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Abstract

The integration of machine learning (ML) algorithms in economic research has grown
significantly in recent years. This undergraduate thesis focuses on applying these al-
gorithms to predict stock market risks, which are critical for informing decisions made
by policymakers, financial institutions, and investors. This work explores the efficacy
of five boosting algorithms in forecasting three risk measures based on the Bovespa in-
dex (IBOV) returns: the Conditional Value at Risk, the Standard Deviation of Returns,
and the Maximum Drawdown. The study investigates the theory of boosting methods,
including AdaBoost, Gradient Boosting, XGBoost, LightGBM, and CatBoost, and com-
pares their performance based on model metrics such as RMSE, MAE, training time,
prediction time, and feature importance. The research uses Bovespa index data from
August 2006 to May 2023, applying feature selection and hyperparameter tuning with
random search, evaluated through cross-validation and key metrics. Key findings indicate
that (i) the Spearman correlation was the most effective for feature selection, (ii) mar-
ket sentiment and technical indicators were the most impactful in model outcomes, and
(iii) LightGBM was the best algorithm for general risk prediction, while Adaboost and
Gradient Boosting were the best algorithms for specific risk measures.

Keywords: Boosting Algorithms, Supervised Machine Learning, AdaBoost, Gradient
Boosting, XGBoost, LightGBM, CatBoost, Bovespa Index, Market Risk, Feature Selec-
tion.





Resumo

A integração de algoritmos de aprendizado de máquina (ML) na pesquisa econômica
cresceu significativamente nos últimos anos. Esta monografia se concentra na aplicação
desses algoritmos para prever os riscos do mercado de ações, que são fundamentais para
informar as decisões tomadas por formuladores de políticas, instituições financeiras e
investidores. Este trabalho explora a eficácia de cinco algoritmos de boosting na previsão
de três medidas de risco com base nos retornos do índice Bovespa (IBOV): o Conditional
Value at Risk, o desvio padrão dos retornos e o Maximum Drawdown. O estudo investiga
a teoria dos métodos de boosting, incluindo AdaBoost, Gradient Boosting, XGBoost,
LightGBM e CatBoost, e compara seu desempenho com base em métricas como RMSE,
MAE, tempo de treinamento, tempo de previsão e importância de variável explicativa.
A pesquisa usa dados do índice Bovespa de agosto de 2006 a maio de 2023, aplicando a
seleção de variáveis e o otimização de hiperparâmetros com busca aleatória, avaliados por
meio de validação cruzada e as métricas-chave. Os principais resultados indicam que (i)
a correlação de Spearman foi a mais eficaz para a seleção de variáveis, (ii) os indicadores
de sentimento de mercado e técnicos foram os mais impactantes nos resultados do modelo
e (iii) o LightGBM foi o melhor algoritmo para a previsão geral de riscos, enquando o
Adaboost e o Gradient Boosting foram os melhores algoritmos para a previsão de medidas
específicas de risco.

Palavras-chave: Algoritmos de Boosting, Aprendizado de Máquina Supervisionado,
AdaBoost, Gradient Boosting, XGBoost, LightGBM, CatBoost, Índice Bovespa, Risco
de Mercado, Seleção de Variáveis.
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1 INTRODUCTION

1.1 MOTIVATION

The relevance of Machine Learning in economic research is on the rise, as evidenced by
recent studies, such as those by Gogas and Papadimitriou (2021) and Athey (2018). The
former examines the early applications of machine learning in economics, citing studies
from as early as 1974, and observes a contemporary trend of merging Machine Learning
models with traditional econometric methodologies. The latter predicts changes in the
empirical work done by economists, pointing to the increase in the adoption of off-the-
shelf Machine Learning methods for intended tasks such as prediction, classification, and
clustering. In essence, Athey’s work predicts the development of more robust statistical
models and advancements that will lead to new research areas, methods, and questions
with the help of machine learning.

The economy suffers detrimental effects from financial crises, resulting in rising un-
employment and depressed economic growth. Particularly, the poor could be dispropor-
tionally affected, as shown in Rewilak’s paper (2018). Chatzis et al. (2018) analyze the
transmission mechanisms of crash events in stock markets by applying a range of statis-
tical machine learning techniques. Their findings suggest interdependence among stock
market crashes and cross-effects within stock, bond, and currency markets. Moreover,
developing effective forecasting methods for stock market risk is not a simple task, es-
pecially when considering the context of the Brazilian stock market (COSTA; BAIDYA,
2003). Therefore, accurate predictions for stock market risks are crucial for policymakers,
financial institutions, economists, and a wide range of other groups.

Among all supervised machine learning models (2.1), our focus lies in exploring boost-
ing algorithms in the context of stock market risk prediction. Boosting is a versatile
machine learning technique that emphasizes the incremental improvement of weak learn-
ers to create a high-performing model. It has gained prominence in various applications,
winning multiple data science competitions. The paper (GRINSZTAJN; OYALLON;
VAROQUAUX, 2022) found that tree-based models, such as the gradient-boosted deci-
sion tree models, still outperform deep learning methods in tabular data, yielding better
predictions with less computational costs. Given its effectiveness, it is possible and valu-
able to apply boosting algorithms for risk forecasting.

1.2 OBJECTIVE

The objective of this work is to study boosting algorithms and compare their perfor-
mance on stock market risk prediction. First, this monograph develops a description of
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machine learning concepts and different implementations of boosting algorithms. Subse-
quently, it employs an empirical analysis of boosting methods applied to stock market
risk prediction, using the returns of the Bovespa index (IBOV) to calculate market risk.
This work objective is to explore the following:

1. Investigate the theory behind boosting methods;

2. Compare different boosting implementations in stock market risk prediction;

3. Identify the most effective dataset and feature selection method for each risk measure
based on model performance metrics;

4. Investigate the interpretability of boosting models in the context of stock market
risk prediction.

In this research, risk forecasting is carried out using five boosting methods of varying
sophistication. The ultimate goal is to compare them and determine which boosting
method offers the most robust and reliable performance in financial risk prediction, as
well as to identify the best dataset and feature selection method for each risk measure.

It is important to emphasize that this work is not limited to the empirical analysis
alone. Consequently, the underlying theory of boosting methods is thoroughly explored
to establish a deeper understanding of how these techniques work and why they can be
effective.

This study does not aim to evaluate causal effects or compare traditional forecast-
ing tools and other machine learning models for volatility and other risk measures with
boosting models. Instead, it focuses on comparing boosting models within their group,
exploring their theoretical background, and analyzing their empirical results.

1.3 STRUCTURE

This undergraduate thesis is organized into six chapters. They are arranged in a log-
ical progression: Introduction, Foundational Concepts, Literature Review, Methodology,
Results, and Conclusion. The specific order is defined to facilitate the reader’s understand-
ing of this research. Notably, suppose the reader lacks familiarity with boosting and its
context. In that case, the Foundational Concepts (2) and Literature Review (3) chapters
aim to provide the necessary background information for understanding the subsequent
chapters.

The Foundational Concepts chapter (2) first elaborates on prerequisite concepts neces-
sary for understanding boosting and subsequently explains boosting algorithms. Chapter
(3), the literature review, examines the evolution of boosting algorithms and part of the
existing research on boosting applications in finance. The methodology chapter (4) aims
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to provide the empirical research design, exploratory data analysis, and evaluation pro-
cedures. Results are presented in (5), with the empirical findings along with discussions.
Conclusions drawn from the overall study are presented in (6) with an analysis of the re-
search limitations and possible future works. Moreover, there is a supplementary material
section exploring some of Adaboost’s properties.
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2 FOUNDATIONAL CONCEPTS

2.1 SUPERVISED LEARNING

Machine learning techniques enable systems to discover patterns in data, making pre-
dictions and decisions without explicit programming. In this study, we are focused on a
particular type of machine learning paradigm: supervised learning.

In supervised learning, we provide the learning algorithm with labeled data, where each
example consists of input features and corresponding output labels (LEARNED-MILLER,
2014). Through the process of learning from these labeled examples, supervised learning
algorithms can generalize and make predictions on unseen data, and our goal is to achieve
optimal performance in this process.

Data is commonly separated into two subsets: the training set and the testing set.
The training data consists of {(xi, yi)}ni=1 ordered pairs, where x is the set of predictors
and y is the response variable. The testing data consists of {(xi, yi)}mi=n+1 ordered pairs,
analogously to the training set but unseen by the algorithm.

Given the input-output pairs, we aim to discover a good approximation of the true
functional relationship between x and y, y = f(x). This function that aims to approx-
imate f is a hypothesis. Moreover, f frequently takes the form of a joint probability
distribution model P (x, y). Essentially, learning is the process of discovering a hypothe-
sis that generalizes well to new instances beyond the training set, such that it correctly
predicts y in new examples within the test set.

The setting of the learning problem can be described as an optimization task. Ulti-
mately, the learning algorithm, which is typically a computer program, seeks to adjust
its parameters or model structure to minimize a defined objective function, commonly
referred to as a loss function. This function, denoted as L : R × R → [0,∞), measures
how different the prediction f(x, θ̂), θ̂ ∈ Θ, provided by the learning algorithm, is from
the true value y. The goal is to minimize the risk functional, defined as

R(θ) = E[L(f(x, θ), y)] =
∫

L(f(x, θ), y)dP (x, y)

over the class of functions f(x, θ), θ ∈ Θ, where Θ is a parameter space. However, the
joint probability distribution P (x, y) is not known to the learning algorithm, and R(θ)

can’t be evaluated. To solve this problem, the risk functional is replaced by an estimate,
the empirical risk functional

Remp(θ) =
1

n

n∑
i=1

L(f(xi, θ), yi)
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which is the average of the loss function built upon the training set. From the Empirical
Risk Minimization (ERM) principle,

θ̂ ∈ argminθ̂∈ΘRemp(θ),

the learning algorithm should select a hypothesis - or prediction rule - that minimizes the
empirical risk (VAPNIK, 1999). With some theoretical guarantees, discussed in-depth by
Vapnik in [1991], the empirical risk minimization performs comparably well to the true
risk minimization.

2.2 WEAK AND STRONG LEARNERS

The notion of weak learnability, rooted in PAC (Probably Approximately Correct)
learning theory, was established by Kearns and Valiant (KEARNS; VALIANT, 1989). A
weak learner, by definition, is a model that exhibits only a marginal improvement over
random guessing. In regression problems, it gives results slightly better than the mean.

In the Standard PAC Model, the learner must be able to produce a hypothesis with
error at most ε, for arbitrarily small positive values of ε, and must find a good approxi-
mation to the target with probability at least 1− δ, for arbitrarily small positive values of
δ. Therefore, this model - known as a strong learning model - demands that the learner
finds good enough hypotheses with small error rates. In contrast, these conditions are
relaxed in the Weak Learning Model: the learner is required to produce hypotheses with
error rates slightly less than 1/2.

To qualify a weak learning algorithm more formally in the context of classification,
we define a training sample {(xi, ỹi)}ni=1, where x ∈ Rn and ỹ ∈ {−1,+1}, along with a
probability distribution p = {pi}ni=1 over the training sample, where pi ≥ 0 and

∑n
i=1 pi =

1. A learning algorithm F (·, θ) is γ-weak with margin γ > 0 if, for each p, there exists θ̂

such that:
n∑

i=1

pi1{F (xi;θ̂)̸=ỹi} ≤
1

2
− γ

Therefore, for all the distribution we assume there exists a parameter θ̂ such that F (·, θ̂)
is at least a little better than a random guess.

Furthermore, the decision tree (2.4) stands out as the most frequently employed weak
learning model, primarily due to the ease with which its weakness can be regulated by
adjusting the depth of the tree during its construction.

2.3 ENSEMBLE LEARNING

Ensemble learning involves training and combining multiple learners to address a learn-
ing problem. Essentially, it deals with two steps: building a dictionary D = {Ft(x)}Tt=1 of
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weak learners Ft(x) and then fitting a model fT (x) =
∑

t∈D βtFt(x). This approach can
be further categorized into two traditional methods: parallel and sequential ensembles.

In the parallel approach, exemplified by techniques like Bagging and Random Forests,
each model is built independently, and the main idea is to combine them to reduce vari-
ance. On the other hand, in the sequential approach, represented by methods like Boosting
and Bayesian Additive Regression Trees, the models are built sequentially, trying to add
new learners that do well where the previous ones underperform. Moreover, an ensemble
typically exhibits a significantly enhanced generalization ability compared to an individual
learner, especially when dealing with weak learners (ZHOU, 2021).

2.4 DECISION TREES

Decision trees are a non-parametric supervised learning technique - they make no
strong assumptions about the underlying distribution of the data being studied. In the
context of boosting, they are the most used weak learners. Due to their flexibility, it is
straightforward to configure them as base learners, limiting their maximum depth and,
consequently, model complexity. Thus, shallow trees commonly have high bias, low vari-
ance, and limited predictive ability, being good candidates for weak learners. In this
context, a decision stump is a single-level decision tree (shallow tree) that can be repre-
sented as a step function

f(x) =

k1 x ≤ s

k2 x > s

with two leafs denoted by k1 and k2, and a split point defined by s, which sets the
boundary between the leaves. Figure 2.1 represents a stump, in which we can visualize
a hierarchical structure that begins with the root node, in white, and extends to the leaf
or terminal nodes, in orange color. Figure 2.2 depicts the step function f , with its single
input feature and the threshold value s.

Figure 2.1 – Decision stump
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Figure 2.2 – A basic stump as a step function

In essence, trees aim to segment the predictor space - the space of the input variables
- into simple rectangle areas by a specific rule system. With greater formality, trees
partition the set of x values into T distinct regions {Rt}Tt=1 that do not overlap. To
determine these regions, we need to find the rectangles that minimize the Residual Sum
of Squares (RSS)

T∑
t=1

∑
i∈RT

(yi − ŷ
RT

)2.

As clearly explained in (JAMES et al., 2014), this process is done by recursive binary
splitting since it is not computationally feasible to consider every partition of the predictor
space into T high-dimensional rectangles. This recursive process is fulfilled by selecting
a particular feature xt and a threshold s that, when used to divide the feature space
into regions {x | xt ≥ s} and {x | xt < s}, results in the greatest decrease in RSS. This
approach, however, normally builds trees that are too complex, leading to overfitting
(HOTHORN; ZEILEIS, 2006). Pruning is a common way to mitigate this problem, as
it leads to a reduction in tree size. This technique works by removing parts of the tree
that do not substantially decrease its predictive performance, improving its generalization
capacity.

Finally, it is important to observe that trees, as discussed in (HASTIE et al., 2009),
have several advantages since they can naturally handle missing data, are fast to fit,
scale well to large datasets, are robust to outliers, can capture nonlinear relationships in
the data, and have numerous other benefits. However, they also come with drawbacks,
including instability, high variance, and a lack of smoothness. Another important factor
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to consider is interpretability, which varies substantially and depends on the complexity of
the decision trees: shallow trees can be easily understood, while deep ones might be very
difficult to interpret. Therefore, their explainability is heavily influenced by the depths of
their leaves, as shown empirically by Piltaver et al. in (2016).

2.5 REGULARIZATION TECHNIQUES

The primary focus when training a machine learning model is its generalization capac-
ity. Boosting models exhibit susceptibility to overfitting - the model fails to capture the
functional relationship between the input data and the response variable but focuses on
memorizing the training data. However, regularization techniques enhance the model’s
ability to perform well on unseen data by helping to control the training process. This
discussion will solely address important regularization methods to the development of this
study. Specifically, we will explore shrinkage, which is an explicit technique, as well as
early stopping and subsampling, which are implicit techniques.

Shrinkage is a widely used explicit regularization method. Essentially, in the context of
boosting, it is employed to diminish the influence of an added weak learner, penalizing the
relevance of each successful iteration of the algorithm. The direct proportional shrinkage
is a simple implementation (NATEKIN; KNOLL, 2013) :

f̂t(x) = f̂t−1(x) + λβ̂tFt(xi, θ)

, where 0 < λ ≤ 1. In this method, each update is scaled by the value of λ, which
significantly impacts the training error, and smaller values lead to better generalization
but slower convergence.

It is also important to understand L1 and L2 shrinkage strategies, or Lasso (TIBSHI-
RANI, 1996), and Ridge (HOERL; KENNARD, 1970) regression since they are used in
modern boosting models, such as XGBoost. To illustrate the optimization problem when
applying both L1 and L2 regularization techniques:

argminw

{
n∑

i=1

L(yi, F (xi, θ)) + λ1||w||1 + λ2||w||22

}

where, using trees as base learners, w is a vector of leaf weights, ||w||p is the ℓp-norm
of the vector w = (w1, ..., wn), and λi ∈ R+. The penalties are applied to leaf weights
in this context rather than feature weights, as seen in linear or logistic regression. In
L1 regularization, the ℓ1 norm of w, ||w||1, is added to the loss function and regulated
by the parameter λ1, controlling the sum of absolute values of the leaf weights, causing
them to shrink towards zero. This process results in a more sparse model and performs
variable selection. Conversely, in L2 regularization, the squared ℓ2 norm of w, ||w||22,
is added to the objective function and is controlled by λ2, composing a penalty term to
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regulate the sum of squares of the leaf weights, encouraging them to decrease similar to L1

regularization, but ensuring that they do not reach zero. Consequently, the L2 penalties
tend to produce smoother weight distributions compared to L1 penalties.

Another important regularization technique to consider is subsampling. This method
introduces randomness at each iteration of the boosting algorithm by employing only a
random part of the training data to fit a successive weak learner. It requires a parame-
ter, 0 < ω ≤ 1, to determine the proportion of the training data used at each iteration.
Suppose ω = 1, the original training procedure is applied without subsampling. It is im-
portant to note that introducing randomness leads to a decrease in accuracy, enhancing
the variance of individual base learners. However, the fitted learners will be more dissim-
ilar, and this increased diversity has the positive effect of decreasing covariance between
the predictors. Thus, this method implies a trade-off between diversity and accuracy
(CHANDRA; CHEN; YAO, 2006), increasing the variance of individual weak learners
but typically reducing the overall variance of the ensemble model.

Finally, we discuss Early Stopping: a regularization method that essentially relies
on having a validation set, a performance metric, and defined stopping criteria. This
technique enables us to determine the optimal number of iterations necessary for building
a model that generalizes well to unseen data. In this sense, the iterative algorithm runs
for a predetermined number of iterations, and it reduces overfitting by monitoring the
training and validation performance gap throughout the training phase and stopping it
at an optimal point. Thus, we choose a performance metric, such as MSE or Accuracy,
and can set a rule to stop the algorithm if the validation error increases for more than k,
where k ∈ R+, monitoring and computing the performance metric on the validation set
after each iteration of the boosting algorithm.

2.6 GRADIENT DESCENT

Gradient descent is a method, or iterative algorithm, for the optimization of a mul-
tivariable differentiable function without imposing constraints on the function variables.
This method is useful for minimizing a loss function L(F (x, θ)), parametrized by a set of
parameters θ, iteratively moving in the opposite direction of the gradient of the function
toward a local minimum. Moving in the direction of the gradient results in approaching
a local maximum of a function, so we take the opposite direction to find the steepest
descent path.

Assuming that L(·) is defined and differentiable, we do the following:

θt+1 = θt − ρ∇L(θt)

where ∇L(θt) is the gradient of the loss function at the step t, ρ ∈ R+ is an adjustable
learning rate that determines the step size to reach the local minimum, and θt is the
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parameter vector at step t. The term ρ∇L(θt) is subtracted from θt, moving in the
direction in which L decreases locally the fastest, finally updating the value of θ in θt+1,
as illustrated in the algorithm:

Algorithm 1: Gradient Descent
Input: Function to minimize L(·); learning rate ρ; initial value θ0; number of

iterations T

Output: Optimal parameter θT

θ1 ← θ0;
for t = 1 to T do

θt+1 ← θt − ρ∇L(θt); // Direction of locally greatest function decrease

return θT ;

2.7 BOOSTING ALGORITHMS

2.7.1 Forward Stagewise Additive Modeling

Boosting can be understood in the context of a statistical approach known as additive
modeling (FRIEDMAN; HASTIE; TIBSHIRANI, 2000). This framework can be generally
defined as

FT (x) =
T∑
t=1

βtb(x, θt)

where {b(x, θt)}Tt=1 are called “basis functions” given that they span a function subspace,
θt are a set of parameters, x are input features and βt ∈ R is a multiplier. These basis
functions are predictors, such as a neural network or a tree, and we use them as base
learners - weak learners in the context of boosting - to fit an additive model FT . One
can use a backfitting procedure or a greedy forward stagewise approach to solve for an
optimal set of parameters. We’ll focus on the latter to explain the development of boosting
algorithms. Effectively, the Forward Stagewise Additive Modeling algorithm starts with
a simple function f0(x) = 0 and iteratively adds base learners to minimize the risk of
f̂t−1(x) + β̂tb(x, θ̂t).

Algorithm 2: Forward Stagewise Additive Modeling
Input : Training data D = {(xi, yi)}ni=1; Number of iterations T

Output: Additive model f̂(x)
Initialize f0(x)← 0;
for t = 1 to T do

θ̂t, β̂t ← argminθ,β

∑n
i=1 L(ft−1(xi) + βb(xi, θ), yi);

f̂t(x)← f̂t−1(x) + β̂tbt(xi, θ̂t);

end
return f̂(x) = f̂T (x);
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At each iteration t, the output value f̂t(x) is updated based on the previous output
value f̂t−1(x) and the solution of the base learner β̂tb(x, θ̂t). It is important to note that
once a particular base learner is fitted, it is not changed. Furthermore, considering a
useful particular case where the base learner is represented by a tree structure, Ft(xi; θ̂t)

would be a tree with regions determined by θ̂t.

2.7.2 Boosting for Regression

In the context of a regression task, we can use a quadratic loss function L(·, ·) and
apply the forward stagewise additive modeling algorithm to the optimization problem.
At the iteration t we want to minimize:

L(yi, f̂t−1(xi) + βF (xi; θ)) = (yi − f̂t−1(xi)− βF (xi; θ))
2 = (rit − βF (xi; θ))

2

where r, the residual rit = yi − f̂t−1(xi), is a function of x and y. Moreover, since the
basis function F is scalable, it is sufficient to take β = 1 and choose θ̂t to train the tree
F (x; θt) on the residuals rit = yi − f̂t−1(xi), i = 1, . . . , n.

Algorithm 3: Boosting for Regression
Input: Training data D = {(xi, yi)}ni=1; Number of iterations T ; Shrinkage

parameter λ

Output: Boosted regression model f̂(x)
Initialize f0(x) = 0 and ri0 = yi for all i in the training set;
for t = 1 to T do

Fit a weak learner θ̂t = argminθ

∑n
i=1(ri,t−1 − F (xi; θ))

2;
Update predictions f̂t(x) = f̂t−1(x) + λF (xi; θ̂t);
Update residuals rit = ri,t−1 − f̂t(xi) for all i;

return f̂(x) = f̂T (x);

We note that at each iteration t, the output value f̂t(x) is updated based on the
previous output value f̂t−1(x) and the estimated weak learner λF (xi; θ̂t), where λ ∈ R+ is
a shrinkage parameter that controls the learning rate. The residual rit is updated based on
ri,t−1 and the output value f̂t(xi). Another important parameter to observe is the number
of iterations T , which is usually chosen via cross-validation and should also be understood
as the number of fitted weak learners. Tuning these parameters could be challenging: if
T is too big, the boosting model may overfit, and while a small value of λ might lead it to
learn more about the patterns in the data, it would demand a larger value of T to have
good performance. An additional and important parameter to consider is the depth of
the trees used as weak learners, specified by θ. This factor determines model complexity,
and excessive tree depth can lead to overfitting.
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2.7.3 AdaBoost

To this point, we’ve been focusing on the regression problem, where x and y have
some joint distribution, the response variable y is quantitative, and we are interested
in modeling the conditional mean E(y|x). However, it is equally important to consider
boosting in the context of a classification task. In this scenario, the squared error loss is
generally not a good choice. We’ll substitute it with the exponential loss

L(ỹ, F (x)) = e−ỹF (x)

where ỹ ∈ {−1, 1} and show that AdaBoost can be understood as a stagewise algorithm
for fitting an additive model. This new algorithm fits weak learners to weighted versions
of the data instead of fitting them to the residuals.

Denoting the basis function as F (x; θ) and normalized weights as ωit = e−ỹif̂t−1(xi), at
the t-th iteration we choose β and θ to minimize

n∑
i=1

e−ỹi(f̂t−1(xi)+βF (xi;θ)) =
n∑

i=1

ωite
−βỹiF (xi;θ) = e−β

∑
i:ỹi=F (xi,θ)

ωit + eβ
∑

i:ỹi ̸=F (xi,θ)

ωit

= (eβ − e−β)
n∑

i=1

ωit1{ỹi ̸=F (xi;θ̂)} + e−β

n∑
i=1

ωit

Therefore, we solve for

θ̂t = argminθ

n∑
i=1

ωit1{ỹi ̸=F (xi;θ̂)}

β̂t = argminβ(e
β − e−β)

n∑
i=1

ωit1{ỹi ̸=F (xi;θ̂)} + e−β

n∑
i=1

ωit

Firstly, we obtain the value θ̂t fitting a tree Ft(x, θ̂) to the training data with weights
{ωi}ni=1. Then, we calculate β̂t with the expressions

errt =

∑n
i=1 ωi1[ỹi ̸=F (xi;θ̂t)]∑n

i=1 ωi

β̂t =
1

2
log

(
1− errt
errt

)
Where errt is a weighted error rate, we defer the proof of the β̂t expression to Appendix

D.1. After finding θ̂t and β̂t, we update f̂t(x) = f̂t−1(x) + β̂tF (xi; θ̂t) and update the
weights so that it is possible to calculate the successive iterations. Finally, this process
results in a classifier where the class will be the sign of the trained additive model. This
algorithm, which is based on the exponential loss function, is called AdaBoost. An analysis
of the algorithm convergence in training is done in Appendix D.2.
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Algorithm 4: AdaBoost
Input: Training data D = {(xi, yi)}ni=1; Number of iterations T

Output: Boosted model f̂(x)
Initialize weights ωi =

1
n

for i = 1, 2, . . . , n;
for t = 1 to T do

Fit tree Ft(x, θ̂) to training data with weights {ωi}ni=1;

Compute errt =
∑n

i=1 ωi1[ỹi ̸=F (xi;θ̂t)]∑n
i=1 ωi

;

Compute βt =
1
2
log

(
1−errt
errt

)
;

Update the model: f̂t(x) = f̂t−1(x) + β̂tF (xi; θ̂t);
Update weights: ωi,t+1 = ωite

−β̂tỹiF (xi;θ̂t);
Renormalize ωi,t+1 such that

∑
i ωi,t+1 = 1;

return f̂(x) = sign
(∑T

t=1 βtF (x; θ̂t)
)
;

2.7.4 Gradient Boosting

Up to this point, we had to derive a new boosting algorithm for each distinct loss
function. However, there are ways in which the boosting paradigm can be generalized.
Gradient Boosting, for instance, is a generalization of boosting to arbitrary differentiable
loss functions by leveraging gradient descent. The main idea of this algorithm is to create
new base learners that have a high correlation with the negative gradient of the loss
function.

We define a function f and minimize the loss f̂ = argminfL(y, f) using gradient descent
in a function space. Since the function space is infinite-dimensional, for the step t, the
gradient git:

git =
∂L(yi, f(xi))

∂f(xi)

∣∣∣∣
f(x)=f̂t−1(x)

is only defined at the data points {(xi, yi)}ni=1. Therefore, to extend this to other x values,
we limit the search space by a parametric family of functions F (x, θ), θ ∈ Rn, that are
highly correlated with −git and solve for θ

θt = argminθ

n∑
i=1

(−git − F (xi; θ))
2

to then update
f̂t(x) = f̂t−1(x) + γtλF (x; θt)

where the value γt is determined using line search

γt = argminγ

n∑
i=1

L(yi, f̂t−1(x) + γF (x; θt))



23

and λ is a shrinkage term.

Algorithm 5: Gradient Boosting
Input: Training data D = {(xi, yi)}ni=1; Number of iterations T ; Shrinkage

parameter λ ∈ [0, 1]; choice of the loss function L(yi, F (xi)); choice of the
basis function F (xi, θ);

Output: Boosted model f̂(x)
Initialize f0(x) = argminF

∑n
i=1 L(yi, F (xi));

for t = 1 to T do

Compute the gradient residual using git =
∂L(yi,f(xi))

∂f(xi)

∣∣∣∣
f(x)=f̂t−1(x)

;

Use the weak learner to compute θ̂t = argminθ

∑n
i=1(−git − F (xi; θ))

2;
Determine using line search γ̂t = argminγ

∑n
i=1 L(yi, f̂t−1(x) + γF (x; θt));

Update f̂t(x) = f̂t−1(x) + γ̂tλF (x; θ̂t);

return f̂(x) = f̂T (x);

Hence, we have a least-squares problem, minimizing the squared difference between
the negative gradient and the predictions F (xi; θ), and a one-dimensional optimization
problem with γt. The shrinkage term is added to improve the model’s generalization
ability, controlling the learning rate. Furthermore, as standard practice, decision trees
are commonly used as weak learners in this method.

2.7.5 XGBoost

Modern approaches are built upon the gradient boosting algorithm. Extreme Gradient
Boosting, known as XGBoost, can be understood as an efficient implementation of Gradi-
ent Boosted Decision Trees (GBDT) that includes several improvements. Particularly, it
uses Newton Boosting, taking into consideration second-order information and being likely
to learn better tree structures. Thus, this method uses a second-order approximation for
the loss function that includes the Hessian alongside the gradient. Furthermore, it regu-
larizes the number of leaves and predicted values in each region and samples predictors
during the selection of the best split.

To use the Newton Method, we need to calculate the Hessian,

hit =
∂2L(yi, f(xi))

∂f(xi)2

∣∣∣∣
f(x)=f̂t−1(x)

which is only defined at the data points {(xi, yi)}ni=1, similar to the gradient boosting
algorithm. Therefore, we also need to limit the basis function to a restricted set of
functions to extend the empirical Hessian to other x values, solving for θ (unregularized)

θ̂t = argminθ

n∑
i=1

1

2
ĥit[(−

ĝit

ĥit

)− F (xi; θ)]
2
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and then updating
f̂t(x) = f̂t−1(x) + ρF (xi; θ̂t)

where ρ is a learning rate.

Algorithm 6: A Generic XGBoost Algorithm
Input: Training data D = {(xi, yi)}ni=1; Number of iterations T ; choice of the

differentiable loss function L(yi, F (xi)); learning rate ρ;
Output: Boosted model f̂(x)
Initialize f0(x) = argminF

∑n
i=1 L(yi, F (xi));

for t = 1 to T do

Compute the gradient git =
∂L(yi,f(xi))

∂f(xi)

∣∣∣∣
f(x)=f̂t−1(x)

;

Compute the hessian hit =
∂2L(yi,f(xi))

∂f(xi)2

∣∣∣∣
f(x)=f̂t−1(x)

;

Use the weak learner to compute
θ̂t = argminθ

∑n
i=1

1
2
ĥit[(− ĝit

ĥit
)− F (xi; θ)]

2 + Ω(Ft) + constant;

Update f̂t(x) = f̂t−1(x) + ρF (xi; θ̂t);

return f̂makeshatfT (x);

The penalization term can be expressed as

Ω(Ft) =
T∑
t=1

[ γTt + λ1||ωt||1 +
1

2
λ2||ωt||22 ]

and it is one of the key enhancements of the XGBoost algorithm, applying L1 and L2

regularization on leaf weights to reduce model complexity. There is also another regular-
ization parameter γ to penalize the number of terminal nodes in each individual fitted
tree.

Another important factor of this model is the use of randomization in the training
process. Applying row and column subsampling to make individual trees more dissimilar,
reducing their covariance and possibly the ensemble’s overall variance. Consequently, it
improves the model’s generalization performance, making it more robust to overfitting.

2.7.6 LightGBM

Light Gradient Boosting Machine (LightGBM) is another modern boosting approach
built upon GBDTs. This algorithm has many similarities with XGBoost, such as using
second-order information of the loss function and regularizing to fit trees. However, it
has important computational improvements, leading to faster training speed and reduced
memory usage.

First, it applies Exclusive Feature Bundling (EFB) to reduce feature dimension. This
technique works by noting that, in sparse feature spaces, merging mutually exclusive
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features into a single feature is possible. First, it searches for mutually exclusive fea-
tures—features that never have nonzero values at the same time—and then bundles them
into a new feature, effectively decreasing the feature dimension.

The implementation of Gradient-based One-Side Sampling (GOSS) is used to choose
a subset of the data to train the model and increase training efficiency. This algorithm
ranks the training data instances according to the absolute value of their gradient, keeping
the samples with larger gradients and applying random sampling on the ones with small
gradient values. The key idea is that a data instance with a large gradient value reflects
a higher prediction error at iteration t during training. As a result, it is beneficial to
prioritize such instances in the training process for iteration t+1. Therefore, this technique
makes the training procedure focus on the data instances with larger gradients, observing
that they have more influence on the information gain. Moreover, it is important to note
that GOSS also decreases computational costs by using a smaller subset of the data to
estimate the variance gain and determine the split point of the trees.

Another important factor to consider is the use of a histogram-based algorithm, as
applied in XGBoost’s algorithm, to define the optimal segmentation point when building
the trees. This technique groups continuous feature values into discrete bins that represent
the range of their values. For each feature, a histogram is built, and when constructing the
trees, the histogram’s statistics are used to decide the segmentation points. Thus, to make
the splitting procedure more efficient without sacrificing much accuracy, the histogram
algorithm uses an approximate solution based on quantiles to define the optimal splits.
Consequently, this method reduces memory consumption and training time, diminishing
computational costs.

Finally, LightGBM uses a leaf-wise tree growth method instead of the traditional level-
wise algorithm. The main difference between these strategies is the order in which the
tree is built: the leaf-wise algorithm uses a best-first approach, while the level-wise uses a
depth-first approach. Using the leaf-wise growth, the split with the greatest information
gain is chosen independent of the depth level, while the level-wise growth splits all the
nodes in the same depth before moving to the next level. Therefore, by choosing the
best-first approach, LightGBM can reduce training time and often improve the prediction
performance.

2.7.7 CatBoost

CatBoost is a gradient-boosted decision tree method designed to deal effectively with
categorical features and mitigate prediction shifts. To address the target leakage issue, the
Yandex researchers introduced ordered boosting. This technique generates a new training
dataset at each boosting step, preventing the previous model from seeing the labels in the
new dataset. This helps reduce bias in the model.
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CatBoost employs one-hot encoding for categorical features with low cardinality. For
handling high cardinality categorical variables, researchers introduced the "Ordered Tar-
get Statistics" technique. Additionally, CatBoost utilizes an oblivious tree growth ap-
proach, as described in (KOHAVI, 1994), where a uniform splitting criterion is consistently
applied across the entire level of the tree.

CatBoost’s algorithm is formally defined in Prokhorenkova et al. (2018) supplementary
materials, specifically in section B, as follows:

Algorithm 7: CatBoost
Input: {(xi, yi)}ni=1, I, α, L, s, Mode
σr = random permutation of [1, n] for r = 0..s;
M0(i)← 0 for i = 1..n;
if Mode = Plain then

Mr(i)← 0 for r = 1..s, i : σr(i) ≤ 2j+1;

if Mode = Ordered then
for j ← 1 to [log2 n] do

Mr,j(i)← 0 for r = 1..s, i = 1..2j+1;

for t = 1 to I do
Tt, {Mr}sr=1 ← BuildTree({Mr}sr=1, {(xi, yi)}ni=1, α, L, {σi}si=1, Mode);
leaf0(i)← GetLeaf(xi, Tt, σ0) for i = 1..n;
grad0 ← CalcGradient(L, M0, y);
foreach leaf j in Tt do

btj ← −avg(grad0(i) for i : leaf0(i) = j);

M0(i)←M0(i) + αbtleaf0(i) for i = 1..n;

return F (x) =
∑I

t=1

∑
j αb

t
j1{GetLeaf(x,Tt,ApplyMode)=j};

In this algorithm, there are many notational differences from the previous ones ex-
plained in this thesis. Thus, to clarify the notation in 7: {(xi, yi)}ni=1 is the training data,
I is the number of iterations, Tt is a decision tree at the t-th iteration, bj are leaf values, α
is the learning rate, L is the loss function, s represents the number of permutations gener-
ated (it determines the number of different orderings of the training dataset used during
training), σr represents a random permutation of the indices of the training dataset, M
represents the supporting models (specifically, Mr,j(i) is the current prediction for the
i-th example based on the first j examples in the permutation σr).

The algorithm first generates s+ 1 independent random permutations of the training
data and initializes supporting models for each permutation. Then, if using the “Plain”
or “Ordered” mode, set up supporting models based on certain conditions. Afterward,
for each boosting iteration, the algorithm builds a decision tree based on the current
supporting models and training data, assigns training examples to tree leaves, calculates
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gradients based on the assigned leaves, and updates the supporting models using the
calculated gradients. Ultimately, it returns the final boosted model.

2.8 BOOSTING METHOD COMPARISON

In this section, we aim to evaluate the algorithmic differences between distinct boosting
models: Gradient Boosting, AdaBoost (Adaptive Boosting), XGBoost (Extreme Gradient
Boosting Model), LightGBM (Light Gradient Boosting Model), and CatBoost (Categori-
cal Boosting). At this stage, we intend to compare the methods strictly from a theoretical
perspective, noting that the experiment results will be discussed in detail later in this
study. Hence, it is important to emphasize the differences and similarities between these
algorithms to enrich the comparative analysis of the thesis findings.

The essence of AdaBoost (FREUND; SCHAPIRE, 1995), along with other boost-
ing methods, involves training predictors sequentially, with each attempting to correct
the errors of its predecessor. This method pioneered adaptive boosting algorithms since it
adapts its parameters according to the actual method performance at the current iteration
t. AdaBoost’s generalization problem, as thoroughly discussed in (MAYR et al., 2014), is
widely recognized. In this context, there is a consensus that, despite the potential for the
algorithm to overfit, it demonstrates resistance in practice. A parameter is used to stop
the algorithm at predefined iteration tstop, controlling model complexity. However, stop-
ping the algorithm early, yielding a small number of iterations, may lead to underfitting.
Another important factor, as indicated by (CHENGSHENG; HUACHENG; BING, 2017)
and (WANG; SUN, 2021), is that AdaBoost is a fast and easily programmed boosting
method but performs poorly with imbalanced data. In this context, modern applica-
tions of this algorithm involve modifications, such as combining it with other statistical
techniques or adjusting the weights computation, increasing its robustness.

Gradient Boosting (FRIEDMAN, 2001) is a generalization of the boosting paradigm
to arbitrarily differentiable loss functions, employing a training process through numer-
ical optimization, where the objective is to minimize the model’s loss using a gradient
descent procedure. Different from AdaBoost, this approach does not involve updating
the weights of the samples but fitting weak learners that are highly correlated with the
negative gradient of the loss function evaluated at the t − 1 iteration. Moreover, the
model has greater flexibility than AdaBoost and more regularization options, such as the
adjustable learning rate. Therefore, the Gradient Boosting Machine (GBM), introduced
by Friedman, inspired many modern and high-performing boosting methods. These meth-
ods, such as XGBoost, LightGBM, and CatBoost, stem from the fundamental concept of
gradient boosting, yet they diverge in their specific modeling details.

XGBoost (CHEN; GUESTRIN, 2016) follows the same principle as Gradient Boost-
ing but with a more advanced implementation, focusing specifically on decision trees as
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base learners. One of the most impactful additions of this method is the use of second-
order information, computing the Hessian of the loss function with respect to the pre-
dictions, often improving the predictive performance. Furthermore, XGBoost employs
various regularization strategies, such as L1 and L2 shrinkage and individual terminal
node penalization by the parameter γ, enhancing its generalization capability. As the
study (BENTÉJAC; CSÖRGŐ; MARTÍNEZ-MUÑOZ, 2021) discusses, this algorithm
focuses on reducing the computational complexity of finding the best tree split using a
compressed column-based structure where data is pre-sorted, allowing for parallel pro-
cessing and reducing the need for repeated sorting. Moreover, XGBoost includes column
subsampling to make training more efficient and reduce overfitting. Consequently, XG-
Boost includes many optimization techniques and often exhibits superior performance
compared to older implementations of boosting, both in explaining the output variable
and in computational efficiency.

Light Gradient Boosting (KE et al., 2017) is an optimized implementation of
Gradient Boosting developed by Microsoft, known for its computational efficiency. The
algorithm also incorporates the regularization features and the use of second-order in-
formation of the loss function from XGBoost. However, it is modeled to have higher
computational performance and scalability, both explained by Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB), techniques used to reduce fea-
ture dimension and the amount of data used to estimate the tree split. Furthermore,
LightGBM uses a leaf-wise growth approach when building trees, while XGBoost uses a
level-wise method (nowadays, XGBoost can also be implemented with the leaf-wise strat-
egy for the histogram-based method). The first approach might lead to trees with better
performance in larger datasets since it is more flexible but might be prone to overfitting.
The second approach keeps the trees balanced but splits nodes with small information
gain, scarcely affecting the results and wasting resources (ALSHARI; SALEH; ODABAS,
2021). Figures 2.3 and 2.4 illustrate the process of level-wise and leaf-wise growth.

Figure 2.3 – Level-wise growth
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Figure 2.4 – Leaf-wise growth

CatBoost grows a balanced tree that is less prone to overfitting and speeds up ex-
ecution at testing time. It uses consistent splitting criteria across an entire level of the
tree, employing the same features to split learning examples into right and left branches.
Figure 2.5 demonstrates the process of oblivious tree growth, where “x” and “y” repre-
sent input features, and “s” and “u” threshold values. For instance, in the first level, it
evaluates “x > s” to split the learning examples, and in the second level, it evaluates
“y < u”.

Figure 2.5 – Oblivious tree growth

2.9 RISK MEASURES

2.9.1 Downside Risk Measure: Conditional Value at Risk

Value at Risk (VaR) is a widely used risk measure in the financial industry. VaR
quantifies the maximum potential loss in the value of an asset or portfolio over a specified
time period, given a certain confidence level α ∈]0, 1[.

Formally, given a random variable R representing the distribution of returns over the
desired time horizon, VaR is defined as the α-quantile (qα) of R:

VaRα(R) = inf{r : Prob(R ≤ r) > α} = qα(R)
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VaR only considers the specific quantile of interest, disregarding any information be-
yond that point. Conditional Value at Risk (CVaR) addresses this limitation. While the
VaR informs the loss threshold, the CVaR presents the severity of tail losses.

CVaR is an absolute measure of downside risk and has superior mathematical proper-
ties compared to VaR (SARYKALIN; SERRAINO; URYASEV, 2008). It calculates the
average losses that exceed VaR and is defined as:

CVaRα(R) = E[R | R < VaRα = qα(R)]

In the empirical portion of this thesis, CVaR will be the relevant downside risk measure
since it is a more sensitive and informative measure of tail risk.

2.9.2 Dispersion Risk Measure: Volatility

Volatility is a commonly used dispersion risk measure that quantifies the degree of
variation in the returns of an asset or portfolio over time. It is typically measured by the
standard deviation of returns, which captures the extent to which returns deviate from
their mean.

Formally, given a series of returns Rt for t = 1, 2, . . . , n, the volatility (standard
deviation) s(R) over a rolling window of size w is defined as:

st(R) =

√√√√ 1

w − 1

t∑
i=t−w+1

(Ri − SMAt(R))2

where SMAt(R) is the average of the returns over the rolling window w, given by:

SMAt(R) =
1

w

t∑
i=t−w+1

Ri

Higher volatility indicates greater dispersion of returns and, hence, higher risk. In
financial markets, volatility is often used to gauge the stability and predictability of asset
prices.

Although there are several types of volatility, including implied volatility, realized
volatility, and expected volatility, only historical volatility was considered in this study.
The term “volatility” will henceforth be used interchangeably with “standard deviation of
returns”.
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2.9.3 Drawdown Risk Measure: Maximum Drawdown

Maximum Drawdown (MDD) measures the maximum observed loss from a peak (high-
est price Pk) to a trough (lowest price Pj) before a new peak is attained. Therefore, it is
represented as a percentage decrease from the highest value and is path-dependent. This
risk measure provides a picture of potential maximum losses.

For a more formal definition, consider Pt as the price of an asset at time t and consider
0 < t ≤ T . The maximum drawdown over the period T is defined as:

MDD = min
0≤k≤j≤T

(
Pj − Pk

Pk

)

Max Drawdown is an important measure because it highlights the worst-case scenario
for an investor by showing the most significant percentage drop from a peak during a
specified period. For that reason, it will be considered the drawdown risk measure in the
empirical part of the study.
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3 LITERATURE REVIEW

This chapter uses a dual narrative approach. First, it centers on an examination of
seminal papers that have contributed to the evolution of boosting methods. In this con-
text, the review explores foundational works that set the theoretical groundwork for boost-
ing algorithms, highlighting advancements and methodologies proposed by researchers.
Second, the chapter transitions to an investigation into applying boosting techniques in
the context of financial risk prediction. This segment explores relevant studies and re-
search findings that showcase the adaptability and effectiveness of boosting algorithms
in forecasting financial risks. Therefore, exploring these two perspectives, the literature
review aims to offer a holistic understanding of the historical development of boosting
methods and their contemporary applications in financial risk prediction.

3.1 HISTORICAL OVERVIEW

The Probably Approximately Correct (PAC) machine learning framework underlies
the development of boosting theory. The term “probably” denotes the probabilistic nature
of the learning process, and “approximately correct” indicates a low error rate. The
paper by Valiant (1984) focuses on exploring knowledge acquisition in the absence of
explicit programming, providing insights into the design of learning machines. From a
computational viewpoint, the author addresses the question of solvability, introducing
a framework that quantitatively defines the learnability of a problem. This framework
incorporates key parameters, such as the concept class - a collection of concepts that the
algorithm aims to learn; the hypothesis space - a set of hypotheses that the algorithm
can consider solutions; and the learning algorithm - a procedure that selects a hypothesis
from the hypothesis space based on the training examples. A problem is deemed PAC
learnable when a learning algorithm can discover a solution with an error rate below a
specified threshold, doing it with high probability. Finally, an algorithm meeting these
criteria is classified as a strong learner.

The study by Kearns and Valiant (1989) focuses on proving the intractability of learn-
ing several classes of Boolean functions - functions that take a set of binary inputs and
produce a single binary output - in the PAC model. This paper’s profound impact in
boosting is that it proposes a definition for weak learners: algorithms that exhibit only
marginal improvement over random guessing.

Subsequently, in 1990, Schapire’s paper (1990) demonstrated the potential of these
weak learners. The key insight was that if a strong learner is capable of solving a problem,
then a collective assembly of weak learners can achieve the same. This was underscored
by introducing a technique known as the ‘hypothesis boosting mechanism.’ In essence,
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the mechanism employs filtering to modify the distribution of examples, directing the
weak learning algorithm’s attention to the more challenging regions of the distribution.

More specifically, Schapire employs an algorithm A that generates hypotheses closely
approximating the target concept c - the underlying pattern the learning algorithm tries
to discover from the data - with an error rate of α. He proposes an enhanced algorithm A′

that simulates A under three distinct distributions, yielding hypotheses that significantly
better represent c. Thus, an ensemble hypothesis from three weak sub-hypotheses is
created, each trained on a distinct distribution. It was mathematically demonstrated that
if the three weak sub-hypotheses have an error rate of α < 1/2 concerning the distribution
they were trained on, then the resulting ensemble hypothesis at each subsequent iteration
will have an error rate of 3α2− 2α3, which is remarkably lower than α since 0 < α < 1/2.
This investigation, therefore, resulted in a technique that converts any learning algorithm
that performs just slightly better than random guessing into one that performs with
arbitrarily small error rates. That proved the equivalence of the weak and strong notions
of learnability.

The first experiments with the early boosting algorithms were done on the OCR (Op-
tical Character Recognition) task in the paper by Drucker, Schapire, and Simard (1993).
They used neural networks as base learners and four different handwritten databases con-
sisting of 12,000 digits extracted from segmented ZIP codes provided by the United States
Postal Service (USPS) and 220,000 digits, 45,000 uppercase alphas, and 45,000 lowercase
alphas obtained from the National Institute of Standards and Testing (NIST). The effects
of boosting on the four databases using different architectures showed that the ensemble
of networks improved the performance significantly over the single network.

The introduction of the adaptive boosting algorithm, known as AdaBoost, as presented
in the paper by Freund and Schapire (1995), is one of the most influential contributions
within the scope of boosting algorithms. This new approach to boosting solved various
difficulties of its predecessors (FREUND; SCHAPIRE, 1999). AdaBoost assigns a weight
to each weak hypothesis during the creation of the final decision. Similarly, during the
formulation of a weak hypothesis, each sample is assigned a weight. Because the algorithm
focuses its weights on the harder-to-learn samples, the outliers frequently are the examples
with the highest weight. Hence, AdaBoost can identify outliers and has a big advantage
in terms of the generalization capacity.

Additionally, the algorithm does not need prior knowledge about the weak learner,
making it flexible to pair with any method for discovering weak hypotheses. AdaBoost
brings along some theoretical guarantees as long as there is enough data and a weak learner
that can reliably provide moderately accurate weak hypotheses. Consequently, there is
a shift in the process of the learning system design, from making a machine learning
algorithm that is accurate over the entire domain to finding weak learning algorithms that
only need to be better than random. Over the years, AdaBoost has undergone substantial
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evolution, mainly noted in the development of several variants, such as the Logit Boost,
Emphasis Boost, Reweight Boost, and many others. A more in-depth analysis is done in
the paper by Ferreira and Figueiredo (2012).

Gradient Boosting is introduced in the paper by Friedman (2001), where the boosting
paradigm is extended to any defined and differentiable loss function. Thus, this work
generalizes boosting algorithms, presenting the Gradient Boosting Machine (GBM): a
forward stagewise additive modeling algorithm that minimizes differentiable loss func-
tions using steepest-descent steps constrained by the negative gradient direction. In this
sense, gradient boosting fits weak learners to pseudo-residuals, which are derived from
the negative gradient iteratively.

Effectively, the paper begins by discussing an approach to function estimation focusing
on numerical optimization within a function space. This approach links stagewise additive
expansions and steepest-descent minimization, culminating in the generalization of the
boosting paradigm. Additionally, the paper presents and develops a gradient-boosting
strategy for different popular loss functions, such as the Least-Squares, Least Absolute
Deviation, Huber-M, and Multiclass Logistic Likelihood Loss Functions. Furthermore,
Friedman develops enhancements when the individual additive components are regression
trees, named “TreeBoost” models, along with tools for interpreting such models. Finally,
the study compares the GBM to existing models, such as AdaBoost and LogitBoost, and
connects this new approach to existing ones, emphasizing its importance in the statistical
learning field.

Chen and Guestrin (2016) developed XGBoost, a tree-boosting technique renowned
for its effectiveness. This method is a highly scalable gradient boosting approach, imple-
menting several techniques to reduce computational complexity. In this sense, XGBoost
improves the split-finding process, which is the most time-consuming portion when build-
ing decision tree algorithms. This enhancement is accomplished by storing data in a com-
pressed column-based structure, eliminating the need for repeated sorting and enabling
parallel processing. Moreover, this innovative approach incorporates both a method based
on percentiles to test only a subset of candidate splits and a sparsity-aware algorithm to
remove missing values. Thus, XGBoost implements various techniques to reduce training
time, focusing on improving computational efficiency.

In addition, XGBoost has other innovative modeling strategies focused on improving
the method’s predictive performance. In particular, it uses supplementary regularization
in the learning objective, specifically L1 and L2 shrinkage, along with a parameter to
control the number of terminal nodes. These strategies collectively assist in regulating
model complexity and mitigate overfitting. Another important implementation is the use
of the hessian of the loss function to calculate the optimal split and leaf weights, often
resulting in better tree structures. Furthermore, the model uses randomization techniques,
such as column subsampling at tree and node levels, to improve generalization and training
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speed. A detailed review of XGBoost’s algorithm is performed by Nielsen in (2016),
covering fundamental concepts, three boosting models, their historical development, and
algorithm comparisons.

Ke et al. (2017) developed LightGBM, a gradient-boosted decision tree method de-
signed to deal with large datasets efficiently. This method incorporates two key techniques:
Gradient-based One-Side Sampling and Exclusive Feature Bundling. GOSS excludes data
instances with small gradients from the tree-building process, and EFB bundles mutually
exclusive features, reducing feature dimension. Another relevant implemented technique
is the Leaf-wise approach when building decision trees, which might lead to better learning
performance. In this sense, we observe that LightGBM incorporates multiple techniques
to handle computational complexity, thereby increasing efficiency.

Prokhorenkova et al. (2018) created CatBoost, representing "Categorical Boosting",
which is a gradient boosted decision tree approach that effectively processes categorical
features and implements ordered boosting - a modification of the standard gradient boost-
ing algorithm. These techniques aim to mitigate prediction shifts, a special type of target
leakage that introduces bias and hinders the generalization ability of the trained model.
This problem arises from discrepancies between the distribution of the estimated model
and the testing samples. To successfully overcome this issue, the Yandex researchers de-
veloped ordered boosting, a technique where a new training dataset is generated at each
boosting step, ensuring the previous model hasn’t been exposed to the labels in the new
dataset, consequently decreasing bias.

CatBoost’s paper addresses a statistical issue that was not previously formally defined
in other methods, introduces a new solution to mitigate it, and develops an empirical
study comparing CatBoost with popular new methods, such as XGBoost and LightGBM.
In the comparative analysis, CatBoost outperforms the other models on all the considered
datasets. However, it is important to observe that the comparison was mainly conducted
in heterogeneous and categorical datasets, which introduces limitations to the analysis
and may lead to potential biases.

3.2 IMPLEMENTATIONS IN FINANCE

Lao et al. (2021) intended to predict the monthly financing risk of grid companies
using the XGBoost model. The study builds a financing risk indicator system consid-
ering inputs like cash flow, capital operation ability, profitability, development ability,
solvency, financing scale, and economic environment. The paper made a comparative
analysis between the XGBoost model, the Support Vector Regressor model, and back-
propagation neural network models. The results show the XGBoost model has better
prediction accuracy and stability, and MAE and RMSE values for the boosting algorithm
were significantly smaller. The stability of XGBoost is asserted by analyzing the decrease
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in the number of samples in the training set and the increase in the test set, resulting in
a slight decrease in MAE and RMSE.

So (2023) compares multiple boosting models and has fundamental importance for
this present thesis. The comparative study utilizes modern boosting approaches such as
XGBoost, LightGBM, and CatBoost gradient boosting libraries for constructing predic-
tive models. It is important to note that the relative analysis is not limited to evaluating
the predictive results. Still, the paper elaborates deeply on the key theoretical differ-
ences between the methods, expanding on the methods of tree splitting and handling of
categorical data.

These boosting algorithms are used for building claim frequency models from zero-
inflated insurance claim data. The examinations are based on two datasets: the French
Motor Third-Party Liability (MTPL) dataset and a synthetic telematics dataset. The
paper then introduces two scenarios for training zero-inflated Poisson boosted tree models:
one where the inflation probability p is a function of the distribution mean µ, and one
where p and µ are unrelated. Models are finally applied and evaluated on these two
auto insurance claim datasets. To better understand the contribution of each feature, the
author uses SHAP values on the prediction of the claim frequency. CatBoost is found to
have the best performance, and zero-inflated Poisson models outperform others depending
on data characteristics.

Nabipour et al. (NABIPOUR et al., 2020) focuses on reducing the risk of stock
market trend prediction using machine learning and deep learning algorithms. In this
context, the study analyses four stock market groups from the Tehran stock exchange
for experimental evaluations: diversified financials, petroleum, non-metallic minerals, and
basic metals. It finally compares the performance of nine machine learning models and
two deep learning methods: Decision Tree, Random Forest, Adaptive Boosting, eXtreme
Gradient Boosting, Support Vector Classifier (SVC), Naïve Bayes, K-Nearest Neighbors
(KNN), Logistic Regression, Artificial Neural Network (ANN), Recurrent Neural Network
(RNN) and Long short-term memory (LSTM).

The study used ten technical indicators from ten years of historical data as input
values. The data is used and analyzed in two manners: continuous and binary. The
former is based on the actual time series, normalized in the range of (0,+1), and the
latter goes through a preprocessing step for the conversion to binary, defined by +1 as
the sign of upward trend and −1 as the sign of downward trend. Results show that RNN
and LSTM outperform other prediction models in continuous and binary data evaluation.
The XGboost and AdaBoost methods are well-performant but not as much as the LSTM
and RNN.

The paper by Chen, Chen, and Cai (2023) builds a stock market risk early warning
system for China under the background of the Stock Connect programs. It uses Value at
Risk to classify stock market risk into multiple categories - a widely used risk measure
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that refers to the maximum potential loss that an asset or portfolio may experience over a
specified period under market volatility and a certain confidence level. The study divides
stock market risk into four levels: high risk, medium risk, low risk, and lowest risk, based
on the VaR values at different quantiles (0.1, 0.3, 0.5).

A set of technical, macroeconomic, and other market indicators are used to build
prediction models. These models were Long short-term memory, gate recurrent unit,
multilayer perception, and XGBoost. The results show that macroeconomic and other
basic indicators have an important influence on predicting China’s stock market risk, and
the performance of the early warning system improves when the conventional and other
indicators are considered. Analyzing the performance metrics for the models across three
periods, we can validate that the XGBoost model consistently outperformed the LSTM,
GRU, and MLP models concerning accuracy. Additionally, the boosting method performs
best for precision, recall, and f1-score in multiple periods.

Qin (2022) develops a corporate financial management risk assessment model based on
the XGBoost algorithm. The paper uses data from profit and loss, bank loans, employee
performance, e-commerce profit and loss, and cross-border business data. The results
show that the XGBoost model can accurately classify financial data with errors within
3%, with a maximum error of only 2.48%, and predict risk trends over time well. Qin
concludes that the XGboost approach has obvious advantages over traditional financial
methods. Moreover, the visual comparison between predicted and actual values over time
can be seen in a boxplot and a pie chart. Analyzing the boxplot, it is possible to assert
that the predicted value of the risk level over time conforms with the actual risk level
value.

Branco, Rubesam, and Zevallos (2024) work offers an evaluation of various forecasting
models for volatility, including linear, nonlinear, and machine learning approaches. The
study encompasses the realized volatility (RV) of ten global stock market indices from
January 2000 to December 2021. The primary objective is to ascertain whether non-
linear machine learning models can outperform traditional linear models in forecasting
RV. Boosting models generally performed better than some other nonlinear models like
Bagging and Random Forest but were outperformed by simpler models like HARX and
linear models with regularization (Ridge, Lasso, ENET) in several cases.
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4 METHODOLOGY

This chapter presents the methodological framework adopted in this study, detailing
the processes involved in data collection, preprocessing, feature selection, and model eval-
uation. The structure of this chapter is as follows: the empirical design (4.1), tools and
implementation (4.2), descriptive statistics (4.3.1), data preprocessing (4.3.2), feature se-
lection and datasets (4.3.3), model training and validation (4.4.1), hyperparameter tuning
(4.4.2), and evaluation metrics (4.5).

4.1 EXPERIMENTAL DESIGN

The primary objective of this study is to evaluate the performance of five different
boosting models—Adaboost, Gradient Boosting, XGBoost, LightGBM, and CatBoost—in
predicting risk measures.

Seven distinct datasets, each containing 3220 data points, were used to evaluate the
predictive performance for three target variables: the 10-day Conditional Value at Risk
(CVaR), the 10-day Standard Deviation of Returns (volatility), and the 10-day Maximum
Drawdown. The first dataset has 80 feature variables, with six additional datasets created
using specific feature selection methods.

For the analysis of the risk measures, the return series of the Bovespa index is used,
calculated using the following expression:

Rt = ln

(
IBVt

IBVt−1

)
where Rt is the return series of the Bovespa index and IBV denotes the closing price
series of the index.

Using this return series, the following risk measures are derived:

– 10-day Standard Deviation of Returns (Volatility): Volatility is calculated
by taking the standard deviation of the log returns over a rolling window of 10 days.

– 10-day Conditional Value at Risk (CVaR): CVaR is calculated based on the
Value at Risk (VaR). For a given window of 10 days, the VaR is first determined at
a 1% significance level. CVaR is then calculated as the average of the log returns
below this VaR threshold.

– 10-day Maximum Drawdown (MDD): Maximum Drawdown measures the largest
peak-to-trough decline in the index value over a rolling window of 10 days.

For the experiment pipeline, this sequence was followed:
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1. Build the seven datasets used in the experiment;

2. Calculate the descriptive statistics for the variables used to derive the risk measures;

3. Split the datasets into train and test sets;

4. Define the search space for hyperparameter tuning;

5. Train the boosting models on the training datasets;

6. Validate the models using cross-validation;

7. Evaluate the models using the test datasets;

8. Analyze the performance metrics to assess the models’ performance.

4.2 TOOLS

Python 3.11.4 was employed for the implementation. The code is available on Github.
In addition to commonly used data science tools such as numpy, scipy, pandas, matplotlib,
and seaborn, the most important packages utilized are:

· yfinance was used to download historical market data from Yahoo Finance. It fa-
cilitated the retrieval of the Bovespa index, other international stock market indices,
exchange rates, and commodity prices.

· ipeadatapy was used to download the EMBI+ series.

· bcb was used to download Brazilian macroeconomic variables.

· statsmodels was mainly used for data exploratory analysis.

· sklearn provided a wide range of tools for modeling. Tools for feature selection
and model evaluation were used. The library was also utilized to implement the
Adaboost and Gradient Boosting algorithms. Furthermore, sklearn facilitated the
use of time series cross-validation with TimeSeriesSplit and hyperparameter tuning
with RandomizedSearchCV.

· xgboost was used for implementing the XGBoost algorithm.

· lightgbm was used for implementing the LightGBM algorithm.

· catboost was used for implementing the CatBoost algorithm.

Table 22 provides a complete list of utilized Python packages and their versions.
The experiments were executed with the following settings: Notebook GalaxyBook2;

Processor: 12th generation Intel Core i3; 8GB RAM; Storage Type: SSD.

https://github.com/RafaStutz
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4.3 DATA

4.3.1 Descriptive Statistics

Descriptive statistics provide a foundational understanding of the IBOV and risk data,
summarizing central tendency, dispersion, and distribution characteristics. These statis-
tics are essential for identifying patterns, checking data quality, and providing context for
further analysis.

Table 1 summarizes key statistical measures for the Bovespa index closing price, in-
cluding the number of days, mean, standard deviation, minimum, and maximum values.

Table 1 – Descriptive statistics of the IBOV close price

Statistic Value

Number of Days 3220
Mean 70967.32
Standard Deviation 23907.92
Minimum 29435.00
Maximum 130776.00

The wide range between the minimum and maximum values suggests considerable
fluctuations in the index’s closing prices over the observed period (3220 days). The
high standard deviation further confirms the substantial variability in the Brazilian stock
market, as observed in Araújo et al. (2021).

The descriptive statistics of the Bovespa index logarithmic return series are summa-
rized in Table 2. This table provides an overview of the central tendency, dispersion, and
distributional characteristics, along with results from several statistical tests. These tests
assess the normality of the return series, the presence of serial autocorrelation, volatility
clustering, and the presence of a unit root to determine if the return series is stationary.
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Table 2 – Descriptive statistics of the IBOV return series

Statistic Value

Mean 0.00006
Standard Deviation 0.01740
Minimum -0.15993
Maximum 0.13022
Kurtosis 9.97351
Skewness -0.65099
Shapiro-Wilk 0.91774***
Ljung-Box 59.64552***
ARCH 878.33866***
ADF -20.82591***

The Shapiro-Wilk test assesses the normality of the data. The Ljung-Box Q test, applied
with 20 lags, evaluates the presence of serial autocorrelation. Engle’s ARCH test checks
for conditional heteroskedasticity. The ADF test examines the presence of a unit root.
The symbol *** denotes statistical significance at the 1% level.

The Shapiro-Wilk test results in a statistic of 0.91774, rejecting the null hypothesis of
normality at the 1% significance level. Therefore, this indicates that the IBOV returns
do not follow a normal distribution. The skewness (-0.65099) and high kurtosis (9.97351)
also indicate the result of non-normality, suggesting a distribution with heavy tails and
more frequent extreme returns.

The test results in a statistic of 59.64552 for the Ljung-Box Q test, which is significant
at the 1% level. This indicates that there are statistically significant serial autocorrelations
in the IBOV returns.

The Lagrange Multiplier (ARCH) test yields a statistic of 878.33866, significant at
the 1% level. This confirms the presence of conditional heteroskedasticity, indicating that
periods of high volatility tend to be followed by periods of high volatility and vice versa.

Lastly, the ADF test results in a statistic of -20.82591, which is highly significant at
the 1% level. This result rejects the null hypothesis of a unit root, indicating that the
index return series is stationary.

Figure 4.1 illustrates the daily logarithmic returns of the IBOV from August 2006
to May 2023. This graph provides insights into the behavior and characteristics of the
returns, which are consistent with the results of the descriptive statistics.
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Figure 4.1 – Daily returns of the IBOV

Volatility clustering can be observed, and this is consistent with the significant result
from the ARCH test, which indicated the presence of conditional heteroskedasticity. There
has been a noticeable spike in volatility between 2008 and 2020, corresponding to the
global financial crisis and the COVID-19 pandemic. During this period, the returns show
extreme fluctuations, with uncommon negative and positive daily returns.

The QQ-plot in Figure 4.2 visually assesses how well the returns of the IBOV follow
a normal distribution.
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Figure 4.2 – QQ-plot of the Logarithmic Returns

In the central region of the plot, the points lie close to the reference line, indicating
that the central part of the return distribution aligns well with the normal distribution.
At the lower end (left tail) and the upper end (right tail) of the distribution, the points
deviate below and above the reference line, respectively. Thus, this deviation in both
tails suggests that the return distribution exhibits heavy tails, meaning there are more
extreme values than would be expected under a normal distribution, corroborating with
the results of the Shapiro-Wilk test.

Figure 4.3 provides a comprehensive visualization of the index’s daily log returns and
the associated 10-day risk measures.
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Figure 4.3 – Return (first panel) and the 10-day risk measures on the second, third, and
fourth panels



45

4.3.2 Data Preprocessing

The datasets were built by the author. There were no missing values. Thus, no im-
putation or deletion of data points was necessary. Given the nature of the data and
the robustness of the tree-based models employed, neither normalization nor standardiza-
tion were necessary. The dataset did not contain any categorical variables that required
encoding. Lastly, the train-test split is detailed in 4.4.1.

4.3.3 Datasets

Seven distinct datasets were used. They were designed to evaluate the predictive
performance of the selected features across three target variables: the 10-day Conditional
Value at Risk, the 10-day Standard Deviation of Returns (volatility), and the 10-day
Maximum Drawdown.

The Original dataset consists of the initial set of 80 features collected for analysis.
Subsequent datasets were derived using specific feature selection methods:

The F-Test dataset includes features selected based on an F-test criterion. The Pear-
son dataset consists of features chosen through Pearson correlation coefficients. Features
in the Spearman dataset were selected using Spearman correlation. The Intersec-
tion dataset contains features common to both the Pearson and Spearman-selected sets.
The Combined dataset incorporates all features selected by either Pearson or Spearman
methods. Finally, the Vix dataset includes only the feature representing the VIX index.

4.3.3.1 Original

The ‘Original’ dataset contains eighty features organized into categories: basic indi-
cators, technical indicators, overseas return rate indicators, market sentiment indicators,
and macroeconomic indicators. Basic indicators are variables directly related to the IBOV,
such as prices and their lagged variations. Technical indicators include variables related
to momentum, trends, and volatility, for example. Overseas return rate indicators refer
to daily return rates of major international stock market indices. Market sentiment in-
dicators include Vix, a volatility index calculated based on the prices of S&P500 index
options, and EMBI+, an index that tracks the performance of sovereign bonds issued by
emerging market countries. Finally, macroeconomic indicators are variables related to
exchange rates, commodity prices, interest rates, and monetary metrics.

The primary dataset description is provided in [21]. Table 3 summarizes this dataset.
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Table 3 – Summary of the Original Features

Type Variable Indicator Definition

Basic indicators x1 Open The opening price
x2 High The highest price
x3 Low The lowest price
x4 Volume The trading volume

...

Technical
indicators

x26 Price_Change The price change
x27 RSI The Relative Strength Index
x28 SMA_10 The 10-day Simple Moving Average
x29 SMA_30 The 30-day Simple Moving Average

...

Overseas return
rate indicators

x43 SP500 Daily return of the S&P500 index
x44 DJIA Daily return of the Dow Jones

Industrial Average
...

Market Sentiment
Indicator

x57 Vix Volatility Index (VIX)
x80 EMBI+ EMBI+ Index

...

Macroeconomic
Indicators

x78 C_i_C Currency in Circulation
x79 Bank_Reserves Bank Reserves
x80 R_monet_base Restricted Monetary Base

4.3.3.2 F-test

The ‘F-test’ dataset is built using the F-test for feature selection. We use the ‘f_regression’
function from the ‘sklearn.feature_selection’ module. This method performs univariate
linear regression tests, returning F-statistics and p-values to assess the significance of
each feature with respect to the target variable y. The F-test evaluates whether there
are significant differences between the means of different groups, identifying the features
most likely to statistically influence the target variable. The ten best features are selected
using the F-test criterion to build the ‘F-test’ dataset.

The ‘f_regression’ function works in two steps:

1. The Pearson correlation between each regressor and the target is computed; the
formula is detailed in 4.3.3.3.

2. This correlation is converted to an F score and then to a p-value.
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This method focuses on the strength and significance of the relationship rather than
its direction since it is irrespective of the sign of the association. Table 4 lists the selected
variables by the method.

Table 4 – Chosen F-test Features

Target Selected Features

CVaR RSI, MACD, MACD_Signal, CP_Std_Dev, MFI,
Williams_%R, FTSE100, KOSPI, Vix, EMBI+

Volatility MACD, MACD_Signal, CP_Std_Dev, FTSE100, HSI,
ASX200, KOSPI, Vix, Copper, EMBI+

Max Drawdown RSI, MACD, MACD_Signal, CP_Std_Dev, MFI,
Williams_%R, FTSE100, HSI, Vix, EMBI+

4.3.3.3 Pearson

The ‘Pearson’ dataset is built based on the Pearson correlation coefficient. It measures
the statistical dependence between the set of features x, as detailed in Table 21, and the
target variable y, evaluating the extent to which their relationship can be described using
a linear function. The dataset is populated with the top ten features selected based on
this correlation criterion.

The formula for Pearson correlation coefficient is given by:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

Where rxy is the Pearson correlation coefficient between x and y, xi and yi are the
individual values of samples of x and y, x̄ and ȳ are the means of samples of x and y, n
is the total number of samples. Table 5 lists the selected variables by this method.

Table 5 – Chosen Pearson Features

Target Selected Features

CVaR Vix, MACD, CP_Std_Dev, MACD_Signal, RSI, EMBI+,
FTSE100, Williams_%R, MFI, KOSPI

Volatility Vix, CP_Std_Dev, MACD, MACD_Signal, FTSE100,
EMBI+, KOSPI, HSI, Copper, ASX200

Max Drawdown MACD, Vix, MACD_Signal, CP_Std_Dev, RSI,
Williams_%R, MFI, EMBI+, FTSE100, HSI
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4.3.3.4 Spearman

The ‘Spearman’ dataset is built based on the Spearman correlation coefficient. We
measure the statistical dependence of the set x of features, detailed in 21, and the target
variable y, assessing how well the relationship between the variables can be described
using a monotonic function. The ten best features are selected using this correlation
criterion to build the ‘Spearman’ dataset.

The formula for Spearman correlation coefficient is given by:

ρ = 1− 6
∑

d2i
n(n2 − 1)

Where ρ is the Spearman correlation coefficient, di is the difference between the ranks
of corresponding variables xi and yi, and n is the number of observations. Table 6 lists
the selected variables by this method.

Table 6 – Chosen Spearman Features

Target Selected Features

CVaR RSI, MACD, Williams_%R, Vix, MFI, MACD_Signal,
FTSE100, KOSPI, EMBI+, HSI

Volatility Vix, KOSPI, FTSE100, Low, Lower_Band, Low_Lag_1,
Low_Lag_2, Low_Lag_3, Low_Lag_4, MACD

Max Drawdown RSI, Williams_%R, MACD, MFI, MACD_Signal, Vix,
FTSE100, Low, HSI, Low_Lag_1

4.3.3.5 Intersection

The ‘Intersection’ dataset is built using only the features selected by both the
Pearson and the Spearman correlation. Table 7 lists the selected features.

Table 7 – Intersection of Features between Pearson and Spearman

Target Selected Features

CVaR Williams_%R, Vix, FTSE100, MFI, RSI, MACD_Signal,
EMBI+, MACD, KOSPI

Volatility MACD, Vix, KOSPI, FTSE100

Max Drawdown FTSE100, Williams_%R, MACD, MFI, RSI, HSI, Vix,
MACD_Signal
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4.3.3.6 Combined

The ‘Combined’ dataset is built using all features the Pearson and Spearman correla-
tion selected. Table 9 lists the selected features.

Table 8 – All Features selected by Pearson and Spearman

Target Selected Features

CVaR MFI, RSI, MACD, KOSPI, Williams_%R, Vix, HSI,
FTSE100, MACD_Signal, CP_Std_Dev, EMBI+

Volatility MACD, Low, Low_Lag_1, Copper, Low_Lag_2,
Low_Lag_3, ASX200, Vix, Low_Lag_4, HSI, FTSE100,
CP_Std_Dev, EMBI+, KOSPI, Lower_Band,
MACD_Signal

Max Drawdown FTSE100, Williams_%R, MACD, HSI, Low, Vix,
MACD_Signal, EMBI+, Low_Lag_1, CP_Std_Dev,
MFI, RSI

4.3.3.7 Vix

The ‘Vix’ dataset is composed solely of the ‘Vix’ feature. As observed in previous anal-
yses, this feature is highly significant and informative, demonstrating a strong relationship
with all the target variables. Table 9 illustrates this dataset.

Table 9 – All Features selected by Pearson and Spearman

Target Selected Features

CVaR Vix

Volatility Vix

Max Drawdown Vix

4.4 MODELING

4.4.1 Training and Validation

The datasets were divided using a temporal train-test split, where 80% of the data
points were allocated for training and 20% for testing across all seven datasets. For all
the data splits, the training data spans from August 30, 2006, to January 15, 2020, while
the testing data covers the period from January 16, 2020, to May 22, 2023. Figures 4.4,
4.5, and 4.6 illustrate the training and testing sets for the three target variables, where
the vertical dashed line represents the split.
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Figure 4.4 – CVaR - Training and Testing Sets

Figure 4.5 – Volatility - Training and Testing Sets
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Figure 4.6 – Maximum Drawdown - Training and Testing Sets

4.4.2 Hyperparameter Tuning

Hyperparameters are parameters that the models don’t learn directly from the data.
However, they greatly influence how an algorithm effectively learns, playing a critical role
in optimizing performance. Therefore, hyperparameter tuning is used in this study to
identify optimal configurations; the best results are detailed in 15.

Random search was employed for model tuning. This search strategy samples a subset
of the search space instead of trying all parameter values, reducing its computational
expense compared to grid search. Despite its lower computational cost, random search
can achieve accuracy improvements comparable to those of grid search (BERGSTRA;
BENGIO, 2012).

To ensure robustness in evaluation, temporal cross-validation was utilized, partitioning
the data into ten sequential subsets. This approach maintains the temporal order, en-
suring that models cannot access future data during training, which could otherwise bias
performance evaluation. Figure 4.7 illustrates the temporal cross-validation procedure
across three splits.
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Figure 4.7 – Time Series Cross-Validation Example

Five models were configured, each with its respective parameter distributions. For each
model, ‘RandomizedSearchCV’ sampled 100 different parameter configurations, evaluat-
ing them using the RMSE within the temporal cross-validation framework. This process
resulted in 1000 model fits per algorithm, encompassing all folds and parameter combi-
nations.

In summary, the following hyperparameters were optimized using these parameter
distributions:

– AdaBoost:

· The learning rate (learning_rate): Randomly selected from a uniform distri-
bution between 0.01 and 0.5.

· The number of boosting iterations (n_estimators): Randomly selected between
5 and 200.

– Gradient Boosting:

· The learning rate (learning_rate): Randomly selected from a uniform distri-
bution between 0.01 and 0.5.

· The number of boosting iterations (n_estimators): Randomly selected between
5 and 200.

· The maximum depth of the tree (max_depth): Randomly selected between 1
and 6.

– XGBoost:

· The learning rate (learning_rate): Randomly selected from a uniform distri-
bution between 0.01 and 0.5.
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· The number of boosting iterations (n_estimators): Randomly selected between
5 and 200.

· The maximum depth of the tree (max_depth): Randomly selected between 1
and 6.

· The minimum loss reduction (gamma): Randomly selected from a uniform
distribution between 0 and 1.

· The L2 regularization term (reg_lambda): Randomly selected between 0 and
5.

– LightGBM:

· The learning rate (learning_rate): Randomly selected from a uniform distri-
bution between 0.01 and 0.5.

· The number of boosting iterations (n_estimators): Randomly selected between
5 and 200.

· The maximum depth of the tree (max_depth): Randomly selected between 1
and 6.

· The maximum number of leaves in one tree (num_leaves): Randomly selected
between 10 and 40.

· The L2 regularization term (reg_lambda): Randomly selected between 0 and
5.

– CatBoost:

· The learning rate (learning_rate): Randomly selected from a uniform distri-
bution between 0.01 and 0.5.

· The maximum number of trees that can be built (iterations): Randomly se-
lected between 5 and 200.

· The maximum depth of the tree (max_depth): Randomly selected between 1
and 6.

· The L2 regularization term (l2_leaf_reg): Randomly selected between 0 and
5.

· The degree of randomness applied to score splits during the selection of the
tree structure (random_strength): Randomly selected between 0 and 5.

4.5 EVALUATION METRICS

The Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) are used
as quantitative metrics for evaluating the predictive performance.
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The Mean Absolute Error is computed as the average of the sum of absolute differences
between the actual values and the predicted values:

MAE =
1

N

N∑
t=1

|yt − ŷt|

This metric is simple to understand and interpret. Moreover, it is less sensitive to
outliers compared to RMSE.

The RMSE is a measure of the dispersion of errors between actual values and predic-
tions:

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2

The Root Mean Squared Error penalizes larger errors more than MAE, being useful
when larger errors are undesirable. This is the metric used for hyperparameter optimiza-
tion.

4.6 STATISTICAL TESTS USED IN THE RESULTS

4.6.1 Levene’s Test for Homogeneity of Variances

Levene’s test was used to assess the homogeneity of variances across different groups.
This test evaluates the null hypothesis that the variances are equal across groups. A
significant result (p-value less than 0.05 at the 5% significance level, for example) indi-
cates that the assumption of equal variances is violated, suggesting that the variances
between groups are significantly different. Therefore, if the test showed a violation of
the homogeneity of variances, the Kruskal-Wallis test wasn’t performed since it demands
homoscedasticity.

4.6.2 Kruskal-Wallis Test

The Kruskal–Wallis test is a nonparametric alternative to traditional analysis of vari-
ance (ANOVA). It was used to avoid relying on the assumption of normality for the
results. Although it does not require the data to be normally distributed, it does require
homoscedasticity.

The test applies the analysis of variance to the ranks of the observations. By ranking
the observations and replacing each value with its rank, this method is less likely to
be distorted by nonnormality and outliers. The null hypothesis is that the medians of
all groups are equal, while the alternative hypothesis is that at least the median of the
population of one group is different from the median of the population of at least one
other group. Therefore, applying the test to the ranks of the observations provides a
robust comparison of group medians.
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4.6.3 Post Hoc Analysis: Conover-Iman Test

When significant differences were detected by the Kruskal-Wallis test, post hoc analysis
was performed using the Conover-Iman test. This test tests for stochastic dominance
among multiple pairwise comparisons between groups while controlling for the family-
wise error rate. P-values from the Conover-Iman test were adjusted using the Bonferroni
correction to account for multiple comparisons.
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5 RESULTS

This chapter presents the results of this undergraduate thesis. The analysis focuses on
the performance of Adaboost, Gradient Boosting, XGBoost, LightGBM, and CatBoost in
predicting three risk measures: the 10-day Conditional Value at Risk (CVaR), the 10-day
Standard Deviation of Returns (Volatility), and the 10-day Maximum Drawdown.

First, in 5.1, we analyze the average performance metrics of the algorithms across the
different risk measures, focusing on predictive performance and then their computational
efficiency.

Following this, in 5.2, we evaluate the performance metrics of the models across seven
different datasets; each created using specific feature selection methods. This section aims
to understand how different datasets affect model performance.

Next, in 5.3, we identify and discuss the best individual models for each risk measure,
providing details about their hyperparameters and feature importance.

Finally, in 5.4, statistical tests are conducted to validate the significance of the observed
performance differences for RMSE.

5.1 AVERAGE ALGORITHM RESULTS

Table 10 presents a summary of the algorithms’ performance metrics, including the
Average RMSE, Standard Deviation of RMSE, Average MAE, and Standard Deviation of
MAE for each risk measure. The lowest values are highlighted in bold font.

Table 10 – Summary of Performance Metrics Grouped by Algorithm and Target

Algorithm Target Average
RMSE

Standard
Deviation
(RMSE)

Average
MAE

Standard
Deviation
(MAE)

Adaboost CVaR 0.013686 0.002039 0.009814 0.000996

Max Drawdown 0.029071 0.002600 0.020614 0.001470

Volatility 0.007329 0.001036 0.004700 0.000516

Gradient Boosting CVaR 0.014629 0.001201 0.010229 0.001006

Max Drawdown 0.030029 0.002462 0.018943 0.003118

Volatility 0.006800 0.000666 0.004386 0.000372

Continued on next page
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Algorithm Target Average
RMSE

Standard
Deviation
(RMSE)

Average
MAE

Standard
Deviation
(MAE)

LightGBM CVaR 0.015486 0.000524 0.010357 0.000586

Max Drawdown 0.029214 0.003742 0.018657 0.003105

Volatility 0.007414 0.000393 0.004600 0.000294

XGBoost CVaR 0.015543 0.001249 0.010457 0.000739

Max Drawdown 0.031129 0.002414 0.019786 0.002363

Volatility 0.008643 0.001688 0.004743 0.000443

CatBoost CVaR 0.015100 0.001060 0.009771 0.000652

Max Drawdown 0.033200 0.001159 0.020171 0.002869

Volatility 0.007529 0.000479 0.004529 0.000309

For the CVaR risk measure, Adaboost shows the lowest average RMSE (0.013686),
making it the most effective model for minimizing larger errors. Similarly, Adaboost is,
on average, the better model for predicting Max Drawdown, showing the lowest average
RMSE (0.029071). Gradient Boosting outperforms the other models with the lowest aver-
age RMSE (0.006800) and MAE (0.004386) for the Volatility risk measure. Additionally,
LightGBM stands out for its consistency, exhibiting the lowest standard deviations for
both RMSE and MAE in predicting CVaR and Volatility.

Since hyperparameter tuning was performed using RMSE, it is reasonable to prioritize
RMSE to evaluate model performance. However, it is also important to analyze the
results for the MAE metric, considering all individual differences are weighted equally in
the average. Within this context, the results show that Catboost is the most effective
model for the CVaR risk measure prediction, with the lowest average MAE (0.009771).
Furthermore, LightGBM is the better model for the Max Drawdown prediction, with the
lowest average MAE (0.018657).

Gradient Boosting performs best for volatility prediction when considering both RMSE
and MAE. Adaboost has the lowest average RMSE for CVaR and Max Drawdown, Cat-
Boost excels for CVaR when MAE is prioritized, and LightGBM is superior for Max
Drawdown based on MAE. These results suggest that Adaboost and Gradient Boosting
are preferable for minimizing larger errors, whereas CatBoost and LightGBM are better
for reducing the overall average error. Moreover, LightGBM can be considered the best
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overall model due to its consistency.
Figures 5.1 and 5.2 depict the RMSE and MAE across the algorithms, visually con-

firming the analysis of the metrics. The downward arrows in the figures highlight the
models with the best performance for each risk measure based on the respective error
metric:

Figure 5.1 – RMSE Across Algorithms
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Figure 5.2 – MAE Across Algorithms

Table 11 summarizes the training and prediction times for each algorithm across the
three risk measures. It summarizes the algorithms’ computational efficiency, including
the Average Training Time, Standard Deviation of the Average Training Time, Average
Prediction Time, and Standard Deviation of the Average Prediction Time. The lowest
values are highlighted in bold font.

Table 11 – Summary of Training and Prediction Metrics Grouped by Algorithm and Tar-
get

Algorithm Target Average
Training
Time (s)

Training
Time Std
Dev (s)

Average
Prediction
Time (s)

Prediction
Time Std
Dev (s)

Adaboost CVaR 3.862043 7.059236 0.051629 0.057815

Max Drawdown 0.829071 1.031130 0.020414 0.028619

Volatility 0.501814 0.604052 0.008914 0.008339

Gradient Boosting CVaR 2.375614 3.762860 0.007800 0.007310

Max Drawdown 3.423157 2.111680 0.007871 0.007997

Volatility 1.355014 1.982535 0.003786 0.007490

Continued on next page
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Algorithm Target Average
Training
Time (s)

Training
Time Std
Dev (s)

Average
Prediction
Time (s)

Prediction
Time Std
Dev (s)

XGBoost CVaR 0.127171 0.151499 0.011300 0.015311

Max Drawdown 0.077157 0.038229 0.007671 0.011802

Volatility 0.055300 0.020023 0.005714 0.004266

LightGBM CVaR 0.120629 0.262523 0.010343 0.014334

Max Drawdown 0.085800 0.062924 0.009143 0.006453

Volatility 0.134571 0.271994 0.006400 0.005040

CatBoost CVaR 0.411371 0.482158 0.006771 0.009876

Max Drawdown 0.143529 0.098571 0.005543 0.007868

Volatility 0.163700 0.176333 0.003986 0.005854

XGBoost and LightGBM demonstrate the shortest training times across all risk mea-
sures, whereas Adaboost and Gradient Boosting have longer training times, especially
for CVaR and Max Drawdown. Moreover, XGBoost and LightGBM have low standard
deviations in both training and prediction times, indicating consistent performance. For
prediction times, CatBoost shows the shortest values.

When considering both computational efficiency and predictive performance, Light-
GBM emerges as the best algorithm due to its low training and prediction times and
consistent performance.

5.2 AVERAGE DATASET RESULTS

In this section, we evaluate the performance of the models across different datasets to
understand how they generalize to various data conditions.

Table 12 summarizes the datasets’ performance metrics, including the Average RMSE,
Standard Deviation of RMSE, Average MAE, and Standard Deviation of MAE for each
risk measure. The lowest values are highlighted in bold font.
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Table 12 – Summary of Dataset Performance Metrics Grouped by Dataset and Target

Dataset Target Average
RMSE

Standard
Deviation
(RMSE)

Average
MAE

Standard
Deviation
(MAE)

Combined CVaR 0.01506 0.001612 0.01072 0.000955

Max Drawdown 0.02972 0.002995 0.01760 0.002691

Volatility 0.00722 0.001087 0.00436 0.000404

FTest CVaR 0.01456 0.000820 0.01004 0.000152

Max Drawdown 0.03082 0.002007 0.02104 0.001396

Volatility 0.00708 0.000370 0.00462 0.000286

Intersection CVaR 0.01410 0.001334 0.00936 0.000483

Max Drawdown 0.02982 0.002213 0.01964 0.000568

Volatility 0.00668 0.000327 0.00416 0.000055

Original CVaR 0.01634 0.001544 0.01078 0.000965

Max Drawdown 0.03016 0.002194 0.01878 0.000736

Volatility 0.00858 0.001965 0.00484 0.000397

Pearson CVaR 0.01480 0.001377 0.01000 0.000689

Max Drawdown 0.03152 0.001492 0.02188 0.000773

Volatility 0.00774 0.001210 0.00498 0.000409

Spearman CVaR 0.01358 0.000923 0.00930 0.000339

Max Drawdown 0.02720 0.003116 0.01594 0.002072

Volatility 0.00776 0.000709 0.00436 0.000195

Vix CVaR 0.01578 0.000179 0.01068 0.000084

Continued on next page
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Dataset Target Average
RMSE

Standard
Deviation
(RMSE)

Average
MAE

Standard
Deviation
(MAE)

Max Drawdown 0.03446 0.000723 0.02256 0.000416

Volatility 0.00774 0.000483 0.00482 0.000084

The Spearman dataset shows the best overall performance in terms of minimizing
both RMSE and MAE for CVaR and Max Drawdown, indicating it is more effective for
these risk measures. Although the Vix dataset does not have the lowest average RMSE or
MAE, it is the most consistent for both CVaR and Max Drawdown, suggesting it provides
stable predictions with minimal variability.

Unlike Pearson correlation, which measures linear relationships, Spearman correlation
assesses the strength and direction of monotonic relationships, making this feature selec-
tion method more robust in capturing non-linear dependencies. Another important factor
is that the Spearman correlation coefficient is less sensitive to outliers. These factors might
explain why the Spearman dataset performed better.

Additionally, for Volatility, the Intersection dataset stands out in both average RMSE
and MAE. It shows high consistency with the lowest standard deviations, making it the
optimal dataset for volatility prediction by combining accuracy and stability. This dataset
likely balances the strengths of the Pearson and Spearman datasets, reducing noise and
enhancing the signal related to volatility. This balance contributes to both accuracy and
stability in predictions.

The Original dataset shows the highest error metrics for CVaR and Volatility. This
dataset may include irrelevant or redundant features that do not contribute positively to
predicting these risk measures. Although tree-based methods were used in this study and
are known to be robust to irrelevant features, the dataset may not be sufficiently large to
handle this particular regression task effectively. That could explain why overfitting was
a significant challenge in this study.

On the other hand, the Vix dataset shows the highest error metrics for the Max
Drawdown target. It may lack sufficient information to capture the complexity required
for accurate predictions of the Max Drawdown.

Figures 5.3 and 5.4 illustrate the RMSE and MAE across the datasets, visually con-
firming the analysis of the metrics. The downward arrows in the figures highlight the
datasets with the best performance for each risk measure based on the respective error
metric.
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Figure 5.3 – RMSE Across Datasets

Figure 5.4 – MAE Across Datasets

Table 13 summarizes the datasets’ computational efficiency, including the Average
Training Time, Standard Deviation of the Average Training Time, Average Prediction
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Time, and Standard Deviation of the Average Prediction Time. The lowest values are
highlighted in bold font.

Table 13 – Summary of Training and Prediction Metrics Grouped by Dataset and Target

Dataset Target Average
Training
Time (s)

Training
Time Std
Dev (s)

Average
Predic-

tion Time
(s)

Prediction
Time Std
Dev (s)

Combined CVaR 2.20056 3.814153 0.01094 0.012073

Max Drawdown 1.43958 1.781385 0.02386 0.032395

Volatility 0.60608 0.847022 0.00676 0.006718

FTest CVaR 0.20596 0.186672 0.00166 0.003386

Max Drawdown 0.92290 1.790412 0.00144 0.003220

Volatility 0.24622 0.369589 0.00166 0.003712

Intersection CVaR 0.20672 0.197284 0.01040 0.007847

Max Drawdown 0.29934 0.536755 0.00132 0.002385

Volatility 0.15458 0.227862 0.00248 0.005545

Original CVaR 5.74700 8.084585 0.05484 0.055153

Max Drawdown 1.67404 2.797593 0.01520 0.011883

Volatility 1.73952 2.231398 0.01360 0.004116

Pearson CVaR 0.18932 0.187217 0.00606 0.006386

Max Drawdown 0.92542 1.715134 0.00860 0.006669

Volatility 0.09316 0.032912 0.00276 0.003330

Spearman CVaR 0.99478 2.008702 0.02718 0.050066

Max Drawdown 1.05174 1.705097 0.01430 0.011589

Volatility 0.18294 0.207246 0.00682 0.007698

Vix CVaR 0.11122 0.093123 0.01190 0.012658

Max Drawdown 0.06918 0.055904 0.00618 0.006559

Volatility 0.07206 0.058240 0.00624 0.005770
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The Vix dataset consistently shows the lowest average training times across all targets,
while the Original dataset exhibits the highest average training times. This is expected
since the Vix dataset has only one feature variable, while the Original dataset has the most
features. For prediction times, the Vix and the F-test datasets perform well. Additionally,
the Original dataset exhibits the highest standard deviations for training and prediction
times, exhibiting greater variability.

5.3 BEST INDIVIDUAL MODELS

The last sections focused on the average performance of the algorithms and datasets,
where we obtained an overview of general performance. In this section, we’ll analyze the
best individual models.

The interpretability of the models will be considered, with discussions focusing on why
certain features might be more relevant to a particular model outcome. However, it is
important to note that the discussions do not indicate causal effects. The models used are
not causal models, and any observed associations should not be interpreted as evidence
of causation.

Table 14 presents a summary of the best models considering RMSE and MAE. It
includes the Algorithm, Target, Dataset, RMSE, MAE, Training time, and Prediction
time. The lowest values are highlighted in bold font.

Table 14 – Best Individual Models and Datasets per Target

Algorithm Target Dataset RMSE MAE Training
time (s)

Prediction
time (s)

Adaboost CVaR Intersection 0.0120 0.0087 0.4380 0.0157

LightGBM Max Drawdown Spearman 0.0239 0.0141 0.0774 0.0156

Gradient
Boosting

Volatility Combined 0.0060 0.0038 2.0172 0.0000

Adaboost performs best for the CVaR target using the Intersection dataset, with an
RMSE of 0.0120 and MAE of 0.0087, highlighting it as the best performer for this target
since it also has the best average performance metrics. LightGBM is optimal for the Max
Drawdown target using the Spearman dataset, with an RMSE of 0.0239 and MAE of
0.0141, and in average performance analysis, LightGBM is noted for its consistency and
lowest MAE. Gradient Boosting is the best algorithm for the Volatility target with the
Combined dataset, achieving an RMSE of 0.0060 and MAE of 0.0038, and is also the best
model for Volatility in average performance analysis.

Table 15 shows the hyperparameters of the best specific models.
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Table 15 – Hyperparameters of the Best Performing Models

Algorithm Hyperparameter Value

Adaboost learning_rate 0.06009116724413254

n_estimators 15

LightGBM learning_rate 0.3317260257815028

n_estimators 182

max_depth 3

num_leaves 32

reg_lambda 0

Gradient Boosting learning_rate 0.05284105248216985
n_estimators 37
max_depth 4

5.3.1 CVaR

In this subsection, we analyze the performance of the Adaboost model in predicting
the Conditional Value at Risk using the Intersection dataset. Figure 5.5 illustrates the
comparison between the true CVaR values and the predicted values generated by the
Adaboost model.

Figure 5.5 – Comparison of Predicted vs. Actual CVaR Values Using Adaboost on the
Intersection Dataset

The predicted values (orange line) generally follow the trend of the actual values
(gray line), indicating that the Adaboost model captures the overall pattern of the CVaR
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values reasonably well. At the start (first 50 iterations), there is a significant discrepancy
between the actual and predicted values. This substantial drop in the true values, which
the model fails to capture accurately, could be explained by an unusual event not present
in the training phase (COVID-19 pandemic). Even though the model may capture major
CVaR trends, it might be further improved.

Figure 5.6 presents the feature importance for the best specific CVaR model.

Figure 5.6 – Relative Importance of Features in Predicting CVaR Using Adaboost on the
Intersection Dataset

Vix is the most important factor in predicting CVaR, followed by momentum indicators
such as RSI and MACD.

Vix, the Chicago Board Options Exchange Volatility Index, is a key market sentiment
indicator. Since high volatility usually correlates with increased risk of significant losses, it
is an important factor in risk assessments like CVaR, which focuses on extreme downside
risk. This could potentially explain the effect of this feature. Even though the feature
uses SP500 data, it plays a critical role in predicting CVaR for the IBOV. This could be
explained due to the interconnectedness of global financial markets and the transmission
of risk sentiment.
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The Relative Strength Index (RSI) and Moving Average Convergence Divergence
(MACD) are momentum indicators that help identify the strength and direction of price
trends. These features can provide early warnings of shifts in market conditions, helping
predict CVaR.

5.3.2 Volatility

In this subsection, we analyze the performance of the Gradient Boosting model in
predicting volatility (standard deviation of returns) using the Combined dataset. Figure
5.7 illustrates the comparison between the true volatility values and the predicted values
generated by the Gradient Boosting model.

Figure 5.7 – Comparison of Predicted vs. Actual Volatility Values Using Gradient
Boosting on the Combined Dataset

The predicted values (purple line) generally follow the major trends of the actual
values (gray line). The Gradient Boosting model may be capturing the overall patterns
in volatility. However, visually, both the actual and predicted volatility values show more
noise and fluctuations than would be expected. The model captures the initial peak, but
there is a noticeable deviation between the actual and predicted values. As in the CVaR
prediction, this could be explained by an unusual event not present in the training phase,
which means the algorithm couldn’t learn to extrapolate to such extreme events. The
model shows increased noise and inconsistency in following the actual values in the mid
to late iterations. Therefore, even though the model seems to follow the major trends in
volatility, it might be further improved.

Figure 5.8 presents a SHAP values summary plot for the Gradient Boosting model on
the Combined dataset. The most impactful features are at the top.
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Figure 5.8 – Shap Values - Summary Plot for Gradient Boosting on the Combined
Dataset

Vix is the most impactful variable for volatility prediction with Gradient Boosting.
This result is intuitive since this variable measures volatility using SP500 data, and global
financial markets are interconnected. Both high and low values of Vix (represented by red
and blue dots, respectively) have a considerable impact on the model’s output, evidenced
by a wide range of SHAP values. The distribution of Vix values shows relevant influence
across the entire range. However, when Vix is low, it probably represents periods of
lower market volatility, which might not significantly change the model’s output, and
this explains why the SHAP values for low Vix are tightly clustered. In contrast, during
periods of high volatility, the model’s predictions are likely more sensitive and variable,
resulting in a broader spread of SHAP values.

Another important feature is the standard deviation of the Close Price. It shows a
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relevant spread of SHAP values, indicating its strong influence. The distribution of the
standard deviation of the close price values affects the model’s output consistently, with
both high and low values contributing to the predictions. Furthermore, features such as
KOSPI, Low, MACD and EMBI+ also influence the model’s predictions substantially.

Figure 5.9 illustrates the dependence of SHAP Values on Vix with MACD Interaction.

Figure 5.9 – Shap Values - Dependence Plot Vix

A clear positive trend exists between the Vix values and their corresponding SHAP
values. The upward slope suggests that the model is highly sensitive to changes in the
Vix value, with higher Vix levels contributing more significantly to the predictions.

The color of the points represents the value of the MACD feature, with blue indicating
low values and red indicating high values. There is a visible interaction between Vix and
MACD. For lower Vix values, the color distribution is more mixed, and for higher Vix
values, the points tend to be more blue, indicating lower MACD values.

In the lower range of Vix, there is a dense concentration of points around the lower
SHAP values, showing that low Vix values have a smaller but consistent impact on the
model’s output. Still, as Vix values increase, the points spread out more, showing that
higher Vix values have a more varied impact on the model’s output.
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5.3.3 Maximum Drawdown

In this subsection, we analyze the performance of the LightGBM model in predicting
maximum drawdown using the Spearman dataset. Figure 5.10 illustrates the comparison
between the actual max drawdown values and the predicted values generated by the
LightGBM model.

Figure 5.10 – Comparison of Predicted vs. Actual Maximum Drawdown Values Using
LightGBM on the Spearman Dataset

The predicted values (blue line) generally follow the actual values (gray line) trend.
This indicates that the LightGBM model effectively captures the Max Drawdown patterns.
At the start (first 50 iterations), there is a significant discrepancy between the true and
predicted values, similar to the other models. This can be explained similarly to previous
instances: although the 2008 crisis was present in the training phase, it was not as extreme
as the Covid-19 pandemic. Therefore, the model may not have adequately learned to
handle such unprecedented events.

Overall, visually, the model performs well in predicting maximum drawdown, suggest-
ing that the LightGBM model with the Spearman dataset is effective.

Figure 5.11 presents a SHAP values summary plot for the LightGBM model on the
Spearman dataset. The most impactful features are at the top.
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Figure 5.11 – Shap Values - Summary Plot for LightGBM on the Spearman Dataset

The Moving Average Convergence Divergence value (MACD) is the most impactful
feature, with high MACD values positively affecting the model’s output and low MACD
values generally having a negative impact (‘negative impact’ refers to the direction of
the impact, not worsening the model). It makes reasonable sense that low MACD values
suggest strong negative momentum, increasing the risk of drawdowns.

The MACD signal line shows a different trend: high values negatively influence the
model’s output. High values of the MACD signal line might lead the model to predict a
higher risk of drawdown (negative impact) due to potential market corrections.

The lagged value of the ‘Low’ price demonstrates a balanced impact, with both high
and low values influencing the model’s predictions in various directions.

Even though Vix is less impactful than MACD’s signal line, it has a similar inter-
pretation, where high values negatively influence the model’s output. This suggests that
higher SP500 volatility leads to lower predictions in the Bovespa drawdown (the target
risk measure is negative), which is intuitive.

Figure 5.12 depicts the dependence of SHAP Values on MACD with MACD signal
line Interaction.
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Figure 5.12 – Shap Values - Dependence Plot MACD

A clear positive correlation exists between MACD values and their corresponding
SHAP values. As the MACD value increases, the SHAP value also increases, confirming
what the summary plot indicated: higher MACD values increase the predicted output for
Max Drawdown, while low MACD values decrease it.

In the higher range of MACD, there is a dense concentration of points around the
higher SHAP values, showing that high MACD values have a more consistent impact on
the model’s output. In the lower range of MACD, the data points are more dispersed,
but they have a bigger impact on the model’s output.

5.4 STATISTICAL ANALYSIS

We validate the significance of the performance differences among algorithms and
datasets based on RMSE. Statistical tests were conducted with a significance level of 5%.
This section details the results of these tests. Statistical significance is highlighted in red.

5.4.1 Algorithms

5.4.1.1 Levene and Kruskal-Wallis Tests

The results of Levene’s and Kruskal-Wallis tests for each target are summarized in
Table 16.
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Table 16 – Levene’s and Kruskal-Wallis Test Results for Algorithms: P-values

Target Levene Kruskal-Wallis Significant Differences

CVaR 0.5072 0.1191 No
Volatility 0.0488 - No
Max Drawdown 0.5839 0.0204 Yes

For CVaR, both Levene’s and Kruskal-Wallis’s tests indicate no significant differences
among algorithms. The Volatility target violated the homoscedasticity assumption (Lev-
ene’s p-value = 0.0488). Hence, it is not adequate to use the Kruskal-Wallis test for
this particular risk measure. For Max Drawdown, significant differences were identified
(Kruskal-Wallis p-value = 0.0204), indicating that at least one algorithm stochastically
dominates another. However, the Kruskal-Wallis test does not pinpoint where these dif-
ferences occur. Further post hoc analyses are performed in the following subsection to
identify specific pairs of algorithms with significant differences.

5.4.1.2 Post Hoc Analysis

Significant pairwise differences identified by the Conover-Iman test are summarized in
Table 17.

Table 17 – Significant Pairwise Differences from Conover-Iman Post Hoc Tests for Al-
gorithms

Target Pairwise Comparison p-value

Max Drawdown Adaboost vs. CatBoost 0.0158
CatBoost vs. LightGBM 0.0473

The Kruskal-Wallis test with the post hoc analysis indicated significant differences
between Adaboost, CatBoost, and LightGBM for the Max Drawdown target. This is
consistent with the performance metrics presented earlier, where LightGBM and Adaboost
outperformed CatBoost.

5.4.2 Datasets

5.4.2.1 Levene and Kruskal-Wallis Tests

The results of Levene’s and Kruskal-Wallis tests for each target are summarized in
Table 18.
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Table 18 – Levene’s and Kruskal-Wallis Test Results for Datasets: P-values

Target Levene Kruskal-Wallis Significant Differences

CVaR 0.6059 0.0190 Yes
Volatility 0.1530 0.0855 No
Max Drawdown 0.7264 0.0128 Yes

For CVaR and Max Drawdown, significant differences were identified between datasets,
indicating that at least one dataset stochastically dominates another for these targets.
The following subsection performs further post hoc analysis to identify specific pairs of
datasets with significant differences. No significant differences were found for Volatility.

5.4.2.2 Post Hoc Analysis

Significant pairwise differences identified by the Conover-Iman test are summarized in
Table 19.

Table 19 – Significant Pairwise Differences from Conover-Iman Post Hoc Tests

Target Pairwise Comparison p-value

CVaR Original vs. Spearman 0.0156
Max Drawdown Combined vs. Vix 0.0362

Intersection vs. Vix 0.0465
Spearman vs. Vix 0.0012

Post hoc tests revealed specific pairwise differences, such as between Original and
Spearman datasets for CVaR. For Max Drawdown, differences were identified between
Combined and Vix, Intersection and Vix, and Spearman and Vix. These findings support
the previous results, showing that Spearman and Intersection datasets perform better
for these targets, indicating that these datasets’ features significantly impact predictive
performance.
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6 CONCLUSION

The study comprehensively evaluates the performance of different algorithms and
datasets for predicting three market risk measures. The analysis revealed that specific
algorithms and datasets performed better than others, providing valuable insights for
optimizing market risk prediction.

Adaboost and Gradient Boosting were the most effective for specific measures. Ad-
aboost is recommended for predicting CVaR and Max Drawdown, while Gradient Boosting
was the better performer in predicting Volatility. LightGBM had consistent performance
and computational efficiency, particularly for Max Drawdown, making it a well-rounded
solution with reliable results across various risk measures.

The Spearman and Intersection datasets demonstrated superior performance. The for-
mer had the best results for predicting CVaR and Max Drawdown. The latter is preferred
for Volatility prediction. Conversely, the Original dataset showed higher error metrics
and variability, indicating the importance of feature selection. The Spearman correlation
method, along with its combination with the Pearson correlation, likely includes more
predictive and less noisy features, making it a better choice for model training. The sta-
tistical tests confirmed significant differences between the Original and Spearman datasets
for CVaR and among the Combined, Intersection, and Spearman datasets compared to
the Vix dataset for Max Drawdown.

The market sentiment indicators, particularly Vix, are the most important CVaR
and volatility prediction variables. For Max Drawdown, MACD was the most impactful
feature, and Vix also strongly influenced model output. Contrary to previous studies,
market sentiment and technical indicators were the most important variables for risk
prediction in the Brazilian stock market, while macroeconomic variables were found to be
less impactful in this analysis.

6.1 LIMITATIONS AND FUTURE WORK

Hyperparameter tuning was performed using Random Search, and this technique
might miss the optimal combination of hyperparameters due to its stochastic nature and
the predefined search space, potentially leading to suboptimal model configurations.

Overfitting remained a significant challenge in this study despite the implementation
of cross-validation, hyperparameter tuning, and regularization techniques. Some models
couldn’t generalize well to unseen data. Future work should explore additional regulariza-
tion methods, such as early stopping, and focus on acquiring more data points to improve
model generalization. Although CatBoost offers an overfitting detector, it was not utilized
in this study. Exploring this feature in future works could be beneficial.
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Another relevant direction for future investigation is to conduct studies across different
stock market indexes beyond the Brazilian market. Furthermore, comparing boosting
algorithms with alternative machine learning models for market risk prediction in the
Brazilian context would be valuable.
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A EXPERIMENTAL RESULTS

CONSOLIDATED RESULTS TABLE

Table 20 – Boosting Model Results for Different Targets and Datasets

Algorithm Target Dataset RMSE MAE Training
Time (s)

Prediction
Time (s)

Adaboost CVaR Original 0.0174 0.0114 19.4908 0.1509

F Test 0.0134 0.0099 0.4316 0.0000

Pearson 0.0126 0.0094 0.4802 0.0156

Spearman 0.0122 0.0088 4.5853 0.1160

Intersection 0.0120 0.0087 0.4380 0.0157

Combined 0.0126 0.0097 1.3455 0.0313

Vix 0.0156 0.0108 0.2629 0.0319

Adaboost Volatility Original 0.0092 0.0047 1.7312 0.0156

F Test 0.0066 0.0050 0.1107 0.0000

Pearson 0.0081 0.0056 0.0977 0.0000

Spearman 0.0070 0.0043 0.5292 0.0156

Intersection 0.0067 0.0042 0.0893 0.0000

Combined 0.0062 0.0042 0.7851 0.0156

Vix 0.0075 0.0049 0.1695 0.0156

Adaboost Max
Drawdown

Original 0.0266 0.0194 1.2880 0.0078

F Test 0.0293 0.0209 0.1100 0.0000

Pearson 0.0298 0.0212 0.4403 0.0144

Spearman 0.0265 0.0189 0.9210 0.0312

Intersection 0.0281 0.0197 0.0970 0.0000

Combined 0.0290 0.0209 2.9098 0.0807

Continued on next page
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Algorithm Target Dataset RMSE MAE Training
Time (s)

Prediction
Time (s)

Vix 0.0342 0.0233 0.0374 0.0088

Gradient
Boosting

CVaR Original 0.0137 0.0098 6.6231 0.0129

F Test 0.0145 0.0100 0.3588 0.0000

Pearson 0.0146 0.0101 0.2371 0.0046

Spearman 0.0136 0.0095 0.2257 0.0042

Intersection 0.0136 0.0093 0.1135 0.0167

Combined 0.0168 0.0123 8.9629 0.0000

Vix 0.0156 0.0106 0.1082 0.0162

Gradient
Boosting

Volatility Original 0.0064 0.0043 5.5829 0.0198

F Test 0.0069 0.0046 0.9024 0.0000

Pearson 0.0068 0.0048 0.1346 0.0000

Spearman 0.0078 0.0043 0.2185 0.0000

Intersection 0.0062 0.0041 0.5586 0.0000

Combined 0.0060 0.0038 2.0172 0.0000

Vix 0.0075 0.0048 0.0709 0.0067

Gradient
Boosting

Max
Drawdown

Original 0.0299 0.0194 6.6013 0.0000

F Test 0.0297 0.0205 4.1252 0.0072

Pearson 0.0318 0.0220 3.9799 0.0156

Spearman 0.0273 0.0142 4.0345 0.0167

Intersection 0.0278 0.0188 1.2585 0.0000

Combined 0.0292 0.0154 3.8027 0.0000

Continued on next page
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Algorithm Target Dataset RMSE MAE Training
Time (s)

Prediction
Time (s)

Vix 0.0345 0.0223 0.1600 0.0156

XGBoost CVaR Original 0.0174 0.0118 0.4540 0.0438

F Test 0.0150 0.0100 0.0341 0.0077

Pearson 0.0163 0.0108 0.0300 0.0000

Spearman 0.0136 0.0095 0.0732 0.0157

Intersection 0.0146 0.0100 0.0690 0.0000

Combined 0.0161 0.0105 0.1706 0.0076

Vix 0.0158 0.0106 0.0593 0.0043

XGBoost Volatility Original 0.0116 0.0054 0.0747 0.0120

F Test 0.0070 0.0042 0.0684 0.0083

Pearson 0.0097 0.0051 0.0628 0.0020

Spearman 0.0089 0.0047 0.0682 0.0040

Intersection 0.0066 0.0042 0.0407 0.0000

Combined 0.0081 0.0049 0.0547 0.0092

Vix 0.0086 0.0047 0.0176 0.0045

XGBoost Max
Drawdown

Original 0.0318 0.0188 0.1393 0.0312

F Test 0.0306 0.0197 0.1148 0.0000

Pearson 0.0318 0.0221 0.0450 0.0000

Spearman 0.0260 0.0153 0.0723 0.0080

Intersection 0.0325 0.0201 0.0296 0.0000

Combined 0.0318 0.0201 0.0748 0.0145

Vix 0.0334 0.0224 0.0643 0.0000

Continued on next page
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Algorithm Target Dataset RMSE MAE Training
Time (s)

Prediction
Time (s)

LightGBM CVaR Original 0.0163 0.0112 0.7154 0.0414

F Test 0.0156 0.0103 0.0183 0.0000

Pearson 0.0154 0.0105 0.0227 0.0090

Spearman 0.0148 0.0096 0.0119 0.0000

Intersection 0.0151 0.0096 0.0135 0.0039

Combined 0.0152 0.0106 0.0461 0.0110

Vix 0.0160 0.0107 0.0165 0.0071

LightGBM Volatility Original 0.0081 0.0049 0.7501 0.0110

F Test 0.0074 0.0047 0.0154 0.0000

Pearson 0.0072 0.0049 0.0575 0.0080

Spearman 0.0074 0.0043 0.0193 0.0000

Intersection 0.0068 0.0042 0.0110 0.0124

Combined 0.0074 0.0044 0.0483 0.0090

Vix 0.0076 0.0048 0.0404 0.0044

LightGBM Max
Drawdown

Original 0.0304 0.0176 0.2172 0.0193

F Test 0.0302 0.0207 0.0905 0.0000

Pearson 0.0305 0.0211 0.0721 0.0090

Spearman 0.0239 0.0141 0.0774 0.0156

Intersection 0.0288 0.0194 0.0633 0.0055

Combined 0.0254 0.0153 0.0676 0.0081

Vix 0.0353 0.0224 0.0125 0.0065

Continued on next page
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Algorithm Target Dataset RMSE MAE Training
Time (s)

Prediction
Time (s)

CatBoost CVaR Original 0.0169 0.0097 1.4517 0.0252

F Test 0.0143 0.0100 0.1870 0.0006

Pearson 0.0151 0.0092 0.1766 0.0011

Spearman 0.0137 0.0091 0.0778 0.0000

Intersection 0.0152 0.0092 0.3996 0.0157

Combined 0.0146 0.0105 0.4777 0.0048

Vix 0.0159 0.0107 0.1092 0.0000

CatBoost Volatility Original 0.0076 0.0049 0.5587 0.0096

F Test 0.0075 0.0046 0.1342 0.0000

Pearson 0.0069 0.0045 0.1132 0.0038

Spearman 0.0077 0.0042 0.0795 0.0145

Intersection 0.0071 0.0041 0.0733 0.0000

Combined 0.0084 0.0045 0.1251 0.0000

Vix 0.0075 0.0049 0.0619 0.0000

CatBoost Max
Drawdown

Original 0.0321 0.0187 0.1244 0.0177

F Test 0.0343 0.0234 0.1740 0.0000

Pearson 0.0337 0.0230 0.0898 0.0040

Spearman 0.0323 0.0172 0.1535 0.0000

Intersection 0.0319 0.0202 0.0483 0.0011

Combined 0.0332 0.0163 0.3430 0.0160

Vix 0.0349 0.0224 0.0717 0.0000
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B DATA DICTIONARY

VARIABLES TABLE

Table 21 – Data Dictionary

Type Variable Indicator Definition

Basic indicators x1 Open The IBOV opening price
x2 High The IBOV highest price
x3 Low The IBOV lowest price
x4 Volume The IBOV trading volume
x5 Volume_Var The percentage change in the

IBOV trading volume compared to
the previous period

x6 Close_Lag_1 The lagged closing price (lag 1)
x7 Open_Lag_1 The lagged opening price (lag 1)
x8 High_Lag_1 The lagged highest price (lag 1)
x9 Low_Lag_1 The lagged lowest price (lag 1)
x10 Close_Lag_2 The lagged closing price (lag 2)
x11 Open_Lag_2 The lagged opening price (lag 2)
x12 High_Lag_2 The lagged highest price (lag 2)
x13 Low_Lag_2 The lagged lowest price (lag 2)
x14 Close_Lag_3 The lagged closing price (lag 3)
x15 Open_Lag_3 The lagged opening price (lag 3)
x16 High_Lag_3 The lagged highest price (lag 3)
x17 Low_Lag_3 The lagged lowest price (lag 3)
x18 Close_Lag_4 The lagged closing price (lag 4)
x19 Open_Lag_4 The lagged opening price (lag 4)
x20 High_Lag_4 The lagged highest price (lag 4)
x21 Low_Lag_4 The lagged lowest price (lag 4)
x22 Close_Lag_5 The lagged closing price (lag 5)
x23 Open_Lag_5 The lagged opening price (lag 5)
x24 High_Lag_5 The lagged highest price (lag 5)
x25 Low_Lag_5 The lagged lowest price (lag 5)

Technical
indicators

x26 Price_Change The daily difference in closing price
x27 RSI The Relative Strength Index

Continued on next page
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Type Variable Indicator Definition

x28 SMA_10 The 10-day Simple Moving Average
of the Close Price

x29 SMA_30 The 30-day Simple Moving Average
of the Close Price

x30 SMA_100 The 100-day Simple Moving
Average of the Close Price

x31 OBV On Balance Volume
x32 EMA_10 The 10-day Exponential Moving

Average of the Close Price
x33 EMA_30 The 30-day Exponential Moving

Average of the Close Price
x34 EMA_100 The 100-day Exponential Moving

Average of the Close Price
x35 MACD Moving Average Convergence

Divergence value (EMA_12 -
EMA_26)

x36 MACD_Signal MACD Signal Line (EMA_9 of
MACD)

x37 CP_Std_Dev Close Price Standard Deviation
x38 Middle_Band Middle Bollinger Band
x39 Upper_Band Upper Bollinger Band
x40 Lower_Band Lower Bollinger Band
x41 MFI Money Flow Index
x42 Williams_%R Williams %R

Overseas return
rate indicators

x43 SP500 Daily return of the S&P500 index
x44 DJIA Daily return of the Dow Jones

Industrial Average
x45 NASDAQ Daily return of the NASDAQ index
x46 NYSE Daily return of the NYSE index
x47 FTSE100 Daily return of the FTSE100 index
x48 DAX Daily return of the DAX index
x49 CAC40 Daily return of the CAC40 index
x50 NIKKEI Daily return of the NIKKEI index
x51 HSI Daily return of the HSI index
x52 ASX200 Daily return of the ASX200 index
x53 KOSPI Daily return of the KOSPI index
x54 TSEC Daily return of the TSEC index

Continued on next page
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Type Variable Indicator Definition

x55 SSECI Daily return of the SSE Composite
Index

x56 Shenzhen Daily return of the Shenzhen
Component Index

Market Sentiment
Indicators

x57 Vix Volatility Index (VIX)
x58 EMBI+ EMBI+ Index

Macroeconomic
Indicators

x59 USD/BRL USD/BRL Exchange Rate
x60 GBP/BRL GBP/BRL Exchange Rate
x61 EUR/BRL EUR/BRL Exchange Rate
x62 Gold Price of Gold
x63 Silver Price of Silver
x64 Crude_Oil Price of Crude Oil
x65 Copper Price of Copper
x66 Natural_Gas Price of Natural Gas
x67 Corn Price of Corn
x68 Soy Price of Soy
x69 Wheat Price of Wheat
x70 Live_Cattle Price of Live Cattle
x71 Coffee Price of Coffee
x72 Selic_Target SELIC Target Rate
x73 Selic_Daily Daily SELIC Rate
x74 CDI CDI Rate
x75 IMA-S IMA-S Index
x76 IRF-M IRF-M Index
x77 IMA-B IMA-B Index
x78 C_i_C Currency in Circulation
x79 Bank_Reserves Bank Reserves
x80 R_monet_base Restricted Monetary Base

Target Variables − CVaR_10day Conditional Value at Risk (CVaR)
over 10 days

− Std_Dev_10day Standard Deviation of Returns over
10 days

− MDD_10day Maximum Drawdown over 10 days
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C TABLE OF TOOLS

Table 22 – Tools

Python library Version

arch 7.0.0
bcb 0.3.0
catboost 1.2.5
ipeadatapy 0.1.9
lightgbm 1.2.5
matplotlib 3.9.0
numpy 1.24.3
pandas 2.2.2
requests 2.31.0
seaborn 0.12.2
scipy 1.10.1
shap 0.45.1
sklearn 1.3.0
statsmodels 0.14.0
xgboost 2.0.3
yfinance 0.2.38
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D ADABOOST

D.1 ADABOOST: MULTIPLIER’S EXPRESSION

We want to minimize the exponential loss function L(ỹ, F (x)) = e−ỹF (x) to seek the
additive model

∑T
t=1 βtF (x; θt). Therefore, with the AdaBoost algorithm, we minimize a

convex loss function over a convex set of functions. When we were discussing AdaBoost’s
optimization problem, we saw that the loss function can be expressed as

L = e−β
∑

i:ỹi=F (xi,θ)

ωit + eβ
∑

i:ỹi ̸=F (xi,θ)

ωit

Hence, to determine β that minimizes the loss, it is sufficient to differentiate L with
respect to β, set it to zero and solve for β:

dL

dβ
=

d(e−β
∑

i:ỹi=F (xi,θ)
ωit + eβ

∑
i:ỹi ̸=F (xi,θ)

ωit)

dβ
= 0

−e−β
∑

i:ỹi=F (xi,θ)

ωit + eβ
∑

i:ỹi ̸=F (xi,θ)

ωit = 0

e−β
∑

i:ỹi=F (xi,θ)

ωit = eβ
∑

i:ỹi ̸=F (xi,θ)

ωit

−β + ln(
∑

i:ỹi=F (xi,θ)

ωit) = β + ln(
∑

i:ỹi ̸=F (xi,θ)

ωit)

−2β = ln(

∑
i:ỹi ̸=F (xi,θ)

ωit∑
i:ỹi=F (xi,θ)

ωit

)

β =
1

2
ln(

∑
i:ỹi=F (xi,θ)

ωit∑
i:ỹi ̸=F (xi,θ)

ωit

)

The weighted error rate is errt =
∑n

i=1 ωi1[ỹi ̸=F (xi;θ̂t)]∑n
i=1 ωi

, then

β =
1

2
ln(

1− errt
errt

)

□
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D.2 ADABOOST: CONVERGENCE IN TRAINING

This section focuses on analyzing the AdaBoost algorithm’s convergence rate, noting
that it achieves zero training error. To do so, we assume that the basis function F is a weak
learner and demonstrate that the training accuracy of AdaBoost increases exponentially
fast. Essentially, we find explicit expressions for the loss function at the periods t and
t−1; examine the weak learner F ; compare both loss expressions; and ultimately confirm
that the training error decays exponentially fast.

Firstly, we define

W+
t =

∑
i:ỹi=F (xi,θ̂)

ωit , W−
t =

∑
i:ỹi ̸=F (xi,θ̂)

ωit

Then, substitute the result from the last section β = 1
2
ln

(∑
i:ỹi=F (xi,θ̂)

ωit∑
i:ỹi ̸=F (xi,θ̂)

ωit

)
= 1

2
ln
(

W+
t

W−
t

)
in the loss expression

Lt(β̂t, θ̂t) = e
− 1

2
ln

(∑
i:ỹi=F (xi,θ̂)

ωit∑
i:ỹi ̸=F (xi,θ̂)

ωit

) ∑
i:ỹi=F (xi,θ̂)

ωit + e
1
2
ln

(∑
i:ỹi=F (xi,θ̂)

ωit∑
i:ỹi ̸=F (xi,θ̂)

ωit

) ∑
i:ỹi ̸=F (xi,θ̂)

ωit

= e
− 1

2
ln

(
W+

t

W−
t

)
W+

t + e
1
2
ln

(
W+

t

W−
t

)
W−

t

= W+
t

√
W−

t

W+
t

+W−
t

√
W+

t

W−
t

= 2
√

W+
t W−

t

And it will be useful to note that, given f̂t−1(xi) =
∑t−1

k=1 β̂kF (xi, θ̂k) and the value
ωit = e−ỹif̂t−1(xi), the loss function at the iteration t− 1 will be

Lt−1(β̂t−1, θ̂t−1) =
n∑

i=1

e−ỹif̂t−1(xi)

=
∑

i:ỹi=F (xi,θ̂)

ωit +
∑

i:ỹi ̸=F (xi,θ̂)

ωit

= W+
t +W−

t

Recalling the weak learner definition and observing the probability distribution pi =
ωit

W+
t +W−

t

, if F (·, θ) is a γ-weak algorithm there exists a θ that
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n∑
i=1

pi1{F (xi;θ̂)̸=ỹi} ≤
1

2
− γ

n∑
i=1

ωit1{F (xi;θ̂)̸=ỹi}

W+
t +W−

t

≤ 1

2
− γ

1

W+
t +W−

t

∑
i:F (xi;θ̂)̸=ỹi

ωit ≤
1

2
− γ

Moreover, we assume that θ̂t can be θ̂ - the estimated parameter at time t may be the
best parameter throughout the iterative process. Therefore,

W−
t

W+
t +W−

t

≤ 1

2
− γ

W−
t ≤

1

2
(W+

t +W−
t )− γ(W+

t +W−
t )

(
1 + 2γ

1− 2γ
)W−

t ≤ W+
t

When we substitute β̂ = 1
2
ln(1+2γ

1−2γ
) into the minimum definition of Lt we get

Lt(β̂t, θ̂t) ≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t

√
1 + 2γ

1− 2γ

≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ + 2γ)

√
1 + 2γ

1− 2γ

≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ)

√
1 + 2γ

1− 2γ
+W−

t (2γ)

√
1 + 2γ

1− 2γ

≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ)

√
1 + 2γ

1− 2γ
+W+

t (2γ)
1− 2γ

1 + 2γ

√
1 + 2γ

1− 2γ

≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ)

√
1 + 2γ

1− 2γ
+W+

t (2γ)

√
1− 2γ

1 + 2γ

≤ W+
t (1 + 2γ)

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ)

√
1 + 2γ

1− 2γ

≤ W+
t

√
1− 4γ2 +W−

t

√
1− 4γ2

≤ (W+
t +W−

t )
√

1− 4γ2

≤
√

1− 4γ2Lt−1(β̂t−1, θ̂t−1)

Thus, Lt(β̂t, θ̂t) ≤
√

1− 4γ2Lt−1(β̂t−1, θ̂t−1). Using this result and a initial value β̂0 =

0, such that L0(β̂0, θ̂0) = 1, we observe that the training error is decreasing exponentially
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L1(β̂1, θ̂1) ≤
√

1− 4γ2L0(β̂0, θ̂0) =
√

1− 4γ2

L2(β̂2, θ̂2) ≤
√
1− 4γ2L1(β̂1, θ̂1) = (

√
1− 4γ2)2

...

Lt(β̂t, θ̂t) ≤
√
1− 4γ2Lt−1(β̂t−1, θ̂t−1) = (

√
1− 4γ2)t

Lt(β̂t, θ̂t) ≤ (1− 4γ2)
t
2

Noting that 1 + x ≤ ex ∀x ∈ R, we conclude

1 + x ≤ ex

1 + (−4γ2) ≤ e−4γ2

(1− 4γ2)
t
2 ≤ e−2tγ2

Lt(β̂t, θ̂t) ≤ (1− 4γ2)
t
2 ≤ e−2tγ2

Lt(β̂t, θ̂t) ≤ e−2tγ2

□

Completing the analysis of the algorithm’s convergence, asserting that the training
error with AdaBoost’s exponential loss function decays exponentially fast.
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