school s0 in period t but places

child i at school s and child i0 at school s0 in period t + 1. Implicitly, the period t

spot of school s is assigned to some other child who has higher priority at school s

over both children. With this information only, we cannot prove that the matching

is not weakly stable.

However, one can argue that child i0 envies i in a justi�ed manner: if she is

stays home at period t and attends school s at period t+1, then she would de�nitely

improve. In addition, she would have had priority over i at school s in period t+1.

This argument is captured in requirement 2 of the strong stability de�nition. �

Strong stability is a re�nement of weak stability and we believe that it is a

natural concept that captures the meaning of justi�ed envy in our setting. Yet we

must remark that the de�nition of strong stability is stronger than what Examples

1 and 2 call for. In other words, one can slightly weaken de�nition 6 so that a

matching is strongly stable if it is weakly stable and free of justi�ed envy discussed

in Examples 1 and 2. However, this does not change any of the results in the next

section. Given this, weakening the de�nition of strong stability is not bene�cial from

a technical perspective.
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Examples 1 and 2 show that the strong and weak stability concepts are not

equivalent if one of separability or IPA is not satis�ed. But what if both of them

are satis�ed? Indeed in this case, it turns out that two concepts of stability are

equivalent. As this result is somewhat technical, we refer the interested readers to

Appendix A.

3.3 Mechanism and Its Properties

Let Pi denote the reported preference ordering of child i 2 I and P be the product
of the reported preferences of every child i. A mechanism ' is an algorithm that

constructs, sequentially, a matching for the daycare assignment problem, given the

reported preferences and the priorities. That is, mechanism ' maps the reported

preferences P and the function Bt (�) to a matching �. Let 'i
�
P;Bt (�)

�
denote

the pair of schools in which child i is placed. Strategy-proofness is de�ned as an

incentive for reporting the true preferences. Formally, reporting the true preferences

is a weakly dominant strategy for the children.

De�nition 7 (Strategy-Proofness). A mechanism ' is strategy-proof if for all i 2 I,
all Bt (�), all Pi, all t � 0; all P̂i, and all P̂�i;

'i

�
Pi; P̂�i;Bt (�)

�
�i 'i

�
P̂i; P̂�i;Bt (�)

�
where Pi is i�s true preferences while P̂i and P̂�i are the reported preferences of i

and the others.

De�nition 8 (Stability and E¢ ciency). A mechanism ' is e¢ cient (strongly/weakly
stable), if for all P and Bt (�), it yields an e¢ cient (strongly/weakly stable) match-
ing.

3.4 Danish Mechanism Revisited

In this subsection, we revisit the Danish mechanism. For speci�city, we focus on the

Aarhus mechanism presented in section 2 and show that the mechanism does not

satisfy any of the desirable properties discussed in the previous subsection.

Example 3 (Aarhus Mechanism). Suppose there are 2 schools, fs1; s2g and each
school has a capacity of one child. In each period, 1 child is born, but children
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are identical in all other aspects. Their preferences satisfy the following property:

(s1; s1) � (s2; s1) � (h; s1) � (s2; s2).
Consider the following strategy: each child participates in the Aarhus mechanism

when she is 2. Each child also participates in the Aarhus mechanism when she is

one if and only if the child from the previous generation attended school s2 in the

previous period. Whenever a child participates her reported preferences rank the

schools as follows: s1; h; s2.

The resulting matching from the strategy described above is that (h; s1) for each

child. It is easy to see that this strategy pro�le is an (subgame perfect) equilibrium:

no child wants to deviate because she cannot attend school s1 when she is 1. If she

attends school s2 when she is 1, then she cannot attend s1 when she is 2 because she

will lose her priority over the younger child in that period.

Clearly, the Aarhus mechanism is not e¢ cient as each child matching with

(s2; s1) Pareto dominates (h; s1). Furthermore, in each period, the younger child

can attend school s2 as it has an un�lled spot. Consequently, the Aarhus alloca-

tion mechanism is not weakly stable. Finally, in the Aarhus mechanism, each child

reports that h is preferred to s2. Thus, the mechanism fails strategy-proofness too.

4 Stable Matchings

Now we turn our attention to the question of whether strongly stable matchings

exist. We �rst show that if the schools�priority rankings do not satisfy IPA; then

a strongly stable matching might not exist. Later, we show that IPA is a su¢ cient

condition for existence of strongly stable matchings.

Theorem 1. If the schools� priorities do not satisfy IPA, then the existence of
strongly stable matchings is not guaranteed.

Proof. Consider the following example in which IPA is violated. There are 2 schools,

s and s0 with respective capacities of 1 and 3. In each period, there are two identical

one-year old children. Their preferences are separable and satisfy the following

property: (s; s) � (h; s) � (s0; s0) � (h; h).
Each period, the schools rank the children in which the highest priority groups

are: (1) the previous period�s attendees (2) two year old children who have not

attended any school in the previous period. (Note that condition (2) violates IPA).
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Now we show that strongly stable matchings do not exist in this example. On

contrary, suppose � be a strongly stable matching.

1. Suppose there exist i and t such that �t(i) = h. Then because there are 4

school age children and 4 school spots at period t, at least one unassigned

spot must exist. Child i improves if she claims this spot at t, which is a

contradiction.

2. Suppose for some i and t, (�t(i); �t+1(i)) = (s; s0). Clearly, i has the highest

priority at school s in period t+ 1. In addition, as (s; s) �i (s; s0) by separa-
bility, child i can be improved in a justi�ed manner. This is a contradiction.

3. Suppose for i 2 It, �t+1(i) = s. Then one of the following happens: (1)

�t+2(s) = j for some j 2 It+1 or (2) �t+2(s) 6= j for all j 2 It+1. In the
former case, the matching of j is (s0; s); otherwise, we are back to case 1.

Consequently, the matching of �j 6= j 2 It+1 is (s0; s0). If �j stays home at t+1,
at t+2 she has priority over any one-year old or j (who attended s0 at t+1).

In addition, �j prefers (h; s) to (s0; s0). Hence, �j can be improved in a justi�ed

manner. In case (2), either we are back to case 1 or both children born at It+1
match with (s0; s0). At t+ 2 both of these children have priority over any one

year old at school s. In addition, (s0; s) is preferred to (s0; s0). Hence, both

children child can be improved in a justi�ed manner.

In the proof of Theorem 1, we use a counter example with separable preferences

of the children. However, separability has no role in Theorem 1, i.e., one can con-

struct an example needed for Theorem 1 in which the children�s preferences are not

separable. Hence, we conclude that the existence of strongly stable matchings is not

guaranteed without IPA regardless of whether separability is satis�ed or not. But

with IPA, is the existence guaranteed? The answer to this question is positive, but

�rst let us introduce the algorithm used for the existence result.

The Gale-Shapley Deferred Acceptance Algorithm and Its Properties

The Gale and Shapley deferred acceptance algorithm (GS algorithm) was orig-

inally designed to deal with static two-sided matching problems. To run this algo-

rithm at certain period t, one needs to know the schools�priorities over all school-age
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children as well as the children�s preferences over schools. In our setting, the schools�

priorities are well de�ned given the previous period�s matching. However, the chil-

dren�s preferences are de�ned over the pairs of schools. Hence, to run the original

GS mechanism, one needs to derive one period preferences for each child at a given

period, based on the past matchings and the original preferences of the children over

the pairs of schools; we do not want to derive one period preferences based on the

future matchings as the current matchings a¤ect next period�s priority rankings of

the schools.

For now, let us assume that at period t, we have derived the one period preference

relation Pi(�t�1) for each i 2 It�1[It depending on �t�1 matchings. Let P(�t�1) =�
Pi(�t�1)

	
i2It�1[It . Thus, sPi(�

t�1)s0 means that at time t, player i prefers school

s to s0 given the period t � 1 matching �t�1. Now we de�ne stability in a static

context that will be used in some of our proofs.

De�nition 9 (Static Stability). Period t matching �t is statically stable under pref-
erences P(�t�1) and �t�1, if there exists no school-child pair (s; i) such that

1. sPi(�t�1)�t(i);

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s)

Now we will de�ne the one-period preferences that we will use for the GS algo-

rithm.

De�nition 10 (Isolated Preference Relation). For given �t�1,

1. the isolated preference relation for i 2 It is the preference relation �1i such
that s0 �1i s00 if and only if (s0; s0) �i (s00; s00) for any s0 6= s00 2 �S;

2. the isolated preference relation for i 2 It�1 is the preference relation �2i (�t�1)
depending on previous period�s matching and such that s0 �2i (�t�1)s00 if and
only if (�t�1(i); s0) �i (�t�1(i); s00) for any s0 6= s00 2 �S:

Now we will state the formal de�nition of the Gale and Shapley deferred ac-

ceptance algorithm. The algorithm is the same in each period, and it only uses

the matching of the preceding period. In period t � 1, assume that the previous

period�s matching is obtained by using the GS algorithm. At period t, the schools

assign their spots to the all school-age children in �nite rounds as follows:
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Round 1: Each child proposes to her �rst choice according to her isolated preferences.

Each school tentatively assigns its spots to the proposers according to its priority

ranking. If the number of proposers to school s is greater than the number of

available spots rs, then the remaining proposers are rejected.

In general, at:

Round k: Each child who was rejected in the previous round proposes to her next

choice according to her isolated preferences. Each school considers the pool of

children who it had been holding plus the current proposers. Then it tentatively

assigns its spots to this pool of children according to its priority ranking. The

remaining proposers are rejected.

The algorithm terminates when no proposal is rejected and each child is assigned

her �nal tentative assignment.

Given that the children�s preferences as well as schools� priority rankings are

strict, it is easy to see that the GS algorithm yields a unique matching. We refer to

this matching as the GS matching and use the notation �GS for it.

With the next result we show that when assuming IPA, strong stability is equiv-

alent to static stability under isolated preferences.

Lemma 1. If � is strongly stable then for all t � 0, �t is statically stable under

isolated preferences and �t�1. If for all t � 0, �t is statically stable under isolated
preferences and �t�1, then � = (��1; � � � ; �t; � � � ) is

1. weakly stable.

2. strongly stable if each school�s preferences satisfy IPA.

Proof. See Appendix C.

Lemma 1 implies that to �nd a strongly stable matching, it su¢ ces to �nd

a stable matching under isolated preferences in each period, sequentially starting

from period 0. In other words, for the purpose of �nding a stable matching, one

can treat the daycare assignment problem as separate school choice problems in

di¤erent periods. Consequently, the GS matching is strongly stable as Gale and

Shapley (1962) shows that the GS algorithm yields a stable matching in a static

setting. We state the result below.
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Theorem 2 (Existence of Strongly Stable Matching). The GS matching is weakly
stable. Furthermore, if the priority ranking of each school satis�es IPA, then the

GS matching is strongly stable.

As we already mentioned, examples 1 and 2 illustrate the need of strengthening

the weak stability concept into the strong stability one if separability or IPA is

not satis�ed. However, Theorem 2 demonstrates that IPA is a su¢ cient condition

for the existence of strongly stable matchings even if separability is not satis�ed.

In addition, Theorem 1 shows that with or without separability, the existence of

strongly stable matchings is not guaranteed without IPA. In this sense, IPA might

be considered a more critical condition than separability for the existence of strongly

stable matchings.

One of most important results in the matching literature is that the GS matching

Pareto dominates all other stable matching. We study how GS matching compares to

the other stable matchings in more detail in Appendix B as these result are somewhat

technical. However, we summarize our �ndings in the following proposition.

Proposition 1. The GS is matching does not necessarily Pareto dominate all other
stable matchings. However, it is not Pareto dominated by any stable matching.

Moreover, if any matching is stable and e¢ cient, then it must be the GS matching.

Henceforth, we will always assume that the children�s preferences satisfy separa-

bility and the schools�priorities satisfy IPA because these assumptions do not play

any role in the results we will present next. In other words, we are concentrating

on the cases with a minimal history dependence.

5 Strategy-Proofness and Stability

It is well known that in static settings, when the GS mechanism is strategy-proof.

We show below, that in a our setting this no longer holds. In fact, the result below

is much stronger: there is no mechanism that is strategy-proof and strongly stable.

Theorem 3 (Impossibility Result). Weakly stable and strategy proof mechanism
may not exist.

Proof. Consider the following example: there are 4 schools fs; �s; s1; s2g and each
school have a capacity of one child. There is no school-age child until period t �
1. Suppose It�1 = fi;�{g, It = fi1; i2g, It+1 = fi0g and I� = ; for all � � t +
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2. In addition, school s0 = s; �s; s1; s2 prioritizes the children as follows under the

assumption that no child attended s0 in the previous period:

i Bs i0 Bs i1 Bs i2 Bs �{

i Bs1 i1 Bs1 i2 Bs1 i0 Bs1 �{

i Bs2 i1 Bs2 i0 Bs2 i2 Bs2 �{

�{ B�s i1 B�s i0 B�s i2 B�s i

We consider two preference pro�les which di¤er from each other in child i1�s

preferences. Child i�s top choice is (s; s) while child �{�s is (�s; �s). The preferences of

children i2 and i0 satisfy the following conditions:

(s2; s2) �i2 (s1; s1) �i2 (s; s) �i2 (�s; �s)

(s2; s2) �i0 (s; s) �i0 (s1; s1) �i2 (�s; �s)

Child i1�s preference ordering is �1i1 under preference pro�le 1 and is �
2
i1
under

pro�le 2. These preferences are given as follows:

(s; s) �1i1 (s1; s1) �1i1 (s2; s2) �1i1 (�s; �s)

(s; s) �2i1 (�s; �s) �2i1 (s2; s2) �2i1 (s1; s1)

In addition, suppose (s2; s) �1i1 (s1; s1).
Here we prove a weaker version of the theorem: that the GS mechanism is

not strategy-proof in the above example. We leave the formal proof in Appendix C.

Under pro�le 1, the GS matching is as follows: �t�1(i) = �t(i) = s, �t�1(�{) = �t(�{) =

�s, �t(i1) = �t+1(i1) = s1, �t(i2) = �t+1(i2) = s2, �t+1(i0) = s and �t+2(i0) = s2. (In

fact, it is the unique weakly stable matching here).

Under pro�le 2, the GS matching �� is as follows: ��t�1(i) = ��t(i) = s, ��t�1(�{) =

��t(�{) = �s, ��t(i1) = s2, ��t(i2) = s1, ��t+1(i1) = s, ��t+1(i2) = s1, ��t+1(i0) = s2 and

��t+2(i0) = s2.

Under pro�le 1, child i1�s matching is (s1; s1) if she reports her preference truth-

fully but it is (s2; s) if she misreports her preference as if under pro�le 2. But

(s2; s) �1i1 (s1; s1). Consequently, child i1 misreports her preferences under pro�le
1. Hence, the GS mechanism is not strategy-proof.

Even when separability and IPA are satis�ed, strategy-proofness is more di¢ -

cult to achieve in the daycare assignment problem. In static problems, a child has a
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motive to misreport her preferences only if she can obtain a better placement. This

motive is also present in the daycare assignment problem. To be speci�c, a child will

misreport her preferences if she can improve her present placement without hurting

her placement in the other period. This motive, as known from the school choice

literature, is eliminated if the mechanism is the GS or Top Trading Cycles mecha-

nism. However, in our setting, there is an extra motive absent in the school choice

problem: one might misrepresent her preferences to a¤ect the schools�priorities in

the subsequent period. This way, she could obtain a better future placement by

sacri�cing her current one.

In the example used for the proof of Theorem 3, type 1 child i1 likes school

s better than any other school, but attending s in period t is impossible for her.

Again, in period t+ 1, she cannot attend s because child i0 attends s. But observe

that child i0 wants to attend school s2 but cannot do so because child i2 attends

s2. The most important aspect is that child i2 has higher priority over child i0 at

school s2 in period t+1 only because she attends school s2 in period t. Child i1 can

eliminate child i2�s advantage over i0 if she attends school s2 in period t. By doing

this, i1 enables i0 to attend s2 at t + 1. Ultimately, she frees a spot at school s for

herself at t+1. This is the reason why type 1 child i1 has an incentive to misreport

her preferences.

Remark 1. For Theorem 3, both the OLG structure and the history dependence

of the schools�priorities play indispensable roles. We have already mentioned that

without OLG structure, all the existing results in the school choice problem will be

valid. Now let us discuss why the history dependence of the schools� priorities is

critical for Theorem 3 even with the OLG structure. To see this, suppose that the

children�s preferences are separable and somehow the schools�priorities at any period

are independent of the previous period�s matching�in particular, at some school, a

child who did not attend the school in the previous period can have priority over

some other child who did attend the school. In this case, the GS algorithm must be

strategy-proof. Let us discuss why this is the case. For the GS algorithm, one has to

report her preferences over the pairs of schools. But this, in fact, is equivalent to the

case in which the school-age children report their isolated preferences in each period

and the algorithm is run sequentially because the GS algorithm uses the isolated

preference. As the preferences satisfy separability and the schools�preferences are

independent of history, any child�s reported isolated preferences in one period do

not a¤ect her placement in the other period. Now recall that the GS algorithm is

26



strategy-proof in the static settings. Hence, by misreporting one�s isolated preferences

in some period, she is worse o¤ in that period without a¤ecting her placement in the

other period. Accordingly, no one misreports her isolated preferences. Thus, the GS

mechanism is strategy-proof.11

Remark 2. In the previous remark, we argued that the history dependence of the
schools�priorities is crucial for Theorem 3. However, if schools�priorities are his-

tory independent, then in some cases, some children will be forced out of the schools

they attended in the previous period. For example, in the example used in the proof

of Theorem 3, child i2 is forced out of school s2 at period t+1. We �rmly believe that

this should be avoided. Therefore, under the restriction that no 2-year old child can

be forced out of the school she attended in the previous period, Theorem 3 is valid

even when the schools�priorities are independent of the previous period�s matching.

Theorem 3 has two important, direct consequences which we present next.

Corollary 1. 1. Strategy proof and strongly stable mechanism may not exist.

2. The GS mechanism is not necessarily strategy-proof.

Proof. Recall that each strongly stable matching is weakly stable. This and Theorem

3 prove item 1 of the corollary.

6 E¢ ciency and Strategy-Proofness

In this section, we �rst de�ne the concept of e¢ ciency in a static sense, which

we denote Autarkic E¢ ciency. We show that a matching that satis�es autarkic

e¢ ciency may exhibit opportunities for Pareto improving trades across members of

the same cohort or across members of di¤erent cohorts. Then, in Section 6.2 we

study the Top-Trading Cycles in detail. We show that it is neither Pareto e¢ cient

nor strategy-proof. Finally, in Section 6.3 we propose a new mechanism, which is

both strategy-proof and e¢ cient.

11For this argument, the assumption that children�s preferences are separable plays an important
role. In fact, if the children�s preferences do not satisfy separability, then an impossibility result
similar to Theorem 3 arises even if the schools�priorities are independent of history. This result
can be obtained from the authors.
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6.1 E¢ cient Matchings

We have shown that stability and strategy-proofness may be incompatible for the

daycare assignment problem. In the remaining sections of this paper, we investigate

whether strategy-proofness is compatible with e¢ ciency. However, before doing so,

let us consider some properties of e¢ cient matchings.

From the school choice literature, we know that the Top Trading Cycles (TTC)

or the Serial Dictatorship mechanisms yield stable matchings. Hence, one might

expect that these algorithms using the isolated preferences of the children yield

e¢ cient matchings. In other words, one may expect that a result analogous to the

result of Lemma 2 will hold for e¢ ciency as well. We will demonstrate that this is

not necessarily the case. But �rst, let us de�ne the Autarkic e¢ ciency concept.

De�nition 11 (Autarkic E¢ ciency). Matching � is Autarkic E¢ cient if for any t �
0, there does not exist period t matching ��t such that (��1; � � � ; �t�1; ��t; �t+1; � � � )
Pareto dominates �.

For Autarkic e¢ ciency, one considers only one period deviations. Hence, it is

clear that all e¢ cient matchings satisfy Autarkic e¢ ciency. We present two ex-

amples to show that Autarkic e¢ ciency is not equivalent to e¢ ciency. The �rst

example shows that a matching might satisfy Autarkic e¢ ciency but fail to be ef-

�cient because of the intergenerational trades. We demonstrate this point below.

The second example, more standard, shows that a matching may fail to be e¢ cient

due to intra-generational trades, and we present it in Appendix C.

Example 4 (Pareto Improving Trade Across Cohorts). In each period, there are two
1-year old children in each period fit; jtg and there are four schools fs1; s2; s3; s4g
with each having a capacity of 1 child. For this example, we will only specify the

schools�top ranked school-age child if all of them stayed home in the previous period.

School s1 and s2 give their respective highest priorities to children i and j who are

1 in odd periods. On the other hand, school s3 and s4 give their respective highest

priorities to children i and j who are 1 in even periods. In the following table we

summarize each school�s top ranked child:
s1 s2 s3 s4

ik jk ik+1 jk+1

where k is odd. The children�s preferences are as follows.

� Child i�1�s top choice is s1 while for child j�1, s3 �1j�1 s2 �
1
j�1 s4:
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� For child i0,s1 �1i0 s3 �
1
i0 s2;while child j

0�s top choice is s4.

� For child i1, s4 �1i1 s1 �
1
i1 s3, while child j

1�s top choice is s2.

� Child i2�s top choice is s3 while for child j2, s2 �1j2 s4 �
1
j2 s1.

� For t � 3, child it (jt) has the same preferences as child it�4 (jt�4).

In addition, each child prefers being placed at the school of her third choice when

she is 1 and at her most preferred school when she is two to being placed at the

school of her second choice for 2 periods.

Consider the following matching �: in any period, school s1 matches with the

school-age child i who is 1 in an odd period, s2 with j who is 1 in an odd period,

s3 with i who is 1 in an even period, and school s4 with j who is 1 in an even

period. Observe that in each period exactly 1 younger and 1 older children match

with their second choice school. The others match with their top choice. It is easy to

see that � satis�es Autarkic e¢ ciency. Now let us alter � in the following way: in

each period, the two children who are placed at her second choice school trades their

schools. This way the older of the two children is placed at her �rst choice school

while the younger one is placed at her third choice school. One can easily see that

the new altered matching Pareto dominates �.

Observe that in the above example, the in�niteness of time plays an important

role. To see this, let us check why � is not e¢ cient. Matching � places one younger

and one older children at their second choice schools in each period. Each of these

child prefers being placed in her third choice school when she is one and at her most

preferred school in the following period to being placed at her second choice school

in both periods. Hence, the younger child would agree to give her spot away and

obtain a spot at a worse school as long as she obtains a spot at her most preferred

school in the following period. Accordingly, � is not e¢ cient because one younger

child can trade her spot with an older child in each period. If time stops at some

point, then the younger child at that time would not agree to this trade. This is why

the in�niteness of time is crucial in Example 4. This phenomenon is also observed

in the standard overlapping generations models.

The examples 4, presented above, and 7, presented in Appendix C, have an im-

portant implication: not all mechanisms that deliver matchings satisfying Autarkic

e¢ ciency are necessarily e¢ cient even if the children�s preferences are separable. For
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example, the TTC mechanism using isolated preferences does not necessarily yield

an e¢ cient matching. As we will discuss whether the TTC mechanism is strategy-

proof, let us consider the TTC mechanism in the next subsection.

6.2 The Top Trading Cycles Mechanism

The TTC mechanism was introduced in Abdulkadiro¼glu and Sönmez (2003).12 Next

we will state the formal de�nition of the TTC mechanism.

In each period, we assume that the preceding period�s matching is produced by

the TTC mechanism according to the isolated preferences of children. In period t:

Round 1 : Each child points to her preferred school. Each school points to

its highest ranked child. The process goes on, until it reaches a cycle, which it

eventually will. A cycle can be written as fi1; s1; i2; s2; � � � ; ik; skg, where here, sj is
child i0js preferred school, whereas child il is the highest ranked child in school sl�1,

for l = 2; :::; k; and child i1 is the highest ranked child at school sk. All children in

the cycle are allocated to their preferred school.

In general, at:

Round k : All children allocated in rounds 1,...,k � 1 do not participate in step k.
Each remaining child points to its preferred school, among the set of schools with

remaining spots. Each pointed school points to the highest priority child among the

remaining children. The process goes on until it reaches a cycle, which it eventually

will. All children in the cycle are allocated to the schools that they have pointed to.

The process continues until all children are allocated.

We point out that the version of TTC we use is similar to the one Abdulkadiro¼glu

and Sönmez (1999) use in the housing allocation problem with existing tenants in

the sense that in both versions, the object to be assigned points to its current

owner unless s/he already obtained another object: in the case of Abdulkadiro¼glu

and Sönmez (1999), each house points to its current tenant unless she is already

assigned a house while in our model, due to the fact that the schools give their

highest priorities to its current enrollees, each school points to one of these children

unless all of them are assigned to a school. However, the two versions of TTC are

di¤erent in the sense that in Abdulkadiro¼glu and Sönmez (1999), no house prioritizes

12The TTC mechanism is inspired by Shapley and Scarf (1974) and Roth and Postlewaite (1977).
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the (non existing) tenants but in our model, each school prioritizes the children in

di¤erent ways.

As we already hinted, the top trading cycle mechanism is not necessarily e¢ cient.

Given the importance of the TTC mechanism in the school choice problem, let us

state this result in the following proposition.

Proposition 2 (TTC is not necessarily Pareto E¢ cient). The TTC mechanism is

not necessarily Pareto e¢ cient.

Proof. Consider Example 4 and observe that � is the matching from the TTC mech-

anism. As we mentioned � is not e¢ cient.

Note that in Example 4, not only the TTC mechanism is not necessarily e¢ -

cient, but also a variation of it, done by cohorts. Precisely, consider the following

mechanism. At any period t, the children born in period t� 1 are allocated accord-
ing to the TTC mechanism (see Abdulkadiro¼glu and Sönmez (2003)). Once every

children i 2 It�1 is allocated, most schools will have less, if any, spots available.
Consider only the schools with open spots and use the TTC mechanism for the

generation born in period t, where from the initial number of spots for each school,

we have subtracted the number of 2-year-old children already allocated. For this

round, consider only the priority of schools over the children of generation t: i.e., a

young child cannot replace an already allocated 2-year-old child. This variation of

the TTC mechanism is also is not Pareto e¢ cient.

In the example below, we show that the TTC mechanism (using isolated prefer-

ences) may not be strategy-proof.

Example 5 (TTC may not be Strategy-Proof). Assume that there are 4 schools
fs; s1; s2; s3g; and 4 children: fi; i1; i2; i3g, with i 2 I�1 and fi1; i2; i3g 2 I0. Assume
also that It = ? for all t � 1. School �s = s; s1; s2; s3 prioritizes the children as

follows assuming that these children has not attended �s in the previous period:

i Bs i2 Bs i1

i1 Bs1 j; 8j 6= i1
i2 Bs2 j; 8j 6= i2
i1 Bs3 i3 Bs3 j; 8j 6= i1; i3
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The children�s preferences are:

s �i s1 �i s2 �i s3

s �i1 s1 �i1 s2 �i1 s3

s3 �i2 s �i2 s2 �i2 s1

s3 �i3 s1 �i3 s2 �i3 s

In addition, child i1 prefers (s0; s) to (s1; s1).

The matching resulting from the TTC is: �0 (i) = s, �0 (i1) = s1, �0(i2) = s2,

�0 (i3) = s3, �1 (i1) = s1, �1 (i2) = s and �1 (i3) = s3. However, if i1 misreports

its preferences as s �i1 s2 �i1 s1 �i1 s3, while all others report truthfully. The
resulting matching is: ��0 (i) = s, ��0 (i1) = s2 , ��0 (i2) = s3, ��0 (i3) = s1, ��1 (i1) = s,

��1 (i2) = s3 and ��1 (i3) = s1.

Note that under truth-telling, i1�s allocation was: (s1; s1), while after misreport-

ing it is (s2; s). Thus, i1 has improve herself by misreporting. �

Observe that the example above shows that a variation of the TTC which is

done by cohorts is not strategy-proof.

6.3 Sequential Choice Mechanism

We propose an algorithm to be used in this problem of matching with entry and

exit of agents, which we denote the Sequential Choice Mechanism. This is a version

of the Serial Dictatorship algorithm, but uses an order of choices naturally provided

the birth date of the children.

Formally, recall that at period t, there are nt children who are 1-year-old and

we exogenously label them from 1 through nt. The algorithm runs as follows: at

period 0, the 2-year-old children choose sequentially�according to their indices�one

school from the set of schools that have available spots. Once all 2-year-old children

have chosen, the 1-year old children choose sequentially a pair of schools following

a restriction that a child can only choose a di¤erent school in period 2 if that school

was not available to the child in period 1.13 That is, the 1-year-old children choose
13Given our assumption of separability this restriction is not binding. Formally, if a child chooses

the following menu: (s; s0) ; then it must be the case that s0 was not available in period 1. To
illustrate, consider a case in which s was chosen for the �rst period and the bundles (s; s) and
(s0; s0) were available. If (s; s0) was chosen, it implies that (s; s0) � (s; s) and (s; s0) � (s0; s0). This
violates separability. We make this restriction on the menu of choices to avoid the possibility that
assumption 2 is violated in some history �o¤-equilibrium path,�i.e. some history inconsistent with
undominated strategies.
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a school s in the �rst period (from the set of schools with open slots) and a school

for period 2. In period 2, the school can either be the same school s or a di¤erent

school s0 if s0 was not available for this child in period 1 and not chosen by any child

of the same age with a lower index.

At any given period there is a �nite number of school-age children, therefore this

is a well-de�ned mechanism that always converges to a unique matching. Moreover,

this algorithm is strategy-proof and e¢ cient. It is strategy-proof since each child

can be allocated to the best available menu. Moreover, it is e¢ cient since the �rst

child to choose in a given cohort can only improve if there is a school chosen by

another child in the previous cohort that would make her better o¤. No child in the

previous cohort would engage in such a trade, since all open schools were available

to the older cohort and not chosen by them. The child with an index 2 of the young

cohort cannot improve by trading with the �rst child, since the �rst child is already

choosing the best available option for her. A similar argument holds for any other

indexed child.

Our analysis suggests that the Sequential Choice Mechanism may be the ideal

method to assign children to public daycares. Besides being strategy-proof and

Pareto e¢ cient, the bene�ts of this mechanism over alternatives include fairness,

and the resolution of uncertainty. We also believe that the mechanism is su¢ ciently

�exible that it can accommodate the priorities of public authorities. In the remaining

of this section, we provide some remarks about the practical bene�ts of improving

the daycare assignment mechanism.

Fairness
A very important, but less obvious, advantage of the sequential choice mechanism

is fairness. In the standard static school choice problem, the serial dictatorship

mechanism might be considered unfair because parents listed last are at a clear

disadvantage than parents listed �rst. This problem with serial dictatorship is mit-

igated in a dynamic assignment problem. To illustrate this point, consider the case

in which the number of children born at every period is the same. The child who

chooses last in her cohort will have at least half of the daycare-spots available to

her in period 2, whereas in the static problem, the last child to choose in the serial

dictatorship mechanism might have only one option.14

14This assumes that there is at least the same number of spots as there are children in a given
period. Formally, consider the case in which there are 2n children at every period (with n children
being born every period) and 2n daycare spots available. The last child choosing in her cohort, will

33



Our sequential choice mechanism can be easily adapted to a dynamic model in

which children go to school for m > 2 consecutive periods. In this case, if the same

number of children is born at every period, the last child to choose in her cohort will

have her choice set increased over time. For large m; at the last period the fraction

of daycare spots available is close to 1: Therefore, the Sequential Choice Mechanism

is perhaps more fair because the di¢ culties of assignment are spread more or less

evenly across all parents.

Transparency and resolution of uncertainty
A central problem of the current daycare assignment mechanism used in Denmark is

lack of transparency. In the city of Copenhagen, parents sign up to several wait lists

and they have little idea of how these choices will translate into dates of acceptance.

For example, it is extremely di¢ cult to guess whether a child of another parent

who is listed earlier will drop out of this list in favor of choosing another daycare

for which they are also listed. This means that parents are generally forced to

make conjectures about the expected behavior of other parents when they choose a

daycare for their own child.

The Sequential Choice Mechanism can in principle remove all sources of uncer-

tainty connected with choosing a daycare. The parents look at the set of available

options and make the choices of when and where their child will go to daycare well

before the child is able to attend daycare. This has obvious advantages of planning.

The parent�s employers can be given precise plans about parental absence. Conse-

quently parents can better plan their careers and make various bene�cial arrange-

ments that require early commitment to a plan.

Priorities
There is some �exibility to incorporate priorities by a¤ecting the order of parental

choice. For example, there are several thousand children entering daycare in Copen-

hagen each month. Clearly, a large advantage in choice can be given to parent with

a special need simply by allowing this child to choose �rst within the set of children

in a monthly cohort. Moreover, the mechanism remains strategy-proof, e¢ cient and

free of ex-post uncertainty.

have n+ 1 options in her second period. In the static case with 2n children and 2n spots, the last
child to choose in the serial dictatorship mechanism might have only one spot available.
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7 Conclusion

In this paper we introduced the daycare assignment problem. This problem di¤ers

from the school choice problem due to its dynamic structure and the fact that

schools�priorities are history dependent. We showed that the Gale-Shapley deferred

acceptance algorithm and the Top-Trading Cycles mechanisms� both commonly

used in the school choice problem�are not strategy-proof in the daycare assignment

problem. These negative results hold even when preferences satisfy consistency

across periods, and when schools�priorities are linked across time in only a very weak

sense (priorities are history dependent only through currently allocated children;

otherwise, they are the same).

The endogeneity of the priorities gives an incentive for manipulation and this

motive is indeed strong. We showed that no stable and strategy-proof mechanism

exists for this class of dynamic matching. This is particularly important in the con-

text of the school choice problem, where much attention has been given to stability

and, in particular, to the Gale-Shapley algorithm (which has been adopted in New

York and Boston).

We have proposed a mechanism, called the Sequential Choice Mechanism, in

which children are ordered by their birth date and choose a menu of open spots at

schools when it is their time to make the choices. This mechanism is a version of

the well known Serial Dictatorship, but due to the dynamic nature of our problem,

it has a natural ordering of agents. This means that every child will face a very

similar problem when their time comes (as opposed to a static problem with Serial

Dictatorship, where the last agents have a very restricted set of options). Moreover,

our mechanism has the advantages of being simple, transparent and such that it

eliminates ex-post uncertainty on each parent�s allocation over time. Finally, we

discussed how to accommodate the priorities over children in this mechanism.
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Online Appendices.

Appendix A: The Relation between Strong and Weak

Stability

Now we will explore under what conditions, the concepts of weakly and strongly

stable matchings will coincide. From examples 1 and 2, one could conjecture that

weakly and strongly stable matchings may be equivalent if the children�s preferences

are separable and the schools�priority rankings satisfy IPA. Indeed this is the case,

as we will show in the next two lemmas.

Lemma 2. Suppose that all schools� priorities satisfy IPA. If � is weakly but not
strongly stable, then for some period t and some school-child pair (s; i),

1. �t(i) = �t+1(i);

2. (s; s) �i (�t(i); �t+1(i));

3.
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s):

Proof. Since � is not strongly but weakly stable, for some t � 0, there must exist

(s; s0; i) such that (s; s0) �i (�t(i); �t+1(i)), s 6= �t(i), s0 6= �t+1(i) and one of the

following conditions are satis�ed:

1.
���t(s)�� < rs and ���t+1(s0)�� < rs0 ,

2.
���t(s)�� < rs, ���t+1(s0)�� = rs0 , and, for some j0 2 �t+1(s0), i Bt+1s0 (��t)j0 where

��t is the period t matching with ��t(i) = s and ��t(i0) = �t(i0) for all i0 6= i 2
It�1 [ It,

3.
���t(s)�� = rs, ���t+1(s0)�� < rs0 , and, for some j 2 �t(s), iBts (�t�1)j,

4.
���t(s)�� = rs,

���t+1(s0)�� = rs0 , for some j 2 �t(s), j0 2 �t+1(s0) and for any
��t 2M(i; j; �), iBts (�t�1)j and iBt+1s0 (��t)j0:

Case 1. s = s0. Consequently, (s; s) �i (�t(i); �t+1(i)). In addition,
���t(s)�� < rs

(conditions 1 or 2) or/and i Bts (�t�1)j for some j 2 �t(s) (conditions 3 or 4).

Combining this with � being weakly stable, one obtains that (�t(i); �t+1(i)) �i
(s; �t+1(i)). Given weak separability, this, in turn, implies that if �t(i) 6= �t+1(i)
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then (�t(i); �t(i)) �i (s; s). Then, by transitivity of preferences, (�t(i); �t(i)) �i
(�t(i); �t+1(i)). This implies that � is not weakly stable because child i has the

highest priority at school s at period t+1, hence, at t+1, she has a right to attend

school s ahead of any other child. Therefore, �t(i) = �t+1(i). This is the condition

we seek.

Case 2. s 6= s0 and �t(i) = �t+1(i). Consequently, (s; s0) �i (�t(i); �t(i)). In

addition,
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s). Combining this with

� being weakly stable, one obtains (�t(i); �t(i)) �i (s; �t(i)). Recall that (s; s0) �i
(�t(i); �t(i)). Hence, by transitivity, (s; s0) �i (s; �t(i)). Then, by weak separability,
(s0; s0) �i (�t(i); �t(i)). Suppose (s; s) �i (s0; s0). Then (s; s) �i (�t(i); �t(i)) and,
by assumption,

���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s). Hence, we have
identi�ed a pair (s; i) asked in the lemma.

Now suppose (s0; s0) �i (s; s). Since � is weakly stable, at least one of the two
conditions must hold: (a) (�t(i); �t(i)) �i (�t(i); s0) or/and (b) j�t+1(s0)j = rs0 and
there exists no j0 2 �t+1(s0) such that iBt+1s0 (�t)j0.

Suppose (a) occurs. Recall (s; s0) �i (�t(i); �t(i)), hence, (s; s0) �i (�t(i); s0).
Then weak separability implies that (s; s) �i (�t(i); �t(i)) because s 6= s0. Observe
that the pair (s; i) is the pair asked in the lemma as we already pointed out that

(s; s) �i (�t(i); �t(i)),
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s).

Suppose now (b) occurs but not (a). Recall that one of the 4 conditions listed

in the beginning of the proof must be satis�ed. Since j�t+1(s0)j = rs0 , 1 and 3

are ruled out. If condition 2 is satis�ed, then i Bt+1s0 (��t)j0 for some j0 2 �t+1(s0).
Furthermore, ��t di¤ers from �t only in that ��t(i) = s. Then, by IPA, iBt+1s0 (�t)j0.

This a contradiction with b occurring. If condition 4 is satis�ed, then there must

exist j; j0 such that, for any ��t 2 M(i; j; �), i Bts (�t�1)j and i Bt+1s0 (��t)j0. In

particular, it must be true for ��t such that ��t(j) = h. Observe that ��t di¤ers from

�t only in that ��t(i) = s and ��t(j) = h. By IPA, iBt+1s0 (�t)j0. This a contradiction

with b occurring.

Case 3. s 6= s0 and �t(i) 6= �t+1(i). Consequently, (s; s0) �i (�t(i); �t+1(i)). Since
� is weakly stable, one of the two conditions must hold: (a) (�t(i); �t+1(i)) �i
(�t(i); s0) or/and (b) j�t+1(s0)j = rs0 and no j0 2 �t+1(s0) with iBt+1s0 (�t)j0 exists.

Suppose (a) occurs. Recall that by assumption, in case 3, (s; s0) �i (�t(i); �t+1(i)),
hence, (s; s0) �i (�t(i); s0). Weak separability and this imply (s; s) �i (�t(i); �t(i)).
Then, (s; �t+1(i)) �i (�t(i); �t+1(i)) by weak separability. Consider the pair (s; i).
As pointed out earlier,

���t(s)�� < rs or/and i Bts (�t�1)j for some j 2 �t(s). This
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means that � is not weakly stable which is a contradiction.

Suppose now (b) occurs but not (a), therefore
�
�t (i) ; s0

�
�i (�t(i); �t+1(i)).

Recall that (s; s0) �i (�t(i); �t+1(i)). In addition, one of the 4 conditions listed
in the beginning of the proof must be satis�ed. Since j�t+1(s0)j = rs0 , 1 and 3

are ruled out. If condition 2 is satis�ed, then i Bt+1s0 (��t)j0 for some j0 2 �t+1(s0).
Furthermore, ��t di¤ers from �t only in that ��t(i) = s. By IPA, iBt+1s0 (�t)j0. This is

a contradiction with (b) occurring. If condition 4 is satis�ed, then there must exist

j; j0 such that, for any ��t 2 M(i; j; �), i Bts (�t�1)j and i Bt+1s0 (��t)j0. Fix ��t such

that ��t(j) = h. Observe that ��t di¤ers from �t only in that ��t(i) = s and ��t(j) = h.

By IPA, iBt+1s0 (�t)j0. This is a contradiction with (b) occurring.

Next we show that the solution concept for the daycare assignment problem,

the strong stability, is in fact equivalent to the static concept of weak stability for a

large class of problems. Precisely, if the children�s preferences are separable and the

schools�priorities satisfy IPA, the two concepts are equivalent.

Theorem 4 (Equivalence of Weak and Strong Stability). Suppose every child�s pref-
erences satisfy separability and every school�s priorities satisfy IPA. Then matching

� is strongly stable if and only if it is weakly stable.

Proof. By de�nition, any strongly stable matching is weakly stable. Hence, we need

to show that any weakly stable matching is strongly stable. Suppose otherwise, i.e.,

there exists a weakly stable matching � which is not strongly stable. By Lemma 2,

if � is weakly but not strongly stable, then for some period t and some school-child

pair (s; i),

1. �t(i) = �t+1(i);

2. (s; s) �i (�t(i); �t+1(i));

3.
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s):

Clearly, (s; s) �i (�t(i); �t(i)). In addition, each child�s preferences are separable,
hence, (s; �t(i)) �i (�t(i); �t(i)). By combining this with the 3rd condition above,
one obtains that � is not weakly stable.
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8 Appendix B: Properties of the Gale and ShapleyMatch-

ing

In static settings, one of the most signi�cant results is that the GS matching Pareto

dominates all other stable matchings.15 This result is no longer valid in our daycare

assignment problem. In fact, there could be multiple weakly/strongly stable match-

ings that do not Pareto dominate one another. The following example illustrates

this point.

Example 6 (GS matching might not Pareto dominate other stable matchings).
There are 3 schools fs; s1; s2g. All schools have a capacity of one child. There is no
school-age child until period t � 1. At period t � 1, only one child i is 1 year old.
At period t, there are 2 one-year old children fi1; i2g. At period t + 1, child i0 is 1
year old. If children �{ 6= �{0 2 fi; i1; i2; i0g have not attended school �s = s; s1; s2 in the
previous period, then school �s ranks child �{ and child �{0 according to the following

rankings.
i Bs i1 Bs i2 Bs i0

i Bs1 i0 Bs1 i2 Bs1 i1

i Bs2 i1 Bs2 i2 Bs2 i0

Each child�s preferences are separable. Child i�s top choice is (s; s). The pref-

erences of children i1, i2 and i0 satisfy the following conditions:

(s1; s1) �i1 (s2; s2) �i1 (s; s);

(s; s) �i2 (s2; s2) �i2 (s1; s1);

(s1; s1) �i0 (s2; s2) �i0 (s; s):

The GS matching �GS is as follows: �
t�1
GS (i) = �

t
GS(i) = s, �

t
GS(i1) = �

t+1
GS (i1) =

s1, �tGS(i2) = s2, �
t+1
GS (i2) = s, �

t+1
GS (i

0) = s2 and �t+2GS (i
0) = s1. Thanks to Theorem

2, �GS is weakly stable.

Now let us consider the following matching ��: ��t�1(i) = ��t(i) = s, ��t(i1) =

��t+1(i1) = s2, ��t(i2) = s1, ��t+1(i2) = s, ��t+1(i0) = s1 and ��t+2(i0) = s1. It easy to

check �� is strongly stable.

Now observe that matching �GS does not Pareto dominate matching �� because

child i0 prefers �� to �. In fact, �� is not Pareto dominated by any strongly stable

matching. To see this, observe that the only matching that Pareto dominates �� is

15See Gale and Shapley (1962).
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the one in which children 1 and 2 switch their matches in period t. But this is not

strongly stable because child i1 justi�ably envies child i0 at t+ 1. �

First observe that in Example 6 both IPA and separability are satis�ed. Hence,

the weakly and strongly stable matchings coincide. Hence, the example above shows

that there may exist mechanisms that produce strongly/weakly stable matchings not

Pareto dominated by the GS matching. This is the �rst main distinction between

the matching produced by the GS algorithm in the school choice problem versus the

daycare assignment problem.

Given the importance of this result when compared to the static case, we state

the result below.

Theorem 5 (The GS matching does not necessarily Pareto dominate all stable
matchings). The GS matching does not necessarily Pareto dominate all weakly and
strongly stable matchings.

In the light of Example 6, one must explore whether any strongly stable matching

Pareto dominates the GS matching. This, indeed, is impossible which we show in

the following proposition.

Proposition 3 (The GS matching is not Pareto dominated by any strongly stable
matching). If each school�s priority rankings satisfy IPA, then the GS matching is
not Pareto dominated by any other strongly stable matchings.

Proof. Recall that time �1 matching ��1 is �xed for all matchings we consider.
On contrary to the proposition, suppose that some strongly stable matching �

Pareto dominates matching �GS .

Step 1. If i 2 I�1, then �0GS(i) = �0(i).
Proof of Step 1. For any 2 year old child, her isolated preference is �2i (��1). From
Lemma 1, we have that �0GS and �

0 are stable period 0 matchings under isolated

preferences and ��1. Gale and Shapley (1962) show that �0GS Pareto dominates

every other statically stable period 0 matchings under isolated preferences and ��1

in terms of isolated preferences. This means �0GS(i) �2i (��1)�0(i) if �0GS(i) 6= �0(i).
By de�nition of �2i (��1), (��1(i); �0GS(i)) �i (��1(i); �0(i)) if �0GS(i) 6= �0(i).

Hence, if � Pareto dominates �GS , then �
0
GS(i) = �

0(i).

Step 2. If i 2 I0, then �0GS(i) = �0(i).
Proof of Step 2. Suppose �0GS(i) 6= �0(i) for some i 2 I0. Then, as in the proof of
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step 1, we obtain that �0GS(i) �1i �0(i) or equivalently,

(�0GS(i); �
0
GS(i)) �i (�0(i); �0(i)): (1)

The strong stability of �GS implies (�
0
GS(i); �

1
GS(i)) �i (�0GS(i); �0GS(i)); otherwise,

�GS is not even weakly stable as child i is in the highest priority group in time 1.

Now weak separability yields (�1GS(i); �
1
GS(i)) �i (�0GS(i); �0GS(i)). Now it is easy

to see that

(�1GS(i); �
1
GS(i)) �i (�0GS(i); �1GS(i)) �i (�0GS(i); �0GS(i)): (2)

Similarly, as � is strongly stable, we obtain

(�1(i); �1(i)) �i (�0(i); �1(i)) �i (�0(i); �0(i)): (3)

Now let us show that �0(i) 6= �1(i). Suppose otherwise. Then relations 1

and 2 yield that (�0GS(i); �
1
GS(i)) �i (�0(i); �0(i)). This contradicts with � Pareto

dominating �GS . Hence, �
0(i) 6= �1(i). Consequently, the preference relations in 3

must be strict. Also observe that �0(i) 6= �1GS(i) thanks to relations 1 and 3.
Now let us show that (�1(i); �1(i)) �i (�1GS(i); �1GS(i)). If not, weak separability

and relation 1 yield that (�0GS(i); �
1
GS(i)) �i (�0(i); �1GS(i)) and (�0(i); �1GS(i)) �i

(�0(i); �1(i)) as �0(i) 6= �1GS(i) and �0(i) 6= �1(i). Consequently, (�0GS(i); �1GS(i)) �i
(�0(i); �1(i)) which contradicts that � Pareto dominates �GS . Now let us summarize

the preference relation we found so far.

(�1(i); �1(i)) �i (�1GS(i); �1GS(i)) �i (�0GS(i); �0GS(i)) �i (�0(i)); �0(i)) (4)

From Lemma 1, we know that �1 is statically stable under isolated preferences

and �0. Now suppose we ran the GS algorithm at period 1 under isolated prefer-

ences and �0. Let us denote the resulting matching ��1. From Gale and Shapley

(1962), we know that if ��1(i) 6= �1(i), then ��1(i) �2i (�0)�1(i). In other words,
(�0(i); ��1(i)) �i (�0(i); �1(i)). This along with relation 1 and �0(i) 6= �1(i) implies
that ��1(i) 6= �0(i). Then by weak separability, (�0(i); ��1(i)) �i (�0(i); �1(i)) implies
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(��1(i); ��1(i)) �i (�1(i); �1(i)). Now let us update relation 4.

(��1(i); ��1(i)) �i (�1(i); �1(i))

�i (�1GS(i); �1GS(i)) �i (�0GS(i); �0GS(i)) �i (�0(i)); �0(i)) (5)

Next we will proceed to show that ��1 is statically stable under isolated prefer-

ences and �0GS . Let us postpone the proof momentarily to discuss its implications.

From Lemma 1, we know that �1GS is a stable matching under isolated preferences

and �0GS . In addition, it must Pareto dominate ��
1 in terms of the isolated pref-

erences, since ��1 is statically stable and the �1GS must Pareto dominate all stable

matchings (see Gale and Shapley (1962)). Hence, if �1GS(i) 6= ��1(i), then �1GS(i) �2i
(�0GS)��

1(i). By the de�nition of �2i (�0GS) , (�0GS(i); �1GS(i)) �i (�0GS(i); ��1(i)).
Recalling that (�0GS(i); �

0
GS(i)) �i (�0(i); �0(i)), we �nd that (�0GS(i); ��1(i)) �i

(�0(i); ��1(i)). Weak separability and (��1(i); ��1(i)) �i (�1(i); �1(i)) yield (�0(i); ��1(i)) �i
(�0(i); �1(i)). The previous three relations yield (�0GS(i); �

1
GS(i)) �i (�0(i); �1(i)).

However, recall that � Pareto dominates �GS . This is the contradiction we are look-

ing for. Thus, to complete the proof, it is left to show that ��1 is statically stable

under isolated preferences and �0GS .

We now proceed to show that ��1 is indeed a stable matching under isolated

preferences and �0GS . We already know from Assumption 1 and (5) that, for all i 2
I0, ��1(i) �2i (�0)�1(i) if ��1(i) 6= �1(i). Also, from Gale and Shapley (1962), we know
that, for all i 2 I1, ��1(i) �1i �1(i) if ��1(i) 6= �1(i). Recall that ��1 is statically stable
matching under isolated preferences and �0. Now consider the isolated preferences

in period 1 from �0GS and suppose, under these isolated preferences, ��
1 is not stable.

Therefore, there must exist a school-child pair (s; i) such that both conditions are

satis�ed:

I. � if i 2 I0, then s �2i (�0GS)��1(i); or

� if i 2 I1, then s �1i ��1(i);

II. j��1(s)j < jrsj or/and iB1s (�0GS)j for some j 2 ��1(s).

Because ��1 statically stable under the isolated preferences and �0, the conditions

1 and 2 below cannot be satis�ed at the same time.

1. (a) if i 2 I0, then s �2i (�0)��1(i); or

(b) if i 2 I1, then s �1i ��1(i):
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2. j��1(s)j < rs or/and iB1s (�0)j for some j 2 ��1(s):

Suppose i 2 I0. Then s �2i (�0GS)��1(i). We show that in this case condition

1 (a) is satis�ed. By the de�nition of �2i (�0GS),

(�0GS(i); s) �i (�0GS(i); ��1(i)):

If �0(i) = �0GS , then

(�0(i); s) �i (�0(i); ��1(i)):

This means that condition 1a is satis�ed. Let �0(i) 6= �0GS . Then preference relations
given in (5), Assumption 1,

(�0GS(i); s) �i (�0GS(i); ��1(i))

and the fact that

(s; s) �i
�
��1 (i) ; ��1 (i)

�
imply that

(�0(i); s) �i (�0(i); ��1(i)):

Hence, condition 1 (a) is satis�ed. Suppose i 2 I1. Then s �1i ��1(i). Since �1 does
not depend on the last period�s matching, condition 1 (b) is satis�ed. Therefore, we

�nd that either 1 (a) or 1 (b) is satis�ed. This means that 2 cannot be satis�ed.

Clearly, it must be that j��1(s)j = rs. This implies that school s�s priority ranking
must satisfy i B1s (�0GS)j and j B1s (�0)i, for at least some j 2 ��1 (s). There are 2
cases consider:

(i) i =2 �0GS(s); or

(ii) i 2 �0GS(s) and i 2 I0:

If case (i) happens, this implies that j =2 �0GS(s); otherwise, j would have the
highest priority at school s, hence, we reach a contradiction with iB1s (�0GS)j. There-
fore, j =2 �0GS(s). Since school s�s priority ranking satis�es IPA, given that iB1s(�0GS)j
it must be that j 2 �0(s) and j 2 I0 to have the required reversal of school s�s pri-
ority ranking. Then �0GS(j) 6= �0(j). This, as argued earlier in step 1, implies that
(�0GS(j); �

0
GS(j)) �j (�0(j); �0(j)) = (s; s); where the last equality comes from the

fact above, that if j =2 �0GS(s), it must be that j 2 �0(s). Now recall that j 2 ��1(s).
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Therefore,

(�0GS(j); �
0
GS(j)) �j (�0(j); ��1(j))

which is a contradiction (see preference relation 5).

Suppose (ii) happens, i 2 �0GS(s), i.e., s = �0GS(i). We know s �2i (�0GS)��1(i).
These conditions yield

(�0GS(i); �
0
GS(i)) �i (�0GS(i); ��1(i)):

This is a contradiction which we are looking for.

This completes the proof of step 2.

Step 3. The GS algorithm yields a strongly stable matching that is not Pareto

dominated by any other strongly stable matchings.

Proof of Step 3. Proving step 3 is just a matter of reiterating the arguments of steps

1 and 2 assuming previous periods�matchings are identical with the ones resulted

from the GS algorithm.

Now we study if any strongly stable matching is e¢ cient. The next proposition

yields that unless one follows the GS algorithm, then any strongly stable matching

is not e¢ cient.

Proposition 4. Suppose that the priority rankings of all schools satisfy IPA. Then
any strongly stable matching di¤erent from the GS matching is not e¢ cient.

Proof. Consider any strongly stable matching � with some period t matching that

is di¤erent from the one that the GS algorithm under isolated preferences and �t�1

yields. Consider any i 2 It. Then �t(i) = �t+1(i) or

(�t+1(i); �t+1(i)) �i (�t(i); �t(i));

otherwise, � is not strongly stable because, in this case, child i would have the higher

priority at school �t(i) and

(�t(i); �t(i)) �i (�t(i); �t+1(i))

by Assumption 1.

For each child i 2 It�1 [ It, de�ne her preference relation to be Pti such that
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sPti s0 if and only if

(�t�1(i); s) �i (�t�1(i); s0) whenever i 2 It�1

(s; �t+1(i)) �i (s0; �t+1(i)) whenever i 2 It

Because � is strongly stable, there cannot exist any school-child pair (s; i) such that

1. (�t�1(i); s) �i (�t�1(i); �t(i)) or (s; �t+1(i)) �i (�t(i); �t+1(i));

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

In terms of P, these conditions mean that there is no school-child pair (s; i) such
that

1. sPti�t(i);

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

In other words, �t is a statically stable matching under P and �t�1.
Consider matching �� such that ��� = �� for all � 6= t but ��t is the resulting

matching from the GS algorithm under P and �t�1.
From Gale and Shapley (1962), we know that ��t must Pareto dominate every

other stable matching under P and �t�1. This and that �t is a statically stable

matching under P and �t�1 imply that ��t(i)Pi�t(i) for all i 2 It�1 [ It if ��t(i) 6=
�t(i). Consequently, if ��t(i) 6= �t(i) for some i 2 It�1, then (�t�1(i); ��t(i)) �i
(�t�1(i); �t(i)). Similarly, if ��t(i) 6= �t(i) for some i 2 It then

(��t(i); �t+1(i)) �i (�t(i); �t+1(i)):

Now consider �� and �. Clearly, �� Pareto dominates � if ��t(i) 6= �t(i) for some

i 2 It�1 [ It. Hence, it must be that ��t(i) = �t(i) for all i 2 It�1 [ It.
Consider �̂ such that �̂� = �� for all � 6= t but �̂t is the resulting matching from

the GS algorithm under isolated preferences and �̂t�1. Clearly, ��t�1 = �̂t�1, hence,

the priority rankings of the schools are the same under both �� and �̂. In addition,

for each j 2 It�1, the isolated preference relation �2j (�t�1) is equivalent to Pj . Now
consider any child j 2 It. Then under P, the relative ranking of �t+1(j) weakly
improves from the one under �1j . In all other aspects, Pj and �1j are the same. Now
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recall that ��t(i) = �t(i) for all i 2 It�1 [ It. In addition, recall that �t(i) = �t+1(i)
or

(�t+1(i); �t+1(i)) �i (�t(i); �t(i)):

Therefore, under both Pj and �1j , the set of schools that are strictly preferred to
�t(j) is the same. Consequently, we obtain that under P and isolated preferences,

for each j 2 It�1[It, the set of schools that are strictly preferred to �t(j) is the same.
In addition, because the GS algorithm is used for both cases and ��t(j) = �t(j) for

all j 2 It�1 [ It, it must be ��t = �̂t thanks to Theorem 9 in Dubins and Freedman.

Consequently, �t = �̂t, which contradicts that �t di¤ers from the matching that the

GS algorithm yields.

Proposition 4 means that if any strongly stable matching is e¢ cient, then it must

be the GS matching. However, from Roth, it is well known that the GS matching

(in static settings) is not necessarily Pareto e¢ cient. This is still the case in our

setting because the school choice problem is a special case of our problem as we

pointed out earlier.

Appendix C: Proofs

Proof of Lemma 1. Necessity. Assume � is strongly stable. We need to show that for

all t, �t is statically stable under isolated preferences and �t�1. Suppose otherwise.

Then there must exist, t, and a school-child pair (s; i) such that

1. if i 2 It, then s �1i �t(i) and at least one of the following is satis�ed: j�t(s)j <
rs or/and iBts (�t�1)j for some j 2 �t(s),

2. if i 2 It�1, then s �2i
�
�t�1

�
�t(i) and at least one of the following is satis�ed:

j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

Suppose i 2 It. Then we are in case 1. Since � is weakly stable, the following
2 conditions cannot be satis�ed at the same time: (a) (s; �t+1(i)) �i (�t(i); �t+1(i))
and (b) j�t(s)j < rs and/or iBts(�t�1)j for some j 2 �t(s). If (b) is not true, then this
is a contradiction because (s; i) must satisfy the conditions given in case 1. Hence,

assume that (b) is satis�ed but (a) is not, i.e., (�t(i); �t+1(i)) �i (s; �t+1(i)). If
�t(i) 6= �t+1(i), Assumption 1 implies that (�t(i); �t(i)) �i (s; s). By the de�nition
of �1, �t(i) �1i s which contradicts with the assumption that s �1i �t(i). Suppose
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�t(i) = �t+1(i). Recall that s �1i �t(i), hence, (s; s) �i (�t(i); �t+1(i)). Recall that
(b) is satis�ed. Thus, by moving to school s in period t, child i would have the

highest priority at school s at time t + 1. Hence, � is not strongly stable. Hence,

i =2 It.
Suppose i 2 It�1. Then we are in case 2. Because � is weakly stable, the following

2 conditions cannot be satis�ed at the same time: (a) (�t�1(i); s) �i (�t�1(i); �t(i))
and (b) j�t(s)j < rs and/or i Bts (�t�1)j for some j 2 �t(s). If (b) is not true,

then this is a contradiction because (s; i) must satisfy the conditions given in case 2.

Hence, (b) must be satis�ed but (a) is not, i.e., (�t�1(i); �t(i)) �i (�t�1(i); s). By
the de�nition of �2i (�t�1), we have that �t(i) �2i (�t�1)s which contradicts with
the assumption that s �2i

�
�t�1

�
�t(i). Hence, i =2 It�1. Therefore, for all t, �t is

statically stable under isolated preferences and �t�1.

Su¢ ciency. For any t, �t is statically stable under isolated preferences and �t�1.

First let us show that � is weakly stable. Suppose otherwise. Then, at some period

t, there must exist a pair (s; i) such that one of the two conditions below is satis�ed:

1. (a) (s; �t+1(i)) �i (�t(i); �t+1(i)), and

(b) j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

or

2. (a) (�t�1(i); s) �i (�t�1(i); �t(i)), and

(b) j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

Suppose case 1 occurs. If s 6= �t+1(i), then weak separability and

(s; �t+1(i)) �i
�
�t(i); �t+1(i)

�
yield (s; s) �i

�
�t(i); �t(i)

�
. By de�nition of �1i , we have that s �1i �t(i). This and

1b mean that �t is not statically stable under isolated preferences and �t�1. This is

a contradiction. Suppose, on the other hand, that s = �t+1(i). If

(�t+1(i); �t+1(i)) �i (�t(i); �t(i));

then the de�nition of �1i yields �t+1(i) �1i �t(i). This and 1b mean that �t is not
statically stable under isolated preferences and �t�1.
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Suppose (�t(i); �t(i)) �i (�t+1(i); �t+1(i)). This and Assumption 1 yield

(�t(i); �t(i)) �i
�
�t(i); �t+1(i)

�
:

Consider period t + 1. Then by the de�nition of �2i (�t), we have that �t(i) �2i
(�t)�t+1(i). In addition, observe that child i has the highest priority at school

�t(i). The last 2 conditions contradict that �t+1 is statically stable under isolated

preferences and �t.

Suppose case 2 occurs. By the de�nition of �2i (�t�1), we have that s �2i
(�t�1)�t(i) since (�t�1(i); s) �i (�t�1(i); �t(i)). But this and 2b directly imply that
�t is not statically stable under isolated preferences and �t�1. This is a contradiction.

We have shown that � is weakly stable. Now we are left to show that � is

strongly stable if IPA is satis�ed. Suppose otherwise. Then by Lemma 2, for some

period t and some school-child pair (s; i),

1. �t(i) = �t+1(i)

2. (s; s) �i (�t(i); �t+1(i))

3.
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s)

The �rst 2 conditions and the de�nition of �1i yield s �1i �t(i). This and the
third condition imply that �t is not statically stable under isolated preferences and

�t�1.

Proof of Theorem 3. Here we provide the formal proof, using the example given in

the text. All we need for this proof is to show that weakly stable matchings under

pro�le 1 and 2 are unique and the ones shown in steps 1 and 2 respectively.

Step 1. Under pro�le 1, the only weakly stable matching � is: �t�1(i) = �t(i) = s,

�t�1(�{) = �t(�{) = �s, �t(i1) = �t+1(i1) = s1, �t(i2) = �t+1(i2) = s2, �t+1(i0) = s and

�t+2(i0) = s2.

Proof of Step 1. Let �̂ be weakly stable. It is clear that �̂t�1(i) = �̂t(i) = s,

�̂t�1(�{) = �̂t(�{) = �s and �̂t+2(i0) = s2. Consequently, we obtain that �̂t(i1) = s1

because child i1 has higher priority in school s1 at period t than anyone but i.

However, i must match with s at period t. Hence, �̂t(i1) = s1. This implies that

�̂t(i2) = s2. Then i2 has the highest priority at school s2 at period t + 1. Since

s2 is the top choice for i2, �̂t+1(i2) = s2. Consequently, �̂t+1(i0) = s which means

�̂t+1(i1) = s1. Now we have shown that �̂ = �.

50



Step 2. Under pro�le 2, the only weakly stable matching �� is as follows: ��t�1(i) =

��t(i) = s, ��t�1(�{) = ��t(�{) = �s, ��t(i1) = s2, ��t(i2) = s1, ��t+1(i1) = s, ��t+1(i2) = s1,

��t+1(i0) = s2 and ��t+2(i0) = s2.

Proof of Step 2. Let �̂ be a weakly stable matching. It is clear that �̂t�1(i) = �̂t(i) =

s, �̂t�1(�{) = �̂t(�{) = �s and �̂t+2(i0) = s2. Consequently, we obtain that �̂t(i1) = s2
because child i1 has higher priority in school s2 at period t than i2. This means

that �̂t(i2) = s1.

Now let us argue that �̂t+1(i0) = s2. If not, �̂t+1(i1) = s2; otherwise, child i0 has

higher priority than child i2 at school s2 and s2 is the top choice of child i0. Hence,

this contradicts with �̂ being weakly stable. Thus, �̂t+1(i1) = s2. But because

(s2; �s) �2i1 (s2; s2) and child i1 has higher priority at school �s than anyone but �{, �̂
is weakly stable. This is a contradiction. Hence, �̂t+1(i0) = s2.

Because �̂t+1(i0) = s2, �̂t+1(i1) = s as i1 has higher priority at school s than i2.

Consequently, �̂t+1(i2) = s1. This means �̂ = ��.

Following the discussion of Section 6.1, we present an example in which a match-

ing satis�es Autarkic e¢ ciency but fails to be e¢ cient because of the potential trades

within a generation.

Example 7 (Pareto Improving Trade Within Cohort). Suppose in period 0, two
children i1 and i2 are two years old and two children j1 and j2 are one year old.

There are 4 schools s1; s2; s3 and s4 and each school has a capacity of 1 child. The

schools�priorities are given as follows under the assumption that the children have

not attended any school in the previous period:

i1 Bs1 i2 Bs1 j1 Bs1 j2
i2 Bs2 i1 Bs2 j2 Bs2 j1
i1 Bs3 i2 Bs3 j1 Bs3 j2
i1 Bs4 i2 Bs4 j2 Bs4 j1

Child i1�s top choice is s1 while child i2�s is s2. The other two children�s prefer-

ences satisfy the following conditions:

(s2; s2) �j1 (s1; s1) �j1 (s4; s2) �j1 (s3; s1) �j1 (s3; s3) �j1 (s4; s4)

(s2; s2) �j2 (s1; s1) �j2 (s3; s1) �j2 (s4; s2) �j2 (s3; s3) �j2 (s4; s4)
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Now consider the following matching �: �0(i1) = s1, �0(i2) = s2, �0(j1) = s3,

�0(j2) = s4, �1(j1) = s1, �1(j2) = s2. Matching � satis�es Autarkic e¢ ciency.

However, � is not Pareto e¢ cient as it is dominated by the matching ��: ��0(i1) = s1,

��0(i2) = s2, ��0(j1) = s4, ��0(j2) = s3, ��1(j1) = s2, ��1(j2) = s1.

Loosely speaking, in Example 7, children j1 and j2 are assigned �extreme�al-

locations under matching �. Hence, these children j1 and j2 can hedge against the

extreme allocations by �trading�their allocations. This is one reason why Autarkic

e¢ ciency is not equivalent to e¢ ciency. One should observe that in this case trade

happens between the children from the same generation. Hence, the in�niteness of

time does not play any signi�cant role in Example 7.
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