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1 Introduction

What are the effects of increased competition in procurement markets? The textbook answer is

that competition reduces firms’ market power, induces more aggressive bidding, and thus reduces

procurement costs. However, this is not necessarily true in markets where bidders have common

costs that are uncertain at the time of the auction. The theoretical predictions of a model that

allows for both common and private costs are ambiguous—the effect of competition depends on

the particular technology and information structure of bidders. I consider a model that allows

for asymmetric bidders, nonindependent private information and common costs, and show that

its primitives are nonparametrically identified by the distribution of bids conditional on bidder-

specific cost shifters. I estimate this model using highway procurement data from Michigan where

the distance of a firm to the project location is an observable shifter of its cost, and use the

estimated information structure to quantify the effect of increased competition on firm behavior

and on expected procurement costs.

Competitive procurement allows governments around the world to obtain goods and services

in a cost-efficient and transparent manner. In 2007, federal, state and local agencies in the United

States procured goods and services worth over one trillion dollars, and the federal government alone

employed competitive procurement for more than 250 billion dollars. Sound policy evaluation re-

quires understanding the extent to which more competitive environments affect bidding behavior

and procurement costs. For example, procurement agencies often subsidize minority-owned busi-

nesses and local or domestic firms.1 Some argue that non-subsidized bidders will behave more

aggressively because they face increased competition, and as a result, the costs of the subsidies will

be mitigated. The costs of subsidies may be higher, however, if the nature of competition is such

that bidders respond to increased competition by bidding more cautiously.

Competition may induce cautious bidding due to the adverse selection or winner’s curse effect

associated with the existence of common costs. When sellers face uncertain costs that are also

common to their competitors (e.g., conditions in the input markets or potential difficulties in the

execution of the project), they may win the projects that their competitors deem undesirable or too

costly. In more competitive environments, sellers will win a more adversely selected set of projects.

Thus, rational bidders will realize that more competition implies higher expected costs and will

increase their bids.

Analysis of the bidding behavior of firms that participate in Michigan’s first-price procurement

auctions reveals a pattern that is consistent with the winner’s curse. Transportation costs are very

important in this market: the median auction participant is located 26 miles from the project,

while the median winner is only 17 miles away. Although closer firms bid more aggressively, there

is no evidence of more aggressive bidding when competitors are located close to the project: four

of the five largest firms do not bid any lower on projects next to their competitors plants. In other

1Ayres and Cramton (1996) analyze the effect of subsidies to businesses owned by minorities and women in FCC

auctions. Marion (2007) and Krasnokutskaya and Seim (2011) study subsidies to small firms in California highway

procurement. Athey et al. (2001) compare the effects of subsidies and set-asides in timber auctions.
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words, bidders do not behave more competitively when they face increased spatial competition.

Although suggestive, this evidence does not confirm the presence of common costs. Pinkse and

Tan (2005) show that this lack of competitive response is also consistent with a class of models in

which bidders’ private costs are affiliated.2 To distinguish between the effect of affiliation described

by Pinkse and Tan and the effect of the winner’s curse, it is necessary to exploit the theoretical

predictions of equilibrium bidding in a general model that nests both cases.3

Consider a model in which risk-neutral firms participate in a first price auction. Firms are

uncertain about their project completion costs but they privately observe a signal, e.g., some

private information about their equipment and labor capacity constraints, or about future input

or subcontract market conditions. Define a bidder’s “full information cost” as the expected cost of

the project if the bidder learned the private information of all competitors. For example, bidder A

may revise his beliefs about his own completion costs after he learns bidder B’s private information

about her contracts with firm C that rents equipment. Because the full information cost is allowed

to depend on competitors’ signals, this is a model of interdependent or common costs.

In an influential paper, Laffont and Vuong (1996) show that this model cannot be identified

solely from the joint distribution of bids. However, Athey and Haile (2003) remark that additional

data can aid in obtaining testable implications of rational bidding under different information

structures.4 I show that it is possible to identify each bidder’s full information cost in the presence of

publicly observable cost shifters that introduce asymmetries between bidders. Indeed, asymmetries

are not a nuisance that needs to be accounted for to avoid inconsistent estimates, but instead

generate the variation needed to identify the model: multi-dimensional variation in the cost shifters

identifies multi-dimensional full information costs.

The conditions for identification are that each bidder receives a single-dimensional signal, and

that his cost shifter affects only his own cost but not the cost of his competitors. Provided that

these conditions are satisfied, the joint distribution of signals and bidders’ full information can be

recovered from the distribution of bids conditional on cost shifters.

Because plant locations are predetermined and distance to the project is a determinant of costs,

firms will be more competitive in projects located close to their plants. Moreover, firms will face

more competition and more adverse selection for projects close to competitors’ plants. Consider

an example with three firms A, B and C. If the project is located close to bidder A and far from

bidder B, bidder C should realize that he wins on a very adversely selected set of signals of bidder

A, and on a less selected set of signals of bidder B. Similarly, if the project is located far from A

and close to B, bidder C wins on a very adversely selected set of signals of bidder B. Notice that

2Affiliation is a stronger notion of correlation. See Milgrom and Weber (1982) for additional details
3This evidence is also consistent with bid rigging or market allocation agreements among firms. I abstract from

this possibility in the absence of charges of collusion in this market.
4For example, Paarsch (1992) and Hong and Shum (2003) estimate models that nest both private and common

costs models. They identify the model using variation in the number of bidders and functional form assumptions.

Haile et al. (2004) and Kastl and Horctacsu (2011) test the private values model. Hendricks et al. (2003) tests the

pure common value model with asymmetrically informed bidders.
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if bidder C’s full information cost depends only on A’s and not on B’s signals, he should bid more

cautiously in the former case, when A is close to the project. This illustrates how bidding behavior

for varying project locations is informative about bidders’ full information costs.

The estimation procedure follows this identification argument closely. I first estimate the joint

distribution of bids conditional on project location and a set of controls. I then use the theoretical

predictions of equilibrium bidding to obtain the marginal cost that rationalizes each bid. As first

noticed by Milgrom and Weber (1982), the marginal cost is the expected cost conditional on the

event that the bid is pivotal—it equals the minimum competitors’ bid. Finally, I use the estimates

of the marginal costs to test the hypothesis of private costs and to estimate the parameters of each

bidder’s full-information costs.

I find evidence against the private costs hypothesis for 6 of the 10 largest firms. Moreover, the

results suggest that while a bidder’s full-information costs are mainly affected by his own signal,

the effect of competitors’ signals is also positive. I estimate that if bidder A receives a signal that

increases his expected costs by $1000 and bidder B learns that signal from bidder A, B expected

costs increase by $70-$250, depending on the identities of A and B. These estimates allow me

to quantify the effect of increased competition on procurement costs. I simulate the effect of a

reduction in the cost of one of the existing firms, and as a result, all other firms facing increased

competition. My estimates suggest the effects of competition are weaker than in the independent

private costs model. Moreover, my results show an interesting implication of the presence of the

winner’s curse. Suppose that firm A builds a new plant. Firm A will not only be more efficient

in serving projects around its new location, but will also face less of a winner’s curse. Therefore,

firm A will bid even more aggressively and its competitors will bid less aggressively relative to the

independent private costs benchmark.

I quantify the effects of a subsidy policy in favor of weak (high-cost) bidders. Suppose that weak

bidders receive a subsidy when they win the auction. Without a subsidy, weak bidders are subject

to a large winner’s curse because they only win when the low-cost bidders receive very unfavorable

signals. With a subsidy they compete on a more even ground with the low-cost bidders and win

a less selected set of projects. Relative to the private cost benchmark, subsidized bidders will bid

more aggressively, win more often, and because the subsidy is paid only when a subsidized bidder

wins, the total cost of the subsidies will be higher. I verify this is the case empirically and estimate

that subsidies to weak bidders cost 27 percent more than in the private costs benchmark.

The remainder of the paper is organized as follows. Section 2 describes the data and the

institutional setting. Section 3 presents descriptive evidence that show that bidders do not behave

more aggressively when they face more competition. Section 4 presents the model and shows its

nonparametric identification. Section 5 describes the estimation procedure and Section 6 presents

the results. Section 7 shows how procurement costs and bidders’ behavior respond to increased

competition. The last section concludes.

4



2 Michigan’s highway procurement auctions

2.1 The letting process

Each year the Michigan Department of Transportation (MDOT) awards around 1,050 highway

construction and maintenance contracts at a cost of 1.2 billion dollars. On each monthly letting

date, 150-200 firms submit a sealed bid for one or more of 50-70 contracts. Firms may participate

in as many auctions per letting date as allowed by their work-type and financial prequalification

status. The work-type prequalification status of a firm is a list of all the classes of work that the

firm can perform. There are 52 work classifications and the typical firm is prequalified for 6-10 of

these. The financial rating of a firm is the maximum dollar amount of contracts it can have pending

with the MDOT. While the work-type classification is public information, the financial rating of a

firm is confidential.

Contracts are advertised for at least 45 days before the letting date, so bidders have detailed

information about them. The information about future projects is less precise. The MDOT pub-

lishes a 3-month projection of future projects and a 5-year Transportation Improvement Plan, but

these are subject to frequent changes and updates.

Prior to submitting a bid, firms download the technical plan and submit a form to become

eligible to bid. The MDOT keeps an updated list of both eligible bidders and plan holders that

is publicly available on its website. However, eligible bidders and plan holders often choose not

to submit a bid. Besides, firms may submit the eligibility form as late as 5:00 p.m. on the day

preceding the letting date, and may not appear in the list of eligible bidders prior to the bid

submission deadline. As a result, firms are unable to predict with certainty the set of participants

in an auction. Thus it is likely that firms base their expectations of competition largely on the

location and technical characteristics of the project.

Each contract describes a list of tasks that the contractor has to perform. A task specifies

a description and a quantity, e.g., earth excavation, 600 cubic yards. For each task, the MDOT

engineer sets a unit price, so that the total estimated cost of the task is the price times the quantity.

The engineer’s estimate for the contract is the sum of all the tasks’ estimated costs. Bidders submit

a unit price bid for each task, and the total bid is the inner product of unit prices and quantities.

The bidder with the lowest total bid wins. The unit price bid for each task becomes relevant if the

quantity has to be modified after the award of the contract, e.g., if the contractor needs to excavate

650 cubic yards. The payment is adjusted by the unit price bid times the difference between the

actual and estimated quantities.5

Although there is no formal reserve price, the procuring agency has the option to reject all bids

if the lowest bid exceeds 110% of the MDOT engineer’s estimate. In the case the bids are rejected,

the project can be revised and offered in a future letting date. If the agency accepts a bid despite

exceeding the estimate, it must justify in writing why the estimate was not correct or why the bids

were excessive. From 2001 to 2010, the lowest bid exceeded 110% of the engineer’s estimate in 11%

5Bidders’ incentives to skew their bids are analyzed in Athey and Levin (2001) and Bajari et al. (2011).
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of cases and 15% of these were rejected.

2.2 Why distance matters

This paper will focus on contracts where contractors must be prequalified to perform Hot-Mix-

Asphalt (HMA) work. HMA is the pavement material used in 96% of all paved roads and streets

in the US. It consists of asphalt or bitumen and mineral aggregate that is heated and mixed in the

plant. The mix must be trucked to the project site, laid on the road and compacted while the mix

is sufficiently hot (above 275◦F/135◦C). The temperature of the mix at the time of compaction

is key to the quality of the pavement mat. Once the mix falls below 175◦F/79◦C, it cannot be

further compacted, and a poorly compacted mat will age faster. HMA pavement projects are

rarely performed during winter for this reason.

Trucking time from the plant to the project location is an important determinant of costs not

only because of transport costs, but due to the cooling process. During transport, the surface layer

of the mix cools faster than the inner mass. Once the mix is dumped into the paver and laid on the

road, these temperature differentials may persist and result in cool spots in the pavement mat that

cannot be properly compacted. These problems can be mitigated by incurring additional labor and

rental costs, for example, by using a Material Transfer Vehicle to remix on site. Thus firms that

own plants located close to the project have lower transportation costs and lower costs associated

with excess cooling of asphalt.

2.3 Data

Data for all auctions and bids from 2001 to 2010 are available through the MDOT. For each auction,

the data includes the project’s description, location, prequalification requirements, the engineer’s

estimate of the total cost of the project, and the list of participating firms and their bids. To obtain

the geographical coordinates for each project location, I match the road names in the description

to the database of roads available at the Michigan’s Geographical Data Library.

The location of each firm’s plants and mineral aggregate quarries were obtained from several

sources: the MDOT contractor directory; individual firm searches using OneSource North American

Business Browser, Duns & Bradstreet’s Hoovers and yellowpages.com; firm websites; and the data

on firms collected by Einav and Esponda (2008). A firm location was included in the final data set

if it appeared in at least two sources or if it was listed explicitly on a firm’s website.

Of the 10,522 MDOT auctions that were run from January 2001 to December 2010, 3,851

auctions required the prime contractor or one of the subcontractors to be prequalified to perform

work with HMA. Table 1(a) shows the main descriptive statistics of this set of auctions. The

median engineer’s estimate is around $650,000, while the median winning bid is around $600,000.

It is convenient to normalize bids with respect to the engineer’s estimate. Let the normalized bid

be b = Bid/Engineer−1. The median normalized winning bid is 7% below the engineer’s estimate.

The median participant is located 38 km (26 miles) from the project, while the median winner is

only 27 km (17 miles) away. The average “money-left-on-the-table”, or how much higher the second
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lowest bid is relative to the lowest, is about 7%.

In the empirical analysis I use a set of variables to control for observed project heterogeneity.

These variables are dummies for the year of the auction, the size of the project, and other work-type

prequalifications that are required to participate in the auction. Table 1(b) shows the distribution

of project sizes and Table 1(c) shows the distribution of prequalification requirements.

It is interesting to observe how normalized bids vary with the number of actual participants.

Table 2 shows that the average winning bid is decreasing with the number of participants, but the

average bid is not. In a standard symmetric independent private cost model with no entry cost,

both the expected lowest bid and the expected bid should be decreasing in the number of bidders.

Of course, in this setting it is likely that the symmetry and the costless entry assumptions fail. In

the next section, I analyze with more detail how individual firms’ bidding behavior changes with

increased competition.

3 Descriptive evidence

In this section I document two stylized facts. First, firms bid and win more often on projects

close to their plants. Second, they do not bid more aggressively on projects close to their main

competitors’ plants.

I rank firms by the number of bids they submitted in the 3,851 HMA auctions and label them

accordingly, i.e., firm 1 is the first-ranked firm and so on. Because firms are differentiated by their

locations and technologies, some pair of firms are closer competitors than others. Define the two

main competitors of firm i as the two firms that are observed to participate most often in the

auctions where i participates.

Figure 1(a) shows the locations of all the auctions in my sample, but with a different marker

depending on whether firm 1 won, participated, or did not participate in that auction. It also shows

the location of firm 1’s plants. The auctions where this firm participated are concentrated around

its plants, and the auctions won by the firm are even more concentrated. A similar pattern can be

found for other firms. Figure 1(b) shows the same plot for firm 21 that has only one plant.

Table 3(a) shows the results of a least squares regression of observed normalized bids on bidders’

own distance to the project, the two main competitors’ distances and auction characteristics. I

present the results for all firms and for each of the five largest firms individually. While bidders

seem to bid lower for projects close to them, their bids are not lower for projects located near their

main competitors. The only exception is firm 5, which seems to bid more aggressively when the

project is located next to its main competitor, firm 6.

These results appear to be at odds with the predictions of an independent private cost model.

Because firms submit lower bids for projects close to their plants, their competitors are less likely

to win for any given bid and have less ability to exercise market power. As a result, firms should

reduce their markups and submit lower bids in projects close to their competitors.6

6The effect of a more competitive bidder on competitors’ bids can be ambiguous in an independent private cost
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Before concluding that the observed bidding pattern of the first four firms is incompatible with

a model of rational bidding under independent private costs, it is useful to consider what type of

unobserved auction heterogeneity could yield the above results. In principle, if plants are clustered

around high-cost locations, firms will submit higher bids around their competitors’ locations simply

in response to higher costs. In fact, one may expect plants to be clustered in densely populated

areas. These areas may be prone to high costs due to logistical reasons and firms may be capacity

constrained in areas where they are able to serve a larger volume of projects, i.e., where they face

more demand. I construct a measure of road density in a particular location using data on all

roads in the state to control for this potential confounding effect. I then assign each project to

one of 10 bins according to the road density at its location, and add bin dummy variables to the

specification. The results for these specifications are reported in Table 3(b). Even after controlling

for this demand shifter, firms do not seem to bid lower on projects close to competitors’ plants.

Firms may also respond to increased competition by adjusting their participation decision.

Suppose that bidders learn their private information before they decide whether or not to participate

in the auction. When competitors are close, they should participate less often and only when their

costs are lower. This type of selection implies that even if bidders do not change their bidding

strategy, the correlation between bids and competitors’ distance should be positive—if competitors

are close, the expected bid conditional on participation is lower— and the results above are even

harder to reconcile with an independent private cost model. Appendix A presents evidence that

the results in this section still hold after controlling for selection.

This section showed that while firms are more likely to bid and win on projects close to their

plants, they do not bid more aggressively for projects close to their main competitors’ plants. This

evidence suggests the presence of common costs but it is also consistent with an affiliated private

costs model, as noted by Pinkse and Tan (2005).7 To distinguish between the two models, I exploit

the theoretical predictions of equilibrium bidding in a general model that nests both cases.

4 Model

The model considered in this section is able to rationalize the stylized facts of this market. It allows

for asymmetric bidders, nonindependent private information and common costs. Moreover, it is

nonparametrically identified from the distribution of bids conditional on cost shifters.

model where bidders need to pay an information acquisition cost in order to learn their completion costs. Consider

bidders A, B and C. Bidders A and B are close to the project and C is far away. Suppose that the equilibrium is

such that A and B participate with probability 1 and C plays a mixed strategy—he enters with some probability less

than 1. If A is closer to the project, he will bid more aggressively, C may enter less often and B may bid higher.
7The easiest way to illustrate the affiliation effect described by Pinkse and Tan (2005) is to consider a market

that has an unobserved state z. Higher values of z imply that bidders are more likely to draw higher private costs. A

bidder anticipates that winning the auction means that the z-value is probably larger than his a priori information

suggests that it is. The greater is the number of bidders, the greater is the posterior probability of z being large

conditional on winning, and hence the higher is her bid relative to the independent private costs case.
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4.1 Set up

The setup is a modified version of Athey and Haile (2006) and Milgrom and Weber (1982) that

highlights the role of publicly observable cost shifters. I follow the convention of using upper-case

letters to refer to random variables, and lower-case letters to refer to their realized values.

Costs and information structure. The auctioneer, in this case the Department of Trans-

portation, runs a first price auction between n risk-neutral bidders. At the time of the auction,

bidders are uncertain about their project completion costs. The cost to bidder i is denoted by the

random variable Ci.

Firms possess some private information, e.g., information about their own labor and equipment

capacity constraints, and about conditions in the input or subcontract markets. This private

information is summarized by a signal. At the time of the auction, bidder i observes his own signal

si, but he does not observe his competitors’ signals. From his perspective the signal of competitor

j 6= i, Sj , is a random variable. Let S−i = {Sj}j 6=i denote the random vector of competitors’ signals

and S = (S−i, Si) denote the full random vector of signals.

All bidders have access to the following public information: bidder-specific cost shifters

(d1, d2, ..., dn), such as the distance of each bidder to the project, and a set of observable auc-

tion characteristics w0, such as the engineer’s estimate. All public information is denoted by

w = (d1, d2, ..., dn, w0).

The expected cost of bidder i given his information at the time of the auction is E (Ci|si, w).

Now suppose that bidder i learns the signals of his competitors, then his expected cost becomes

E (Ci|s1, s2, ..., sn, w). This expectation is bidder i’s full information expected completion cost, or

for short, full information cost.

This general framework nests both the private and the pure common costs paradigms. With

private costs, each bidder knows his own expected completion cost, so the full information cost of

firm i does not depend on its competitors’ signals, i.e., E (Ci|s1, s2, ..., sn, w) = E (Ci|si, w). With

pure common costs, the cost of completing the project is common to all bidders, so they all share

exactly the same full information cost. This framework also allows for nonindependent signals. Let

FS|w be the joint distribution of signals conditional on the public information w.

The following assumptions are maintained throughout:

1. Firms are risk neutral.

2. Signals are one-dimensional random variables. Without loss of generality, signals are marginally

distributed as uniform [0, 1].

3. The full information cost of firm i is continuous and strictly increasing in di and si but is not

affected by dj for all j 6= i, i.e.,

E [Ci|s1, ..., sn, d1, ..., dn, w0] = E [Ci|s1, ..., sn, di, w0] . (1)

4. Cost shifters and signals are independent: FS|w = FS|w0
.
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5. The cost of submitting a bid in an auction with observable characteristics w0 is ki (w0). The

bidder first observes his signal and then decides whether to enter.

Assumption 1 can be justified on the basis that each project is small relative to the portfolio of

contracts that firms hold. For example, firm 1 holds on average $70 million of pending contracts

with the MDOT. This figure does not include contracts that the firm may have with local transport

agencies and private parties.

Assumption 2 states that firms summarize all private information in a single dimensional vari-

able. It rules out the possibility that bidder i receives two signals and that each signal differently

affects the posterior distribution of competitors’ information and costs. Suppose that each bidder

receives one signal about own equipment availability and a signal about conditions in the rental

equipment market, and only the second changes the expectations about competitors’ costs. This

violates Assumption 2.

Assumption 3 states that bidders’ cost shifters only affect their own full information costs but

not competitors’. For example, the distance of bidder j to the project does not affect the full

information cost of bidder i. Assumption 4 allows the joint distribution of signals to depend on

observable auction characteristics but not on the vector d. These assumptions are less innocuous

than they might seem. They imply that j’s distance affects neither the technology of i nor the

quality of the information of bidder j as perceived by i. They rule out the possibility that bidder i

regards the signal of bidder j as more informative when j is close to the project. This assumption

is more reasonable in the context of highway procurement, where costs uncertainties depend on

the bidder-specific capacity constraints and input market conditions, than in the context of oil

drainage leases, where the neighbor firms are better informed than non-neighbors about the value

of the tract (Hendricks and Porter 1988,1993).

Assumption 5 states that submitting a bid is costly. Bidders need to spend a few hours reading

the contract plan, budgeting each task and preparing the bid. These costs do not seem too high,

but they may be high enough to discourage a bidder that has a low probability of winning even

when bidding slightly above his costs. While this assumption seems appropriate for this context,

the model can also be identified under the assumption that bidders have to incur a cost to learn

their private information (Somaini, 2011).

Optimal bidding and equilibrium. First price auctions are modeled as Bayesian games where

bidders are privately informed about their signals. A strategy for bidder i is a function βi (si, w),

that prescribes a bid based on his private and public information. The primitives of the game

are the joint distribution of signals and the n payoff functions of bidders. Notice that the payoff

function of bidder i is simply his bid minus his own full information cost when he wins the auction

minus the entry cost if he decides to submit a bid.

πi (b, s, w) = ( bi − E [Ci|s1, ..., sn, di, w0]) 1 (bi < b−i)− ki (w0) 1 (bi <∞) , (2)

where bi =∞ when bidder i does not participate.
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The equilibrium concept of the game is Bayesian Nash Equilibrium (BNE). In a BNE, each

bidder strategy βi (si, w) is a best response given competitors’ strategies. Moreover, beliefs about

the distribution of competitors’ bids have to be consistent with their bidding strategies and the con-

ditional distribution of signals. Let Bj be the bid of bidder j; then i’s beliefs about the distribution

Bj given its own information is derived from the fact that Bj = βj (Sj , w) and that the distribution

Sj |si, w is determined by the joint distribution of signals FS|w0
. Similarly let Mi = min {Bj}j 6=i; in

equilibrium, the belief of firm i about the distribution of Mi is derived from competitors’ bidding

strategies and the conditional distribution of signals.

I make the following monotonicity assumption on the equilibrium bid functions:

6. The data is generated by a unique Pure Strategy Bayes Nash Equilibrium. Each bidder

strategy βi (si, w) is a differentiable strictly increasing function of si for all si ∈ [0, πi (w)),

and βi (si, w) =∞ for si ∈ (πi (w) , 1], where πi (w) is the participation cutoff signal.8

Observable data. The observable data include bids and all public information. Let GB|w be the

joint distribution of bids conditional on w, GBi|w be the marginal distribution of bidder i’s bids

conditional on w, and GMi|Bi,w be the distribution of Mi conditional on Bi and on w. These three

distributions can be estimated from the data.

4.2 Identification

The model above is identified if it is possible to learn its primitives from the joint distribution

of bids conditional on all public information. The information and technology structure in this

model is summarized by the joint distribution of costs and signals conditional on w: FC,S|w. It

is not possible to recover this joint distribution from bidding behavior. Because bidders are risk

neutral, the primitives of the Bayesian game are given by the n full information costs and the joint

distribution of signals. If there are two different joint distributions of costs and signals that imply

the same primitives of the Bayesian game, the equilibrium strategies and the observed behavior of

bidders will be identical. Therefore, the data will be unable to tell them apart. Thus the primitives

that can be identified are an array of n full information cost functions, and a joint distribution of

signals: {
{E (Ci|s1, ..., sn, di, w0)}ni=1 , FS|w0

}
. (3)

The information contained in these primitives is enough to analyze the effects of most policy

changes— rules of the auction, reserve prices, subsidies— on outcomes such as bidding behavior,

project allocation and procurement costs. However, there are some questions that cannot be an-

swered without knowledge of FC,S|w. Consider a policy change that allows the winning bidder to

subcontract the project after it is awarded. Suppose that at the subcontracting stage there is no

private information and that each firm’s publicly known cost is its full information cost evaluated at

8This assumption can be weakened to allow at most one bidder who may, with positive probability, bid the highest

bid that allows him to win with strictly positive probability. See Athey and Haile (2006).
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the realized signals plus an idiosyncratic ex-post shock. The winner may make a take-it-or-leave-it

offer to the firm that has lowest ex-post costs. His ex-post market opportunities are more favorable

when the variance of the ex-post shock is larger because the minimum competitors’ cost will be

lower. Because bidders should take into account the possibility of subcontracting (or resale as in

Haile, 2001), this policy results in a more competitive auction environment if the variance of the

ex-post shock is large. This variance, however, is not a primitive that can be recovered from bidding

data in an environment that does not allow ex-post subcontracting.

In the remainder of this section I show that the joint distribution of signals and the full informa-

tion cost functions are identified by the joint distribution of bids conditional on public information.

I assume that the entry costs are zero to simplify the exposition. I show that these arguments are

also valid with positive entry costs in Appendix B.

4.2.1 Identification of the joint distribution of signals

By monotonicity of the strategy functions (Assumption 6) and the normalization that signals are

marginally uniformly distributed, si = β−1
i (bi, w) = GBi|w (bi).

9 In other words, it is possible to

invert the bid function to obtain the signal that prompted each bid. After each signal is recovered,

it is straightforward to compute their joint distribution:

FS|w (s) = GB|w

(
G−1
B1|w (s1) , ..., G−1

Bn|w (sn)
)
. (4)

Notice that this is the copula of bids conditional on w.10

The model is in fact overidentified. Because FS|w is recovered from the data, it is possible to

test whether FS|w = FS|w0
, i.e., if Assumption 4 holds or not. The assumption will be rejected if

the copula of bids differs across different values of d.

On the other hand, FS|w0
(s) may not be identified for some value of s if the support of d is

not large enough. Suppose that there is no variation in d, and that the observed probabilities of

participation are given by the vector π (w), then FS|w0
(s) is not identified for any s that does

not satisfy s ≤ π (w). Variation in d expands the region where the joint distribution of signals

is identified. If there is a d where all firms bid with certainty, the joint distribution of signals is

identified for all s.

9By definition GBi|w (bi) = P (Bi < bi|w) . By the assumption that the observed data is the result of equilibrium

behavior: GBi|w (bi) = P (βi (Si, w) < bi|w). By monotonicity of β: GBi|w (bi) = P
(
Si < β−1

i (bi, w) |w
)

, then by

uniformity of Si, GBi|w (bi) = β−1
i (bi, w), which equals si.

10Consider the random vector of bids (B1, ..., Bn|w), and suppose that the marginal distributions GBi|w are

continuous. The random variable Ui = GBi|w (Bi) has a uniform distribution. The copula of (B1, ..., Bn|w) is

defined as C (u1, ..., un|w) = P (U1 ≤ u1, ..., Un ≤ un|w). By the definition of Ui, the right hand side becomes

P
(
GB1|w ≤ u1, ..., GBn|w ≤ un|w

)
, and by monotonicity of GBi|w, P

(
B1 ≤ G−1

B1|w (u1) , ..., Bn ≤ G−1
B1|w (un) |w

)
,

which yields the desired result.
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4.2.2 Identification of the full information costs

In a Bayesian Nash Equilibrium each firm’s bidding strategy is a best response to competitors’

strategies. Bidder i’s optimal bid given his information (si, w) solves the following expected profit

maximization problem:

max
b
E [(b− Ci) 1 (b ≤Mi) |si, w] , (5)

where Mi = minj 6=i βj (Sj , w), the expectation is taken over Mi and Ci, and 1 (.) is an indicator

function. The bidder’s basic tradeoff is that submitting a low bid reduces the profits when he wins,

while submitting a high bid reduces the probability of winning. It is illustrative to think of the

bidder as choosing his probability of winning q instead of his bid. His problem is to choose q to

maximize:

D−1
i (q|si, w) q − Ci (q|si, w) , (6)

where D−1
i (q|si, w) is the inverse expected residual demand function: it returns the bid that i has

to submit in order to win with probability q, and Ci (q|si, w) is the expected cost conditional on

winning times the probability of winning.11

Variation in competitors’ cost shifters displaces the residual demand curve. For example, firm

A bids more aggressively in projects located close to its plants, which implies that bidder i faces a

lower residual demand curve— for each bid he wins with lower probability.

In the general interdependent model, variation in d−i also shifts the expected cost. Consider

a project located close to bidder A and far from bidder B. Firm i should realize that it wins on

an adversely selected set of signals of A, and on a less selected set of signals of B. Now consider

another project that is located close to bidder B and far from A. In this case, i wins on a selected

set of signals of B. If i’s costs depend only on A’s signals and not on B’s, the expected cost should

be higher in the former case, when A is closer to the project. This example also illustrates that if

i’s cost does not depend on competitors’ signals (the private costs hypothesis) the expected cost

does not depend on d−i.

Bidder i’s expected residual demand curve is identified from the observable data:

Di (b|si, w) = P (b ≤Mi|si, w) (7)

= 1− P (Mi < b|bi, w)

= 1−GMi|Bi,w (b|bi) ,

where the first equality follows from the definition of the expected residual demand curve, the

second from monotonicity of the bidding strategies (bi = G−1
si|w), and the third from the definition

of the cumulative distribution function.

11Formally, the expected residual demand function of bidder i is Di (q|si, w) = P (b ≤Mi|si, w), and its

inverse is: D−1
i (q|si, w) = {b : P (b ≤Mi|si, w) = q}. Similarly, define i’s expected cost as Ci (q|si, w) =

E
[
Ci|si, w,D−1

i (q|si, w) ≤Mi

]
q.
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Now consider the first-order condition of problem (6):

E
[
Ci|Mi = D−1

i (q∗|si, w) , si, w
]

= D−1
i (q∗|si, w) +

dD−1
i (q∗|si, w)

dq
q∗. (8)

It states that bidder i should choose q∗ such that the expected marginal cost of increasing the

probability of winning (left hand side) equals the expected marginal revenue of doing so (right

hand side).

Under Assumption 6 each observed bid bi satisfies the first-order condition, so bi = D−1
i (q∗|si, w),

q∗ = 1−GMi|Bi,w (bi|bi), and condition (8) becomes:

E [Ci|Mi = bi, si, w] = bi −
1−GMi|Bi,w (bi|bi)
gMi|Bi,w (bi|bi)

. (9)

The right hand side of this expression, the expected marginal revenue, is identified from the distri-

bution GMi|Bi,w. Figure 2(a) shows the intuition. The marginal revenue can be derived from the

demand curve. For each observed bid it is possible to find the q∗ corresponding to that bid from

the demand curve, and then find the marginal revenue associated with q∗. Denote the expected

marginal cost that rationalizes each observed bid by:

mci = bi −
1−GMi|Bi,w (bi|bi)
gMi|Bi,w (bi|bi)

. (10)

This first-order condition is standard in the empirical auction literature. Campo et al. (2003)

derive an analogous expression for a private values model and interpret the left hand side as the

bidder’s valuation. In a model with common costs (or values), the remaining challenge is to link

the distribution of marginal costs with the full information cost.

Under the private cost hypothesis, the full information cost does not depend on competitors’

signals, and the expected marginal cost becomes just E [Ci|si, di, w0]. A testable implication is that

the distribution of mci should not depend on competitors’ cost shifters d−i. For example, suppose

that firm i is observed bidding repeatedly in two projects: one 10 miles east from its location, and

the other 10 miles west. Firm B is located close to the latter project which means that is 20 miles

away from the former. Although firm i’s bid distribution could be different across locations because

it faces different intensity of competition, the implied distribution of expected marginal costs mci

should be identical.

In the more general model of interdependent costs, the marginal cost is the expected full infor-

mation cost conditional on the event that the bid is pivotal:

E [Ci|Mi = bi, si, w] = E (E (Ci|s1, S−i, di, w0) |Mi = bi) (11)

The event “bid bi is pivotal”— that at least one competitor submits an equally low bid and the

rest submit higher bids— is composed by the following set of signals:{
S−i : min

j 6=i
βj (Sj , w) = bi

}
. (12)
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Variation in competitors’ cost shifters change the set of competitors’ signals in this “pivotal set”,

and therefore, the marginal cost. For example, consider a project located close to bidder A and far

from bidder B. Firm i should realize that the marginal projects it wins are ones where he ties with

A that received a high signal, or ties with B who received a low signal. Figure 2(b) illustrates the

pivotal set of signals in this case. The opposite holds in a project located close to B and far from

A.

It is possible to recover the full information cost functions from the distribution of marginal costs

conditional on w. The intuition behind the proof can be illustrated using the space of competitors’

signals. To simplify the exposition assume that bidders participate with probability one. Define

the “win-set” of competitor i when he bids bi as the set of competitors’ signals for which he

wins the auction: {S−i : minj 6=i βj (Sj , w) > bi}. Similarly, define the “tie-point” as the vector

of competitors’ signals for which all of them bid exactly bi:
{
β−1
j (bi, w)

}
j 6=i

, which is identified

from the data by
{
GBj |w (bi)

}
j 6=i

. In the case of n = 3, the win-set is a rectangle in the space

of competitors’ signals with the southwest corner at the tie-point and northeast corner at (1, 1)

as shown in Figure 2(c). The graphical intuition carries to higher dimensions: the win-set is an

hyperrectangle with the southwest corner at the tie-point and northeast corner at (1, 1, ..., 1). The

expected marginal cost is equal to the expected cost conditional on the pivotal set that was defined

as {S−i : minj 6=i βj (Sj , w) = bi}. In the n = 3 case, the pivotal set is composed by the signals in

the sides of the win-set that are adjacent to the tie-point as shown in figure 2(c).

Intuitively, the identification proof involves integrating the expected cost conditional on pivotal

sets (marginal costs) along a curve to obtain the expected cost conditional on a win-set. Figure

2(d) illustrates this integration. In fact, the proof shows the existence of such a curve. The role of

competitors’ cost shifters is to shift the pivotal sets along the space of competitors’ signals while

w0, di and si are held constant. w0 is omitted to ease notation. The signal si is held constant

by considering the si-th quantile of the distribution of bids and marginal costs. Let Γ (d−i|si, di)
denote the mapping that returns the tie-point as cost shifters d−i change:

Γ (d−i|si, di) ≡
{
GBj |w

(
G−1
Bi|w (si)

) }
j 6=i

, where w = {di, d−i} . (13)

The first condition to identify i’s expected costs is that the support of d−i is large enough so that

it is possible to find a d−i such that Γ (d−i|si, di) = σ for all σ in the win-set. The second condition

requires that i always faces some competition along the curve.

Proposition 1 The expected cost E [Ci|S−i ≥ s−i, si, di]P [S−i ≥ s−i] is identified if there exists

an ε such that for all σ ≥ s−i, there are a d−i and a j 6= i such that Γ (d−i|si, di) = σ and

gBj |(d,d−i)

(
G−1
Bi|(d,d−i) (si)

)
> ε.

Proof. See Appendix B.

Because FS|w0
is identified, it is straightforward to identify the full information cost (the expec-

tation conditional on a point) from the expected cost in the neighborhood of the point.
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Proposition 2 The full information cost E [Ci|s−i, si, di] is identified if

E [Ci|S−i ≥ s−i, si, di]P [S−i ≥ s−i] (14)

is identified for all σ in a neighborhood of s−i.

Proof. Let φ (s−i) = E [Ci|S−i ≥ s−i, si, di]P [S−i ≥ s−i]. Differentiating with respect to s−i:

dn−1φ (s−i)

ds−i
= E [Ci|si, s−i, di] f (si, s−i) , (15)

where f (si, s−i) is the density of the joint distribution of signals which is identified.

5 Estimation

5.1 Overview

I use bids on the 3,851 HMA projects described above to estimate the full information costs and

the joint distribution of signals for the 50 most active firms in the sample. Although there were

411 different bidding firms, only 50 participated in more than 100 auctions. I pool together the

other 361 firms and treat them as a single fringe bidder. For all practical purposes, the number of

potential participants in every single auction is n = 51; however, depending on the auction location

and characteristics, some of these 51 bidders may have a very low probability of participation.

The data contains bids, auction covariates w0 , and project and firm locations. Bids are normal-

ized by the engineer’s estimate. The vector w0 contains several sets of dummy variables: year of the

auction; project size; and the following prequalification requirements: HMA, aggregate construc-

tion, bridges and special structures, concrete items, and sewers and water mains. Tables 1(b) and

1(c) summarize the observed frequencies of these control variables. Own distance to the project is

discretized in seven bins: 0-10, 10-25, 25-50,50-100, 100-150, 150-200, and 200-500 km.

Parameters of the model. Although the joint distribution of signals and full information costs

are identified without any parametric or functional form assumptions, any fully nonparametric

estimation would be plagued by the curse of dimensionality. I address this problem assuming

some functional forms. The joint distribution of signals is assumed to be a Gaussian copula with

covariance matrix Σ. Moreover, Σ is assumed to have a factor structure: Σ = LL′ + Λ, where L

is a 51 x l loading matrix and Λ is a diagonal matrix (Λ is restricted so that the elements on the

main diagonal of Σ are all one). Restricting l < 50 reduces the number of free parameters. Full

information costs are assumed to be additively separable in auction covariates and competitors’

signals, but own signals are allowed to enter more flexibly:12

E (Ci|s, di, w0) = δwi (si)w0 + δdi (si) di +
∑
j 6=i

δji (si)ψ (sj) + δii (si) , (16)

12For example, full information costs are additively separable if the joint distribution of costs and signals is elliptical

(Kelker, 1970).
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where ψ (Sj) rescales j’s signal so that it is marginally distributed as a standard normal, and

δji (si) captures the effect of one standard deviation in j’s (rescaled) signal on i’s full information

costs. Notice that the parameters δ are indexed by si; I will use a quantile regression approach and

estimate δ for different values of si. In sum, the parameters of the model are those in L and the δs

in the full information costs for i = 1, ..., 51.

The functional form (16) implies that the expected marginal cost mci = E [Ci|Mi = bi, si, w]

can be written as:

mci = δwi (si)w0 + δdi (si) di +
∑
j 6=i

δji (si) ψ̃j (bi, w) + δii (si) , (17)

where ψ̃j (bi, w) = E [ψ (Sj) |Mi = bi, w], i.e., the expectation of ψ (Sj) conditional on the pivotal

set. While mci and ψ̃j (bi, w) are not directly observed, they can be estimated for each observed

bid. This equation is used to estimate the δs.

Estimation summary. The estimation procedure has two stages. In the first stage, I estimate

the main features of the joint distribution of bids conditional on observables. The location and

scale parameters of each firm’s distribution of bids and its probability of participation are estimated

semiparametrically to allow for a flexible effect of project locations. The covariance matrix of the

joint distribution of signals is estimated using an Exploratory Tobit Factor Analysis (Kamakura

& Wedel 2001). These first stage estimates are used to compute mci and ψ̃j (bi, w) in equation

(17). In the second stage, I use quantile regression methods to test the null hypothesis of private

costs, and instrumental variable quantile regression to estimate the parameters in (17). Figure 3

illustrates and summarizes the estimation procedure.

The first stage has two steps. The first one is to estimate each firm’s marginal distribution

of bids conditional on observable characteristics w = (d1, ..., dn, w0), where di is the distance of

bidder i to the project. For fixed plant locations, the vector of distances can be derived from the

geographical coordinates of the project (east, north). I reduce the dimensionality of the marginal

bid distribution by n − 2 variables by conditioning on w̃ = (east, north, w0). In other words, I

condition on the geographical coordinates of the project instead of the vector of distances.

Each firm is observed to bid in projects that are geographically close to each other. Some im-

portant features of the distribution of bids conditional on w̃ can be estimated by semiparametric

methods where bids for neighboring projects are weighted according to their distance to w̃. I esti-

mate the following features of the distribution of bids: the probability of participation, π̂i (w̃); the

expected bid conditional on participation, µ̂i (w̃); and the variance of bids conditional on partici-

pation, σ̂2
i (w̃). I standardize each observed bid by the estimated mean and variance, and compute

the empirical distribution of the standardized bids conditional on participation, Ĥi, assuming that

it does not vary across different geographical locations. The estimated marginal distribution of firm

i’s bids is:

ĜBi|w̃ (b) = P̂ (Bi < b|w̃) = Ĥi

(
b− µ̂i (w̃)

σ̂i (w̃)

)
π̂i (w̃) . (18)
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This estimation procedure allows the geographical coordinates to affect the location and scale of

the distribution of bids conditional on participation as well as the probability of participation, but

restricts the shape of the distribution of bids to be the same across different project locations. If π̂i,

µ̂i, and σ̂2
i are restricted to be constant across different locations, ĜBi|w̃ (b) becomes the empirical

distribution of bids conditional only on w0, which is the estimator frequently used in the empirical

auction literature when there are no observable cost shifters.

The second step is to estimate the joint distribution of signals across auctions. For each observed

bid, I obtain ŝi = ĜBi|w̃ (bi), an estimate of the signal that prompted bid bi. When a bidder is

observed not to bid, it is only possible to infer that the signal was above the censoring point which

is estimated by π̂i (w̃). The joint distribution of signals is a Gaussian copula with correlation matrix

LL′ + Λ, thus the likelihood of a vector of censored and uncensored observations depend on the

parameters in the matrix L. I estimate L by Simulated Maximum Likelihood.

The second stage of the estimation procedure involves the estimation of the parameters in the

full information cost functions. The estimation of (17) presents two challenges: First, the terms

ψ̃j (bi, w) are estimated with error which may result in biased estimates of the coefficients δ in small

samples. I address the problem using competitors’ distance as an instrument for ψ̃j (bi, w). Notice

that competitors’ distances are excluded from the full information cost by Assumption 3, and they

shift the terms ψ̃j (bi, w) by their effect on the pivotal set. The main advantage of this approach

is that that neither of the instruments is an estimated quantity. However, in small samples there

is no guarantee that the bias introduced by this instrumental variables approach is smaller than

the bias due to measurement error that it tries to avoid. The second challenge is that mci and

ψ̃j (bi, w) can only be estimated when the firm was observed to bid. Most censored data methods

require the knowledge of the censoring point, in this case, the maximum marginal cost under which

the bidder participates. Alternatively, Buchinsky and Hahn (1998) propose an censored quantile

regression estimator that only requires a consistent estimate of the probability of censoring. This

method is better suited for my purposes because the probability of censoring is just the probability

of nonparticipation that can be consistently estimated from the data.

Under the private costs hypothesis, the distribution of marginal costs should not depend on

competitors’ distance (or signals). I test the hypothesis including competitors’ distance in equation

(17) instead of the terms ψ̃j (bi, w). The coefficients are estimated using Buchinsky and Hahn’s

(1998) censored quantile regression method.

5.2 First stage: distribution of bids conditional on observables

5.2.1 Marginal distribution of bids

The estimation of i’s marginal distribution of bids conditional on covariates w̃ is divided in four

steps: the estimation of the probability of participation, π̂i (w̃); the expected bid conditional on

participation, µ̂i (w̃); the variance of bids conditional on participation, σ̂2
i (w̃); and the distribution

of standardized bids conditional on participation, Ĥi (bs) where bs = (b− µ̂i (w̃)) /σ̂i (w̃).
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Probability of participation. Let Yi be 1 if firm i participates in the auction and 0 if it does not.

P (Yi = 1|w̃) is the probability that firm i participates in an auction with observable characteristics

w̃ = (east, north, w0). Assume that:

P (Yi = 1|w̃) = Φ (w0γπi + hπi(east, north)) , (19)

where Φ is a standard normal cumulative distribution function and hi is a flexible function of the

location of the project. For each firm i, I estimate γπi and hπi using an iterative procedure that is

explained in Appendix C. The estimated probability is π̂i (w̃) = Φ
(
w0γ̂πi + ĥπi(east, north)

)
Expected bid conditional on participation. Assume that the expected bid conditional on

participation is:

E (bi|w̃, Yi = 1) = w0γµi + hµi(east, north), (20)

where hµi is a smooth flexible function of the geographical coordinates of the project. This is a

standard partial linear model and γµi and hµi can be estimated using standard semiparametric

methods.

First, E (bi|east, north, Yi = 1) and E (w0|east, north, Yi = 1) are estimated nonparametrically

using a kernel smoothing over the location of the project with a 10 km bandwidth. γ̂µi can be

obtained directly by regressing bi − Ê (bi|east, north, Yi = 1) on w0 − Ê (w0|east, north, Yi = 1),

where Ê denotes the nonparametric estimates. Finally, the estimated expected bid conditional on

entry for bidder i is:

µi (w̃) =
(
w0 − Ê (w0|east, north, Yi = 1)

)
γ̂µi + Ê (bi|east, north, Yi = 1) . (21)

Variance of bids conditional on participation. The estimation of the bid variance condi-

tional on participation is complicated by the fact that the specification should predict only positive

variances. Consider the following specification:

E
(

(bi − µi (w̃))2 |w̃, Yi = 1
)

= exp (w0γσi + hσi(east, north)) , (22)

where hµi is a smooth flexible function of the geographical coordinates of the project. The estima-

tion of γσi and hσi follows the same iterative procedure as the estimation of the probability of entry

and is discussed in Appendix C. Plugging the estimates γ̂σi and ĥσi, I obtain the fitted values:

σ̂2
i (w̃) = exp

(
w̃0γ̂σi + ĥσi(east, north)

)
(23)

Other features of the distribution. Bids are standardized by their estimated mean and stan-

dard deviation: bsi = (bi−µ̂i(w̃))
σ̂i(w̃) . Let Ĥi (bs) be the empirical distribution of bsi across auctions for

bidder i. The estimated distribution of firm i’s normalized bids Bi conditional on w̃ is:

ĜBi|w̃ (b) = P̂ (Bi < b|w̃) = Ĥi

(
b− µ̂i (w̃)

σ̂i (w̃)

)
π̂i (w̃) (24)
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5.2.2 Joint distribution of signals

The joint distribution of signals is assumed to be a Gaussian copula with correlation matrix Σ =

LL′+Λ, where L is 51 x l and Λ is a diagonal matrix. The random vector Z = {ψ (S1) , ..., ψ (Sn)} is

distributed multivariate normal with covariance matrix Σ. Consider the following factor structure

for Z:

Z = LX + ε (25)

where X is a vector of l orthonormal Gaussian factors and ε is a vector of n Gaussian random

variables with covariance Λ. ε and X are independent. Notice that E (ZZ ′) = LL′ + Λ as desired.

I compute the estimated (rescaled) signal that prompted each observed bid as ψ
(
ĜBi|w̃ (bi)

)
.

Moreover, if firm i did not participate in the auction I only estimate a lower bound for the (rescaled)

signal ψ (π̂i (w̃)). Let yia = 1 and ẑia = ψ
(
ĜBi|w̃ (bi)

)
if bidder i participated in auction a, and

yia = 0 and ẑia = ψ (π̂i (w̃)) otherwise. The likelihood of ((ẑ1a, y1a) , ..., (ẑna, yna)) given L is:∫ ∏
i:yia=1

1

λi
φ

(
ẑia − Lx

λi

) ∏
i:yia=0

[
1− Φ

(
ẑia − Lx

λi

)]
φ (x, I) dx, (26)

where λi is the i-th element in the main diagonal of Λ and φ (x, I) is the density of an l-variate

normal with covariance matrix I evaluated at x. This likelihood is approximated by:

T−1
T∑
t=1

∏
i:yia=1

1

λi
φ

(
ẑia − Lxt

λi

) ∏
i:yia=0

[
1− Φ

(
ẑia − Lxt

λi

)]
, (27)

where xt is drawn T times from N(0, Il). The simulated log-likelihood function for the whole sample

becomes:

L =

A∑
a=1

log

T−1
T∑
t=1

∏
i:yia=1

1

λi
φ

(
ẑia − Lxt

λi

) ∏
i:yia=0

[
1− Φ

(
ẑia − Lxt

λi

)] , (28)

where A = 3, 851 auctions.

Any orthogonal rotation of L yields the same distribution of Z, so L has to be restricted so

that no pair of admissible matrices are an orthogonal rotation of each other. This is achieved by

restricting l (l − 1) /2 coefficients on L. Because Σ is a copula, I restrict Λ so that L̂L̂′ + Λ̂ has

all ones in the main diagonal. Kamakura & Wedel (2001) show that L and Λ can be consistently

estimated by Simulated Maximum Likelihood.

The choice of l, the number of factors, trades off model fit and model complexity. A large l

allows for a flexible covariance matrix, but increases the number of parameters to estimate and

may result in overfitting. An appropriate choice should capture the main correlations in the sample

with fewer parameters. The Bayesian Information Criterion selects the the model that better fits

the data penalizing the number of parameters.

BIC = −2 lnLl + (nl − l (l − 1) /2) ln(nA) (29)
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I estimate the model for l = 0, 1, 2, 3 and 4. The minimum BIC is achieved when l = 2.13 The

estimated joint distribution of signals is denoted by F̂S .

5.2.3 Marginal costs and effect of competitors’ signals

The estimates of the joint distribution of signals and each firm’s marginal distribution of bids are

used to compute the marginal costs mĉi and the effect of competitors’ signals ψ̃. The expected

marginal cost that rationalizes each bid is estimated by

mĉi = bi −

(
1− ĜMi|Bi,w̃ (bi|bi)

)
ĝMi|Bi,w̃ (bi|bi)

, (30)

where ĜMi|Bi,w̃ (bi|bi) and ĝMi|Bi,w̃ (bi|bi) are derived from those estimates as shown in Appendix

D.

The assumptions that ψ (Sj) is distributed as a standard normal and that the joint distribution

of signals is a Gaussian copula reduce the problem of calculating ψ̃j (si, w) to calculating the

expectations of truncated multivariate normal distributions. These expectations can be computed

by quasi-Monte Carlo integration methods. Moreover, because the correlation matrix of signals can

be decomposed in a factor model of dimension l < n, the numerical integration has to be performed

on an l-dimensional space. Appendix D.1 presents the algorithm used to perform these integrations

in detail.

5.3 Second stage: testing and estimation of the model primitives

Private costs hypothesis test. The private cost hypothesis and the exclusion restrictions imply

that the distribution of marginal costs should not depend on competitors’ distances. Under the

alternative hypothesis, competitors’ distances affect the distribution of marginal costs through the

effect on the pivotal set. I estimate a quantile regression for each firm’s marginal costs. The

specification includes the controls w0 described above, the bidder own distance and the two main

competitors’ distance to the project. Under the null hypothesis the coefficient associated with

competitors’ distances should be zero.

Because the marginal costs are only observed when the firm bids, and the firm bids when it

has low signals, the observed distribution of marginal costs is right-censored. The censoring point

is unobserved but the censoring probability is identified. I therefore use the following general

censored quantile regression approach due to Buchinsky and Hahn (1998) that only requires a

13The Akaike Information Criterion (AIC) imposes a weaker penalty on the inclusion of additional parameters.

This criterion tries to select the model that most adequately describes an unknown, high dimensional reality. AIC =

−2 lnLl + 2 (nl − l (l − 1) /2). The minimum AIC is achieved for l=3.
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consistent estimate of this probability for each non-censored observation:14

κ̂
(τ)
i = arg min

κ

A∑
a=1

yiaρmin
(

τ
π̂ia

,1
) (mĉia − κwiw0a − κdidi − κdjdj) (31)

where ρκ (u) = u (κ− 1 (u < 0)) . Null hypothesis: κdj = 0.

where A = 3, 851. The probability that firm i participates in auction a, π̂ia, was estimated semi-

parametrically as described in section 5.2.1. Buchinsky and Hahn (1998) show that this estimator

is consistent and asymptotically normal. The main intuition is that the τ -th quantile of the uncen-

sored distribution of the dependent variable is the τ
πia

-th quantile of the censored distribution.

Estimation of full information costs. The identification results suggest that it should be pos-

sible to find a unique set of full information costs that rationalizes the observed GB|w so no further

estimation should be required. I made several assumptions to overcome the curse of dimensionality

while allowing enough flexibility to capture the main moments and features of the bid distribution.

It is nonetheless hard to know what restrictions these assumptions impose on the underlying full

information costs. To address this concern, I assume a functional form for the full information

cost given by (16), and obtain an estimable equation that only requires estimating the marginal

cost mĉi, and the effect of competitors’ signals
{
ψ̃j (b, w)

}
j 6=i

for each observed bid. The estima-

tion of the marginal cost mĉi involves estimating the markup each firm adds to its marginal cost

that can be inferred from the main features of competitors’ bidding behavior. Similarly, the terms{
ψ̃j (bi, w)

}
j 6=i

capture the relative strength of each bidder at each auction which also is derived

from those main features.

As mentioned above, estimation of (17) presents two challenges: first stage estimation error of

ψ̃j (bi, w), and censoring introduced by nonparticipation. To address the first challenge, competitor

j’s distance is used as an instrument for ψ̃j (bi, w). While j’s distance is excluded from the full

information cost by Assumption 3, it affects the signals in the pivotal set and ψ̃j (bi, w). The

estimation method accounts for censoring following Buchinsky and Hahn’s (1998) censored quantile

regression approach.

I run the censored quantile regression of the τ -th quantile of mĉi−
∑

j 6=i δjiτ ψ̃j (bi, w) on covari-

ates w0, own distance dummies di and dummies for two main competitors’ distances d−i. Following

Chernozhukov and Hansen (2007), I run this regression for a grid of values for δjiτ , and choose

those that minimize the Wald test for the coefficients on the instruments d−i. For the main set of

results, it is assumed that δjiτ = δ−iiτ for all j 6= i. In other words, each competitor’s signal affect

bidder i’s full information cost symmetrically.

14Buchinsky and Hahn (1998) use trimming functions for observations with predicted probabilities π̂ia close to τ .

However, they find little impact on the trimming functions on the estimators. I performed a Monte Carlo exercise

and found that using min
(

τ
π̂ia

, 1
)

in the check function instead of the trimming functions produced more precise

estimators. In any case, the results presented here do not change much if I use trimming functions.
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6 Results

This section presents the estimation results of the marginal distribution of bids, the joint distribu-

tion of signals and the full information costs. I also show the results of the private cost hypothesis

test.

6.1 Marginal distribution of bids

I estimate the distribution of bids for each of the 50 largest firms in the sample and for a single entity

that groups all the other smaller firms. As shown in Section 3, firms participate and bid lower on

projects close to its plants. The semiparametric estimates of the effect of geography confirm these

results. Table 4 shows the semiparametric estimation results on the probability of entry for firms 1

to 5. Notice that firms 1-3 participate more often in projects that require the prime contractor to

be prequalified to perform HMA work. However, firms 4 and 5 participate with higher probability

when construction prequalification is required. The analysis of mean bids conditional on entry,

however, does not show strikingly different behavior of firms across different types of projects.

6.2 Correlation of signals

Figure 4 shows the estimated matrix of correlation of signals for the largest 10 firms. Consider two

groups of firms: firms 1, 2, 3, 7, 8 and 10 in one group, and firms 4, 5, and 6 in the other. The

signals of any two firms within the same groups are very correlated, but the correlation between

two firms in different groups is quite low. Firm 9’s signals seem to be correlated with firms in both

groups.

The evidence from the semiparametric estimates of the probability of entry also point towards

this differentiation between firms. Firms from the first group participate more often when the

project requires the prime contractor to be prequalified to do HMA-work, and less often when the

projects requires construction prequalification. The opposite holds for firms in the second group.

Firm 9, however, actively participates when either type of work is required. While all 10 firms are

prequalified in both work-types, it seems that firms are specialized in one of the two types of work.

In fact, firms in the first group (Rieth-Riley Construction, Ajax Paving, Barret Paving Materials)

are larger and own many asphalt plants in the region. Firms in the second group (Kamminga &

Roodvoets, C & D Hughes) do not own asphalt plants, but own paving equipment. In a project

that requires paving, they can buy asphalt from the first group of firms.

These correlation patterns are consistent with an affiliated private cost model, a common cost

model or a model with heterogeneity unobserved to the econometrician but observed by bidders.

The difference between these three models lies on the information structure of signals and costs

(Hong and Shum, 2003). Although I cannot rule out the presence of unobserved heterogeneity, it

seems that the main heterogeneity between auctions is driven by the type of work involved, which

I am controlling for. Below, I show that the affiliated private cost model is rejected by the data for

6 of the 10 most active firms, while the common cost model rationalizes the observed data well.
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6.3 Private costs hypothesis test

The null hypothesis of private cost is tested by regressing mci on own distance, competitors’ dis-

tances and auction observed characteristics. Tables 5(a) to 5(c) show the censored quantile regres-

sion results for firms 1 to 3 for three different quantiles: 0.25, 0.5 and 0.75. The first row shows that

the constant term is increasing with the quantile as expected. The first set of coefficients, denoted

by ownd, show that the marginal cost is increasing in the firm’s own distance to the project for

each quantile (the omitted category is 0 to 10 km). The second set of coefficients, denoted by Firm

j, show how the marginal cost of the firm changes with competitor’s j’s distance. I include the two

main competitors’ distance and the omitted category is more than 50 km.

Competitors’ distance should not affect the bidders’ marginal costs under private costs. How-

ever, in the presence of a common cost component, competitors’ proximity should increase marginal

costs because it worsens the winners’ curse. Therefore, the coefficients on Firm j should be positive.

Table 5(a) shows that firm 1’s marginal costs are higher in projects close to the locations of

firms 2 and 3 which is consistent with the presence of a common cost component. Table 5(b) shows

that firm 2 has higher marginal costs close to 1, but not next to firm 8. The evidence for firm 3

is less convincing; firm 3’s marginal costs seem to be higher in projects close to 7. Of the 10 most

active firms, the null of private costs can not be rejected for firms 5, 6, 9 and 10.

6.4 Full information expected cost

The parameters in equation (17) are estimated by censored quantile regression—to account for

nonparticipation—and the terms ψ̃j (Si, X) are instrumented with competitors’ distance. The

specification also includes controls for observed auction characteristics. The coefficient δji captures

the effect of one standard deviation change in ψ (Sj) on i’s full information cost. Because ψ (Sj) is

distributed standard normal, δji is the effect of an increase in Sj from the 0.31 to the 0.69 quantile.

The value of the constant term at the different quantiles indicates the effect of the firm’s own signal

at the omitted category. To facilitate the comparison between the effect of own and competitors’

signals, the regression results are shown for three different quantiles: 0.31, 0.5 and 0.69.

I estimate a single coefficient for competitors’ signals δ−ii = δji,∀j 6= i. In other words, the

effect of j’s and k’s signals on firm i’s cost is restricted to be the same. Tables 6(a)and 6(b) show

the results for firms 1 and 2. As expected, the full information cost increase with own distance. For

example, firm 1’s costs increase by less than 3% of the engineer’s estimate when projects are located

between 25-50km, by 15% for projects located between 50-100km and by 35% between 100-150km.

The effect of competitors’ signals seems to be positive but not as large as the effect of one’s own

signal. For firm 1, a change in its own signal from the 0.31 to the 0.69 quantile increases its full

information costs by 10% of the engineer’s estimate, while a similar increase in a competitor’s signal

increases its costs only by 3%. The results for firms 2 are similar. Table 7 summarizes the effect of

a similar change own and competitors’ signals for the 10 largest firms. The first noticeable pattern

is that own signal effects are larger suggesting that there is an important component of costs that

is idiosyncratic to the firm, but the effect of competitors’ signals is non-negligible suggesting that
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there is a common cost component as well.

According to the coefficients in Table 7, if firm 2 receives a signal that increases its expected

costs by $1,310 ($1,000 x the coefficient of firm 2’s own signal’s effect), firm 1’s expected costs

increase by $270 ($1,000 x the coefficient of firm 1’s competitors’ signal’s effect) upon learning

it. Similarly, if firm 1 receives a signal that increases its costs by $1,000, firm 2’s expected costs

increase by $290. The effects for firms 4-6 are smaller: if firm 4 receives a signal that increases its

expected costs by $1,150, firm 5’s expected costs would increase by $80 if it learns it.

Finally, I estimate a specification where the effect of the signal of the main competitor is allowed

to differ from that of the other firms. While the coefficients on own distances are similar to those

in the first set of results, the coefficients on competitors’ signals are not significantly different from

each other. It seems that there is not enough statistical power to distinguish the effect of different

competitors’ signals on the full information cost.

7 The effect of competition

The estimates from Section 6 are used to evaluate the effects of increased competition on bidding

behavior and procurement costs. I simulate the effect of a reduction in one of the existing firms’

cost. As a result, all other firms face increased competition, while the information structure and

the set of potential bidders are kept fixed. Such a reduction in costs can be thought to be the

result of the firm owning a plant closer to the project site, a technological change or a subsidy, i.e.,

an extra payment that the firm receives if it wins the auction. The case of a subsidy is of special

interest because it is a tool available to procurement agencies.15

The auction I analyze is a 3.51 mile repaving project 10 miles southeast of Grand Rapids that

requires the prime contractor to be prequalified to perform hot mix asphalt work. The engineer’s

estimate was $502,029 and only two firms participated: firm 1 won with a bid of $ 491,668 (98%

of the engineer’s estimate) while firm 2 bid $528,126 (105%). Given the auction’s characteristics

and location, out of the 51 firms only firms 1, 2, 5 and 6 had an estimated probability of entry

greater than 0.03. Table 8 shows this set of bidders, their initial locations, probabilities of entry,

and median completion costs. I also include firm 3, the firm that becomes more competitive in the

counterfactual.

I simulate the effect of a $182,000 (36% of the engineer’s estimate) subsidy to firm 3, which is

equivalent to a reduction in its distance from 149 km to 25-50 km, under three different information

structures. In the first, the coefficients estimated above are used to simulate the interdependent

or common costs (CC) model.16 In the second, all information interdependence is removed by

setting δji = 0 for all i 6= j, but the correlation of signals given by Σ̂ is kept; this is the affiliated

private costs (APC) model. Finally, all information interdependence is removed and the matrix

of correlation of signals is set equal to the identity matrix; this is the independent private costs

15The MDOT has no subsidy scheme in place but some projects require the prime contractor to subcontract to

disadvantaged businesses for a percentage of the total contract value.
16Appendix E describes the the numerical algorithm to solve for the equilibrium bidding strategies.
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(IPC) model. I compute the effect on expected bids, winning bid, subsidies paid ($182,000 times

the probability that firm 3 wins) and net costs of the subsidy (the effect on the winning bid plus

the expected subsidies paid) for each of the three models. Table 9 presents the results.

The subsidy reduces firm 1’s expected bid by $6,900 in the CC model, $9,200 in the APC model,

and $11,400 in the IPC model. The difference between the reduction in the CC model and the APC

model can be attributed to the effect of the common cost components, while the difference between

the APC and IPC can be attributed to the nonindependence of signals. The effect of increased

competition on firm 1’s bids is 40% lower in the CC model relative to the IPC benchmark. The

results for firm 2 are similar. Firm 3 becomes more competitive not only because of the subsidy

but also because it is subject to a lesser winner’s curse. Without the subsidy it would only win

on a very selected set of signals of bidders 1 and 2. With the subsidy it wins on a less selected

set of signals which reduces its cost conditional on winning. Firm 3 expected bid conditional on

participation falls by $76,400 in the CC model and by only $58,100 in the APC model, i.e., the

winner’s curse accounts for a $18,300 reduction in its average bid.

The winning bid decreases by $20,900 under an IPC model, but by only $15,200 under the APC

and CC models. The effect of competition on prices is thus 28% lower in the CC model relative

to the IPC benchmark. Notice that the effect of the winner’s curse on the winning bid is almost

zero due to the pro-competitive effect on firm 3 that offsets the anti-competitive effect on firms

1 and 2. The expected subsidies paid are higher under the IPC and CC models, where firm 3

wins with higher probability. Due to the winner’s curse, firms 1 and 2 bid more cautiously and

firm 3 bids more aggressively. As a result, firm 3 wins and the subsidy is paid more often in the

CC model. The total cost of the subsidy is greatest under the CC model, followed by the APC

model, and lowest under the IPC model: $26,500, $23,100 and $21,000, respectively. In sum, the

effect of nonindependent signals increases the cost of the subsidy by 11% and the effect of common

components by an additional 16%.

8 Conclusion

This paper examines the effect of competition on bidder behavior and prices in the context of

Michigan highway procurement. A bidder’s distance to the project is an important determinant of

costs and an important predictor of his participation and bids. However, there is no evidence of

more aggressive bidding when competitors are located close to the project. This pattern is hard to

reconcile with predictions based on first-price auctions with private costs, but can be rationalized

by a model with nonindependent private information and common costs.

The empirical findings point to non-negligible common cost components. I estimate that if a

bidder receives a signal that increases his expected costs by $1000, his competitor expected costs

increase by $70-$250 upon learning it. I also find that there exist two types of bidders: those that

specialize in projects that only require HMA-work and those that specialize in projects that require

construction work. The coefficient of correlation of signals for bidders of the same type is between 0.3

and 0.5, but bidders of different types show little pairwise correlation. To understand how common
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costs and signal correlation affect bidders reaction to increased competition, I simulate the effect of

a reduction in costs to one of the existing firms under different competitive settings. The simulation

results suggest that relative to the benchmark of independent private costs, these features reduce

the effect of more intense competition on competitors’ bids by 40% and on procurement costs by

28% .

Procurement agencies often subsidize a subset of high-cost bidders at a cost that depends on

the nature of competition in the market. In the independent private cost benchmark, subsidies

provide incentives to non-subsidized bidders to bid more aggressively which reduce or even offset

the costs of the subsidy. These incentives are weakened in models with common costs or correlated

private information. Moreover, in models with an important common component of costs, the

subsidized bidder is able to compete on a more even ground with the non-subsidized bidders and

suffers a less severe winner’s curse, it bids even more aggressively and wins more often. Because

the subsidy is paid only when the subsidized bidder wins, the overall cost of the subsidy may be

significantly higher than in the benchmark model. Given my estimates on common costs and signal

correlation, a subsidy that benefits weak bidders costs 27% more than in the independent private

cost benchmark.

Common value components could well be a pervasive feature of procurement markets. Con-

tractors willing to offer their services often face cost uncertainties that may also be shared by their

competitors, e.g., conditions in the input markets or potential difficulties in the execution of the

project. It is therefore important to devise methods to analyze the procurement process under these

market features. In this paper, I consider a model that allows for asymmetric bidders, private and

common cost components, and nonindependent signals, and show that the model primitives are

nonparametrically identified from the joint distribution of bids conditional on bidder-specific cost

shifters (such as distance of each bidder to the project). The variation in observable cost shifters

introduces observable asymmetries, and as a result, generates variation in the level and composition

of competition. The common components of costs are measured by the response (or lack thereof)

of each bidder to varying competitive conditions.

The method proposed in this paper requires that the researcher observes enough variation in

firm-specific cost shifters. This type of data is admittedly not available for every market environ-

ment. However, there are some markets that have been studied where the geographical location

of the bidders is relevant for their competitiveness, e.g., timber (Athey and Levin, 2001; Haile,

2001; Haile, Hong and Shum, 2004; Roberts and Sweeting, 2010; Athey, Coey and Levin, 2011),

off-shore drilling (Hendricks and Porter 1988, 1993; Hendricks, Pinkse and Porter, 2003), highway

procurement (Porter and Zona, 2003; Marion, 2007; Einav and Esponda, 2008; Krasnokutskaya

and Seim, 2008; Bajari and Tadelis, 2011; Groeger, 2011; Krasnokutskaya, 2011), snow removal

(Flambard and Perrigne, 2006) and plastic recycling (Kawai, 2011). Moreover, cost shifters need

not be related to geographical location, and may result from some exogenous variation in the data

or some other firm characteristics that vary across auctions.
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APPENDIX

A Stylized Facts. Controlling for selection

This appendix shows that the results in Section 3 still hold after controlling for selection due to

nonparticipation. The sample of observed bidders may be selected because only bidders with low

realizations of costs decide to participate.

Consider a standard independent private cost auction model where bidders choose to participate

in the auction only if the expected profit (at the optimal bid) exceeds some non-negative entry cost.

Define the latent optimal bid as the bid that maximizes the bidder’s profit after he the entry cost

is sunk. The latent bid is a monotone function of his completion costs. Because firms participate

only when their project completion cost is below some threshold, the observed distribution of bids

in the data is a censored distribution of latent optimal bids.

I rely on a censored quantile regression procedure to estimate the relationship between the

latent optimal bid and competitors’ distance controlling for own bidder distance and the set of

covariates described above. One of the advantages of this procedure is that it does not depend

on distributional assumptions about the error term. More importantly, it allows me to estimate

the coefficients of a linear specification without observing the censoring point. I use the estimator

proposed by Buchinsky and Hahn (1998).

Let bia denote the bid of firm i in auction a, w0a a vector of auction characteristics, and dja the

distance from project a to the nearest plant of firm j. Moreover, let yia = 1 if firm i submitted a

bid in auction a and 0 otherwise. Finally, let π̂ia be a consistent estimate of the probability that

bidder i participates in auction a (see Appendix C). For each firm i, I estimate:

δ̂(i)
τ = arg min

δ

A∑
a=1

yiaρmin
(

τ
π̂ia

,1
) (bia − waδ) (A.1)

where wa = [w0a, dia, dja] and ρκ (u) = u (κ− 1 (u < 0))

Table A shows the results for the 5 largest firms in the sample. As before, only the fifth largest

firm bids consistently lower close to its competitors’ plants.

One of the regressions of bids on competitors’ distances in Section 3 and the specification in

this appendix include a demand shifter as a control variable. I used geographical information

on all roads available at the Michigan Center for Geographical Information to construct it.17 I

compute each road segment’s length and assign a weight based on its classification (Interstates, 3.5;

Freeways, 3; Principal Arterials, 2.5; Minor Arterials, 2.2; Major Collectors, 2; Minor Collectors,

1.5 and Local Roads, 1). For each project and plant location, I compute a measure of the density

of roads using a 10 km bandwidth kernel.

17http://www.mcgi.state.mi.us/mgdl/framework/statewide/allroads mi.zip
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B Nonparametric identification

This appendix contains the proof of Proposition 1 of Section 4.2.2 (see Remark 5). The proposition

states that the expected cost (the expected cost conditional on winning times the probability

of winning) is identified from the distribution of bids conditional on cost shifters assuming that

bidders participate with probability one and that entry costs are zero. The results presented below

generalize this proposition to the case where entry costs are different from zero and bidders may

choose not to participate in equilibrium.

Let the space of cost shifters be D = Rm, m ≥ n. Consider the function π : D → [0, 1]n such

that π (d) = {P (bj <∞|d)}nj=1. This function returns the probabilities of participation given the

vector of cost shifters d. To ease notation w0 is omitted. It is assumed that there is a random

ceiling or reserve price B0 with cumulative distribution function R. R is differentiable for every b

in the support
[
b0, b̄0

]
. B0 is distributed independently from the vector of signals and costs, and

b − (R′ (b))−1 (1−R (b)) is increasing in b. These assumptions are used to identify each bidder’s

entry cost (the cost of preparing a bid) and can be dispensed with if that cost is known. The

MDOT, for example, always accepts bids below 110% of the engineer’s estimate and rejects with

some probability bids above that threshold. The maximum accepted winning bid was 215% of the

engineer estimate. Whether the lower limit b0 binds depends on the vector of cost shifters. Redefine

Mi = min (minj 6=i βj (Sj , d) , B0) to simplify the notation.

Lemma 3 shows that entry costs are identified. The proof relies on the assumption that firm i’s

full information cost does not depend on the realization of the random reserve price. Lemma 4 states

that if the entry cost is known, the expected cost is identified under some regularity conditions.

This lemma is useful to show identification of the more general case that allows for nonparticipation

but also to show Proposition 1. The full information cost for each bidder can be identified using

Proposition 2 (in the main text).

B.1 Entry costs

Lemma 3 The bid preparation cost ki is identified if there exists a d ∈ D such that: πk (d) = 0 for

all k 6= i and 0 < πi (d) < 1.

Proof. Bidder i’s expected profit is:

(b− E [Ci|si, di]) (1−R (b))− ki, (B.1)

where E [Ci|si, di] is i’s full information cost integrated over all competitors’ signals. The first-order

condition is:

E [Ci|si, di] = b− 1−R (b)

R′ (b)
. (B.2)

Because E [Ci|si, di] is continuous and increasing in si, i stops participating when his signal is such

that his expected profits are zero. The cutoff signal is the probability of participation πi (d), and the

maximum bid he submits is b∗ = G−1
Bi|d (πi (d)), then

ki =
[1−R (b∗)]2

R′ (b∗)
. (B.3)
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B.2 Full information costs

According to the intuition in Section 4.2.2, identification is achieved integrating the expected cost

conditional on pivotal sets (marginal costs) along a curve. The role of competitors’ cost shifters is

to shift the pivotal sets along the space of competitors’ signals. The tie-point associated to each

pivotal set as a function of cost shifters d−i is:

Γ (d−i|si, di) =
{
GBj |d

(
G−1
Bi|d (si)

)}
j 6=i

(B.4)

The following lemma formalizes that intuition.

Lemma 4 The expected cost E [Ci|S−i ≥ s−i, si, di]P [S−i ≥ s−i] is identified if:

(i) s−i is in the range of Γ,

(ii) there exist an ε > 0 such that for all σ ≥ s−i, if σ = Γ (d−i|si, di) there is at least one

competitor j for which gBj |(di,d−i)

(
G−1
Bi|(di,d−i) (si)

)
> ε,

(iii) for every σ ≥ s−i if σ = Γ (d−i|si, di) then either πi (di, d−i) = si or σ is an interior point of

Range (Γ) ∪ {τ : τ ≥ σ}c, and

(iv) the entry cost is known.

Proof. To ease notation, let φ (σ) = E (Ci|si, di, S−i ≥ σ)P (S−i ≥ σ|si) and γ (σ) = Γ−1 (σ|si, di)
(if σ ∈ Range (Γ), otherwise γ (σ) does not exist). Define a parametric curve in the space of

competitors’ signals η : R→ [0, 1]n−1 such that: η (0) = s−i and for each j 6= i

η′j (t) =
∂β−1

j (bt, dt)

∂b
= gBj |di,dt (bt) , (B.5)

where dt = γ ◦ η (t) and bt = βi (si|di, dt). By construction, if bt and dt exist, β−1 (bt, di, dt) = η (t).

Both d0 and b0 exist because of (i). By the non-vanishing competition condition (ii), there exist a

j such that η′j (t) > ε. Thus the curve does not converge to any point in the space of competitors’

signals. By (iii), the curve η (t) stays within the interior of Range (Γ) until t reaches some t1

where either ηj (t1) = 1 for some j or πi (di, dt1) = si. If the curve reaches ηj (t1) = 1 for some j,

φ (t1) = 0. If it reaches πi (di, dt1) = si, because bidder i is indifferent between participating and

not participating,

φ (t1) =
bt1

(
1−GMi|bt1 ,di,dt1 (bt1 |bt1)

)
− ki

(1−R (bt1))
. (B.6)

Firm i’s problem is to maximize:

b
(
1−GMi|si,d (b|si)

)
− φ

(
β−1 (b, d)

)
(1−R (b)) . (B.7)

The first-order condition can be written as:

bigMi|Bi,d (b|si)−
(
1−GMi|Bi,d (b|b)

)
= −

dφ
(
β−1 (b, d)

)
db

(1−R (b)) + φ
(
β−1 (b, d)

)
R′ (b) . (B.8)
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Let φ (t) = φ
(
β−1 (bt, dt)

)
. Similarly,

dφ
(
β−1 (bt, dt)

)
db

= ∇φ
(
β−1 (bt, dt)

)
· dβ

−1 (bt, dt)

db
= ∇φ (η (t)) · η′ (t) = φ′ (t) . (B.9)

For any t ∈ [0, t1] the first-order condition (B.8) becomes:

−
[
btgMi|Bi,dt (bt|si)−

(
1−GMi|Bi,dt (bt|bτ )

)]
(1−R (bt))

−1 = φ′ (t)+
(
−R′ (bt) (1−R (bt))

−1
)
φ (t)

(B.10)

Therefore, φ (t) is defined by this ordinary differential equation with terminal condition given by

(B.6).

Remark 5 Proposition 1 follows from Lemma 4. While premise (ii) is directly invoked, (i) and

(iii) are implied by the fact that every σ ≥ s−i is in the range of Γ. The solution to the differential

equation is

φ (s−i) =

∫ t1

0
bτgMi|Bi,dτ (bτ |bτ )−

[
1−GMi|Bi,dτ (bτ |bτ )

]
dτ + bt1

(
1−GMi|Bi,d (bt1 |bt1)

)
. (B.11)

If the assumption that bidders participate with probability one is relaxed, the mapping Γ is not

defined when πi (d) < si, i.e., when bidder i participates with probability below si. The domain of

Γ is A = {d−i ∈ D−i : πi (di, d−i) ≥ si}. Premise (iii) requires that the points that Γ maps to the

boundary of its range are mapped from the boundary of its domain. The following two conditions

ensure the premise holds:

Condition 6 π (d) : D → [0, 1]n is a continuous map.

Condition 7 Γ (d−i|si, di) : A→ [0, 1]n−1 is an open map.

Lemma 8 Under Conditions 6 and 7, if s−i = Γ (d−i|si, di) then either s−i is an interior point of

Range (Γ) or πi (di, d−i) = si.

Proof. If s−i = Γ (d−i|si, di), s−i ∈ Range (Γ) and d−i ∈ A. Suppose that s−i is not an interior

point of Range (Γ), then d−i is not an interior point of A because Γ is an open map. Because π is

a continuous map, A is closed, and boundary points satisfy πi (di, d−i) = si.

Lemma 4 states that

E [Ci|S−i ≥ s−i, si, di]P [S−i ≥ s−i] . (B.12)

is identified under Conditions 6, 7 and non-vanishing competition. Proposition 2 states that the

full information cost is identified if (B.12) is identified in a neighborhood of s−i.

C Semiparametric estimation of the probability of entry

This appendix discusses the semiparametric estimation of the probability of entry and the variance

of bids conditional on participation. As mentioned in Section 5, both estimation procedures use a

similar iterative routine.
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The random variable Yi denotes whether firm i participates in the auction, and P (Yi = 1|w̃)

is the probability that firm i participates in an auction with observable characteristics w̃ =

(east, north, w0). I assume that:

P (Yi = 1|w̃) = Φ (w0γπi + hπi(east, north)) , (C.1)

where Φ is a standard normal cumulative distribution function and h is a flexible function of

the location of the project. For a fixed hπi(east, north), the model (C.1) can be estimated using

maximum likelihood:

A∑
a=1

yia log Φ (w0aγ + ha) + (1− yia) log [1− Φ (w0aγ + ha)] (C.2)

where yia is a dummy variable indicating if firm i participated in auction a, and ha = hπi(easta, northa).

Notice that by the law of iterated expectations:

P (Yi = 1|east, north) = E [Φ (w0γπi + hπi(east, north)) |east, north] (C.3)

I estimate the nonparametric probability of participation conditional only on the geographical

location, i.e., P (Yi = 1|east, north), using a bivariate kernel with a 10km bandwidth:

êia =
∑
r=1

w (a, r) yir, where (C.4)

w (a, r) =
K
(
easta−eastr

h

)
K
(
northa−northr

h

)∑
t=1K

(
easta−eastt

h

)
K
(
northa−northt

h

)
The estimator I use is defined as the pair (γ, {ha}a=1..A) that maximizes the likelihood in (C.2)

subject to the sample analogue of restriction (C.3):

êia =

A∑
r=1

w (a, r) Φ (w0rγ + ha) (C.5)

Using a Taylor expansion on (C.3) around
(
γ̄,
{
h̄a
})

solving for ha and plugging into (C.2)

yields

A∑
a=1

yia log Φ
(
(w0a − w̄a) γ + h̄a + γ̄w̄a

)
+ (1− yia) log

[
1− Φ

(
(w0a − w̄a) γ + h̄a + γ̄w̄a

)]
, (C.6)

where:

w̄a =

∑
r w0rw (a, r)φ

(
w0r γ̄ + h̄a

)∑
r w (a, r)φ

(
w0r γ̄ + h̄a

) (C.7)

Estimation: Estimate (C.4), fix h
(0)
a = Φ−1 (êia) for every a and γ(0). These are the initial

conditions of the iterative algorithm. For each t = 1, 2, ...:

1. Estimate γ̂ in (C.6) by Maximum Likelihood where the Taylor expansion is taken around(
γ(t−1),

{
h

(t−1)
a

}
a=1..A

)
. Fix γ(t) equal to this estimate.
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2. Obtain
{
h

(t)
a

}
a=1..A

that satisfies (C.5) given γ(t).

3. Stop if
∥∥γ(t) − γ(t−1)

∥∥ is below some tolerance level, otherwise repeat 1-3.

The variance of bids is estimated semiparametrically using the same procedure. For each ob-

served bid calculate the squared error from the estimated mean: yia = (bia − µi (w̃a))
2. Consider

the specification

E
(

(bi − µi (w̃))2 |w̃, Yi = 1
)

= exp (w0γσi + hσi(east, north)) . (C.8)

I follow steps 1-5 but I use the exponential function instead of Φ and φ, and estimate the coefficients

γ̂ by non-linear least squares instead of MLE.

D Marginal costs and effect of competitors’ signals

This appendix shows the details of the numerical computation of the marginal cost and the effects

of competitors’ signals. These terms are used to estimate the model as described in Sections 5 and

6. Define

ŝi = ĜBi|w̃ (bi) , (D.1)

s∗j = ĜBj |w̃ (bi) .

Then

ĜMi|Bi,w̃ (bi|bi) = P
(
S−i > s∗−i|ŝi

)
(D.2)

ĝMi|Bi,w̃ (bi|bi) =
∑
j 6=i

ĝBj |w̃ (bi) f
(
ŝi, s

∗
j

)
P
(
S−ij > s∗−ij |ŝi,s∗j

)
,

where f
(
si, s

∗
j

)
is the density of the bivariate copula of (Si, Sj) evaluated at

(
ŝi, s

∗
j

)
. The estimate

of the marginal cost is:

mĉi = bi −
1− P

(
S−i > s∗−i|ŝi

)∑
j 6=i ĝBj |w̃ (bi) f

(
ŝi, s∗j

)
P
(
S−ij > s∗−ij |ŝi,s∗j

) (D.3)

Therefore, the problem of calculating mĉi can be decomposed into the problem of obtaining:

P
(
S−i > s∗−i|ŝi

)
(D.4)

P
(
S−ij > s∗−ij |ŝi,s∗j

)
for all j

ĝBj |w̃ (bi)

f
(
ŝi, s

∗
j

)
.

The last two elements can be obtained from the estimates of the marginal distribution of bids and

the joint distribution of signals.

36



Now consider the computation of the effect of competitors signals based on the estimates.

Define:

pj =
ĝBj |w̃ (bi) f

(
ŝi, s

∗
j

)
P
(
S−ij > s∗−ij |ŝi,s∗j

)
∑

k 6=i ĝBk|w̃ (bi) f
(
ŝi, s∗k

)
P
(
S−ik > s∗−ik|ŝi,s∗k

) . (D.5)

Recall,

ψ̃j (bi, w) = E [ψ (Sj) |Mi = bi, ŝi] (D.6)

=
∑
k 6=i

E
[
ψ (Sj) |S−ik > s∗−ik, s

∗
k, ŝi

]
pk

= pjψ (sj) +
∑
k 6=i,j

E
[
ψ (Sj) |S−ik > s∗−ik, s

∗
k, ŝi

]
pk

The calculation of ψ̃j (si, w) requires the same components in (D.4) and:

E
[
ψ (Sj) |S−ik > s∗−ik, s

∗
k, ŝi

]
for all j 6= i and k 6= i, j. (D.7)

To compute the marginal cost and the effect of competitors’ signals it is necessary to integrate over

the support of a truncated normal. Bretz and Genz (2009) discuss how to obtain these integrals

numerically.

D.1 Numerical integration

Suppose that X is an n−dimensional random vector distributed as multivariate normal with mean

0 and variance matrix Σ = Λ + LL′, where Ψ is a diagonal matrix with elements λi and L is a

n× l matrix with l ≤ n− 1 and elements denoted lij . Then, following Bretz and Genz (2009) p.16,

P (q < X < r) for q, r ∈ Rs, can be written as:∫
Rl
φl (y, Il)

n∏
i=1

[
Φ

(
ri −

∑l
j lijyj√
λi

)
− Φ

(
qi −

∑l
j lijyj√
λi

)]
dy (D.8)

where φl (y, Il) is the pdf of a circular l-dimensional standard normal. Notice that the term in the

square brackets can be calculated analytically for each vector y ∈ Rl. It is therefore only necessary

to integrate numerically over l dimensions. In practice, I randomly draw yt ∈ Rl for t = 1...T and

for each draw I compute:

ηt =

n∏
i=1

[
Φ

(
ri −

∑l
j lijyjt√
λi

)
− Φ

(
qi −

∑l
j lijyjt√
λi

)]
. (D.9)

Because T−1
∑

t ηt → P (q < x < r) as T → ∞, the probability P (q < x < r) can be obtained

numerically for the desired precision.

Similarly, E (xi|q < x < r)P (q < x < r) can be obtaining computing and averaging:

ϕt = ηt
√
λ

∑ lijyjt√
λi

+
φ
(
qi−

∑
lijyjt√
λi

)
− φ

(
ri−

∑
lijyjt√
λi

)
Φ
(
ri−

∑
lijyjt√
λi

)
− Φ

(
qi−

∑
lijyjt√
λi

)
 , (D.10)

T−1
∑
t

ϕt → E (xi|q < x < r)P (q < x < r) .
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E Algorithm to solve for the equilibrium bid functions

The equilibrium inverse bid functions are calculated using a numerical algorithm that is similar

to that in Gayle and Richard (2008). The main difference with their approach is that I allow for

interdependent costs and correlated signals. Although the computation time grows fast with the

number of bidders, auctions with less than 10 bidders are solved within 5 hours. The algorithm

solves the system of differential equations implied by bidders’ first-order conditions. Following

Gayle and Richard (2008), I guess the initial conditions and, after the system is solved forward, I

verify if the terminal conditions are consistent with equilibrium bidding behavior.

E.1 Technology and information

Each bidder full information cost is:

E (Ci|S) = ci + δ−ii

n∑
j 6=i

ψ (Sj) + δiiψ (Si) , (E.1)

where ci is a constant that depends on the estimated effect of bidder i’s distance and project

characteristics, δ−ii is the estimated effect of competitors’ signals and δii is the estimated own

signal effect. The quantile regressions presented in Section 6 result in a different set of parameters

for each quantile. For simplicity and because the parameters were not too different across different

quantiles, I take the specification with τ = 0.5 for this simulation. The (rescaled) signals ψ (S) are

assumed to be jointly multinomial normal with covariance matrix Σ̂. The distribution of signals is

truncated to avoid numerical problems: instead of using ψ (Si), I use ψ ((Si − 0.5) 0.999 + 0.5).

E.2 System of differential equations

Define the expected cost,

φ (si, s−i) = E (Ci|Si = si, S−i ≥ s−i)P (S−i ≥ s−i|si) . (E.2)

Bidder i’s problem is

max
b
bP (s−i (b))− φ (si, s−i (b)) . (E.3)

The first-order condition is

Pi + b∇Pis′−i (b)−∇φis′−i (b) = 0, (E.4)

where ∇Pi and ∇φi are the gradients of P (S−i ≥ s−i) and φ (si, s−i) with respect to s−i. Notice

that Pi and b are scalars, ∇Pi and ∇φi are 1× (n− 1) vectors, and s′−i (b) is an (n− 1)× 1 vector.

If all bidders’ first-order conditions are considered together:

P = Ms′, (E.5)

where P is an n× 1 vector with typical element: Pi, M is an n× n matrix with zeros in the main

diagonal at typical row: b∇Pi −∇φi, and s′ is an n× 1 vector.
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E.3 Algorithm

The algorithm makes an initial guess on the lowest bid that firms are willing to submit when they

receive signal s = 0. So the following variables are initialized: b(0), and s(0) = [0, 0, ..., 0]′. The

state variables are the scalar b(t) and the vector s(t).

At step t, each bidder’s perceived probability of winning P
(t)
i = P

(
S−i ≥ s(t)

−i|s
(t)
i

)
, expected

cost φ
(
s

(t)
i , s

(t)
−i

)
and the gradients∇Pi and∇φi are calculated by numerical integration as discussed

in Appendix D.1. A bidder is “active” if it finds it profitable to win at the current state— if

b(t)P
(t)
i −φ

(
s

(t)
i , s

(t)
−i

)
≥ 0. Bidders that do not satisfy this condition are “inactive” and their signal

state in the next step is: s
(t+1)
j = s

(t)
j . Form vector P (t) and matrix M (t) with all “active” bidders

and compute s′ =
(
M (t)

)−1
P (t). If all s′ are positive, set s

(t+1)
i = s

(t)
i +s′i∆b and b(t+1) = b(t) +∆b,

where ∆b is a predetermined bid step. Some elements of the resulting s′ may be negative and there

is nothing pathological about it. It means that some firms would prefer to bid higher even if their

profits are positive at the current bid. I discuss how to obtain a subset of “active and willing”

bidders from the set of “active” bidders below.

The simulation is stopped when a bidder reaches s = 1, when all but 1 bidders have nonpositive

expected profits, or when the system diverges. The system diverges when all bidders expected

profits increase with t. This is the case if inverse bid functions are not steep enough to counteract

the effects of an increase in the bid with a reduction in the probability of winning. If bidders reach

their zero profit conditions at low signals, the resulting bidding strategies are consistent with a

reserve price equal to b(T ), where T is the terminal step. If the system is solved for higher initial

b(0), the terminal bid b(T ) and signals s(T ) are larger. For some initial b(0) there is terminal vector of

signals such that for some i and j, s
(T )
i and s

(T )
j are close enough to one. In this case, the resulting

bidding strategies are consistent with a nonbinding reserve price. If b(0) is too large, the system

diverges and the resulting strategies are not consistent with any equilibrium bidding behavior. To

obtain the results in Section 7, I find the initial b(0) consistent with an equilibrium with no reserve

price.

E.4 “Active and willing” bidders

In a general asymmetric model the equilibrium bidding strategies may be such that the support of

bids is different across bidders. For example, in an independent cost model suppose that there are

three bidders A, B and C such that A’s and B’s costs are distributed on [c, c] while C’s costs are

distributed on [c∗, c], for c < c∗. The equilibrium bids can be such that A and B bid b< c∗ when

their costs are c, but C never bids b. The optimal bid of C when his costs are c∗ are above c∗; as a

result, there is a range of bids for which bidder C has positive profits, but finds it unprofitable to

submit such a bid—he is “active but unwilling”. The first-order condition of “active and unwilling”

bidders have to be positive, i.e. they would increase their expected profit by bidding higher. It

follows that if ki is a slack variable,

Pi − ki + b∇Ps′−i (b)−∇φs′−i (b) = 0, (E.6)
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where ki = 0 if i is willing to submit bid b, and ki > 0 otherwise. The system of equations for all

bidders can be written as:

P − k = Ms′. (E.7)

where ki = 0 and s′i > 0 for willing bidders, and ki > 0 and s′i = 0 for unwilling bidders. Therefore,

the problem of finding all “willing” bidders is the problem of choosing a set of indices J such that:[
Ms 0

Msn I

]−1

P =

[
sj∈J

kj /∈J

]
≥ 0, (E.8)

where Ms is a square matrix #J ×#J that contains element mij only if i, j ∈ J , while Msn is a

(n−#J)×#J matrix that contains element mij only if i /∈ J but j ∈ J . This is a combinatorial

problem that can be solved by a brute force approach if there are only a few bidders. Instead, I

consider the following algorithm: denote Dp = diag(P ) and let k̃ = Dpk and M̃ = D−1
p . Equation

(E.7) becomes:

1− k̃ = M̃s. (E.9)

I find the Perron–Frobenius eigenvector of M̃ and try J equal to the indices of its largest elements.

I try first with the first two, then the first three largest elements and so on. This algorithm guides

the brute force approach and finds the right set of “willing” bidders faster.
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Figure 1: Participation and outcomes in the 3,851 auctions in the sample

(a) Firm 1

41



Figure 2: Participation and outcomes in the 3,851 auctions in the sample

(b) Firm 21
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Figure 2: Identification of the full information costFigure X 
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��� (a) Expected residual demand (D) and marginal rev-
enue (MR) curves. b denotes bid and q denotes prob-
ability of winning. D is identified from the data, and
MR can be derived from D. For an observed bid bi find
q∗ in the D curve, and find the marginal revenue at
q∗. mci is the marginal cost that rationalizes bi.

Figure X 
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(b) Space of competitors’ signals. The pivotal set is
composed by the signals that imply that there is at
least one bidder that ties with bidder i (i.e., that sub-
mits bi). Suppose that A and B bid bi when they
receive signals sA and sB , respectively. The pivotal
set, shown by the solid lines, is given by (SA, SB) such
that SA = sA and SB ≥ sB , or SA ≥ sA and SB = sb.Figure X 
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(c) Space of competitors’ signals. Suppose that A
and B bid bi when they receive signals sA and sB ,
respectively. The tie-point is (sA, sB). The pivotal
set, shown by the solid lines, is (SA, SB) such that
SA = sA and SB ≥ sB , or SA ≥ sA and SB = sb. The
win-set is (SA, SB) such that SA > sA and SB > sB .

Figure X 
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(d) Space of competitors’ signals. The expected
cost conditional on a pivotal set is identified by the
marginal cost. The expected cost conditional on the
shaded region is identified integrating the pivotal sets
over a curve.
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Figure 3: Estimation Procedure.

 

 

Estimation: First Stage 

• Probability of Participation:  ������� (semipar. probit). 

 

• Mean bid conditional on participation: �̂�����  

(semipar. partial linear model). 

 

• Variance of bid conditional on participation: 
�������  

(semipar. nonlinear model). 

 

• Distribution of the standardized bid: �
��∙� 

 (smoothed empirical cdf). 

 

- Marginal distribution of bids:  ����|�� ���� = �
� ���������� �
������� � �������. 

 

• Joint distribution of signals:  �!�∙� (exploratory Tobit Factor Analysis). 

 

- Joint distribution of bids: 

 ���|�� ��� =  �! "���#|�� ��$�, … , ���'|�� ��(�). 

 

- Effect of competitors’ signals 

 *���� , �� and marginal cost  +,-. = �� − $�0�1�|2�,�� ���|���
3�1�|2�,�� ���|���   (See Appendix D). 

Estimation: Second Stage 

• Test the null hypothesis of private costs: (Buchinsky and Hahn, 1998, quantile 

regression). 

• Estimate the coefficients of the full information costs (Buchinsky and Hahn, 1998, 

quantile regression; Chernozhukov and Hansen, 2007,  IVQR). 

 

 

 

Note:  

• Denotes an estimation step 

- Denotes a calculation performed with the estimates 
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Figure 4: Correlation Matrix of Signals. Top 10 firms.

Each cell represents a correlation coefficient between the firms in the rows and columns.
For example, the correlation of signals between firms 2 and 3 is 0.49. Darker cells
represent higher correlation. Firms 1, 2, 3, 7, 8 and 10 exhibit high correlation of
signals between them. Similarly, firms 4, 5 and 6 also show high correlation. The
correlation between firms of different groups is lower.
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Table 1(a): Descriptive Statistics. Engineer’s estimate, bids and distances.

Variable N Mean Sd P5 Median P95

Engineer’s estimate ($000) 3,851 1,398 3,117 125 656 4,477

Lowest bid ($000) 3,851 1,320 2,983 118 603 4,236

Participants 3,851 5.08 3.45 2 4 12

(2nd Lowest/Lowest bid-1)×100 3,770 6.9 7.7 .4 4.7 20.9

(Lowest/engineer-1)×100 3,851 -6.4 12.6 -25.6 -7 14.5

Distance of Winner (km) 3,662 40 48 2 27 122

Distance of Bidder (km) 18,778 51 50 4 38 138

Note: Pct stands for percentile. 2nd Lowest: the second lowest bid. engineer: engineer’s
estimate. In 81 auctions there was only one bid. There were 189 auctions won by a firm
for which I did not find any verifiable location.

Table 1(b): Descriptive Statistics. Size of the project.

No. %

Very Small (less than 150k) 278 7.22

Small (150k-500k) 1,243 32.28

Normal (500k-1.5m) 1,440 37.39

Large (1.5m-3m) 529 13.74

Very Large (more than 3m) 361 9.37

Note: Distribution of project sizes according to
the engineer’s estimate.
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Table 1(c): Descriptive Statistics. Prequalification Requirements

No. %

Hot Mix Asphalt/Bituminous Paving

Not included 502 13.04

Included 1,432 37.19

Required 1,917 49.78

Grading & Drainage Structures & Agg. Cons

Not included 2,096 54.43

Included 1,348 35.00

Required 407 10.57

Bridges And Special Structures

Not included 3,741 97.14

Included 77 2.00

Required 33 0.86

Miscellaneous Concrete Items

Not included 3,398 88.24

Included 441 11.45

Required 12 0.31

Sewers and Watermains

Not included 3,371 87.54

Included 459 11.92

Required 21 0.55

A work-type prequalification is required if only contractors pre-
qualified for that work-type can participate in the auction. A work-
type is included if the work-type classification can be substituted
by other work-type prequalification. For example, if the project
requires prequalifications A or (B and C), then A, B and C are
included but none is required. However, if the requirement is (A or
B) and C, then A and B are included and C is required. Some of
the projects do not include or require HMA work, but they require
a subcontractor with such prequalification.
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Table 2: Number of Participants and Normalized Bids

Participants Auctions Winning Bid Average Bid

mean s.e.m mean s.e.m

1 81 1.4 0.9 1.4 0.9

2 747 -4.1 0.5 1.2 0.6

3 913 -5.5 0.4 2.8 0.4

4 496 -4.4 0.6 6.4 0.8

5 356 -6.7 0.6 3.7 0.7

6 271 -7.8 0.7 4.0 0.9

7 217 -8.8 0.8 3.3 0.8

8 189 -8.4 0.8 4.2 0.9

9 132 -8.9 0.9 2.9 1.0

10 118 -10.6 1.0 1.3 1.1

Note: Bids were normalized by the engineer’s estimate:
(Bid/engineer’s estimate-1)×100. The average winning bid
and average submitted bid are tabulated by the number of
participants in the auction. For example, there were 742
auctions with only two participants. In these auctions the
normalized winning bid was on average 4.1% below the en-
gineer’s estimate, while the average submitted bid was 1.1%
above. While the average winning bid decreases with the
number of participants, the average submitted bid does not.
s.e.m stands for standard error of the mean.
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Table 3(a): OLS of normalized bids on own and competitors’ distance.

Variable a All Firms Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

coef s.e. coef s.e. coef s.e. coef s.e. coef s.e. coef s.e.

Constant b -9.8*** 0.5 -13.0*** 1.5 -14.1*** 1.7 -11.3** 5.6 -15.0*** 5.8 -16.8* 9.2

Own Dist ( 10- 25km) 1.1*** 0.4 -0.1 1.1 1.0 1.4 1.0 1.3 6.6 5.0 4.5 7.3

Own Dist ( 25- 50km) 2.0*** 0.4 2.0** 1.0 1.8 1.3 3.4* 2.0 9.5** 4.8 7.3 7.0

Own Dist ( 50-100km) 3.7*** 0.4 9.7*** 1.5 5.0*** 1.4 7.2** 3.3 10.9** 5.1 9.7 7.1

Own Dist (100-150km) 4.9*** 0.5 15.8* 8.9 11.9*** 2.2 26.6*** 6.1 9.9* 5.2 12.1* 7.3

Own Dist (150-200km) 5.4*** 0.9 24.9*** 7.2 5.1 6.9 12.8** 5.4 17.1** 8.0

Own Dist (200-500km) 7.1*** 1.4 22.1** 10.3 2.1 10.4 14.9** 6.9 23.1*** 8.1

Competitor A (0 -10 km) -0.2 0.4 3.1** 1.6 5.9*** 1.4 0.6 2.5 -5.9*** 1.9

Competitor A (10-25 km) -0.8** 0.4 -0.2 1.4 0.2 1.5 3.3 2.5 -0.0 4.0 -5.9*** 2.3

Competitor A (25-50 km) 0.1 0.3 1.2 1.1 3.6*** 1.2 2.1 2.4 -0.2 2.3 3.4** 1.6

Competitor B (0 -10 km) 2.2*** 0.4 6.6*** 1.3 -5.9** 2.5 1.7 4.1 6.0 4.0 -3.6 3.1

Competitor B (10-25 km) 2.0*** 0.4 5.1*** 1.2 -3.5 2.2 3.2 4.1 3.1 3.1 1.8 2.9

Competitor B (25-50 km) 0.7** 0.3 4.3*** 1.5 -0.9 1.7 4.6 4.6 3.9 2.5 1.1 1.8

Competitors’ id c 2 and 3 1 and 8 1 and 7 5 and 6 6 and 4

Number of Observations 14,071 1,497 1,248 603 583 577

Note: P-values: * p<0.1, ** p<0.05 and *** p<0.01. Heteroskedasticity-robust s.e. are reported.
a Additional included controls: project size, year, and prequalification requirements. Dependent variable: (Bid/engineer’s estimate-
1)×100. The regression in the first column includes firm fixed effects.
b Omitted category: projects located within 0-10 km of the bidder and more than 50 km away from the two main competitors that
require prequalification in HMA-work.
c Two main competitors of firm i: the two firms that are observed to participate most often in the auctions where i participates.

Table 3(b): OLS of normalized bids on own and competitors’ distance. Includes a set of demand
controls.

Variable a All Firms Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

coef s.e. coef s.e. coef s.e. coef s.e. coef s.e. coef s.e.

Constant b -9.7*** 0.7 -14.4*** 3.2 -13.7*** 2.4 14.7** 6.6 -31.3*** 7.5 -34.2*** 9.6

Own Dist ( 10- 25km) 1.1*** 0.4 0.2 1.1 1.8 1.5 0.8 1.3 5.3 5.1 4.3 7.1

Own Dist ( 25- 50km) 2.2*** 0.4 2.1* 1.1 2.9* 1.5 4.5** 2.3 9.2* 4.9 7.6 7.0

Own Dist ( 50-100km) 3.8*** 0.4 10.2*** 1.6 5.0*** 1.6 7.2** 3.5 11.2** 5.2 10.0 7.1

Own Dist (100-150km) 4.9*** 0.5 15.8* 9.5 11.0*** 2.6 33.7*** 4.4 9.6* 5.3 12.2* 7.3

Own Dist (150-200km) 5.3*** 0.9 24.3*** 7.4 17.8** 7.6 15.6*** 5.8 17.6** 8.1

Own Dist (200-500km) 7.0*** 1.4 19.8* 10.6 13.7 10.1 18.0** 7.8 23.1*** 7.9

Competitor A (0 -10 km) -0.2 0.4 2.2 1.7 3.6* 2.2 2.9 2.6 -6.3** 2.9

Competitor A (10-25 km) -0.8** 0.4 -0.5 1.5 -1.1 2.1 5.2* 2.7 -0.1 4.2 -6.2** 2.7

Competitor A (25-50 km) 0.2 0.3 1.5 1.1 2.4* 1.4 3.9 2.6 -0.1 2.3 3.5** 1.6

Competitor B (0 -10 km) 1.3*** 0.5 3.7** 1.7 -4.4 2.8 13.3*** 4.5 4.8 4.1 -3.1 3.2

Competitor B (10-25 km) 1.2*** 0.4 3.0** 1.5 -3.0 2.3 14.8*** 4.4 1.8 3.3 1.5 3.6

Competitor B (25-50 km) 0.6* 0.3 3.8** 1.5 -0.7 1.7 16.9*** 4.8 4.3* 2.5 1.0 1.9

Competitors’ id c 2 and 3 1 and 8 1 and 7 5 and 6 6 and 4

Number of Observations 14,071 1,497 1,248 603 583 577

Note: P-values: * p<0.1, ** p<0.05 and *** p<0.01. Heteroskedasticity-robust s.e. are reported.
a This specification includes a set of 9 dummies for levels of road density around the project. Additional included controls: project
size, year, and prequalification requirements. Dependent variable: (Bid/engineer’s estimate-1)×100. The regression in the first column
includes firm fixed effects.
b Omitted category: projects located within 0-10 km of the bidder and more than 50 km away from the two main competitors that
require prequalification in HMA-work.
c Two main competitors of firm i: the two firms that are observed to participate most often in the auctions where i participates.
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Table 4: Probability of Participation. Semiparametric Estimation.

Variable Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

coef s.e. coef s.e. coef s.e. coef s.e. coef s.e.

Year: 2001 -0.237 0.187 -1.780*** 0.194 -0.817*** 0.285 -0.335* 0.201 -0.952*** 0.225

2002 -0.16 0.172 -1.651*** 0.189 -0.533** 0.272 -0.093 0.175 -0.574*** 0.204

2003 -0.631*** 0.172 -1.232*** 0.181 0.222 0.249 -0.334* 0.18 -0.647*** 0.203

2004 0.117 0.17 -1.000*** 0.175 -0.485** 0.24 0.224 0.165 -0.336* 0.202

2005 -0.430** 0.172 -1.333*** 0.174 -0.682*** 0.253 0.268 0.166 -0.560*** 0.196

2006 0.039 0.164 -0.716*** 0.162 -0.412* 0.23 0.309* 0.158 -0.500** 0.195

2007 -0.226 0.154 -0.802*** 0.16 -0.165 0.212 0.615*** 0.149 -0.452** 0.185

2008 -0.215 0.168 -0.901*** 0.177 -0.017 0.244 0.045 0.173 -0.292 0.197

2009 -0.06 0.155 -0.371** 0.161 0.174 0.221 0.501*** 0.154 0.089 0.184

Size: v. small -0.1 0.166 -0.339** 0.161 -0.914*** 0.254 0.322** 0.155 -0.238 0.199

small -0.085 0.099 -0.082 0.093 -0.467*** 0.143 0.119 0.092 -0.162 0.115

large 0.097 0.121 0.092 0.132 0.202 0.175 0.105 0.115 -0.226* 0.136

v. large 0.302** 0.144 0.456*** 0.153 0.917*** 0.19 -0.202 0.144 -0.608*** 0.188

HMA req 3.321*** 0.221 2.551*** 0.252 1.545*** 0.268 -0.720*** 0.2 -1.333*** 0.279

HMA inc 1.852*** 0.241 0.922*** 0.293 1.270*** 0.329 0.094 0.206 0.394* 0.235

Constr req -0.257 0.21 0.189 0.245 -1.283*** 0.269 1.124*** 0.201 2.591*** 0.262

Constr inc -0.518*** 0.18 -0.072 0.249 -0.699*** 0.26 1.046*** 0.196 1.754*** 0.252

Bridge req -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -0.082 0.656

Bridge inc -0.964*** 0.228 -1.000*** 0.319 -1.328*** 0.335 -0.964*** 0.275 -0.276 0.249

Concrete req -0.777 0.641 0.622 0.726 -1.672** 0.808 1.250** 0.581 -0.211 0.89

Concrete inc -0.197* 0.115 -0.129 0.141 -0.457** 0.217 -0.069 0.108 -0.12 0.115

Sewers req 0.018 0.48 -0.585 0.723 -1.498** 0.697 -0.432 0.494 1.525*** 0.509

Sewers inc -1.394*** 0.127 -0.833*** 0.154 -1.937*** 0.223 -0.069 0.108 0.014 0.118

P-values: * p<0.1, ** p<0.05 and *** p<0.01. Num Obs=3851. Omitted category: projects located within 0-10 km
of the bidder and more than 50 km away from the two main competitors that require prequalification in HMA-work.
Firms 1 to 4 never participated in a project that requires the prime contractor to be prequalified in Bridges and Special
Structures. Firms 1 to 3 participate more often when the project includes or requires HMA prequalification. Firms 4
and 5 participate more often when the project requires construction work.
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Table 5(a): Firm 1. Quantile regression of marginal costs on own and competitors’ distance.

Variable τ = 0.25 τ = 0.50 τ = 0.75

coef s.e. coef s.e. coef s.e.

const 0.537*** 0.031 0.688*** 0.030 0.840*** 0.036

ownd ( 10- 25km) -0.007 0.025 0.012 0.020 0.003 0.021

ownd ( 25- 50km) 0.053** 0.022 0.046** 0.018 0.042** 0.021

ownd ( 50-100km) 0.248*** 0.030 0.208*** 0.028 0.184*** 0.032

ownd (100-150km) 0.826*** 0.198 0.698*** 0.215 0.590*** 0.192

Firm 2 (0 -10 km) 0.134*** 0.032 0.073** 0.030 0.046 0.034

Firm 2 (10-25 km) 0.070** 0.030 0.045* 0.027 0.009 0.030

Firm 2 (25-50 km) 0.055** 0.026 0.060** 0.023 0.005 0.025

Firm 3 (0 -10 km) 0.191*** 0.029 0.170*** 0.027 0.123*** 0.030

Firm 3 (10-25 km) 0.202*** 0.025 0.155*** 0.023 0.099*** 0.027

Firm 3 (25-50 km) 0.152*** 0.027 0.138*** 0.028 0.094*** 0.032

Note: Additional included controls: project size, year, and prequalification requirements.
P-values: * p<0.1, ** p<0.05 and *** p<0.01. Num Obs=1,497. Under the private costs
hypothesis the distribution of marginal costs should not depend on competitor’s distance.
Firm 1’s marginal costs are higher in projects close to the locations of firms 2 and 3. These
results are consistent with an interdependent cost model.

Table 5(b): Firm 2. Quantile regression of marginal costs on own and competitors’ distance.

Variable τ = 0.25 τ = 0.50 τ = 0.75

coef s.e. coef s.e. coef s.e.

const 0.457*** 0.035 0.635*** 0.033 0.775*** 0.034

ownd ( 10- 25km) 0.014 0.026 0.015 0.025 0.018 0.027

ownd ( 25- 50km) 0.083*** 0.024 0.061** 0.025 0.042 0.026

ownd ( 50-100km) 0.208*** 0.027 0.162*** 0.027 0.122*** 0.030

ownd (100-150km) 0.316*** 0.036 0.254*** 0.041 0.200*** 0.052

ownd (150-200km) 0.557*** 0.090 0.681*** 0.172 0.545*** 0.155

ownd (200-500km) 0.882*** 0.174 0.689*** 0.181 0.540*** 0.162

Firm 1 (0 -10 km) 0.250*** 0.025 0.194*** 0.025 0.151*** 0.029

Firm 1 (10-25 km) 0.153*** 0.027 0.124*** 0.025 0.108*** 0.028

Firm 1 (25-50 km) 0.199*** 0.024 0.139*** 0.020 0.119*** 0.024

Firm 8 (0 -10 km) -0.107*** 0.039 -0.091** 0.042 -0.089** 0.042

Firm 8 (10-25 km) -0.026 0.054 -0.005 0.047 0.012 0.049

Firm 8 (25-50 km) -0.040 0.037 -0.020 0.030 0.001 0.032

Note: Additional included controls: project size, year, and prequalification requirements.
P-values: * p<0.1, ** p<0.05 and *** p<0.01. Num Obs=1,248. Firm 2’s marginal costs
are higher in projects close to firm 1, but not close to firm 3. These results are consistent
with a model where firms 1 and 2 have a common cost component.
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Table 5(c): Firm 3. Quantile regression of marginal costs on own and competitors’ distance.

Variable τ = 0.25 τ = 0.50 τ = 0.75

coef s.e. coef s.e. coef s.e.

const 0.684*** 0.063 0.679*** 0.077 0.745*** 0.245

ownd ( 10- 25km) 0.008 0.019 0.023 0.020 0.027 0.026

ownd ( 25- 50km) 0.123*** 0.023 0.108*** 0.026 0.123** 0.048

ownd ( 50-100km) 0.222*** 0.037 0.298*** 0.110 0.571 0.543

ownd (100-150km) 0.537*** 0.097 0.477*** 0.104 0.416* 0.227

ownd (150-200km) 0.300*** 0.082 0.385 0.402 0.420 6.034

ownd (200-500km) 0.262*** 0.087 0.269** 0.116 0.164 0.262

Firm 1 (0 -10 km) -0.006 0.033 0.027 0.040 0.028 0.070

Firm 1 (10-25 km) 0.023 0.033 0.055 0.038 0.031 0.066

Firm 1 (25-50 km) 0.026 0.030 0.039 0.037 0.013 0.065

Firm 7 (0 -10 km) 0.024 0.048 0.111** 0.055 0.163 0.206

Firm 7 (10-25 km) 0.068 0.045 0.119** 0.054 0.146 0.205

Firm 7 (25-50 km) 0.029 0.053 0.148** 0.059 0.163 0.207

Note: Additional included controls: project size, year, and prequalification requirements.
P-values: * p<0.1, ** p<0.05 and *** p<0.01. Num Obs=603. Firm 3’s marginal costs
are higher in projects close to firm 7.
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Table 6(a): Firm 1. Full Information Cost.

Variable τ = 0.31 τ = 0.50 τ = 0.69

coef s.e. coef s.e. coef s.e.

const 0.665*** 0.031 0.712*** 0.026 0.765*** 0.023

δji 0.030*** 0.002 0.025*** 0.002 0.027*** 0.004

ownd ( 10- 25km) -0.004 0.024 0.014 0.018 0.021 0.013

ownd ( 25- 50km) -0.014 0.024 0.012 0.017 0.032** 0.013

ownd ( 50-100km) 0.138*** 0.032 0.158*** 0.025 0.172*** 0.024

ownd (100-150km) 0.407** 0.160 0.377 0.252 0.288*** 0.103

Note: Additional included controls: project size, year, and prequalification requirements.
P-values: * p<0.1, ** p<0.05 and *** p<0.01. Num Obs=1,497. Firm 1’s expected cost
of completing a project located within 10km of its plants is 66% of the engineer estimate
for a signal in the 31st percentile, 71% for the 50th and 76% for the 69th. Firm 1’s
costs are ∼15 percentage points higher in projects located 50-100km away and ∼35 points
higher 100-150km away. If signals were public, a one standard deviation in the (rescaled)
signal received by a competitor would increase firm 1’s expected costs by ∼2.7 percentage
points. Under the assumption of normally distributed (rescaled) signals, an increase from
the 31st to the 69th percentile is a one standard deviation increase. Compare the ∼2.7-
point competitor-signal effect with the 10-point own-signal effect.

Table 6(b): Firm 2. Full Information Cost.

Variable τ = 0.31 τ = 0.50 τ = 0.69

coef s.e. coef s.e. coef s.e.

const 0.638*** 0.031 0.708*** 0.016 0.769*** 0.023

δji 0.029*** 0.003 0.020*** 0.003 0.030*** 0.006

ownd ( 10- 25km) -0.023 0.028 -0.003 0.013 -0.019 0.015

ownd ( 25- 50km) 0.019 0.023 0.027** 0.012 0.01 0.015

ownd ( 50-100km) 0.063*** 0.021 0.078*** 0.014 0.070*** 0.023

ownd (100-150km) 0.113*** 0.039 0.131*** 0.026 0.110** 0.05

ownd (150-200km) 0.427*** 0.133 0.651*** 0.082 0.509*** 0.119

ownd (200-500km) 0.796 2.606 0.721 207.114 0.611 1.209

Note: Additional included controls: project size, year, and prequalification requirements.
P-values: * p<0.1, ** p<0.05 and *** p<0.01. Num Obs=1,248. Firm 2’s expected cost
of completing a project located within 10km of its plants is 64% of the engineer estimate
for a signal in the 31st percentile, 71% for the 50th and 77% for the 69th. Firm 2’s costs
are ∼11 percentage points higher in projects located 50-100km away and ∼50 points higher
100-150km away. If signals were public, a one standard deviation in the (rescaled) signal
received by a competitor would increase firm 1’s expected costs by ∼2.9 percentage points.
Compare the ∼2.9-point competitor-signal effect with the 13-point own-signal effect.
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Table 7: Summary: Full information cost estimation results for the 10 most active firms.

Firm Effect of signals

Own Competitors

1 0.100 0.027

2 0.131 0.029

3 0.075 0.017

4 0.115 0.014

5 0.143 0.008

6 0.025 0.007

7 0.115 0.015

8 0.138 0.014

9 0.183 0.011

10 0.087 0.014

This table summarizes the estimates of the full information cost for the 10 most active firms. The first
column shows the estimated own-signal effect—the effect of an increase in bidder i’s signal from the
31st to the 69th percentile on its own full information cost. As discussed in tables 6(a) and 6(b), it is
the difference between the estimates of the constant term at these two quantiles. The second column
shows the estimated competitor-signal effect—the effect of an increase in bidder j’s signal from the
31st to the 69th percentile on bidder i’s full information cost. In table 6(a) the competitor-signal effect
was estimated to be 0.030, 0.025 and 0.027 for percentiles 31st, 50th and 69th. I report the median
estimate from these three: 0.027. The p-values on these coefficients are below 0.01 for firms 1, 2, 3, 4
and 10; below 0.05 for firms 5, 6 and 7; and below 0.1 for firm 8. According to these coefficients, if firm
2 receives a signal that increases its expected costs by $1,310 ($1,000 x the coefficient of firm 2’s own
signal’s effect), firm 1’s expected costs increase by $270 ($1,000 x the coefficient of firm 1’s competitors’
signal’s effect) upon learning it.

Table 8: Market conditions. Potential Bidders

Firm Probability a Dist.(Km) b Median Cost ($) c

1 0.876 9 356,971
2 0.956 24 355,296
3d 0.001 149 554,081
5 0.092 39 569,657
6 0.172 16 579,825

I analyze the effect of competition in a particular auction. Given its characteristics and location only 4

firms had an estimated probability of entry greater than 0.03.
a Predicted probability of participation according to the semiparametric estimates.
b Distance of the closest firm’s location.
c Full information cost evaluated at ψ (Sj) = 0 for all j.
d In the counterfactual simulation firm 3 receives a $182,000 subsidy if it wins the auction. With the

subsidy the firm is able to compete with firms 1 and 2 on a more even ground.
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Table 9: Counterfactual. The effects of competition.

Effect on expected... IPCa APCb CCc

Firm 1’s bid ($) -11,438 -9,201 -6,942

Firm 2’s bid ($) -12,413 -9,167 -5,840

Firm 3’s bid ($) -64,726 -58,112 -76,448

Winning bid ($) -20,921 -15,164 -15,161

Subsidy paid ($) 41,877 38,293 41,615

Subsidy net cost ($) 20,957 23,129 26,453

a Independent Private Cost model: No correlation of signals or cost interdependence.
b Affiliated Private Cost model: Estimated correlation of signals. No cost interdependence.
c (Partially) Common Cost model: Estimated correlation of signals and cost interdependence.

The subsidy reduces the expected equilibrium bid of firm 1 by $11,438 under the IPC model, but only

by $9,201 under the APC and $6,942 under the CC model. The difference between the reduction in

the CC model and the APC model can be attributed to the effect of the common cost components,

while the difference between the APC and IPC can be attributed to the nonindependence of signals.

Firm 3 bids more aggressively in the CC model not only because of the subsidy but also because it is

subject to a lesser winner’s curse. The effect of the common components on the winning bid is almost

zero due to the pro-competitive effect on firm 3 that offsets the anti-competitive effects on firms 1 and

2. The expected subsidies paid are higher under the IPC and CC models, where firm 3 wins with

higher probability. Due to the winner’s curse, firms 1 and 2 bid more cautiously and firm 3 bids more

aggressively. As a result, firm 3 wins more often in the CC model. The total cost of the subsidy is

greatest under the CC model, followed by the APC model, and lowest under the IPC.
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Table A: Quantile Regression of the latent normalized bids on own and competitors’ distance.
Includes a set of demand controls.

Variable a Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

coef s.e. coef s.e. coef s.e. coef s.e. coef s.e.

Constant b -10.8 8.8 -19.3*** 3.4 3.9 13.1 -7.3 29.7 -18.4 39.7

Own Dist ( 10- 25km) 0.8 1.6 1.6 2.1 1.7 1.9 10.1 10.6 6.1 12.1

Own Dist ( 25- 50km) 2.8* 1.5 3.1 2.1 12.8*** 3.9 17.9 12.1 8.3 11.6

Own Dist ( 50-100km) 13.5*** 2.6 9.9*** 2.4 29.8*** 9.0 25.1* 13.1 11.3 11.6

Own Dist (100-150km) 47.2*** 15.8 22.1*** 4.2 49.6*** 9.4 24.7* 12.8 12.7 11.8

Own Dist (150-200km) 51.9*** 14.3 36.1** 15.0 35.7** 15.6 39.9 26.9

Own Dist (200-500km) 55.7*** 15.1 51.4** 20.4 43.7** 17.6 29.4* 16.2

Competitor A (0 -10 km) 1.5 2.4 10.8*** 3.5 1.7 4.5 -17.3*** 5.2

Competitor A (10-25 km) -1.7 1.9 5.1 3.2 5.1 4.5 1.7 12.4 -14.0*** 4.4

Competitor A (25-50 km) 1.0 1.6 9.0*** 2.0 2.5 4.6 6.4 6.9 -2.7 2.4

Competitor B (0 -10 km) 2.9 2.5 -10.0** 4.2 20.2** 7.9 35.7 39.7 -7.5 6.1

Competitor B (10-25 km) 1.0 2.2 -7.8* 4.3 21.1*** 7.7 11.1 17.2 -3.9 7.5

Competitor B (25-50 km) 1.3 2.2 -2.2 2.6 27.1*** 7.7 10.6* 5.6 -0.3 3.5

Competitors’ id c 2 and 3 1 and 8 1 and 7 5 and 6 6 and 4

Number of Observations 1,497 1,248 603 583 577

Note: P-values: * p<0.1, ** p<0.05 and *** p<0.01. Heteroskedasticity-robust s.e. are reported.
a This specification includes a set of 9 dummies for levels of road density around the project. Additional included
controls: project size, year, and prequalification requirements: HMA, construction, concrete, bridge, water mains.
Dependent variable: (Bid/engineer’s estimate-1)×100.
b Omitted category: projects located within 0-10 km of the bidder and more than 50 km away from the two main
competitors that require prequalification in HMA-work.
c Two main competitors of firm i: the two firms that are observed to participate most often in the auctions where i
participates.
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